
Lecture  17 
Tue. 2.28.2012

 Lagrangian and Hamiltonian dynamics: 
Living with duality in GCC cells and vectors Part II.

(Ch. 12 of Unit 1)

0. Review of Hamilton equations 1 and 2

1. Hamilton prefers Contravariant gmn with Covariant momentum pm 
            Deriving Hamilton’s equations in GCC form
            How to finesse centrifugal and Coriolis energy and other things like phase space.

2. Examples of Hamiltonian dynamics and phase plots
         Isotropic Harmonic Oscillator in polar coordinates and “effective potential” (Simulation)
         Coulomb orbits  in polar coordinates and “effective potential” (Simulation)

1D Pendulum and phase plot (Simulation)
Phase control (Simulation)

3. Exploring phase space and Lagrangian mechanics more deeply
         A weird “derivation” of Lagrange’s equations
         Poincare identity and Action

Lecture  17 ended here
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Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)  

!q

  
pm = ∂L

∂qm
  
pm = ∂L

∂ qmRecall Lagrange equations:

   
d
dt

pm q
m − L( ) = − ∂L

∂t
= dH

dt
where : H = pm q

m − L

Define the Hamiltonian function    H (p) = p iv − L(v)

   
 ∂H
∂pm

= qm

  

∂H
∂qm

= − pm

Deriving Hamilton’s equations 

Hamilton’s 1st GCC equation Hamilton’s 2nd GCC equation

(Recall:              

  
  

∂L
∂pm

≡ 0

   

∂H
∂ qm

≡ 0and:                   ) 
a most peculiar relation
involving partial vs total

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!

(That’s the old Legendre transform)
   

L q, q,t( ) = dL
dt

= pm
dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

               − ∂L
∂t

= d
dt

pm q
m( ) − dL

dt

Use product rule:

 
u dv
dt

+u d v
dt

= d
dt
(u v)
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1. Hamilton prefers Contravariant gmn with Covariant momentum pm 
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

   H =2
1 Mgmn q

m qn +U = T +U  
   ( Numerically

correct ONLY!
) 

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L

This gives an “illegal dependence” for the Hamiltonian (It musn’t be “explicit” in velocity   .) q
m
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

   H =2
1 Mgmn q

m qn +U = T +U  
   ( Numerically

correct ONLY!
) 

  
H = 1

2M
gmn pm pn +U = T +U ≡ E

 
   ( Formally and Numerically

correct
)

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L

This gives an “illegal dependence” for the Hamiltonian (It musn’t be “explicit” in velocity   .)

An inverse metric relation                          gives correct form that depends on momentum pm.
 
qm = 1

M
gmn pn

 q
m
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q
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= Mgmn q
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1 Mgmn q
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   H =2
1 Mgmn q

m qn +U = T +U  
   ( Numerically

correct ONLY!
) 

  
H = 1

2M
gmn pm pn +U = T +U ≡ E

 
   ( Formally and Numerically

correct
)

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L

This gives an “illegal dependence” for the Hamiltonian (It musn’t be “explicit” in velocity   .)

An inverse metric relation                          gives correct form that depends on momentum pm.
 
qm = 1

M
gmn pn

 q
m

 L( r,
φ,r,φ) = 2

1M (grr r
2 + gφφ φ

2)−U(r,φ) = 2
1M ( r2 + r2 ·φ 2)−U(r,φ)

Polar coordinate Lagrangian was given as:

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Polar coordinate Hamiltonian is given here:
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2. Examples of Hamiltonian dynamics and phase plots
         Isotropic Harmonic Oscillator in polar coordinates and “effective potential” (Simulation)
         Coulomb orbits  in polar coordinates and “effective potential”

1D Pendulum and phase plot
Phase control

9Tuesday, February 28, 2012



Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

(Reducing 2D-problem to 1D-problem)
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

(Reducing 2D-problem to 1D-problem)
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

 

pr
2

2M
+

pφ
2

2Mr2
+
k⋅r2

2
=
pr
2

2M
+
2

2Mr2
+
k⋅r2

2
= E = const.

pr
2 = 2ME −

2

r2
− Mk⋅r2

(Reducing 2D-problem to 1D-problem)

12Tuesday, February 28, 2012



Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

 

pr
2

2M
+

pφ
2

2Mr2
+
k⋅r2

2
=
pr
2

2M
+
2

2Mr2
+
k⋅r2

2
= E = const.

pr
2 = 2ME −

2

r2
− Mk⋅r2

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE

(Reducing 2D-problem to 1D-problem)
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation
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Radial KE is 
 

Mr2

2
= E −

2

2Mr2
−
k
2
⋅r2

Same applies to any
radial potential U(r)
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pr
2
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+
2

2Mr2
+U(r)
“real” PE

“effective” PE
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2Mr2
−
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(Reducing 2D-problem to 1D-problem)
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dr
dt

=
2E
M

−
2

M 2r2
−
k
M

⋅r2 Solution:

 

t = dr
2E
M

− 2

M 2r2
− k
M

⋅r2r<

r>

∫
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=
2E
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k
M
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t = dr
2E
M

− 2
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M
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∫

 

t = dr
2E
M

− 2

M 2r2
− 2U(r)

M
r<

r>

∫
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E =

pr
2

2M
+
2

2Mr2
+
k
2
r2

µ = 1.2

µ = 0.5

µ = 0.16

ρ+ ( for E=1.65)ρ−

ρstable

µ = 0

Perigee is
faster

turning point
ρ-

Apogee is
slower

turning point
ρ+

ρ

radius ρ

x

y

angle φ

major radius
a=ρ+

minor radius
b=ρ−

b

Energy:
E=k(a2+b2)/2

Angular momentum:
µ=√(km) ab

Hamiltonian dynamics for Isotropic Harmonic Oscillator potential U(r) =kr2/2

“real” PE

“effective” PE

“centifugal-barrier” PE
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2. Examples of Hamiltonian dynamics and phase plots
         Isotropic Harmonic Oscillator in polar coordinates and “effective potential”
         Coulomb orbits  in polar coordinates and “effective potential” (Simulation)

1D Pendulum and phase plot (Simulation)
Phase control (Simulation)
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Hamiltonian dynamics for Coulomb potential U(r) =-k/r

 
E =

pr
2

2M
+
2

2Mr2
−
k
r

“real” PE

“effective” PE

“centifugal-barrier” PE
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Minimum

Energy

Needed to:

Escape from....... ρ=0.5 .......... to ∞

Orbit at ρ=0.5

Sit at ρ=0.5

0

k=1 m=1

ρ

Angular momentum µ=1/√2
Angular momentum µ=0

Lecture  17 ends here 
Tue. 2.28.2012
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2. Examples of Hamiltonian dynamics and phase plots
         Isotropic Harmonic Oscillator in polar coordinates and “effective potential”
         Coulomb orbits  in polar coordinates and “effective potential”

1D Pendulum and phase plot (Simulation)
Phase control (Simulation)
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H ( pθ ,θ) = E = 1

2I
pθ

2 − MgRcosθ  ,   or:   pθ = 2I E + MgRcosθ( )
Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (θ,pθ)

 

q
p

⎛
⎝⎜

⎞
⎠⎟
=

∂ pH
−∂qH

⎛
⎝⎜

⎞
⎠⎟
= eH × −∇H( )=(H-axis) × (fall line), where:

(H-axis)=eH=eq × ep
(fall line)=-∇H

⎧
⎨
⎩
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