Relawavity: Quantizing wave variables of phase and amplitude (Unit 3 p.45-64)

\rightarrow Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1{ }^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$) Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \cdot \Delta t \sim 1 \sim \Delta \kappa \cdot \Delta x$ analogous to $\Delta N \cdot \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields $2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields

Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?)
Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \cdot \Delta t \sim 1 \sim \Delta k \cdot \Delta x$ analogous to $\Delta N \cdot \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Lect. 30
p. 3 to 29

Max Planck

1858-1947

Energy density, photon number N, and normalization discussed p.74-81

Using (some) wave parameters to develop relativistic quantum theory

$=v_{A}$
$=v_{A}=c K$

Need to replace $\rightarrow h v_{\text {phase }}=h B \cosh \rho=M c^{2} \cosh \rho$ h with $h N$ to match e.m. energy density $\boldsymbol{E}^{*} \cdot \boldsymbol{E}=h N v_{\text {phase }}$
This motivates the "particle" normalization
\uparrow Planck (1900)
se $\left.\frac{1}{b_{\text {BLUE }}^{\text {Doppler }}} \frac{c}{V_{\text {phase }}} \frac{K_{\text {phase }}}{K_{A}} \right\rvert\, \frac{\tau_{\text {phase }}}{\tau_{A}} \quad \frac{v_{\text {phase }}}{v_{A}}$

Total Energy: $E=\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}$
Einstein (1905) Einstein $(1905)-\sqrt{1-u^{2} / c^{2}}$
$c_{\text {phase }}=h B \sinh \rho=M c^{2} \sinh \rho$ $\int \Psi^{*} \Psi d V=N \quad \Psi=\sqrt{\frac{\varepsilon_{e}}{h \nu}} E \quad h c \kappa_{\text {phase }}=h B \sinh \rho=M c^{2} \sinh \rho$

$\cot \sigma$	$\csc \sigma$	$1 / e^{-\rho}$
$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
$\frac{4}{3}=1.33$	$\frac{5}{3}=1.67$	$\frac{2}{1}=2.0$

	Muc
	$c p=\frac{}{\sqrt{1-u^{2} / c^{2}}}$
Momentum: $h \kappa_{\text {phase }}=p=\frac{M u}{\sqrt{1-u^{2} / c^{2}}}$	

Using (some) wave parameters to develop relativistic quantum theory

$v_{\text {phase }}=B \cosh \rho \approx B+\frac{1}{2}$
$c \kappa_{\text {phase }}=B \sinh \rho \approx B \rho$
$\frac{u}{c}=\tanh \rho \approx \rho$

$$
\begin{aligned}
& \cosh \rho \approx 1+\frac{1}{2} \rho^{2} \approx 1+\frac{1}{2} \frac{u^{2}}{c^{2}} \\
& \sinh \rho \approx \rho \approx \frac{u}{c} \\
& \text { Lect. } 30
\end{aligned}
$$

$v_{\text {phase }} \approx B+\frac{1}{2} \frac{B}{c^{2}} u^{2} \Leftarrow$ for $(u \ll c) \Rightarrow$ Rescale $v_{\text {phase }}$ by h so: $M=\frac{h B}{c^{2}}$ or: $h B=M c^{2}$
p. 3 to 29
$\kappa_{\text {phase }} \approx \frac{B}{c^{2}} u$

Max Planck Louis DeBroglie 1858-1947 1892-1987
$V_{\text {phase }}$ and $K_{\text {phase }}$ resemble formulae for Newton's kinetic energy $\frac{1}{2} M u^{2}$ and momentum $M u$. So attach scale factor $h(o r h N$) to match units.
$h v_{\text {phase }} \approx M c^{2}+\frac{1}{2} M u^{2} \Leftarrow$ for $(u \ll c) \Rightarrow \quad h \kappa_{\text {phase }} \approx M u$
Luckoco ive intice?
Try exact $V_{\text {phase }}$ and $K_{\text {phase }}$

[^0]Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?)
Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, $S W Q$) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, B, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Bohr-Schrodinger $(B S)$ approximation throws out $M c^{2}$
(Is frequency really relative?)

$$
\begin{aligned}
& E=\hbar \omega \\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho
\end{aligned}
$$

$$
\begin{aligned}
& c p=\hbar c k \quad \text { MOMENTUM } \\
& =\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho
\end{aligned}
$$

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion

Some details concerning

Lect. 30 - slide 31

Bohr-Schrodinger $(B S)$ approximation throws out $M c^{2}$

$$
\begin{align*}
& E=\hbar \omega \tag{ENERGY}\\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho=M c^{2} \sqrt{1+\sinh ^{2} \rho}=\sqrt{\left(M c^{2}\right)^{2}+(c p)^{2}}
\end{align*}
$$

$$
\begin{aligned}
& c p=\hbar c k \text { MOMENTUM } \\
& =\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho
\end{aligned}
$$

Some details concerning

Lect. 30 - slide 31

Bohr-Schrodinger (BS) approximation throws out Mc²

$$
\begin{align*}
& E=\hbar \omega \\
& \text { given: } \quad c p=\hbar c k \text { MOMENTUM } \tag{ENERGY}\\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho=M c^{2} \sqrt{1+\sinh ^{2} \rho}=\sqrt{\left(M c^{2}\right)^{2}+(c p)^{2}} \\
& =\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho \\
& E=\left[\left(M c^{2}\right)^{2}+(c p)^{2}\right]^{1 / 2} \approx / / c^{2}+\frac{1}{2 M} p^{2} \xrightarrow[B S-\text { approx }]{ } \frac{1}{2 M} p^{2} \\
& \text { RelaWavity Web Simulation } \\
& \text { Relativistic Terms - Einstein-Plank Dispersion } \\
& \text { Some details concerning } \\
& \text { BS- binomial approximation } \quad(\mathrm{a}+\mathrm{b})^{n}=\mathrm{a}^{n}+n \mathrm{a}^{n-1} \mathrm{~b}+\ldots \\
& \text { replaces hyperbola: } E=\left[\left(M c^{2}\right)^{2}+(c p)^{2}\right]^{\frac{1}{2}}=M c^{2}+\frac{1}{2} \frac{c^{2} p^{2}}{M c^{2}}+\ldots \\
& \text { with parabola: } \quad E=M c^{2}+\frac{1}{2 M} p^{2}
\end{align*}
$$

Bohr-Schrodinger (BS) approximation throws out $M c^{2}$

$$
\begin{align*}
& E=\hbar \omega \tag{ENERGY}\\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho=M c^{2} \sqrt{1+\sinh ^{2} \rho}=\sqrt{\left(M c^{2}\right)^{2}+(c p)^{2}} \\
& E=\left[\left(M c^{2}\right)^{2}+(c p)^{2}\right]^{1 / 2} \approx \Delta c^{2}+\frac{1}{2 M} p^{2} \xrightarrow[B S-\text { approx }]{ } \frac{1}{2 M} p^{2}
\end{align*}
$$

given: $\quad c p=\hbar c k \quad$ MOMENTUM

$$
\begin{aligned}
& c p=\hbar c k \quad \text { MOMENTUM } \\
& =\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho
\end{aligned}
$$

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion

The BS claim: may shift energy origin $\left(E=M c^{2}, c p=0\right)$ to $(E=0, c p=0)$. (Frequency is relative!)

Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?)
Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta p h a s e \sim 1$ uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Bohr-Schrodinger (BS) approximation throws out $M c^{2}$

$$
\begin{align*}
& E=\hbar \omega \tag{ENERGY}\\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho=M c^{2} \sqrt{1+\sinh ^{2} \rho}=\sqrt{\left(M c^{2}\right)^{2}+(c p)^{2}} \\
& E=\left[\left(M c^{2}\right)^{2}+(c p)^{2}\right]^{1 / 2} \approx \Delta c^{2}+\frac{1}{2 M} p^{2} \xrightarrow[B S-\text { approx }]{ } \frac{1}{2 M} p^{2}
\end{align*}
$$

given: $\quad c p=\hbar c k \quad$ MOMENTUM

$$
\begin{aligned}
& c p=\hbar c k \quad \text { MOMENTUM } \\
& =\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho
\end{aligned}
$$

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion

The BS claim: may shift energy origin ($E=M c^{2}, c p=0$) to ($E=0, c p=0$). (Frequency is relative!)

Bohr-Schrodinger (BS) approximation throws out $M c^{2}$

$$
\begin{align*}
& E=\hbar \omega \tag{ENERGY}\\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho=M c^{2} \sqrt{1+\sinh ^{2} \rho}=\sqrt{\left(M c^{2}\right)^{2}+(c p)^{2}} \\
& E=\left[\left(M c^{2}\right)^{2}+(c p)^{2}\right]^{1 / 2} \approx \not c^{2}+\frac{1}{2 M} p^{2} \xrightarrow[\text { BS-approx }]{ } \frac{1}{2 M} p^{2}
\end{align*}
$$

$$
\begin{aligned}
\text { given: } & c p=\hbar c k \quad \text { MOMENTUM } \\
& =\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho
\end{aligned}
$$

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion

The BS claim: may shift energy origin $\left(E=M c^{2}, c p=0\right)$ to $(E=0, c p=0)$. (Frequency is relative!)

Group velocity $u=V_{\text {group }}=\frac{d \omega}{d k}$ is a differential quantity unaffected by origin shift. But, Phase velocity $\frac{\omega}{k}=V_{\text {phase }}$ is greatly reduced by deleting $M c^{2}$ from $E=\hbar \omega$.

Bohr-Schrodinger (BS) approximation throws out $M c^{2}$

$$
\begin{align*}
& E=\hbar \omega \tag{ENERGY}\\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho=M c^{2} \sqrt{1+\sinh ^{2} \rho}=\sqrt{\left(M c^{2}\right)^{2}+(c p)^{2}} \\
& E=\left[\left(M c^{2}\right)^{2}+(c p)^{2}\right]^{1 / 2} \approx 1 / c^{2}+\frac{1}{2 M} p^{2} \xrightarrow[B S-\text { approx }]{ } \frac{1}{2 M} p^{2}
\end{align*}
$$

$$
c p=\hbar c k \quad \text { MOMENTUM }
$$

$$
=\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho
$$

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion

The BS claim: may shift energy origin $\left(E=M c^{2}, c p=0\right)$ to $(E=0, c p=0)$. (Frequency is relative!)
 Group velocity $u=V_{\text {group }}=\frac{d \omega}{d \pi}$ is a differential quantity unaffected by origin shift. But, Phase velocity $\frac{\omega}{k}=V_{\text {phase }}$ is greatly reduced by deleting $M c^{2}$ from $E=\hbar \omega$.
It slows from super-luminal $V_{\text {phase }}=c^{2} / u$ to a sedate sub-luminal speed of $V_{\text {group }} / 2$.

$$
\begin{aligned}
\omega_{B S}(k)=\frac{k^{2}}{2 M} & \text { gives: } \quad \mathrm{V}_{\text {phase }}=\frac{\omega_{B S}}{k}=\frac{k}{2 M} \\
& \text { and: } \mathrm{V}_{\text {group }}=\frac{d \omega_{B S}}{d k}=\frac{k}{M}
\end{aligned}
$$

Bohr-Schrodinger (BS) approximation throws out $M c^{2}$

$$
\begin{align*}
& E=\hbar \omega \tag{ENERGY}\\
& =\frac{M c^{2}}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \cosh \rho=M c^{2} \sqrt{1+\sinh ^{2} \rho}=\sqrt{\left(M c^{2}\right)^{2}+(c p)^{2}} \\
& E=\left[\left(M c^{2}\right)^{2}+(c p)^{2}\right]^{1 / 2} \approx \Delta c^{2}+\frac{1}{2 M} p^{2} \xrightarrow[B S-\text { approx }]{ } \frac{1}{2 M} p^{2}
\end{align*}
$$

$$
\begin{aligned}
\text { given: } & c p=\hbar c k \quad \text { MOMENTUM } \\
& =\frac{M c u}{\sqrt{1-u^{2} / c^{2}}}=M c^{2} \sinh \rho
\end{aligned}
$$

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion

The BS claim: may shift energy origin $\left(E=M c^{2}, c p=0\right)$ to $(E=0, c p=0)$. (Frequency is relative!)

Group velocity $u=V_{\text {group }}=\frac{d \omega}{d k}$ is a differential quantity unaffected by origin shift. But, Phase velocity $\frac{\omega}{k}=V_{\text {phase }}$ is greatly reduced by deleting $M c^{2}$ from $E=\hbar \omega$.
It slows from super-luminal $V_{\text {phase }}=c^{2} / u$ to a sedate sub-luminal speed of $V_{\text {group }} / 2$.

$$
\begin{array}{ll}
\omega_{B S}(k)=\frac{k^{2}}{2 M} & \text { gives: } \mathrm{V}_{\text {phase }}=\frac{\omega_{B S}}{k}=\frac{k}{2 M} \\
\text { ation: } & \text { and: } \mathrm{V}_{\text {group }}=\frac{d \omega_{B S}}{d k}=\frac{k}{M}
\end{array}
$$

1st quantization:
Restrict wave-number κ to integer or $1 / 2$-integer quanta (to fit in cavity)

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effu group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Here is a rare but important case where $\frac{d \omega(k)}{d k}$ equals $\frac{\Delta \omega}{\Delta k}$. (Usually not so unless limit $\Delta k \rightarrow 0$ exists.)
Standard formula for classical group velocity is $V_{\text {group }}=\frac{d \omega(k)}{d k}$
But this may fail if $\omega(k)$ is quantized and thus discrete $\omega\left(k_{m}\right)$.
Then we need to use an exact quantum form: $\quad V_{\text {group }}=\frac{\Delta \omega}{\Delta k}=\frac{\omega\left(k_{1}\right)-\omega\left(k_{2}\right)}{k_{1}-k_{2}}$

Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number
Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta \leftarrow \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some

NOT OK numbers: $n=0.67$

$$
n=2
$$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers.

OK box quantum numbers: $n=1$
$n=2$

$$
n=3
$$

$$
n=4
$$

(+ integers only)

Some

NOT OK numbers: $n=0.67$

$$
n=1.7
$$

 3 half-waves

$$
n=4
$$

wrong color again!
...not tolerated!
NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}>,\left|E_{2}>,\left|E_{3}>,\right| E_{4}>, \ldots\right.\right.$

Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?)
Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number
Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers.

OK box quantum numbers: $n=1$
$n=2$
$n=3$
$n=4$
(+ integers only)
Some
NOT OK numbers: $n=0.67$

$$
n=1.7
$$

$n=2.59$
wrong color again!
 3 half-waves

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}\right\rangle,\left|E_{2}>,\right| E_{3}\right\rangle,\left|E_{4}\right\rangle, \ldots$ That's the only way you get any light in or out of the system to "see" it.

$$
\begin{aligned}
& \text { frequency } \omega_{32}=\left(E_{3}-E_{2}\right) / \hbar \\
& \text { frequency } \omega_{21}=\left(E_{2}-E_{1}\right) / \hbar
\end{aligned}
$$

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers.

OK box quantum numbers: $n=1$
$n=2$
$n=3$
$n=4$
(+ integers only)
Some

NOT OK numbers: $n=0.67$

$$
n=1.7
$$

$n=2.59$
wrong color again!

3 half-waves

$$
n=4
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle, \mid E_{4}>, \ldots$ That's the only way you get any light in or out of the system to "see" it.

These eigenstates are just the ways the wavy system can "play dead"...

Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Consider two lowest E-states bv themselves

$\|\|\cdot\| \cdot\| \cdot\|\cdot\| \cdot\|\cdot N \cdot\|(x) \sqrt{n}\|\cdot\| \cdot\|\cdot\| \cdot \| \cdot$

By Harter-Off and University of Askansas Physics Eblegant ©dacational Toob ©/ince OOO/

Consider two lowest E-states bv themselves in time

By Harter-Qff and University of Arksisas Physics Elegant Edacational Toab ©fince SOO/

$\|\|\cdot\| \cdot\| \cdot\|\cdot\| \cdot\|\cdot\|$ Qet
By Hatter-Off and University of Askansas Physics Eblegant ©idueational Sedo ©ince 2001

Consider two lowest E-states bv themselves in time

Consider two lowest E-states bv themselves in time

By Harter-off and University of Arkaness Physics ©ilegant Wdacational Toob ©fince 2001

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

Consider two lowest E-states bv themselves in time

By Harter-Gfe and University of Arkansas Physics Elegant Eddecational Toob ©ince OOO/

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states

- Square well example of mixing unequal frequencies Square well example of mixing unequal frequencies

Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
NOT OK numbers: $n=0.67$

$n=2$
$n=3$

$$
n=4
$$

$$
n=1.7
$$

3 half-waves

$$
n=2.59
$$

wrong color again!

NOTE: We're using "false-color" here.

Rings tolerate a zero (kinkless) quantum wave but require \pm integral wave number.

OK ring quantum numbers: $m=0$
$m= \pm 1$
(\pm integral number of wavelengths)

Bohr's models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics built on Planck-Einstein (1900-1905) relation $E=h v$. DeBroglie relation $p=h / \lambda$ comes around 1923.

Consider two lowest E-states by themselves

Consider two lowest E-states by themselves
Now combine (add) them and let time roll! $\left(e^{-i \omega_{0} t}\left|E_{0}\right\rangle+e^{-i \omega_{+1} t}\left|E_{+1}\right\rangle\right) / \sqrt{ } 2$

ByHarter-Off and University of Arkanses Physics Elegant Edicational Toob ©ince SOOI

Consider two lowest E-states by themselves

$$
\left|E_{m=+1}\right\rangle
$$

Now combine (add) them and let time roll! $\left(e^{-i \omega_{0} t}\left|E_{0}\right\rangle+e^{-i \omega_{+1} t}\left|E_{+1}\right\rangle\right) / \sqrt{ } 2$

F+4.2

$$
\left|E_{m=0}\right\rangle
$$

5nornornornornorn

(Just moves forward rigidly)

Consider two degenerate E-states by themselves

Ferew wer

Consider two degenerate E-states by themselves
Now combine (add) them and let time roll!

-4山か\|

Group wave is stationary if $\omega_{-1}=\omega_{+1}$ but phase can move or"gallop" faster than light!

If $\omega_{-1}<\omega_{+1}$ then $V_{\text {group }}<0$
If $\omega_{-1}>\omega_{+1}$ then $V_{\text {group }}>0$

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number
Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Galloping waves due to unmatched 2-CW amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that may be unmatched. $\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates ($k_{\Sigma}, \omega_{\Sigma}$) and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Galloping waves due to unmatched 2-CW amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that may be unmatched. $\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\hookrightarrow} x-\omega_{\dashv} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates ($k_{\Sigma}, \omega_{\Sigma}$) and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Now consider amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.

Galloping waves due to unmatched 2-CW amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that may be unmatched. $\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\lrcorner} \rightarrow-\omega_{\lrcorner} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates ($k_{\Sigma}, \omega_{\Sigma}$) and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Now consider amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.
$\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)}$

$$
S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

Galloping waves due to unmatched 2-CW amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that may be unmatched. $\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\hookrightarrow} x-\omega_{\lrcorner} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates ($k_{\Sigma}, \omega_{\Sigma}$) and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Now consider amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.

$$
\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)} \quad S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

Galloping waves due to unmatched 2-CW amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that may be unmatched. $\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\hookrightarrow} x-\omega_{\lrcorner} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates ($k_{\Sigma}, \omega_{\Sigma}$) and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Now consider amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.

$$
\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)} \quad S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

They're analogous to group velocity $\mathrm{V}_{\text {group }}<c$ frequency ratios and inverse phase velocity $\mathrm{V}_{\text {phase }}>\mathrm{c}$ ratios.

$$
V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}-k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} \quad V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}+k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right)}
$$

Galloping waves due to unmatched 2-CW amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that may be unmatched. $\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates ($k_{\Sigma}, \omega_{\Sigma}$) and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Now consider amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.

$$
\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)}
$$

$$
S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

They're analogous to group velocity $\mathrm{V}_{\text {group }}<c$ frequency ratios and inverse phase velocity $\mathrm{V}_{\text {phase }}>\mathrm{c}$ ratios.

$$
\begin{aligned}
& V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}-k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} \\
& \frac{V_{\text {group }}}{c}=\frac{\omega_{\Delta}}{c k_{\Delta}}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow}-k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}+k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)} \\
& \frac{V_{\text {phase }}}{c}=\frac{\omega_{\Sigma}}{c k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow}+k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}=\frac{c}{V_{\text {group }}}
\end{aligned}
$$

Galloping waves due to unmatched 2-CW amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that may be unmatched. $\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates ($k_{\Sigma}, \omega_{\Sigma}$) and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Now consider amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.

$$
\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)}
$$

$$
S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

They're analogous to group velocity $\mathrm{V}_{\text {group }}<c$ frequency ratios and inverse phase velocity $\mathrm{V}_{\text {phase }}>\mathrm{c}$ ratios.

$$
\begin{array}{cl}
V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}-k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} & V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}+k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)} \\
\frac{V_{\text {group }}}{c}=\frac{\omega_{\Delta}}{c k_{\Delta}}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow-}-k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} & \frac{V_{\text {phase }}}{c}=\frac{\omega_{\Sigma}}{c k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow}+k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow+}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}=\frac{c}{V_{\text {group }}} \\
\frac{V_{\text {group }}}{c}=\frac{c}{V_{\text {phase }}} \quad \text { is analogous to: } & S W R=\frac{1}{S W Q}
\end{array}
$$

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Fig. 6.1 Monochromatic (1-frequency) 2-CW wave space-time patterns.

Fig. 6.2 Dichromatic (2-frequency) 2-CW wave space-time patterns.
$S W R=0$
$S W R=-1 / 5$
(not shown)
Same SWR
cases viewed at $u / c=3 / 5$
$S W R=1$
Two extremes for Standing SWR $=+1 / 5 \quad$ Wave Ratio
$S W R=0 \quad$...and

BohrIt Web Simulations Links
(embedded in corners)
$S W R=-1$
(not shown) www.uark.edu/ua/pirelli/html/amplitude_probability_2.html
from:Fig.4.5.2 from:Fig. 8.6.3 QTforCA Unit 2 Ch. 4

CMwBang!
Unit 8 Ch. 6

Fig. 6.1 Monochromatic (1-frequency) 2-CW wave space-time patterns.
polarization analogy
(a) $b / a=+1 / 1$

(d)

Fig. 6.2 Dichromatic (2-frequency) 2-CW wave space-time patterns.

Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.

Fig. 6.1 Monochromatic (1-frequency) 2-CW wave space-time patterns.
polarization analogy
(a) $b / a=+1 / 1$

2-frequency cases

(g) $b / a=-1 / 1$

(h) Elliptic oscillator orbit

$$
S W R=b / a=1 / 5
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}
$$

(i) Kepler anomaly relations

$$
\tan \phi(t)=S W R \tan \omega t
$$

RelaWavity Web Simulation Elliptical Orbit

Fig. 6.2 Dichromatic (2-frequency) 2-CW wave space-time patterns. http://www.uark.edu/ua/modphys/markup/BoxltWeb.html?AU2=1.0\&BU2=0.0\&CU2=0.0\&DU2=1.0\&xInitial=1.0\&ylnitial=0.0\&pxInitial=0.0\&pylnitial=0.4\&wantBoxLines=1

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, $S W Q$) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
In Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number
Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Super-luminal speeds and Feynman-Wheeler switchbacks

Fig. 2.B. 10 Lighthouse plot of two Happenings

Super-luminal speeds and Feynman-Wheeler switchbacks

Fig. 2.B. 11 Ship plot of two Happenings

Waves that go back in time - The Feynman-Wheeler Switchback
Minkowski Zero-Grids are Spacetime Switchbacks for $-u_{\text {GROUP }}<S W R<0$

Group-zero speed

$\omega_{\rightarrow}=4 c$	$\omega_{\leftarrow}=1 c$
$k_{\rightarrow}=4$,	$k_{\leftarrow}=-1$
$u_{\text {GROUP }}=c 3 / 5$	
$u_{\text {PHASE }}=c 5 / 3$	

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number
Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \cdot \Delta t \sim 1 \sim \Delta k \cdot \Delta x$ analogous to $\Delta N \cdot \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Quantized Amplitude Counting "photon" number (2nd-Quantization)

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

$N_{2}=0$

Quantized Amplitude Counting "photon" number (2nd_Quantization)

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number (2nd_Quantization)

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number (2nd_Quantization)

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number (2nd_Quantization)

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Boosted observers see distorted frequencies and lengths, but will agree on the numbers n and N of mode nodes and photons.

This is how light waves can "fake" some of the properties of classical "things" such as invariance or object permanence.

It takes at least $T W O C W$'s to achieve such invariance. One CW is not enough and cannot have non-zero invariant N. Invariance is an interference effect that needs at least two-to-tango!

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \cdot \Delta t \sim 1 \sim \Delta \kappa \cdot \Delta x$ analogous to $\Delta N \cdot \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields
www.uark.edu/ua/pirelli/html/coherent_vs_photon_I.html
Coherent States: Oscillator Amplitude Packets analogous to Wave Packets
We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$..) can make PW (Pulse Wave) or WP (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$ Understanding how quantum dynamics and transitions involve "mixed" states

Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \cdot \Delta t \sim 1 \sim \Delta k \cdot \Delta x$ analogous to $\Delta N \cdot \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or WP (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or WP (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase. $O A P$ states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

[^1]Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$ Understanding how quantum dynamics and transitions involve "mixed" states

Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \cdot \Delta t \sim 1 \sim \Delta k \cdot \Delta x$ analogous to $\Delta N \cdot \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent- α-states are defined by continuous amplitude-packet parameter α whose square is average photon number $\bar{N}=|\alpha|^{2}$. Coherent-states make better spacetime coordinates for larger $\bar{N}=|\alpha|^{2}$.

Quantum field coherent α-states

$$
\bar{N}=100
$$

$\Delta N=10$

$\bar{N}=10^{6}$
$\Delta N=10^{3}$

$\bar{N}=10^{10}$
$\Delta N=10^{5}$

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter $\Delta N \sim \alpha \sim \sqrt{ } N$ so a coherent state with $\bar{N}=|\alpha|^{2}=10^{6}$ only has a 1-in-1000 uncertainty $\Delta N \sim \alpha \sim \sqrt{ } N=1000$.

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields $2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields Scaling E-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Electromagnetic wave mode energy: Maxwell vs Planck-Einstein

$1^{\text {st }}$ Quantization conditions for wave phase variables (mode-fits-cavity ℓ)
wavevector : $2 \pi \kappa=k_{n}=\frac{2 \pi}{\lambda_{n}}=n \frac{2 \pi}{\ell}, \quad$ frequency: $2 \pi v=\omega_{n}=c k_{n}=c n \frac{2 \pi}{\ell}$ Vector potential of standing ${ }^{n}$ wave mode : $\mathbf{A}=\mathbf{e}_{1} 2|a| \sin (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)$

$$
\begin{aligned}
& \mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t}(\text { Electric field }) \\
&=\mathbf{e}_{1} E_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& E_{0} \mathbf{e}_{1}=2|a| \omega \mathbf{e}_{1}
\end{aligned}
$$

$$
\left\{\begin{aligned}
& \mathbf{B}=\nabla \times \mathbf{A} \quad \text { (Magnetic field) } \\
&=\left(\mathbf{k} \times \mathbf{e}_{1}\right) B_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& B_{0}\left(\mathbf{k} \times \mathbf{e}_{1}\right)=\mathbf{e}_{2} 2|a| k
\end{aligned}\right.
$$

Electromagnetic wave mode energy: Maxwell vs Planck-Einstein

$1^{\text {st }}$ Quantization conditions for wave phase variables (mode-fits-cavity ℓ)
wavevector : $2 \pi \kappa=k_{n}=\frac{2 \pi}{\lambda_{n}}=n \frac{2 \pi}{\ell}, \quad$ frequency: $2 \pi v=\omega_{n}=c k_{n}=c n \frac{2 \pi}{\ell}$
Vector potential of standing ${ }^{n}$ wave mode : $\mathbf{A}=\mathbf{e}_{1} 2|a| \sin (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)$

$$
\begin{aligned}
& \mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \text { (Electric field) } \\
&=\mathbf{e}_{1} E_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& E_{0} \mathbf{e}_{1}=2|a| \omega \mathbf{e}_{1}
\end{aligned}
$$

$$
\left\{\begin{aligned}
& \mathbf{B}=\nabla \times \mathbf{A} \quad \text { (Magnetic field) } \\
&=\left(\mathbf{k} \times \mathbf{e}_{1}\right) B_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& B_{0}\left(\mathbf{k} \times \mathbf{e}_{1}\right)=\mathbf{e}_{2} 2|a| k
\end{aligned}\right.
$$

Electromagnetic mean energy density U and total Energy in volume V

$$
\begin{aligned}
&\langle U\rangle V=\left\langle\frac{\varepsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B}\right\rangle V=V\left(\frac{\varepsilon_{0}}{2}|\mathbf{A}|^{2} \omega^{2}+\frac{|\mathbf{A}|^{2}}{2 \mu_{0}} k^{2}\right)\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)\right\rangle \\
&=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{1}{2 \mu_{0}} k^{2}|\mathbf{A}|^{2} V \quad \text { E-energy }=\mathbf{B} \text {-energy } \\
& \text { given: }\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)\right\rangle=\frac{1}{2}
\end{aligned}
$$

Speed of Light:

$$
2.99792458 \mathrm{~m} / \mathrm{sec}=
$$

$$
\frac{\omega}{k}=c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}
$$

$$
\begin{aligned}
& \varepsilon_{0}=(8.854) \cdot 10^{-7} \frac{N m^{2}}{C^{2}} \\
& \mu_{0}=4 \pi 10^{-7} \frac{\mathrm{~N}}{A^{2}}
\end{aligned}
$$

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields $2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields Scaling E-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Electromagnetic wave mode energy: Maxwell vs Planck-Einstein

$1^{\text {st }}$ Quantization conditions for wave phase variables (mode-fits-cavity ℓ)
wave vector: $2 \pi \kappa=k_{n}=\frac{2 \pi}{\lambda_{n}}=n \frac{2 \pi}{\ell}, \quad$ frequency: $2 \pi v=\omega_{n}=c k_{n}=c n \frac{2 \pi}{\ell}$
Vector potential of standing ${ }^{n}$ wave mode : $\mathbf{A}=\mathbf{e}_{1} 2|a| \sin (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)$

$$
\begin{aligned}
& \mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \text { (Electric field) } \\
&=\mathbf{e}_{1} E_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& E_{0} \mathbf{e}_{1}=2|a| \omega \mathbf{e}_{1}
\end{aligned}
$$

$$
\left\{\begin{aligned}
& \mathbf{B}=\nabla \times \mathbf{A} \quad \text { (Magnetic field) } \\
&=\left(\mathbf{k} \times \mathbf{e}_{1}\right) B_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& B_{0}\left(\mathbf{k} \times \mathbf{e}_{1}\right)=\mathbf{e}_{2} 2|a| k
\end{aligned}\right.
$$

Electromagnetic mean energy density U and total Energy in volume V

$$
\begin{aligned}
\langle U\rangle V & =\left\langle\frac{\varepsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B}\right\rangle V=V\left(\frac{\varepsilon_{0}}{2}|\mathbf{A}|^{2} \omega^{2}+\frac{|\mathbf{A}|^{2}}{2 \mu_{0}} k^{2}\right)\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)\right\rangle \\
& =\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{1}{2 \mu_{0}} k^{2}|\mathbf{A}|^{2} V \quad \text { E-energy }=\mathbf{B} \text {-energy } \quad \text { given: }\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)\right\rangle=\frac{1}{2}
\end{aligned}
$$

$2^{\text {nd }}$ Quantization conditions for wave amplitudes (action fits HO phase space)

Speed of Light:

$$
2.99792458 \mathrm{~m} / \mathrm{sec} .=
$$

$$
\frac{\omega}{k}=c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}
$$

$$
\varepsilon_{0}=(8.854) \cdot 10^{-7} \frac{N m^{2}}{C^{2}}
$$

$$
\mu_{0}=4 \pi 10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}}
$$

Equating total Energy $\langle U\rangle V$ to Planck's $E_{N}(\omega)=\hbar N \omega$ axiom gives mean square field amplitudes

$$
\langle U\rangle V=\hbar N \omega=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2} V
$$

Electromagnetic wave mode energy: Maxwell vs Planck-Einstein

$1^{\text {st }}$ Quantization conditions for wave phase variables (mode-fits-cavity ℓ)
wave vector: $2 \pi \kappa=k_{n}=\frac{2 \pi}{\lambda_{n}}=n \frac{2 \pi}{\ell}, \quad$ frequency: $2 \pi v=\omega_{n}=c k_{n}=c n \frac{2 \pi}{\ell}$
Vector potential of standing ${ }^{n}$ wave mode : $\mathbf{A}=\mathbf{e}_{1} 2|a| \sin (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)$

$$
\begin{aligned}
& \mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \text { (Electric field) } \\
&=\mathbf{e}_{1} E_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& E_{0} \mathbf{e}_{1}=2|a| \omega \mathbf{e}_{1}
\end{aligned}
$$

$$
\left(\begin{array}{rl}
\mathbf{B} & =\nabla \times \mathbf{A} \quad \text { (Magnetic field) } \\
& =\left(\mathbf{k} \times \mathbf{e}_{1}\right) B_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
B_{0}\left(\mathbf{k} \times \mathbf{e}_{1}\right)=\mathbf{e}_{2} 2|a| k
\end{array}\right.
$$

Electromagnetic mean energy density U and total Energy in volume V

Speed of Light:

$$
2.99792458 \mathrm{~m} / \mathrm{sec} .=
$$

$$
\begin{aligned}
& \frac{\omega}{k}=c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}} \\
& \varepsilon_{0}=(8.854) \cdot 10^{-7} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \\
& \mu_{0}=4 \pi 10^{-7} \frac{\mathrm{~N}}{A^{2}}
\end{aligned}
$$

$2^{\text {nd }}$ Quantization conditions for wave amplitudes (action fits HO phase space)
Equating total Energy $\langle U\rangle V$ to Planck's $E_{N}(\omega)=\hbar N \omega$ axiom gives mean square field amplitudes

$$
\begin{aligned}
& \langle U\rangle V=\hbar N \omega=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2} V \\
& |\mathbf{A}|=\sqrt{\frac{2 \hbar N}{\varepsilon_{0} \omega V}},|\mathbf{E}|=\omega|\mathbf{A}|=\sqrt{\frac{2 \hbar N \omega}{\varepsilon_{0} V}}
\end{aligned} \quad|\mathbf{A}|^{2}=\frac{2 \hbar N}{\varepsilon_{0} \omega V}, \quad \omega^{2}|\mathbf{A}|^{2}=|\mathbf{E}|^{2}=\frac{2 \hbar N \omega}{\varepsilon_{0} V} \frac{\begin{array}{l}
\text { QUANTITY } \\
\text { photon counts per sec. }
\end{array}}{\begin{array}{l}
\text { QUALITY } \\
\text { cycles per sec. }
\end{array}}
$$

Electromagnetic wave mode energy: Maxwell vs Planck-Einstein

$1^{\text {st }}$ Quantization conditions for wave phase variables (mode-fits-cavity ℓ)
wave vector: $2 \pi \kappa=k_{n}=\frac{2 \pi}{\lambda_{n}}=n \frac{2 \pi}{\ell}, \quad$ frequency: $2 \pi v=\omega_{n}=c k_{n}=c n \frac{2 \pi}{\ell}$
Vector potential of standing ${ }^{n}$ wave mode : $\mathbf{A}=\mathbf{e}_{1} 2|a| \sin (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)$

$$
\begin{aligned}
& \mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t}(\text { Electric field }) \\
&=\mathbf{e}_{1} E_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
& E_{0} \mathbf{e}_{1}=2|a| \omega \mathbf{e}_{1}
\end{aligned}
$$

$$
\left(\begin{array}{rl}
\mathbf{B} & =\nabla \times \mathbf{A} \quad \text { (Magnetic field) } \\
& =\left(\mathbf{k} \times \mathbf{e}_{1}\right) B_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi) \\
B_{0}\left(\mathbf{k} \times \mathbf{e}_{1}\right)=\mathbf{e}_{2} 2|a| k
\end{array}\right)
$$

Electromagnetic mean energy density U and total Energy in volume V

Speed of Light:

$$
2.99792458 \mathrm{~m} / \mathrm{sec} .=
$$

$$
\frac{\omega}{k}=c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}
$$

$$
\varepsilon_{0}=(8.854) \cdot 10^{-7} \frac{N m^{2}}{C^{2}}
$$

$$
\mu_{0}=4 \pi 10^{-7} \frac{N}{A^{2}}
$$

$$
\begin{aligned}
\langle U\rangle V & =\left\langle\frac{\varepsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B}\right\rangle V=V\left(\frac{\varepsilon_{0}}{2}|\mathbf{A}|^{2} \omega^{2}+\frac{|\mathbf{A}|^{2}}{2 \mu_{0}} k^{2}\right)\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)\right\rangle \\
& =\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{1}{2 \mu_{0}} k^{2}|\mathbf{A}|^{2} V \quad \text { E-energy }=\mathbf{B} \text {-energy } \quad \text { given: }\left\langle\cos ^{2}(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)\right\rangle=\frac{1}{2}
\end{aligned}
$$

$2^{\text {nd }}$ Quantization conditions for wave amplitudes (action fits HO phase space)
Equating total Energy $\langle U\rangle V$ to Planck's $E_{N}(\omega)=\hbar N \omega$ axiom gives mean square field amplitudes

$$
\begin{aligned}
& \langle U\rangle V=\hbar N \omega=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2} V \\
& |\mathbf{A}|=\sqrt{\frac{2 \hbar N}{\varepsilon_{0} \omega V}}, \quad|\mathbf{E}|=\omega|\mathbf{A}|=\sqrt{\frac{2 \hbar N \omega}{\varepsilon_{0} V}} \\
& |\mathbf{A}|^{2}=\frac{2 \hbar N}{\varepsilon_{0} \omega V}, \quad \omega^{2}|\mathbf{A}|^{2}=|\mathbf{E}|^{2}=\frac{2 \hbar N \stackrel{\omega}{\omega}}{\varepsilon_{0} V} \\
& N \text { and } \omega \text { are both frequencies for quantum wave so } \\
& \text { E-field has Doppler } e^{ \pm \rho} \rho_{\text {-shifts just like } N \text { and } \omega}
\end{aligned}
$$

Now we see how Planck's $E_{N}(\omega)=\hbar N \omega$ axiom has the classical quadratic $\omega^{2}|\mathrm{~A}|^{2}$ oscillator energy

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number
Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta t \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations
Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbf{E}, \mathbf{B}, and \mathbf{A} fields $2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
4 Scaling E-waves to mime quantum Ψ-waves and ψ-waves
Relativistic effects on charge, current, and Maxwell Fields

Making electromagnetic E-waves have quantum cavity Ψ-wave and ψ-wave properties
Previous equations for energy U per volume

$$
\begin{aligned}
\langle U\rangle V & =\hbar N \omega=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2} V \\
\langle U\rangle & =\frac{\hbar N \omega}{V}=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2}=\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2} \\
\frac{\langle U\rangle}{\hbar \omega} & =\frac{N}{V}=\frac{\varepsilon_{0}}{2 \hbar} \omega|\mathbf{A}|^{2}=\frac{\varepsilon_{0}}{2 \hbar \omega} \\
& |\mathbf{E}|^{2}
\end{aligned}|\mathbf{E}|=\omega|\mathbf{A}|=\sqrt{\frac{2 \hbar N \omega}{\varepsilon_{0} V}}
$$

Making electromagnetic E-waves have quantum cavity Ψ-wave and ψ-wave properties
Previous equations for energy U per volume

$$
\begin{aligned}
\langle U\rangle V & =\hbar N \omega=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2} V=\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2} V \\
\langle U\rangle & =\frac{\hbar N \omega}{V}=\frac{\varepsilon_{0}}{2} \omega^{2}|\mathbf{A}|^{2}=\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2} \\
\frac{\langle U\rangle}{\hbar \omega} & =\frac{N}{V}=\frac{\varepsilon_{0}}{2 \hbar} \omega|\mathbf{A}|^{2}=\frac{\varepsilon_{0}}{2 \hbar \omega}
\end{aligned}|\mathbf{E}|^{2} \quad|\mathbf{E}|=\omega|\mathbf{A}|=\sqrt{\frac{2 \hbar N \omega}{\varepsilon_{0} V}}
$$

Rescale \mathbf{E} by $s=\sqrt{\frac{\varepsilon_{0}}{2 \hbar \omega}}$ to get x and y component wave function

$$
\vec{\Psi}=\binom{\Psi_{x}}{\Psi_{y}}=s \mathbf{E}=\sqrt{\frac{\varepsilon_{0}}{2 \hbar \omega}} \mathbf{E}
$$

whose volume integral $\oiiint_{V} d V \vec{\Psi}^{*} \cdot \vec{\Psi}=\oiiint_{V} d V\left(\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}\right) \propto \oiiint \oiiint_{V} d V \frac{N}{V}=N$
is $\oiiint_{V} d V\left(\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}\right)=N$
(It is normalized to particle number N.)
Poynting flux S is scaled to get counts per area-second.

$$
S=c U=c \varepsilon_{0}|\mathbf{E}|^{2}=\hbar n \omega \quad \text { where: } \quad n=N c / V\left(\text { per } m^{2} \text { per sec. }\right)
$$

Review of wave parameters used to develop relativistic quantum theory Bohr-Schrodinger (BS) approximation throws out $M c^{2}$ (Is frequency really relative?) Effect on group velocity (None) and phase velocity (Absurd)
$1^{\text {st }}$ Quantization: Quantizing phase variables k_{m} and $\omega\left(k_{m}\right)$
Understanding how quantum dynamics and transitions involve "mixed" states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
Mixing unequal amplitudes makes "Galloping" wave: Analogy of (SWR, SWQ) to ($V_{\text {group }}, V_{\text {phase }}$)
Analogy with optical polarization geometry and Kepler orbits
Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
$2^{\text {nd }}$ Quantization: Quantizing wave amplitudes A_{N} and invariance of photon number Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves) Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes Heisenberg $\Delta v \Delta \leftarrow \sim 1 \sim \Delta \kappa \Delta x$ analogous to $\Delta N \Delta$ phase ~ 1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
$1^{\text {st }}$ quantization for wave phase variables and classical energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
$2^{\text {nd }}$ quantization for wave and Planck quantum energy of \mathbb{E}, \mathbf{B}, and \mathbf{A} fields
Scaling \mathbb{E}-waves to mime quantum Ψ-waves and ψ-waves

Relativistic effects on charge, current, and Maxwell Fields

Relativistic effects on charge, current, and Maxwell Fields

Observer velocity is zero relative to ${ }^{+}+$) line of charge
wire appears
neutral
$(+)$ Charge fixed (-) Charge moving to right (Negative current density)
$(+)$ Charge density is Equal to the (-) Charge density

Relativistic effects on charge, current, and Maxwell Fields

Observer velocity is zero relative to $(+)$ line of charge
wire appears neutral
$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Equal to the (-) Charge density
(Zero $\rho(x, t)=0)$

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony
Asynchrony dueto off-diagonal $\sinh \rho$ (a $1^{\text {st}}$-order effect) in Lorentztranform: $:\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & (v / c) \\ v / c & 1\end{array}\right)$

$(+)$ Charge fixed (-) Charge moving to right (Negative current densi $\overrightarrow{\mathbf{j}}(x, t))-$
$(+)$ Charge density is Greater than (-) Charge density
(Positive $\rho(x, t)>0) \downarrow$
wire appears
postive (+)
(repulsive to observer $q_{[+]}$)

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchrony dueto off-diagonal $\sinh \rho$ (a $1^{\text {st }}$-order effect)
in Lorentztranform: $:\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & \sqrt[v]{ } / c \\ v / c & 1\end{array}\right)$

(repulsive to observer $q_{[+]}$)

Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz asynchrony Asynchronydueto off-diagonal sinh ρ (a $1^{\text {st }}$-order effect) in Lorentztranform : $\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$

$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Less than (-) Charge density
observer has $q_{[+]}$
"test-charge"
Observer velocity is $-v$ relativg to
${ }^{+}+$line of charge ?

Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz asynchrony Asynchronydueto off-diagonal sinh ρ (a $1^{\text {st }}$-order effect) in Lorentztranform : $\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$
observer has $q_{[+]}$
"test-charge" Observer velocity is $-v$ relativg to $(+)$ line of/charge
 in PAST
wire appears negative (-)
(attractive to observer $q_{[+]}$)
$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
${ }^{(+)}$Charge density is Less than $\left(^{-}\right.$) Charge density (Negative $\rho(x, t)<0$)

Simple 1 ${ }^{\text {stt-order relativistic geometry of magnetism }}$

If Black is moving to Left
Before red starts moving to right
Black sees same number of red and blue After red starts moving to right Black sees more red than blue

Before

If Black is moving to Right Before red starts moving to right

Black sees same number of red and blue
After red starts moving to right
Black sees more blue than red

Magnetic B-field is relativistic $\sinh \rho 1^{\text {st }}$ order-effect

$\frac{\rho(-)}{\rho(+)}=\frac{(+) \text { charge separation }}{(-) \text { charge separation }}=\frac{x(+)+x(-)}{x(-)}$

$$
\frac{\rho(-)}{\rho(+)}=\frac{x(+)}{x(-)}+1=\frac{u v}{c^{2}}+1
$$

Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$

$$
(\mathrm{v} / \mathrm{c}) / 1=\mathrm{y} / \mathrm{x}(-)
$$

$$
\frac{\rho(-)}{\rho(+)}=\frac{(+) \text { charge separation }}{(-) \text { charge separation }}=\frac{x(+)+x(-)}{x(-)}
$$

(+) charge separation
(-) charge separation

$$
\rho(+)-\rho(-)=\rho(+)\left(1-\frac{\rho(-)}{\rho(+)}\right)=-\frac{u v}{c^{2}} \rho(+)
$$

Using 4-vectors to EL Transform (charge-current) $=(c \rho, \mathbf{j})$
Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$ $(v / c) / 1=y / x(-)$

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}
\end{array}
\end{array}
$$

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}
\end{array}
\end{array}
$$

2005 Pirelli treatments

\rightarrow Relating photons to Maxwell energy density and Poynting flux
Relativistic variation and invariance of frequency (ω, k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

Light Energy and Flux 2-CW vs $1-C W$-light

They form a rest frame going $u=c \frac{v_{A}-v_{B}}{v_{A}+v_{B}} 3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 \mathrm{THz}\right.$ is green here. Neither has this singly.)

Light Energy and Flux 2-CW vs $1-C W$-light

They form a rest frame going $u=c \frac{v_{A} A_{B} v_{B}}{v_{A}+v_{B}}=3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 \mathrm{THz}\right.$ is green here. Neither has this singly.) All observers agree on v_{0} since all shift-products $b v_{A} r v_{B}$ equal $\left(v_{0}\right)^{2}$ due to Doppler-time-symmetry ($b=1 / r$). Single $C W$'s get invariant properties if they pair-up. The $v_{A}{ }^{-v_{B}}$ pairing above makes a number \bar{N} of invariant mass quanta $M_{l}=h v_{0} / c^{2}=4.42 \cdot 10^{-36} \mathrm{~kg}$ where the number \bar{N} is invariant, too. \bar{N} is Planck's photon number for the cavity rest energy $E=\bar{N} h v_{0}$.

Light Energy and Flux 2-CW vs $1-C W$-light

What if head-on CW's $v_{A}=12007 \mathrm{Tzz}$ and $v_{B=3007 t z}$ pair-up in a $2-C W$-light beam?

They form a rest frame going $u=c \frac{v_{A} A}{v_{A}+v_{B}}+3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 \mathrm{THz}\right.$ is green here. Neither has this singly.) All observers agree on v_{0} since all shift-products $b v_{A} r v_{B}$ equal $\left(v_{0}\right)^{2}$ due to Doppler-time-symmetry ($b=1 / r$). Single $C W$'s get invariant properties if they pair-up. The $v_{A}{ }^{-v_{B}}$ pairing above makes a number \bar{N} of invariant mass quanta $M_{l}=h v_{0} / c^{2}=4.42 \cdot 10^{-36} \mathrm{~kg}$ where the number \bar{N} is invariant, too. \bar{N} is Planck's photon number for the cavity rest energy $E=\bar{N} h v_{0}$. Relating Planck's E to Maxwell's Density $U=E / V$
Maxwell field energy E, a product of mean-square electric field $\left\langle\mathrm{E}^{2}\right\rangle$, volume of cavity V, and constant $\varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$, approximates Planck's energy $\overline{\mathrm{N}} h \mathrm{v}_{0}$.

$$
E=\left\langle\mathrm{E}^{2}\right\rangle_{\varepsilon_{0}}=\bar{N} h v_{0} \text { Maxwell-Planck Energy } \quad U=\left\langle\mathrm{E}^{2}\right\rangle \varepsilon_{0}=\bar{N} h v_{0} V \text { Maxwell-Planck Density }
$$

$$
\text { Field Energy }=|\mathrm{E}|^{2} \varepsilon_{0} \quad 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9}
$$

Light Energy and Flux 2-CW vs $1-C W$-light

What if head-on CW's $v_{A}=12007 \mathrm{Tzz}$ and $v_{B=3007 t z}$ pair-up in a $2-C W$-light beam?

They form a rest frame going $u=c \frac{v_{A} v_{B}}{v_{A}+v_{B}}=3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 T H z\right.$ is green here. Neither has this singly.) All observers agree on v_{0} since all shift-products $b v_{A} r v_{B}$ equal $\left(v_{0}\right)^{2}$ due to Doppler-time-symmetry ($b=1 / r$). Single $C W$'s get invariant properties if they pair-up. The $v_{A}{ }^{-v_{B}}$ pairing above makes a number \bar{N} of invariant mass quanta $M_{l}=h v_{0} / c^{2}=4.42 \cdot 10^{-36} \mathrm{~kg}$ where the number \bar{N} is invariant, too. \bar{N} is Planck's photon number for the cavity rest energy $E=\bar{N} h \nu_{0}$. Relating Planck's E to Maxwell's Density $U=E / V$
Maxwell field energy E, a product of mean-square electric field $\left\langle\mathrm{E}^{2}\right\rangle$, volume of cavity V, and constant $\varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$, approximates Planck's energy $\overline{\mathrm{N}} h \mathrm{v}_{0}$.

$$
E=\left\langle\mathrm{E}^{2}\right\rangle \nu \varepsilon_{0}=\bar{N} h \omega_{0} \text { Maxwell-Planck Energy } \quad U=\left\langle\mathrm{E}^{2}\right\rangle \varepsilon_{0}=\bar{N} h \nu_{0} / V \text { Maxwell-Planck Density }
$$

Example: Let a $\frac{1}{4} \mu m$-cube cavity (Half-wave at 600 Thz) have $\bar{N}=10^{10}$ photons in volume $V=\left(\frac{1}{4} 10^{-6} \mathrm{~m}\right)^{3}$.

$$
\text { Energy per photon: } h v_{0}=4 \cdot 10^{-19} \mathrm{~J}=2.5 \mathrm{eV} \quad \text { Energy of } \bar{N} \text { photons: } \bar{N} h v_{0}=4 \cdot 10^{-9} \mathrm{~J}=25 \mathrm{GeV}
$$

E-field per photon: $\mathrm{E}_{1}=\sqrt{ }\left(h v_{0} / V \varepsilon_{0}\right)=7.6 \cdot 10^{3} \mathrm{~V} / \mathrm{m}$ E-field of \bar{N} photons: $\mathrm{E}_{\mathrm{N}}=7.6 \cdot 10^{13} \mathrm{~V} / \mathrm{m}$

Energy and Flux (contd) 2-CW-vs 1-CW-light
Planck $E=N h v$ relation allows us to interpret our N-quantized $2-\mathrm{CW}$ mode as a box or cavity of $N_{\text {(more-orlesss) }}$ photons where N is invariant to speed u of box.

Planck $E=N h v$ relation allows us to interpret our N-quantized $2-\mathrm{CW}$ mode as a box or cavity of $N_{\text {(moreor-esss) }}$ photons where N is invariant to speed u of box.

If we open the box our $2-C W$ mode "divorces" into two separate $1-C W$ beams of $N / 2_{\text {(more-or-ess }}$ photons. Each beam has $\underline{N O}$ rest frame and $\underline{N O}$ numbers invariant to u.

Planck $E=N h v$ relation allows us to interpret our N-quantized $2-C W$ mode as a box or cavity of $N_{\text {(more-orlesss })}$ photons where N is invariant to speed u of box.

If we open the box our 2-CW mode "divorces" into two separate $1-C W$ beams of $N / 2_{\text {(more-orlesss }}$ photons. Each beam has $\underline{N O}$ rest frame and $\underline{N O}$ numbers invariant to u.

Relating Poynting's Intensity $S=c U$ to Planck's Flux
Poynting intensity S is a product of $c=2.99792458 \mathrm{~m} / \mathrm{s}$ and density U. It approximates Planck's energy $E=N h v$ times c and divided by cavity volume V.

$$
S=c U=(N c / V) h v=n h v \quad \text { Poynting-Planck Flux } \quad \text { (Watts per square meter) }
$$

The photon-count rate is $n=N c / V$ (per square meter per second) and $h v$ is energy (per count).

Relating photons to Maxwell energy density and Poynting flux
Relativistic variation and invariance of frequency (ω, k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

Frequency and Amplitude Variance 2-CW-light vs 1-CW-light 2-CW modes have invariance
Maxwell-Planck energy E is photon number $N\left(m^{-3}\right)$ times 2-CW-frequency v_{1}.
Invariant to ρ

$$
E=\langle U\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}^{2}\right\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}_{2-\mathrm{Cw}}{ }^{\star} \mathrm{E}_{2-\mathrm{Cw}}\right\rangle \cdot V=h N v_{1}=h v_{\mathrm{N}}
$$

Photon number N and rest-frame frequencies $v_{1} \ldots v_{N}$ are invariant to rapidity ρ and occupy $(\omega, c k)$-hyperbolas in per-spacetime.

Frequency and Amplitude Variance 2-CW-light vs 1-CW-light

2-CW modes have invariance

Maxwell-Planck energy E is photon number $N\left(m^{-3}\right)$ times 2-CW-frequency v_{1}.
Invariant to ρ
Each is ρ-invariant

$$
E=\langle U\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}^{2}\right\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}_{2-\mathrm{cw}}{ }^{*} \mathrm{E}_{2-\mathrm{cw}}\right\rangle \cdot V=h N v_{1}=h v_{\mathrm{N}}
$$

Photon number N and rest-frame frequencies $v_{1} \ldots v_{\mathrm{N}}$ are invariant to rapidity ρ and occupy $(\omega$, ck)-hyperbolas in per-spacetime.

1-CW beams lack invariance (have "variance" ala' Doppler) Planck-Poynting flux S is count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ times $1-C W$-frequency v_{\leftarrow} or v_{\rightarrow}. Count rate n and frequency v Doppler shift by $b=e^{ \pm \rho}$ factors and occupy ($\omega= \pm c k$)-baselines.

$v_{\leftarrow} v_{\leftarrow}$

Note: $\mathrm{E}_{1-\mathrm{CW}} \sqrt{ }\left(c \varepsilon_{0} / h\right)=\sqrt{ }\left(n_{\leftrightarrow}^{\nu}{ }_{\leftrightarrow}\right)$ is geometric mean of amplitude frequency n_{\leftrightarrow} and phase frequency ν_{\leftrightarrow}.

Important result below:

Amplitudes of 1-CW "exponentiate" just like frequency, and intensity does at twice the rate
(A double-double whammy!)

1-CW beams lack invariance (have "variance" ala' Doppler) Planck-Poynting flux S is count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ times $1-C W$-frequency v_{\leftarrow} or v_{\rightarrow}. Count rate n and frequency v Doppler shift
 by $b=e^{ \pm \rho}$ factors and occupy ($\omega= \pm c k$)-baselines.

$$
\begin{aligned}
& \text { Shifts by } \begin{array}{r}
\mathrm{b}=\mathrm{e}^{+2 \rho} \\
\stackrel{y}{S}=c U_{\rightarrow} \\
S_{\rightarrow}
\end{array}=c \varepsilon_{0}\left\langle\mathrm{E}^{2}\right\rangle=c \varepsilon_{0}\left\langle\mathrm{E}_{1-\mathrm{CW}} * \mathrm{E}_{1-\mathrm{CW}}\right\rangle=h n_{\rightarrow}^{\text {Each blue shifts by } \mathrm{b}=\mathrm{e}^{+\rho}}
\end{aligned}
$$

Note: $\mathrm{E}_{1-\mathrm{CW}}^{\leftrightarrow} \sqrt{ }\left(c \varepsilon \varepsilon_{0} h\right)=\sqrt{ }\left(n_{\leftrightarrow}^{\cup} \leftrightarrow\right)$ is geometric mean of amplitude frequency n_{\leftrightarrow} and phase frequency ν_{\leftrightarrow}.

Relating photons to Maxwell energy density and Poynting flux Relativistic variation and invariance of frequency (ω, k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

How Probability Amplitudes ψ or ψ Come About (An optical view)

Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h v$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h o}}=\sqrt{\frac{\varepsilon_{0}}{h \mathrm{k}}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c_{0}}{h 0}}$ whose square equals flux count rate $n\left(m^{-2} s^{-1}\right)$.

$$
\psi^{*} \psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

$\underline{\text { How Probability Amplitudes }} \psi \underline{\text { or }} \psi$ Come About (An optical view)
Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h \nu$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h \nu}}=\sqrt{\frac{\varepsilon_{0}}{h \kappa}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c \varepsilon_{0}}{h v}}$ whose square equals flux count rate $n\left(\mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$.

$$
\psi^{*} \psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

Here's how to answer Planck's worry about photons

Q : How can classical oscillator energy (Amplitude)2 (frequency) ${ }^{2}$ jive with linear Planck law $S=n h v$?
A: Let amplitude ψ or ψ contain inverse square root of frequency: $\psi=E \sqrt{\frac{c \varepsilon_{0}}{h v}}$ the "quantum amplitude" Energy $\sim|A|^{2} v^{2}$ where vector potential \mathbf{A} defines electric field: $\mathbf{E}=\frac{\partial \mathbf{A}}{\partial t}=i \omega \mathbf{A}=2 \pi i v \mathbf{A}$

$$
\text { Energy } \sim|A|^{2} v^{2}=|A \sqrt{v}|^{2} v=\left|\frac{E}{2 \pi v} \sqrt{v}\right|^{2} v=\left|\frac{E}{2 \pi \sqrt{v}}\right|^{2} v \sim\left|E \sqrt{\frac{c \varepsilon_{0}}{h v}}\right|^{2}=n h v
$$

How Probability Amplitudes ψ or ψ Come About (An optical view)
Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h \nu$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h v}}=\sqrt{\frac{\varepsilon_{0}}{h \kappa}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c \varepsilon_{0}}{h 0}}$ whose square equals flux count rate $n\left(m^{-2} s^{-1}\right)$.

$$
\psi^{*} \psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

Probability Waves $\psi(x, t)$ (More optical views)
Optical E-field amplitudes like $\mathrm{E}(x, t)=\mathrm{E}_{0} \mathrm{e}^{i(k x-\omega t)}$ vary with space x and time t. So do scaled $\psi(x, t)$ ampliudes whose sum- Σ (integral- \int) over cells ΔV (or $d V$) must be particle number N. For 1-particle systems $(N=1)$ this is the unit norm rule.

$$
\Sigma_{j} \psi\left(x_{j}, t\right)^{*} \psi\left(x_{j}, t\right) \Delta V_{j}=N \quad \text { or: } \quad \int \psi(x, t)^{*} \psi(x, t) d V=N
$$

How Probability Amplitudes ψ or ψ Come About (An optical view)

Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h v$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h o}}=\sqrt{\frac{\varepsilon_{0}}{h \mathrm{k}}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c \varepsilon_{0}}{h \nu}}$ whose square equals flux count rate $n\left(m^{-2} s^{-1}\right)$.

$$
\psi^{*} \Psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

Probability Waves $\psi(x, t)$ (More optical views)
Optical E-field amplitudes like $\mathrm{E}(x, t)=\mathrm{E}_{0} \mathrm{e}^{i(k x-\omega t)}$ vary with space x and time t. So do scaled $\psi(x, t)$ ampliudes whose sum- Σ (integral- \int) over cells ΔV (or $d V$) must be particle number N. For 1-particle systems $(N=1)$ this is the unit norm rule.

$$
\Sigma_{j} \psi\left(x_{j}, t\right)^{*} \psi\left(x_{j}, t\right) \Delta V_{j}=N \quad \text { or: } \quad \int \psi(x, t)^{*} \psi(x, t) d V=N
$$

Born interpreted $\psi(x, t)^{*} \psi(x, t)$ as probable expectation of particle count. Schrodinger objected to the probability wave interpretation that is now accepted and called the Schrodinger theory. A relativistic wave view lends merit to his objections.

Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k 1-CW beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$

E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\iota}-x-\omega_{\leftarrow} t\right)}$

Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\hookrightarrow} x-\omega_{\leftarrow} t\right)}$

$$
\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}\left[\begin{array}{r}
\text { scaled blue shift } \\
\psi_{\rightarrow}^{\prime} \\
= \\
=\sqrt{\mathrm{b}} \\
=\mathrm{e}^{+\rho / 2} \psi_{\rightarrow}
\end{array} \begin{array}{r}
\text { scaled red shift } \\
\psi_{\leftarrow}^{\prime}=\sqrt{\mathrm{r}} \\
=\psi_{\leftarrow} \\
=\mathrm{e}^{-\rho / 2} \psi_{\leftarrow}
\end{array}\right.
$$

Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k l-CW beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$

E -wave: $\mathrm{E}=\mathrm{E}_{\hookrightarrow} \mathrm{e}^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{九}-x-\omega_{\leftarrow} t\right)}$

Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\star} t\right)}$

$$
\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}\left[\begin{array}{r}
\text { scaled blue shift } \\
\psi_{\rightarrow}^{\prime}=\sqrt{\mathrm{b}} \\
=\mathrm{e}^{+\rho / 2} \psi_{\rightarrow}
\end{array} \begin{array}{r}
\text { scaled red shift } \\
\psi_{\leftarrow}^{\prime}=\sqrt{\mathrm{r}} \\
=\mathrm{e}_{\leftarrow} / 2 \psi_{\leftarrow}
\end{array}\right.
$$

$$
b^{2}=\frac{1+\beta}{1-\beta}=\frac{1+\tanh \rho}{1-\tanh \rho}
$$

Doppler Transformation of 2-CW Modes
Doppler shift of opposite- $k 1-C W$ beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$

E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$

$$
\begin{array}{r}
\text { blue shift } \\
\mathrm{E}_{\rightarrow}^{\prime}=\mathrm{b} \mathrm{E}_{\rightarrow} \\
=\mathrm{e}^{+\rho} \mathrm{E}_{\rightarrow}
\end{array} \quad \begin{array}{r}
\text { red shift } \\
\mathrm{E}_{\leftarrow}^{\prime}=\mathrm{r} \mathrm{E}_{\leftarrow} \\
=\mathrm{e}^{-\rho} \mathrm{E}_{\leftarrow}
\end{array}
$$

Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{i}^{i\left(k_{\rightarrow}-x-\omega_{\rightarrow} t\right)}+\Psi_{\leftarrow} \mathrm{e}^{i\left(k_{-} x-\omega_{\leftarrow} t\right)}$

$$
\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}} \quad \begin{array}{r}
\text { scaled blue shift } \\
\psi_{\rightarrow}^{\prime} \\
=\sqrt{\mathrm{b}} \psi_{\rightarrow} \\
= \\
=\mathrm{e}^{+\rho / 2} \psi_{\rightarrow}
\end{array}
$$

Parameters related to relative velocity u :

$$
\beta=u / c=\tanh \rho=\frac{\sinh \rho}{\cosh \rho}=\frac{\mathrm{e}^{+\rho}-\mathrm{e}^{-\rho}}{\mathrm{e}^{+\rho}+\mathrm{e}^{-\rho}}=\frac{b^{2}-1}{b^{2}+1}
$$

$$
b^{2}=\frac{1+\beta}{1-\beta}=\frac{1+\tanh \rho}{1-\tanh \rho}
$$

Transformation of $S W R$ (or $S W Q$) and $u_{\text {GRoUP }}$ (or $u_{\text {PHASE }}$) is a non-linear transformation $S W R^{\prime} \xlongequal[\mathrm{E}_{\rightarrow}^{\prime}]{\mathrm{E}_{\rightarrow}^{\prime}}+-\mathrm{E}^{\prime}+\mathrm{E}_{\leftarrow}^{\prime}=\frac{b^{2} \mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}}{b^{2} \mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}}=\frac{(1+\beta) \mathrm{E}_{\rightarrow}-(1-\beta) \mathrm{E}_{\leftarrow}}{(1+\beta) \mathrm{E}_{\rightarrow}+(1-\beta) \mathrm{E}_{\leftarrow}}=\frac{\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)}{\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)}=\frac{S W R+\beta}{1+\beta \cdot S W R}$

SWR (or SWQ) Transformation
$S W R^{\prime}=\frac{S W R+\beta}{1+S W R \cdot \beta}=\frac{S W R+u / c}{1+S W R \cdot u / c}$
$u_{\text {GROUP }}\left(\right.$ or $u_{\text {PHASE }}$) Transformation

$$
u_{\text {GROUP }}^{\prime} / c=\frac{u_{\text {GROUP }} / c+\beta}{1+u_{\text {GROUP }} \cdot \beta / c}=\frac{\left(u_{\text {GROUP }}+u\right) / c}{1+u_{\text {GROUP }} \cdot u / c^{2}}
$$

Doppler Transformation of 2-CW Modes

Doppler shift of opposite- $k 1-C W$ beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$
E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$

$$
\begin{array}{r}
\hline \text { blue shift } \\
\mathrm{E}_{\rightarrow}^{\prime} \\
=\mathrm{b} \mathrm{E}_{\rightarrow} \\
=\mathrm{e}^{+\rho} \mathrm{E}_{\rightarrow}
\end{array} \quad\left[\begin{array}{r}
\text { red shift } \\
\mathrm{E}_{\leftarrow}^{\prime}=\mathrm{r} \mathrm{E}_{\leftarrow} \\
=\mathrm{e}^{-\rho} \mathrm{E}_{\leftarrow}
\end{array}\right.
$$

Parameters related to relative velocity u:

$$
\beta=u / c=\tanh \rho=\frac{\sinh \rho}{\cosh \rho}=\frac{\mathrm{e}^{+\rho}-\mathrm{e}^{-\rho}}{\mathrm{e}^{+\rho}+\mathrm{e}^{-\rho}}=\frac{b^{2}-1}{b^{2}+1}
$$

$$
b^{2}=\frac{1+\beta}{1-\beta}=\frac{1+\tanh \rho}{1-\tanh \rho}
$$

Transformation of $S W R($ or $S W Q)$ and $u_{\text {GROUP }}\left(\right.$ or $\left.u_{\text {PHASE }}\right)$ is a non-linear transformation $S W R^{\prime}=\underset{\mathrm{E}_{\rightarrow}^{\prime}}{\mathrm{E}_{\rightarrow}^{\prime}-\mathrm{E}^{\prime}}+\mathrm{E}_{\leftarrow}^{\prime}=\frac{b^{2} \mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}}{b^{2} \mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}}=\frac{(1+\beta) \mathrm{E}_{\rightarrow}-(1-\beta) \mathrm{E}_{\leftarrow}}{(1+\beta) \mathrm{E}_{\rightarrow}+(1-\beta) \mathrm{E}_{\leftarrow}}=\frac{\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)}{\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)}=\frac{S W R+\beta}{1+\beta \cdot S W R}$

SWR (or SWQ) Transformation
$S W R^{\prime}=\frac{S W R+\beta}{1+S W R \cdot \beta}=\frac{S W R+u / c}{1+S W R \cdot u / c}$
Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}$ $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$
scaled red shift

$$
\begin{aligned}
\psi_{\leftarrow}^{\prime} & =\sqrt{ } \mathrm{r} \psi_{\leftarrow} \\
& =\mathrm{e}^{-\rho / 2} \psi_{\leftarrow}
\end{aligned}
$$

Both are restatements of hyperbolic trig identity: $\tanh (a+b)=\frac{\tanh (a)+\tanh (b)}{1+\tanh (a) \cdot \tanh (b)}$

$$
\begin{gathered}
u_{\text {GROUP }}\left(\text { or } u_{\text {PHASE }}\right) \text { Transformation } \\
u_{\text {GROUP }}^{\prime} / c=\frac{u_{\text {GROUP }}+c+\beta}{1+u_{\text {GROUP }} \cdot \beta / c}=\frac{\left(u_{\text {GROUP }}+u\right) / c}{1+u_{\text {GROUP }} \cdot u / c^{2}}
\end{gathered}
$$

$1+\tanh (a) \cdot \tanh (b)$
last term is ignorable if both a and b are small
Velocity addition is non-linear but rapidity addition is always linear: $\rho_{\mathrm{a}+\mathrm{b}}=\rho_{\mathrm{a}}+\rho_{\mathrm{b}}$

Link to pdf version of Part I online
Note: When printed at their optimal resolution, each poster is 7 feet across!

Link to pdf version of Part II online
Note: When printed at their optimal resolution, each poster is 7 feet across!

[^0]: Tuesday, May 3, 2016

[^1]: www.uark.edu/ua/pirelli/html/coherent_vs_photon_I.html

