Quadratic form geometry and development of mechanics

of Lagrange and Hamilton

(Ch. 12 of Unit 1 and Ch. 4-5 of Unit 7)
Scaling transformation between Lagrangian and Hamiltonian views of KE (Review of Lecture 9) Introducing 1st Lagrange and Hamilton differential equations of mechanics (Review Of Lecture 9)

Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)
A general contact transformation from sophomore physics Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST" Intuitive-geometric development of " " " and "" "

Scaling transformation between Lagrangian and Hamiltonian views of KE (Review of Lecture 9) Introducing the (partial) differential equations of mechanics (Review Of Lecture 9)

1st equations of Lagrange and Hamilton

Introducing the (partial ${ }_{\frac{\partial}{\partial r}}$) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have no explicit dependence on momentum \mathbf{p}

$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian

 have no explicit dependence on velocity $\mathbf{v}$$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum V

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections

$$
\nabla_{v} L=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2}
$$

$$
\nabla_{p} H=\mathbf{v}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2}
$$

(Forget Estrangian for now)

$$
\begin{aligned}
& \binom{\frac{\partial L}{\partial v_{1}}}{\frac{\partial L}{\partial v_{2}}}=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{p_{1}}{p_{2}} \\
& \text { Lagrange's } 1^{s t} \text { equation(s) } \\
& \frac{\partial L}{\partial v_{k}}=p_{k} \quad \text { or: } \quad \frac{\partial L}{\partial \mathbf{v}}=\mathbf{p}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\frac{\partial H}{\partial p_{1}}}{\frac{\partial H}{\partial p_{2}}}=\left(\begin{array}{cc}
m_{1}^{-1} & 0 \\
0 & m_{2}^{-1}
\end{array}\right)\binom{p_{1}}{p_{2}}=\binom{v_{1}}{v_{2}} \\
& \text { Hamilton's } 1^{\text {st }} \text { equation(s) } \\
& \frac{\partial H}{\partial p_{k}}=v_{k} \quad \text { or: } \quad \frac{\partial H}{\partial \mathbf{p}}=\mathbf{v}
\end{aligned}
$$

$$
=\mathbf{M}^{-1} \cdot \mathbf{p}=\mathbf{v}
$$

Unit 1
Fig. 12.2
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} / 2\end{aligned}$
(b) $H(\mathrm{p})=$ const. $=\cdot \mathbf{M}^{-1} \cdot / 2 \quad p_{2}=m_{2} v_{2}$

\rightarrow Introducing the Poincare' and Legendre contact transformations

Geometry of Legendre contact transformation
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$.

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$. Numerically-CORRECT, but Differentially-WRONG!

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$. Numerically-CORRECT, but Differentially-WRONG! Instead try: $H(\mathbf{p} .)=.\mathbf{p} \cdot \mathbf{v}-(1 / 2) \mathbf{v} \cdot \mathbf{p}=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v} .$.$) or else: L(\mathbf{v} .)=.\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p} .$.

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p}$ you might be tempted to rewrite
Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$.
Numerically-CORRECT, but Differentially-WRONG!
Instead try: $H(\mathbf{p} .)=.\mathbf{p} \cdot \mathbf{v}-(1 / 2) \mathbf{v} \cdot \mathbf{p}=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v} .$.$) or else: L(\mathbf{v} .)=.\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p} .$.
Legendre contact transformation

$$
L(\mathbf{v})=\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p}) \quad H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})
$$

Now explicit dependency (non)-relations give the right derivatives

$$
\begin{array}{cc}
\frac{\partial L(\mathbf{v})}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \mathbf{p} \cdot \mathbf{v}-\frac{\partial H(\mathbf{p})}{\partial \mathrm{p}} & \frac{\partial H(\mathbf{p})}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}} \mathrm{p} \cdot \mathbf{v}-\frac{\partial L(\mathbf{v})}{\partial \mathbf{v}} \\
0=\quad \mathbf{v}-\frac{\partial H(\mathbf{p})}{\partial \mathbf{p}} & 0=\mathbf{p}-\frac{\partial L(\mathbf{v})}{\partial \mathbf{v}}
\end{array}
$$

That is Hamilton's $1^{\text {st }}$ equation(s) and Lagrange's $1^{\text {st }}$ equation(s)

Introducing the Poincare' and Legendre contact transformations

\longrightarrow Geometry of Legendre contact transformation
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)

How Legendre contact transformations work...(to make $\frac{\partial H}{\partial \nu}=0$ or $\frac{\partial L}{\partial \rho}=0$)

Secant lines $L(\mathbf{v})=p \cdot v-H \quad$ of fixed slope $p=\frac{\partial L}{\partial v}$ and decreasing intercept $-H\left(v_{-2}\right)>-H\left(v_{-1}\right)>\ldots$
for increasing velocity $\quad v_{-2}>v_{-1}>\ldots>v_{0}$ lead to unique tangent to $L(\mathbf{v})$-curve at the
tangent contact point $v=v_{0}$ that has max $H\left(p v_{0}\right)$ Thus $\frac{\partial H}{\partial v}=0$

Unit 1
Fig. 12.4
(a) Secant lines: $L(v)=p^{\bullet} v-H$

Introducing the Poincare' and Legendre contact transformations

Geometry of Legendre contact transformation
\longrightarrow Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)

Internal energy $U(S, V)$ is defined as a function of entropy S and volume V.
A new function enthalpy $H(S, P)$ depends on entropy and pressure P.
It is a Legendre transform $H(S, P)=P \cdot V+U$ of energy $U(S, V)$ to new variable $P=-\left(\frac{\partial U}{\partial V}\right)_{S}$.
Except for \pm signs, it's our Hamiltonian $H(p)=p \cdot v-L(v)$ going from Lagrangian $L(v)$
to use new variable momentum $p=\left(\frac{\partial L}{\partial v}\right)_{x}$.

Introducing the Poincare' and Legendre contact transformations

Geometry of Legendre contact transformation
Example from thermodynamics
\longrightarrow Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)

Legendre transform: special case of General Contact Transformation

Active-Contact-Transformation Generator or

Unit 1
Fig. 12.7

The Legendre transformation does it with contacting straight line tangents.

Unit 1
Fig. 12.9

Legendre transform: special case of General Contact Transformation

Active-Contact-Transformation Generator or

The Legendre transformation does it with contacting straight line tangents.

Unit 1
Fig. 12.9

Legendre transform: special case of General Contact Transformation

Active-Contact-Transformation Generator or

Unit 1
Fig. 12.7

The Legendre transformation does it with contacting straight line tangents.

A general contact transformation from sophomore physics
\rightarrow Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST" Intuitive-geometric development of " " " and " "

Unit 1

Fig. 12.5

UP-1 formulas for trajectories in constant gravity g

$$
\begin{array}{ll}
x(t)=\left(v_{0} \cos \alpha\right) t & y(t)=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2} \\
\dot{x}(0)=v_{x}(0)=v_{0} \cos \alpha & \dot{y}(0)=v_{y}(0)=v_{0} \sin \alpha
\end{array}
$$

Substitute time $t=x /\left(v_{0} \cos \alpha\right)$ into $y(t)$

$$
\begin{aligned}
& y(x)=\frac{v_{0} \sin \alpha}{v_{0} \cos \alpha} x-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \\
& y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}
\end{aligned}
$$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{-2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha}$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{-2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha} \quad$ gives: $\tan \alpha=\frac{v_{0}^{2}}{g x}$ or: $x=\frac{v_{0}^{2}}{g \tan \alpha}$.

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha} \quad \ldots \tan \alpha=\frac{v_{0}^{2}}{g x}$ or: $x=\frac{v_{0}^{2}}{g \tan \alpha}$.
$y_{\text {env }}(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\tan ^{2} \alpha\right) \Rightarrow y_{\text {env }}(x)=x \frac{v_{0}^{2}}{g x}-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\frac{\dot{\rightharpoonup}_{0}^{4}}{g^{2} x^{2}}\right)$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{-2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha}$ $\tan \alpha=\frac{v_{0}^{2}}{g x}$ or: $x=\frac{v_{0}^{2}}{g \tan \alpha}$.
$y_{\text {env }}(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\tan ^{2} \alpha\right) \Rightarrow y_{\text {env }}(x)=x \frac{v_{0}^{2}}{g x}-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\frac{\dot{v}_{0}^{4}}{g^{2} x^{2}}\right)$

$$
y_{e n v}(x)=\frac{v_{0}^{2}}{g}-\frac{g x^{2}}{2 v_{0}^{2}}-\frac{g}{2 v_{0}^{2}} \frac{v_{0}^{4}}{g^{2}}=\frac{v_{0}^{2}}{2 g}-\frac{g x^{2}}{2 v_{0}^{2}}
$$

The Plumes of Prometheus

NASA-Galileo Project
Io fly-by on August 18, 1997

http://antwrp.gsfc.nasa.gov/apod/ap970818.html
http://science.nasa.gov/science-news/science-at-nasa/1999/ast04oct99_1/

Io's Alien Volcanoes

Right: Digital Radiance simulation of Pillan Patera just before the Galileo flyby. click for animation \rightarrow.
...conventional parabolic geometry...carried to extremes...
Recall Lecture 6 p. 29

Unit 1
Fig. 9.4

A general contact transformation from sophomore physics Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
\longrightarrow Intuitive-geometric development of " " " and " "

Say $\alpha=90^{\circ}$ path rises to 1.0
then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus?
Q2. ...where is the blast wave?
Q3. ...how high can $\alpha=45^{\circ}$ path path rise ?

Say $\alpha=90^{\circ}$ path rises to 1.0
then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus? Q2. ...where is the blast wave?
Q3. ...how high can $\alpha=45^{\circ}$ path path rise ?
\rightarrow Right at the tippy-tip

Say $\boldsymbol{\alpha}=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?

Q2. ...where is the blast wave? center fat
Q3. How high can $\alpha=45^{\circ}$ path rise ?
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus? Q2. ...where is the blast wave? Q3. How high can $\alpha=45^{\circ}$ path rise ?
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit ? $\mathrm{x}=2$
Q5. Where is blast wave then?
Q6 Where is $\alpha=45^{\circ}$ path focus?
Q7 Guess for all-path envelope? and its focus? directrix?

directrix for all-path envelope
Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus?
\qquad Q2. ...where is the blast wave? Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ as high Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit ? $\mathrm{x}=2$ Q5. Where is blast wave then? centered on 45° norm
Q6 Where is $\alpha=45^{\circ}$ path focus? $x=1, y=0$ Q7 Guess for all-path envelope? and its focus? directrix?
Q7 Where is $\alpha=45^{\circ}$ "kite" geomety y ? Q8 Where is $\alpha=0^{\circ}$ path focus? directrix?
directrix for all-path envelope
Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus? Q2. ...where is the blast wave? Q3. How high can $\alpha=45^{\circ}$ path rise? $1 / 2$ as high Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit?
Q5. Where is blast wave then? centered on 4
Q6 Where is $\alpha=45^{\circ}$ path focus? Q7 Guess for all-path envelope? and its focus? directrix
Q7 Where is $\alpha=45^{\circ}$ "kite" geometry? Q8 Where is $\alpha=0^{\circ}$ path focus? directrix?
Where is $\mathrm{a}=30^{\circ}$ path?
directrix for all-path envelope
Say $\alpha=90^{\circ}$ path rises to 1.0
then drops. When at $y=1.0$...
Q1. ...where is its focus?
Q2. ...where is the blast wave? center falls as far as 90° ball rises
Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ as high
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit ? $\mathrm{x}=2$
Q5. Where is blast wave then? centered on 45° normat
Q6 Where is $\alpha=45^{\circ}$ path focus? $x=1, y=0$
Q7 Guess for all-path envelope?
and its focus? directrix?
Q7 Where is $\alpha=45^{\circ}$ "kite" geometry?
Q8 Where is $\alpha=0^{\circ}$ path focus?
directrix?
Where is $\alpha=30^{\circ}$ path? ...and kite structure?
directrix for all-path envelope
Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus? Q2. ...where is the blast wave? center falls as far as 90° ball rises
Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ as high
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit ? $\mathrm{x}=2$
Q5. Where is blast wave then? centered on 45° norm
Q6 Where is $\alpha=45^{\circ}$ path focus? $x=1, y=0$
Q7 Guess for all-path envelope? and its focus? directrix?
Q7 Where is $\alpha=45^{\circ}$ "kite" geometry?
Q8 Where is $\alpha=0^{\circ}$ path focus? directrix?

Where is $\alpha=30^{\circ}$ path? ...and kite structure?

