Complex Variables, Series, and Field Coordinates I.

(Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great \$Interest $\$$)
 How good are those power series?
 Taylor-Maclaurin series, imaginary interest, and complex exponentials

2. What good are complex exponentials?

Easy trig
Easy 2D vector analysis
Easy oscillator phase analysis Easy rotation and "dot" or "cross" products
3. Easy $2 D$ vector calculus

Easy 2D vector derivatives
Easy 2D source-free field theory
Easy 2D vector field-potential theory
4. Riemann-Cauchy relations (What's analytic? What's not?)

Easy 2D curvilinear coordinate discovery
Easy 2D circulation and flux integrals
Easy 2D monopole, dipole, and 2^{n}-pole analysis Easy 2^{n}-multipole field and potential expansion Easy stereo-projection visualization
5. Non-analytic $2 D$ source field analysis

1. Complex numbers provide "automatic trigonometry"
2. Complex numbers add like vectors.
3. Complex exponentials Ae ${ }^{-i \omega t}$ track position and velocity using Phasor Clock.
4. Complex products provide 2D rotation operations.
5. Complex products provide 2D "dot"(•) and "cross"(x) products.
6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \mathrm{xF})$ of $2 D$ vector field
7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]
8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector"($\mathrm{F}=\nabla x \mathrm{~A})$ potentials The half-n'-half results: (Riemann-Cauchy Derivative Relations)
9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
10. Complex integrals $\int f(z) d z$ count $2 D$ "circulation" ($\int \mathrm{F} \cdot \mathrm{dr}$) and "flux" ((Fxdr)
11. Complex integrals define 2D monopole fields and potentials
12. Complex derivatives give $2 D$ dipole fields Lecture 15 Thur. 10.11
13. More derivatives give $2 D 2^{N}$-pole fields... starts here
14. ...and 2^{N}-pole multipole expansions of fields and potentials...
15. ...and Laurent Series...
16. ...and non-analytic source analysis.

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$. $\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$. $\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.

Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r_{3}^{t}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r_{3}^{t}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r_{3}^{t}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$
\begin{aligned}
& p^{\frac{1}{1}}(t)=\left(1+r \cdot \frac{t}{1}\right)^{1} p(0)=\left(\frac{2}{1}\right)^{1} \cdot 1=\frac{2}{1}=2.00 \\
& p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right)^{2} p(0)=\left(\frac{3}{2}\right)^{2} \cdot 1=\frac{9}{4}=2.25 \\
& p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right)^{3} p(0)=\left(\frac{4}{3}\right)^{3} \cdot 1=\frac{64}{27}=2.37 \\
& p^{\frac{1}{4}}(t)=\left(1+r \cdot \frac{t}{4}\right)^{4} p(0)=\left(\frac{5}{4}\right)^{4} \cdot 1=\frac{625}{256}=2.44
\end{aligned}
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$
\begin{aligned}
& p^{\frac{1}{1}}(t)=\left(1+r \cdot \frac{t}{1}\right)^{1} p(0)=\left(\frac{2}{1}\right)^{1} \cdot 1=\frac{2}{1}=2.00 \\
& p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right)^{2} p(0)=\left(\frac{3}{2}\right)^{2} \cdot 1=\frac{9}{4}=2.25 \\
& p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right)^{3} p(0)=\left(\frac{4}{3}\right)^{3} \cdot 1=\frac{64}{27}=2.37 \\
& p^{\frac{1}{4}}(t)=\left(1+r \cdot \frac{t}{4}\right)^{4} p(0)=\left(\frac{5}{4}\right)^{4} \cdot 1=\frac{625}{256}=2.44
\end{aligned}
$$

Monthly: $\quad p^{\frac{1}{12}}(t)=\left(1+r \cdot \frac{t}{12}\right)^{12} p(0)=\left(\frac{13}{12}\right)^{12} \cdot 1=2.613$
Weekly: $\quad p^{\frac{1}{52}}(t)=\left(1+r \cdot \frac{t}{52}\right)^{52} p(0)=\left(\frac{53}{52}\right)^{52} \cdot 1=2.693$
Daily: $\quad p^{\frac{1}{365}}(t)=\left(1+r \cdot \frac{t}{365}\right)^{365} p(0)=\left(\frac{366}{365}\right)^{365} \cdot 1=2.7145$
Hrly: $p^{\frac{1}{8760}}(t)=\left(1+r \cdot \frac{t}{8760}\right)^{8760} p(0)=\left(\frac{8761}{8760}\right)^{8760} \cdot 1=2.7181$

Interest product formula is really inefficient: 10^{6} products for 6 -figures! .. . 10^{9} products for 9 ...

$$
\begin{array}{lll}
\\
p^{1 / m}(1)=\left(1+\frac{1}{m}\right)^{m} \xrightarrow[m \rightarrow \infty]{ } & \begin{array}{l}
p^{1 / m}(1)=\mathbf{2 . 7 1 6 9 2 3 9 3 2 2}
\end{array} & \text { for } m=1,000 \\
\text { Let: }
\end{array}
$$

Can improve computational efficiency using binomial theorem:

$$
\begin{aligned}
& (x+y)^{n}=x^{n}+n \cdot x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\ldots+n \cdot x y^{n-1}+y^{n} \\
& \left(1+\frac{r \cdot t}{n}\right)^{n}=1+n \cdot\left(\frac{r \cdot t}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3}+\ldots \quad \begin{array}{l}
\text { Define: Factorials }(!): \\
0!=1=1!, \quad 2!=1 \cdot 2, \quad 3!=1 \cdot 2 \cdot 3, \ldots
\end{array}
\end{aligned}
$$

Interest product formula is really inefficient: 10^{6} products for 6 -figures! .. . 10^{9} products for 9 ...

Can improve efficiency using binomial theorem:

$$
\begin{aligned}
& (x+y)^{n}=x^{n}+n \cdot x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\ldots+n \cdot x y^{n-1}+y^{n} \\
& \left(1+\frac{r \cdot t}{n}\right)^{n}=1+n \cdot\left(\frac{r \cdot t}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3}+\ldots \quad \begin{array}{l}
\text { Define: Factorials }(!): \\
0!=1=1!, \quad 2!=1 \cdot 2, \quad 3!=1 \cdot 2 \cdot 3, \ldots
\end{array}
\end{aligned}
$$

$$
e^{r \cdot t}=1+r \cdot t+\frac{1}{2!}(r \cdot t)^{2}+\frac{1}{3!}(r \cdot t)^{3}+\ldots=\sum_{p=0}^{o} \frac{(r \cdot t)^{p}}{p!}
$$

As $n \rightarrow \infty$ let :

$$
\begin{aligned}
& n(n-1) \rightarrow n^{2} \\
& n(n-1)(n-2) \rightarrow n^{3}, \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& p^{1 / m}(1)=\mathbf{2 . 7 1 6 9 2 3 9 3 2 2} \quad \text { for } m=1,000 \\
& p^{1 / m}(1)=\left(1+\frac{1}{m}\right)^{m} \longrightarrow \longrightarrow^{2.718281828459 . . ~} p^{1 / m}(1)=2.7181459268 \quad \text { for } m=10,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 6 8 2 3 7 2} \quad \text { for } m=100,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 0 4 6 9 3} \quad \text { for } m=1,000,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 6 9 2 5} \quad \text { for } m=10,000,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 8 1 4 9} \quad \text { for } m=100,000,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 8 2 7 1} \quad \text { for } m=1,000,000,000
\end{aligned}
$$

Interest product formula is really inefficient: 10^{6} products for 6 -figures! .. . 10^{9} products for 9 ...

Can improve efficiency using binomial theorem:

$$
\begin{aligned}
& (x+y)^{n}=x^{n}+n \cdot x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\ldots+n \cdot x y^{n-1}+y^{n} \\
& \left(1+\frac{r \cdot t}{n}\right)^{n}=1+n \cdot\left(\frac{r \cdot t}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3}+\ldots \quad \begin{array}{l}
\text { Define: Factorials }(!): \\
0!=1=1!, \quad 2!=1 \cdot 2, \quad 3!=1 \cdot 2 \cdot 3, \ldots
\end{array}
\end{aligned}
$$

$$
e^{r \cdot t}=1+r \cdot t+\frac{1}{2!}(r \cdot t)^{2}+\frac{1}{3!}(r \cdot t)^{3}+\ldots=\sum_{p=0}^{o} \frac{(r \cdot t)^{p}}{p!}
$$

Precision order: $\quad(o=1)$-e-series $=\mathbf{2 . 0 0 0 0 0}=1+1$

As $n \rightarrow \infty$ let :

$$
n(n-1) \rightarrow n^{2}
$$

($o=2$)-e-series $=\mathbf{2 . 5 0 0 0 0}=1+1+1 / 2$
$(o=3)$ - - -series $=2.66667=1+1+1 / 2+1 / 6$
$(o=4)$-e-series $=2.70833=1+1+1 / 2+1 / 6+1 / 24$
$(o=5)-e$-series $=2.71667=1+1+1 / 2+1 / 6+1 / 24+1 / 120$
$(o=6)-e$-series $=2.71805=1+1+1 / 2+1 / 6+1 / 24+1 / 120+1 / 720$
$(o=7)$-e-series $=\mathbf{2 . 7 1 8 2 5}$
$(o=8)-e$-series $=\mathbf{2 . 7 1 8 2 8} \quad$ About 12 summed quotients
for 6-figure precision (A lot better!)

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} 5^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is $j e r k j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4}!i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is $j e r k j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4!} i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Gives Maclaurin (or Taylor) power series

$$
x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is jerk $j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4!} i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Gives Maclaurin (or Taylor) power series

$$
x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is jerk $j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4!} i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Gives Maclaurin (or Taylor) power series
$x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+$
Setting all initial values to $I=x(0)=v(0)=a(0)=j(0)=i(0)=$ \qquad
gives exponential:

$$
e^{t}=1+t+\frac{1}{2!} t^{2}+\frac{1}{3!} t^{3}+\frac{1}{4!} t^{4}+\frac{1}{5!} t^{5}+\ldots+\frac{1}{n!} t^{n}+
$$

But, how good are power series? ${ }_{[200.0}$

Unit 1
Fig. 10.2

Gives Maclaurin (or Taylor) power series

$$
x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+
$$

Setting all initial values to $l=x(0)=v(0)=a(0)=j(0)=i(0)=\ldots$. gives exponential: $\quad e^{t}=1+t+\frac{1}{2!} t^{2}+\frac{1}{3!} t^{3}+\frac{1}{4!} t^{4}+\frac{1}{5!} t^{5}+\ldots+\frac{1}{n!} t^{n}+$

How good are power series? Depends...

1. The Story of e (A Tale of Great \$Interest\$)

How good are those power series?
Taylor-Maclaurin series,
\rightarrow imaginary interest, and complex exponentials

Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number $r=i \theta$. Imaginary number $i=\sqrt{-1}$ powers have repeat-after-4-pattern: $i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$, etc...

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\ldots \quad\left(i=\sqrt{-1} \text { imples: } i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=+1, i^{5}=i, \ldots\right) \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+\left(i \theta-i \frac{\theta^{3}}{3!}+i \frac{\theta^{5}}{5!}-\ldots\right)
\end{aligned}
$$

Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number $r=i \theta$. Imaginary number $i=\sqrt{-1}$ powers have repeat-after-4-pattern: $i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$,etc...
$e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\ldots \quad$ (From exponential series)

$$
=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\ldots \quad\left(i=\sqrt{-1} \text { imples: } i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=+1, i^{5}=i, \ldots\right)
$$

$$
=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+\left(i \theta-i \frac{\theta^{3}}{3!}+i \frac{\theta^{5}}{5!}-\ldots\right) \quad \text { To match series for }\left\{\begin{array}{c}
\operatorname{cosine}: \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\operatorname{sine}: \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{array}\right.
$$

$e^{i \theta}=\quad \cos \theta+\quad i \sin \theta$	
Euler-DeMoivre	Theorem

Unit 1
Fig. 10.3

Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number $r=i \theta$. Imaginary number $i=\sqrt{-1}$ powers have repeat-after-4-pattern: $i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$, etc...
$e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\ldots \quad$ (From exponential series)

$$
=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\ldots \quad\left(i=\sqrt{-1} \text { imples: } i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=+1, i^{5}=i, \ldots\right)
$$

$$
=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+\left(i \theta-i \frac{\theta^{3}}{3!}+i \frac{\theta^{5}}{5!}-\ldots\right) \quad \text { To match series for }\left\{\begin{array}{c}
\text { cosine }: \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\operatorname{sine}: \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{array}\right.
$$

$e^{i \theta}=\quad \cos \theta+\quad i \sin \theta$	
Euler-DeMoivre	Theorem

Imaginary axis

Unit 1
Fig. 10.3

2. What Good Are Complex Exponentials?

Easy rotation and "dot" or "cross" products

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos (a+b)$ or $\sin (a+b)$? Just factor $e^{i(a+b)}=e^{i a} e^{i b} \ldots$

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos (a+b)$ or $\sin (a+b)$? Just factor $e^{i(a+b)}=e^{i a} e^{i b} \ldots$

2. Complex numbers add like vectors. \quad ssum $=z+z^{\prime}=(x+i y)+\left(x^{\prime}+i y^{\prime}\right)=\left(x+x^{\prime}\right)+i\left(y+y^{\prime}\right)$

$$
z \text { diff }=z-z^{\prime}=(x+i y)-\left(x^{\prime}+i y^{\prime}\right)=\left(x-x^{\prime}\right)+i\left(y-y^{\prime}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) } \\
\left.\right|_{S U M} \mid
\end{array}=\sqrt{\left(z+z^{\prime}\right)^{*}\left(z+z^{\prime}\right)}=\sqrt{\left(r e^{i \phi}+r^{\prime} e^{i \phi^{\prime}}\right)^{*}\left(r e^{i \phi}+r^{\prime} e^{i \phi^{\prime}}\right)}=\sqrt{\left(r e^{-i \phi}+r^{\prime} e^{-i \phi^{\prime}}\right)\left(r e^{i \phi}+r^{\prime} e^{i \phi^{\prime}}\right)} \\
& \\
& =\sqrt{r^{2}+r^{\prime 2}+r r^{\prime}\left(e^{i\left(\phi-\phi^{\prime}\right)}+e^{-i\left(\phi-\phi^{\prime}\right)}\right)}=\sqrt{r^{2}+r^{\prime 2}+2 r r^{\prime} \cos \left(\phi-\phi^{\prime}\right)} \quad \text { (quick derivation of Cosine Law) }
\end{aligned}
$$

What Good Are Complex Exponentials? (contd.)

3. Complex exponentials $A e^{-i \omega t}$ track position and velocity using Phasor Clock.
(a) Complex plane and unit vectors

(b) Quantum Phasor Clock $\psi=A \mathrm{e}^{-i \omega t}=A \cos \omega t-i A \sin \omega t=x+i y$

Unit 1
Fig. 10.5

What Good Are Complex Exponentials? (contd.)

3. Complex exponentials $A e^{-i \omega t}$ track position and velocity using Phasor Clock.

(a) Complex plane and unit vectors

(b) Quantum Phasor Clock $\psi=A \mathrm{e}^{-i \omega t}=A \cos \omega t-i A \sin \omega t=x+i y$

Some Rect-vs-Polar relations worth remembering

$$
\begin{aligned}
& \substack{\text { Cartesian } \\
(x, y) \text { form }} \\
& \psi_{x}=\operatorname{Re} \psi(t)=x(t)=A \cos \omega t=\frac{\psi+\psi^{*}}{2} \\
& \psi_{y}=\operatorname{Im} \psi(t)=\frac{v(t)}{\omega}=-A \sin \omega t=\frac{\psi-\psi^{*}}{2 i} \\
& \psi=r e^{+i \theta}=r e^{-i \omega t}=r(\cos \omega t-i \sin \omega t) \\
& \psi^{*}=r e^{-i \theta}=r e^{+i \omega t}=r(\cos \omega t+i \sin \omega t)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Polar } \\
(r, \theta) \\
\text { form }
\end{array} \\
& \begin{array}{r}
r=A=|\psi|=\sqrt{\psi_{x}{ }^{2}+\psi_{y}{ }^{2}}=\sqrt{\psi^{*} \psi} \\
\theta=-\omega t=\arctan \left(\psi_{y} / \psi_{x}\right)
\end{array} \\
& \cos \theta=\frac{1}{2}\left(e^{+i \theta}+e^{-i \theta}\right) \quad \operatorname{Re} \psi=\frac{\psi+\psi^{*}}{2} \\
& \sin \theta=\frac{1}{2}\left(e^{+i \theta}-e^{-i \theta}\right)
\end{aligned} \quad \operatorname{Im} \psi=\frac{\psi-\psi^{*}}{2 i} .4 .
$$

2. What Good Are Complex Exponentials?

Easy trig
Easy $2 D$ vector analysis
Easy oscillator phase analysis
\longrightarrow Easy rotation and "dot" or "cross" products
4. Complex products provide 2D rotation operations.

$$
\begin{aligned}
& e^{i \phi} \cdot z=(\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad+i \quad(x \sin \phi+y \cos \phi) \\
& \mathbf{R}_{+\phi} \phi^{\bullet \mathbf{r}}=(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
&\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y}=\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

4. Complex products provide 2D rotation operations.

$$
e^{i \phi} \cdot z=(\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad+i \quad(x \sin \phi+y \cos \phi)
$$

$$
\begin{aligned}
\mathbf{R}_{+\phi} \bullet \mathbf{r} & =(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y} & =\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

$e^{i \phi}$ acts on this: $z=r e^{i \theta}$

to give this: $e^{i \phi} e^{i \phi} z=r e^{i \phi} e^{i \theta}$

What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.

$$
\begin{aligned}
e i \phi \cdot z=(\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad & +i \quad(x \sin \phi+y \cos \phi) \\
\mathbf{R}_{+\phi} \bullet \mathbf{r} & =(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y} & =\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A=A_{x}+i A_{y}$ and $B=B_{x}+i B_{y}$ and their "star" (*)-product $A^{*} B$.

$$
\begin{aligned}
A^{*} B= & \left(A_{x}+i A_{y}\right)^{*}\left(B_{x}+i B_{y}\right)=\left(A_{x}-i A_{y}\right)\left(B_{x}+i B_{y}\right) \\
& =\left(A_{x} B_{x}+A_{y} B_{y}\right)+i\left(A_{x} B_{y}-A_{y} B_{x}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

Real part is scalar or "dot" (\cdot) product $\mathbf{A} \cdot \mathbf{B}$.
Imaginary part is vector or "cross" (\times) product, but just the Z-component normal to $x y$-plane.
Rewrite $A^{*} B$ in polar form.

$$
\begin{aligned}
A * B & =\left(|A| e^{i \theta_{A}}\right)^{*}\left(|B| e^{i \theta_{B}}\right)=|A| e^{-i \theta_{A}}|B| e^{i \theta_{B}}=|A||B| e^{i\left(\theta_{B}-\theta_{A}\right)} \\
& =|A||B| \cos \left(\theta_{B}-\theta_{A}\right)+i|A||B| \sin \left(\theta_{B}-\theta_{A}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.

$$
\begin{aligned}
e i \phi \cdot z=(\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad & +i \quad(x \sin \phi+y \cos \phi) \\
\mathbf{R}_{+\phi} \bullet \mathbf{r} & =(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y} & =\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A=A_{x}+i A_{y}$ and $B=B_{x}+i B_{y}$ and their "star" (*)-product $A^{*} B$.

$$
\begin{aligned}
A^{*} B= & \left(A_{x}+i A_{y}\right)^{*}\left(B_{x}+i B_{y}\right)=\left(A_{x}-i A_{y}\right)\left(B_{x}+i B_{y}\right) \\
& =\left(A_{x} B_{x}+A_{y} B_{y}\right)+i\left(A_{x} B_{y}-A_{y} B_{x}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

Real part is scalar or "dot" (\cdot) product $\mathbf{A} \cdot \mathbf{B}$.
Imaginary part is vector or "cross" (\times) product, but just the Z-component normal to $x y$-plane.
Rewrite $A^{*} B$ in polar form.

$$
\begin{aligned}
A * B & =\left(|A| e^{i \theta_{A}}\right)^{*}\left(|B| e^{i \theta_{B}}\right)=|A| e^{-i \theta_{A}}|B| e^{i \theta_{B}}=|A||B| e^{i\left(\theta_{B}-\theta_{A}\right)} \\
& =|A||B| \cos \left(\theta_{B}-\theta_{A}\right)+i|A||B| \sin \left(\theta_{B}-\theta_{A}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

$\mathbf{A} \cdot \mathbf{B}=|A||B| \cos \left(\theta_{B}-\theta_{A}\right)$
$=|A| \cos \theta_{A}|B| \cos \theta_{B}+|A| \sin \theta_{A}|B| \sin \theta_{B}$
$=A_{x} B_{x}+A_{y} B_{y}$
$|\mathbf{A} \times \mathbf{B}|=|A||B| \sin \left(\theta_{B}-\theta_{A}\right)$
$=|A| \cos \theta_{A}|B| \sin \theta_{B}-|A| \sin \theta_{A}|B| \cos \theta_{B}$
$=A_{x} B_{y}-A_{y} B_{x}$

What Good are complex variables?

Easy 2D vector calculus

Easy 2D vector derivatives
Easy 2D source-free field theory
Easy 2D vector field-potential theory
6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla x F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z *}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \text { Applying } \\
\text { chain-rule } & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z *} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z *}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rule shows real part of $\frac{d f}{d z}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z^{*}}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z} * \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z *} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rule shows real pary of $\frac{d f}{d z}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl.
Take any function $f(z)$, conjugate it (change all i 's to $-i$) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field

Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z^{*}}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rule shows real part of $\frac{d f}{d z}$ has 2D divergence ∇ •f and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl.
Take any function $f(z)$, conjugate it (change all i 's to $-i$) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$
For example: if $f(z)=a \cdot z$ then $f^{*}\left(z^{*}\right)=a \cdot z^{*}=a(x-i y)$ is not function of z so it has zero z-derivative.
$\mathbf{F}=\left(F_{x}, F_{y}\right)=\left(f_{x}^{*}, f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$$
\nabla \bullet \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}=\frac{\partial(a x)}{\partial x}+\frac{\partial F(-a y)}{\partial y}=0 \quad \left\lvert\, \nabla \times \mathbb{F}_{Z \perp(x, y)}=\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{\partial(-a y)}{\partial x}-\frac{\partial F(a x)}{\partial y}=0\right.
$$

A $D F L$ field \mathbf{F} (Divergence-Free-Laminar)

7. Invent source-free $2 D$ vector fields [$\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl. Take any function $f(z)$, conjugate it (change all i 's to $-i$) to give $f^{*}\left(z^{*}\right)$ for which

For example: if $f(z)=a \cdot z$ then $f^{*}\left(z^{*}\right)=a \cdot z^{*}=a(x-i y)$ is not function of z so it has zero z-derivative.

$$
\begin{aligned}
& \mathbf{F}=\left(F_{x}, F_{y}\right)=\left(f_{x}^{*} f_{y}^{*}\right)=(a \cdot x,-a \cdot y) \text { has zero divergence: } \nabla \cdot \mathbf{F}=0 \text { and has zero curl: }|\nabla \times \mathbf{F}|=0 . \\
& \nabla \bullet \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}=\frac{\partial(a x)}{\partial x}+\frac{\partial F(-a y)}{\partial y}=0 \quad \left\lvert\, \nabla \times \mathbf{F}_{Z \perp(x, y)}=\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{\partial(-a y)}{\partial x}-\frac{\partial F(a x)}{\partial y}=0\right.
\end{aligned}
$$

$\mathbf{F}=\left(f_{x}^{*}, f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ is a divergence-free laminar (DFL) field.

What Good are complex variables?

Easy $2 D$ vector calculus

Easy 2 vector derivatives
Easy 2D source-free field theory
Easy $2 D$ vector field-potential theory
8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any $D F L$ field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla x \mathrm{~A})$ potentials Any $D F L$ field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ($\operatorname{lm} \phi=\mathrm{A})$ parts.
8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any $D F L$ field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ($\operatorname{lm} \phi=\mathrm{A})$ parts.
$f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi=\quad \Phi \quad+i \quad \mathrm{~A}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}$
8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ($\operatorname{lm} \phi=\mathrm{A}$) parts.
$f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi=\underbrace{\Phi}+i \quad \underbrace{\mathbf{A}}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}$
$=\overbrace{\frac{1}{2}} \overbrace{a\left(x^{2}-y^{2}\right)}+i \overbrace{\text { axy }}$

8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ($\operatorname{lm} \phi=\mathrm{A}$) parts.

$$
f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi=\underbrace{\Phi}+i \underbrace{\mathbf{A}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2} .}
$$

Unit 1
Fig. 10.7

8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ($\operatorname{lm} \phi=\mathrm{A}$) parts.

$$
\begin{aligned}
f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi & =\overbrace{=\frac{1}{2} a\left(x^{2}-y^{2}\right)}^{\Phi}+i \overbrace{\text { axy }}^{A}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}
\end{aligned}
$$

Unit 1
Fig. 10.7

BONUS! Get a free coordinate system!

The (Φ, \mathbf{A}) grid is a GCC coordinate system*:
$q^{l}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const.
*Actually it's OCC.

What Good are complex variables?
 Easy 2D vector calculus
 Easy 2D vector derivatives
 Easy 2D source-free field theory
 Easy 2D vector field-potential theory

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi$) and "vector"($\mathrm{F}=\nabla \mathrm{xA}$) potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi *}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and curl $\nabla_{\times A}=\binom{\frac{\partial A}{\partial y}}{-\frac{\partial A}{\partial y}}$ of vector \mathbf{A} (and they're equal!')
$f(z)=\frac{d \phi}{\partial \phi} \Rightarrow$

$$
\begin{aligned}
f(z)=\frac{d b}{d z} & \Rightarrow \\
\frac{d}{d z^{*}} \phi^{*} & =\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}(\overbrace{\left.\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)})=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathrm{A}
\end{aligned}
$$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi$) and "vector"($\mathrm{F}=\nabla \mathrm{xA}$) potentials ...and either one (or half-n'-half!) works just as well.

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi$) and "vector"($\mathrm{F}=\nabla \mathrm{xA}$) potentials ...and either one (or half-n'-half!) works just as well.

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\left.\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathrm{A},{ }^{2}\right)}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi$) and "vector"($\mathrm{F}=\nabla \mathrm{xA}$) potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and curl $\nabla \times \mathrm{A}=\left(\begin{array}{c}\binom{\frac{\partial A}{\partial y}}{-\frac{\partial A}{\partial y}} \\ \begin{array}{l}f(z)=\frac{d \phi}{d z}\end{array} \\ \stackrel{d}{d}{ }^{*} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\frac{\partial \Phi}{\partial x}}^{\partial x}+i \frac{\partial \Phi}{\partial y})+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A}\end{array}\right.$
Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

Scalar static potential lines $\Phi=$ const. and vector flux potential lines $\mathbf{A}=$ const. define $D F L$ field-net.

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi$) and "vector"($\mathrm{F}=\nabla \mathrm{xA}$) potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and $\operatorname{curl} \nabla \times \mathrm{A}=\binom{\frac{\partial A}{\partial y}}{-\frac{\partial A}{\partial x}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\left.\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathrm{A},{ }^{2}\right)}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

Scalar static potential lines $\Phi=$ const. and vector flux potential lines $\mathbf{A}=$ const. define $D F L$ field-net.

The half-n'-half results are called
Riemann-Cauchy
Derivative Relations

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial x}=\frac{\partial \mathrm{A}}{\partial y} \quad \text { is: } \\
& \frac{\partial \Phi}{\partial} y=-\frac{\partial \mathrm{Re} f(z)}{\partial x}=\frac{\partial \operatorname{Im} f(z)}{\partial y} \text { is: } \\
& \frac{\partial \operatorname{Re} f(z)}{\partial y}=-\frac{\partial \operatorname{Im} f(z)}{\partial x}
\end{aligned}
$$

\longrightarrow 4. Riemann-Cauchy conditions What's analytic? (..and what's not?)

Review $\left(z, z^{*}\right)$ to (x, y) transformation relations

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f \\
z^{*}=x-i y & y=\frac{1}{2}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f
\end{array}
$$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}(z)$ of $z=x+i y$:
First, $f(z)$ must not be a function of $z^{*}=x-i y$, that is: $\frac{d f}{d z^{*}}=0$
This implies $f(z)$ satisfies differential equations known as the Riemann-Cauchy conditions
$\frac{d f}{d z^{*}}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)$ implies: $\frac{\partial f_{x}}{\partial x}=\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{y}}{\partial y}-i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

Review $\left(z, z^{*}\right)$ to (x, y) transformation relations
$z=x+i y$
$x=\frac{1}{2}\left(z+z^{*}\right)$
$\frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f$
$z^{*}=x-i y \quad y=\frac{1}{2 i}\left(z-z^{*}\right)$ $\frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}(z)$ of $z=x+i y$:
First, $f(z)$ must not be a function of $z^{*}=x-i y$, that is: $\frac{d f}{d z^{*}}=0$
This implies $f(z)$ satisfies differential equations known as the Riemann-Cauchy conditions
$\frac{d f}{d z^{*}}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)$ implies: $\frac{\partial f_{x}}{\partial x}=\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{y}}{\partial y}-i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}\left(z^{*}\right)$ of $z^{*}=x$-iy:
First, $f\left(z^{*}\right)$ must not be a function of $z=x+i y$, that is: $\frac{d f}{d z}=0$
This implies $f\left(z^{*}\right)$ satisfies differential equations we call Anti-Riemann-Cauchy conditions
$\frac{d f}{d z}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=$ implies: $: \frac{\partial f_{x}}{\partial x}=-\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z^{*}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{y}}{\partial y}+i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=-\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

What's analytic? (... and what's not?)

Example: Is $f(x, y)=2 x+i y$ an analytic function of $z=z+i y$?

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } \quad x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
f(x, y)=2 x+i 4 y=2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right)
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\begin{gathered}
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2 \\
f(x, y)=2 x+i 4 y
\end{gathered}=2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) .
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\begin{aligned}
\text { or: } & x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2 \\
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } \quad x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of z and z * so not analytic for either.

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } \quad x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of z and z * so not analytic for either.

Example 2: Q: Is $r(x, y)=x^{2}+y^{2}$ an analytic function of $z=z+i y$?

A: NO! $r(x y)=z^{*} z$ is a function of z and z^{*} so not analytic for either.

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of z and $z *$ so not analytic for either.

Example 2: Q: Is $r(x, y)=x^{2}+y^{2}$ an analytic function of $z=z+i y$?

A: NO! $\quad r(x y)=z^{*} z$ is a function of z and z^{*} so not analytic for either.
Example 3: Q: Is $s(x, y)=x^{2}-y^{2}+2 i x y$ an analytic function of $z=z+i y$?
A: YES! $s(x y)=(x+i y)^{2}=z^{2}$ is analytic function of z. (ayy)
4. Riemann-Cauchy conditions What's analytic? (...and what's not?)
\longrightarrow Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2^{n}-pole analysis
Easy 2^{n}-multipole field and potential expansion
Easy stereo-projection visualization
9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"($\int \mathrm{F} \cdot \mathrm{dr}$) and "flux"($(\mathrm{F} \mathbf{F d r})$

Integral of $f(z)$ between point z_{1} and point z_{2} is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i[\underbrace{i\left[\mathrm{~A}\left(x_{2}, y_{2}\right)-\mathrm{A}\left(x_{1}, y_{1}\right)\right.}_{\Delta \Phi})]
$$

In $D F L$-field $\mathbf{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting z_{1} and z_{2}.

9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"($(\mathrm{F} \cdot \mathrm{dr})$ and "flux"($(\mathrm{F} \mathrm{Fx} \mathbf{r})$

Integral of $f(z)$ between point z_{1} and point z_{2} is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i \underbrace{i[\underbrace{\mathbf{A}\left(x_{2}, y_{2}\right)-\mathbf{A}\left(x_{1}, y_{1}\right)}_{\Delta \mathbf{A}})]}_{\Delta \Phi}
$$

In $D F L$-field $\mathbf{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting z_{1} and z_{2}.

$$
\begin{aligned}
\int f(z) d z & =\int\left(f^{*}\left(z^{*}\right)\right)^{*} d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}+i f_{y}^{*}\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}-i f_{y}^{*}\right)(d x+i d y) \\
& =\int\left(f_{x}^{*} d x+f_{y}^{*} d y\right)+i \int\left(f_{x}^{*} d y-f_{y}^{*} d x\right) \\
& =\int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \times d \mathbf{r} \cdot \hat{\mathbf{e}}_{Z} \\
& =\int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathbf{r} \times \hat{\mathbf{e}}_{Z} \\
& =\int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathrm{~S} \quad \text { where: } \quad d \mathrm{~S}=d \mathbf{r} \times \hat{\mathbf{e}}_{Z}
\end{aligned}
$$

9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation" ($\int \mathrm{F} \cdot \mathrm{dr}$) and "flux" ($(\mathrm{F} \mathbf{F d r})$

Integral of $f(z)$ between point z_{1} and point z_{2} is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i \underbrace{i[\underbrace{\mathbf{A}\left(x_{2}, y_{2}\right)-\mathbf{A}\left(x_{1}, y_{1}\right)}_{\Delta \mathbf{A}}]}_{\Delta \Phi}
$$

In $D F L$-field $\mathrm{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting z_{1} and z_{2}.
$\int f(z) d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*} d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}+i f_{y}^{*}\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}-i f_{y}^{*}\right)(d x+i d y)$

$$
=\int\left(f_{x}^{*} d x+f_{y}^{*} d y\right)+i \int\left(f_{x}^{*} d y-f_{y}^{*} d x\right)
$$

$$
=\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \times d \mathbf{r} \cdot \hat{\mathbf{e}}_{Z}
$$

$$
=\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathbf{r} \times \hat{\mathbf{e}}_{Z}
$$

$$
=\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathrm{~F} \cdot d \mathrm{~S} \quad \text { where: } \quad d \mathrm{~S}=d \mathbf{r} \times \hat{\mathbf{e}}_{Z}
$$

Real part $\quad \int_{1}^{2} \mathbf{F} \bullet d \mathbf{r}=\Delta \Phi$ sums \mathbf{F} projections along path $d \mathbf{r}$ that is, circulation on path to get $\Delta \Phi$.

Here the scalar potential $\Phi=\left(x^{2}-y^{2}\right) / 2$ is stereo-plotted vs. (x, y) The $\Phi=\left(x^{2}-y^{2}\right) / 2=$ const. curves are topography lines
The $A=(x y)=$ const. curves are streamlines normal to topography lines

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
\longrightarrow Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2^{n}-pole analysis Easy 2^{n}-multipole field and potential expansion Easy stereo-projection visualization

What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:
$q^{l}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const.
*Actually it's OCC.

Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad \leftarrow \mathbf{E}^{A} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:
$q^{1}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const .
*Actually it's OCC.

Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

Riemann-Cauchy Derivative Relations make coordinates orthogonal
$\nabla \Phi=\binom{\frac{\partial}{\partial} \Phi}{\frac{\partial}{\partial y} \Phi}=\binom{\frac{\partial}{\partial} x \frac{a}{2}\left(x^{2}-y^{2}\right)}{\frac{\partial}{\partial y} \frac{a}{2}\left(x^{2}-y^{2}\right)}=\binom{a x}{-a y}=\mathbf{F}$

The half-n'-half results assure

$$
\begin{aligned}
\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} & =\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x}+\frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y} \\
& =-\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x}=0
\end{aligned}
$$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:
$q^{1}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const .
*Actually it's OCC.

Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{ll}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad \leftarrow \mathbf{E}^{\Lambda} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

Riemann-Cauchy Derivative Relations make coordinates orthogonal
$\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}=\binom{\frac{\partial}{\partial x} \frac{a}{2}\left(x^{2}-y^{2}\right)}{\frac{\partial}{\partial y} \frac{a}{2}\left(x^{2}-y^{2}\right)}=\binom{a x}{-a y}=\mathbf{F}$
The half-n'-half results assure

$$
\begin{aligned}
\mathbf{E}_{\oplus} \cdot \mathbf{E}_{A} & =\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x}+\frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y} \\
& =-\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x}=0
\end{aligned}
$$

or Riemann-Cauchy
Zero divergence requirement: $0=\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}=\frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x}+\frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y}=\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=0$ potential Φ obeys. Laplace equation
4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
\longrightarrow Easy 2D monopole, dipole, and 2^{n}-pole analysis
Easy 2^{n}-multipole field and potential expansion Easy stereo-projection visualization

11. Complex integrals define 2D monopole fields and potentials

 Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-l$ case.Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$
$f(z)=\frac{a}{z}=a z^{-1} \quad$ Source- a monopole
It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$.

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-l$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1} \quad f(z)=\frac{a}{z}=a z^{-1}$ Source- a monopole
It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$.

$$
\phi(z)=\Phi+i \mathbf{A}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)
$$

What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials

 Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-l$ case.Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{a \ln (r)}^{\Phi}+\overbrace{i a \theta}^{i \mathrm{~A}}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{i=})
\end{aligned}
$$

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
& \phi(z)=\Phi+i \mathrm{~A}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{a \ln (r)}+i \overbrace{a \theta} \\
& \text { (a) Unit Z-line-flux field } f(z)=1 / z
\end{aligned}
$$

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{a}^{\Phi}+\overbrace{\mathbf{A}}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{a \ln (r)})
\end{aligned}
$$

(b) Unit Z-line-vortex field $f(z)=i / z$

What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{a \ln (r)}^{\Phi}+\overbrace{i a \theta}^{i \mathrm{~A}}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{i})
\end{aligned}
$$

A monopole field is the only power-law field whose integral (potential) depends on path of integration.

$$
\Delta \phi=\oint f(z) d z=a \oint \frac{d z}{z}=a \int_{\theta=0}^{\theta=2 \pi N} \frac{d\left(R e^{i \theta}\right)}{R e^{i \theta}}=a \int_{\theta=0}^{\theta=2 \pi N} i d \theta=\left.a i \theta\right|_{0} ^{2 \pi N}=2 a \pi i N
$$

Each turn around origin
adds $2 \pi i$ to vector potential $i \mathrm{~A}$

What Good Are Complex Exponentials? (contd.)

$$
f(z)=(0.5+i 0.5) / z=e^{i \pi / 4 / z \sqrt{ } 2}
$$

"Vortex"
"Hurricane"

$$
f(z)=(0.75+i 0.25) / z=e^{i 18^{\circ}} / z \sqrt{ } n
$$

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
\longrightarrow Easy 2D monopole, dipole, and 2^{n}-pole analysis
Easy 2^{n}-multipole field and potential expansion Easy stereo-projection visualization
12. Complex derivatives give 2D dipole fields Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength a.

$$
f^{l-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Delta}{4}^{2}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Delta}{2}}{z+\frac{\Delta}{2}}
$$

So-called
"physical dipole" has finite Δ $(+)(-)$ separation
12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $\phi(z)=a \ln z$ of source strength a.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Delta^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Lambda^{1}}{2}}{z+\frac{\Delta}{2}}
$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the z-derivative of $f^{1 \text {-pole }}$.

$$
f^{2-\text { pole }}=\frac{-a}{z^{2}}=\frac{d f^{1-\text { pole }}}{d z}=\frac{d \phi^{2-p o l e}}{d z} \quad \phi^{2-p o l e}=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z}
$$

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength a.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Lambda^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Delta}{2}}{z+\frac{\Delta}{2}}
$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the z-derivative of $f^{1 \text {-pole }}$.

What Good Are Complex Exponentials? (2D monopole, dipole, and 2^{n}-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength a.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{f-\text { pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Lambda^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Lambda^{1}}{2}}{z+\frac{\Delta}{2}}
$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the z-derivative of $f^{l \text {-pole }}$.

$$
f^{2-\text { pole }}=\frac{-a}{z^{2}}=\frac{d f^{1-p o l e}}{d z}=\frac{d \phi^{2-p o l e}}{d z} \quad \phi^{2-p o l e}=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z}
$$

A point-dipole potential $\phi^{2-\text {-pole }}$ (whose z-derivative is $f^{2 \text {-pole }}$) is a z-derivative of $\phi^{1 \text {-pole }}$.

$$
\begin{aligned}
\phi^{2-p o l e}=\frac{a}{z}=\frac{a}{x+i y}=\frac{a}{x+i y} \frac{x-i y}{x-i y} & =\frac{a x}{x^{2}+y^{2}}+i \frac{-a y}{x^{2}+y^{2}}=\frac{a}{r} \cos \theta-i \frac{a}{r} \sin \theta \\
& =\Phi^{2-p o l e}+i \mathrm{~A}^{2-p o l e}
\end{aligned}
$$

A point-dipole potential $\phi^{2-\text { pole }}$ (whose z-derivative is $f^{2-\text { pole }}$) is a z-derivative of $\phi^{l-\text { pole }}$.

$$
\begin{aligned}
\phi^{2-p o l e}=\frac{a}{z}=\frac{a}{x+i y}=\frac{a}{x+i y} \frac{x-i y}{x-i y} & =\frac{a x}{x^{2}+y^{2}}+i \frac{-a y}{x^{2}+y^{2}}=\frac{a}{r} \cos \theta-i \frac{a}{r} \sin \theta \\
& =\Phi^{2-p o l e}+i \mathrm{~A}^{2-p o l e}
\end{aligned}
$$

2^{n}-pole analysis (quadrupole: $2^{2}=4$-pole, octapole: $2^{3}=8$-pole, \ldots, , pole dedncer,
What if we put a (-)copy of a 2 -pole near its original?
Well, the result is 4 -pole or quadrupole field $f^{4 \text {-pole }}$ and potential $\phi^{4 \text {-pole }}$.
Each a z-derivative of $f^{2 \text {-pole }}$ and $\phi^{2 \text {-pole }}$.

$$
f^{4-\text { pole }}=\frac{a}{z^{3}}=\frac{1}{2} \frac{d f^{2} \text {-pole }}{d z}=\frac{d \phi^{4} \text {-pole }}{d z}
$$

$$
\phi^{4-\text { pole }}=-\frac{a}{2 z^{2}}=\frac{1}{2} \frac{d \phi^{2-p o l e}}{d z}
$$

2^{n}-pole analysis (quadrupole: $2^{2}=4$-pole, octapole: $2^{3}=8$-pole, \ldots, , pole dancer,
What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field $f^{4-\text {-pole }}$ and potential $\phi^{4-\text { pole }}$.
Each a z-derivative of $f^{2 \text {-pole }}$ and $\phi^{2 \text {-pole }}$.

$$
f^{4-\text { pole }}=\frac{a}{z^{3}}=\frac{1}{2} \frac{d f^{2-\text { pole }}}{d z}=\frac{d \phi^{4-\text { pole }}}{d z} \quad \phi^{4-\text { pole }}=-\frac{a}{2 z^{2}}=\frac{1}{2} \frac{d \phi^{2-\text { pole }}}{d z}
$$

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2^{n}-pole analysis
Easy 2^{n}-multipole field and potential expansion
Easy stereo-projection visualization

2^{n}-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function $f(z)$ around $z=0$.

$$
\begin{aligned}
f(z)= & \ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots \\
& \ldots 2^{2} \text {-pole } 2^{1} \text {-pole } 2^{0} \text {-pole } 2^{1} \text {-pole } 2^{2} \text {-pole } 2^{3} \text {-pole } 2^{4} \text {-pole } 2^{5} \text {-pole } 2^{6} \text {-pole } \cdots \\
& \text { at } z=0 \quad \text { at } z=0 \quad \text { at } z=0 \quad \text { at } z=\infty \text { at } z=\infty \\
\phi(z)= & \ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\frac{a_{3}}{4} z^{4}+\frac{a_{4}}{5} z^{5}+\frac{a_{5}}{6} z^{6}+\ldots
\end{aligned}
$$

All field terms $a_{m-1} z^{m-1}$ except 1 -pole ${ }_{\frac{a}{-}}^{a_{-1}}$ have potential term $a_{m-1} z^{m} / m$ of a 2^{m}-pole.
These are located at $z=0$ for $m<0$ and at $z=\infty$ for $m>0$.

$$
\begin{aligned}
& \phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\ldots \\
& \phi(w)=\ldots \frac{a_{-3}}{-2} w^{-2}+\frac{a_{-3}}{-2} w^{-2}+\frac{a_{-2}}{-1} w^{-1}+a_{-1} \ln w+a_{0} w+\frac{a_{1}}{2} w^{2}+\frac{a_{2}}{3} w^{3}+\ldots \\
&\left(\text { with } z=w^{-1}\right) \\
&=\ldots \frac{a_{2}}{3} z^{-2}+\frac{a_{1}}{2} z^{-2}+a_{0} z^{-1}-a_{-1} \ln z+\frac{a_{-2}}{-1} z+\frac{a_{-3}}{-2} z^{2}+\frac{a_{-3}}{-2} z^{3}+\ldots \\
&\left(\text { with } w=z^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\ldots \\
& \phi(w)=\ldots \frac{a_{-3}}{-2} w^{-2}+\frac{a_{-3}}{-2} w^{-2}+\frac{a_{-2}}{-1} w^{-1}+a_{-1} \ln w+a_{0} w+\frac{a_{1}}{2} w^{2}+\frac{a_{2}}{3} w^{3}+\ldots
\end{aligned}
$$

$$
=\ldots \frac{a_{2}}{3} z^{-2}+\frac{a_{1}}{2} z^{-2}+a_{0} z^{-1}-a_{-1} \ln z+\frac{a_{-2}}{-1} z+\frac{a_{-3}}{-2} z^{2}+\frac{a_{-3}}{-2} z^{3}+\ldots
$$

$$
\text { (with } w=z^{-1} \text {) }
$$

Of all 2^{m}-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole a_{-1} / z^{-1} has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$ They hold for any loop about point- a. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- a.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z, \frac{d^{3} f(a)}{d a^{3}}=\frac{3!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{4}} d z, \cdots, \frac{d^{n} f(a)}{d a^{n}}=\frac{n!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z
$$

This leads to a general Taylor-Laurent power series expansion of function $f(z)$ around point- a.

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n} \quad \text { where }: a_{n}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z\left(=\frac{1}{n!} \frac{d^{n} f(a)}{d a^{n}} \quad \text { for }: n \geq 0\right)
$$

