Lecture 25 *Relawavity* Introduction 3 Tuesday 4.12.2016

Relawavity: Relativistic wave mechanics III. 2nd-order effects (Unit 3 4.12.16)

Review: rapidity $\rho = \rho_{AB}$, Doppler shifts $e^{\pm \rho}$, and SR velocity parameter $V_{group}/c = \beta_{AB} = u_{AB}/c = \tanh \rho_{AB}$ Geometric construction steps 1-4 : 1-octave Doppler ($e^{+\rho} = 2$, $e^{-\rho} = \frac{1}{2}$), ($\beta_{AB} = u_{AB}/c = 3/5$) Reviewing wave coefficients we'll need to know (backwards and forwards)

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "*He said-She-said*" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Review: rapidity $\rho = \rho_{AB}$, Dopplers $e^{\pm\rho}$, and velocity $\beta_{AB} = u_{AB}/c = \tanh\rho$ Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$ $\omega_R = \omega_A$ going left-to-right (from Alice's600THz laser) and $\omega_L = \omega_C$ going right-to-left (from Carla's600THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E ?

(2.) What is that frequency ω_E ?

Reply to Query (1.) has a *Jeopardy*-style answer-by-question: *What is the beam group velocity*? $Given: \omega_{group} = \frac{\omega_R - \omega_L}{2} and : k_{group} = \frac{k_R - k_L}{2}$ $u_E = V_{group} = \frac{\omega_R - \omega_L}{k_R - k_L} = c \frac{\omega_R - \omega_L}{\omega_R + \omega_L} = c \frac{1200 - 300}{1200 + 300} = \frac{3}{5}c$ with $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$ $\frac{u_E}{c} = \frac{u_{AB}}{c} = \frac{e^{\rho_{AB}} - e^{-\rho_{AB}}}{e^{\rho_{AB}} + e^{-\rho_{AB}}} = \frac{\sinh \rho_{AB}}{\cosh \rho_{AB}} = \tanh \rho_{AB} = \frac{3}{5} \begin{bmatrix} \text{Using Rapidity:} \\ \rho_{AB} = \log_e \langle A | B \rangle \end{bmatrix}$ Given: $\omega_R = e^{\rho_{AB}} \omega_{600}$ and: $\omega_L = e^{\rho_{CB}} \omega_{600} = e^{-\rho_{AB}} \omega_{600}$ Reply to Query (2.) in similar style: What ω_E is blue-shift $b\omega_L$ of ω_L and red-shift ω_R/b of ω_R ? Blue-shift $b = e^{\rho_{AB}}$ Red-shift $r = b^{-1} = e^{-\rho_{AB}}$ $\omega_E = b \omega_L = \omega_R/b \quad \Rightarrow \quad b = \sqrt{\omega_R/\omega_L} \quad \Rightarrow \quad \omega_E = \sqrt{\omega_R \cdot \omega_L} = \sqrt{1200 \cdot 300} = 600THz$

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Class geometric construction example: 1-octave ($e^{+\rho}=2$, $e^{-\rho}=\frac{1}{2}$) Doppler ($\beta_{AB}=u_{AB}/c=3/5$) Angular 2π -factors $k_A = 2\pi\kappa_A$ $\omega_A = 2\pi\upsilon_A$ +4 $k_{phase} = 2\pi \kappa_{phase}$ $\omega_{phase} = 2\pi \upsilon_{phase}$ +3 $k_{group} = 2\pi \kappa_{group}$ $\omega_{group} = 2\pi \upsilon_{group}$ R $\omega_{\rm E}^{=+2}$ + G 42 +3-2 ck $\mathbf{P} = \frac{1}{2}(\mathbf{R} + \mathbf{L})$ $\mathbf{G} = \frac{1}{2} (\mathbf{R} - \mathbf{L})$

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

RelaWavity Web Simulation Ps and Qs w/Minkowski Grid

Reviewing wave coefficients we'll need to know (backwards and forwards)

L

phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{{m au}_{phase}}{{m au}_A}$	$rac{oldsymbol{arphi}_{phase}}{oldsymbol{arphi}_A}$	$rac{\lambda_{phase}}{\lambda_A}$	V _{phase} C	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$	
group	$\frac{1}{b_{\textit{BLUE}}^{Doppler}}$	V _{group} C	$rac{oldsymbol{\upsilon}_{group}}{oldsymbol{\upsilon}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$\frac{\kappa_{group}}{\kappa_A}$	$rac{{m au}_{group}}{{m au}_{A}}$	$\frac{c}{V_{group}}$	$rac{1}{b_{RED}^{Doppler}}$	$ck_{\mathbf{R}}$
rapidity ρ	$e^{-\rho}$	anh ho	$\sinh ho$	$\operatorname{sech} \rho$	$\cosh ho$	$\mathrm{csch} ho$	$\mathrm{coth}\rho$	$e^{+ ho}$	
value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1} = 2.0$	

P'

 $\omega_{\rm R}$

2**1**

 $\omega_{\rm I} = +1$

G′

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Comparison of group and phase dynamics:

SLOW_(er) ($\beta = u/c = 1/5$)

Tuesday, April 12, 2016

19

Comparison of group and phase dynamics:

SLOW_(er) ($\beta = u/c = 1/5$)

BohrIt Web Simulation - 2 CW ct vs x Plot (ck = -2, 3) Multi-panel with Zero Tracers

Comparison of group and phase dynamics: *E*

 $FAST_{(er)} (\beta = u/c = 3/5)$

Comparison of group and phase dynamics:

 $FAST_{(er)} (\beta = u/c = 3/5)$

Tuesday, April 12, 2016

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

helps "Relawavity"

Tuesday, April 12, 2016

helps "Relawavity" Thales showed a circle diameter subtends a right angle with any circle point P

helps "Relawavity" Thales showed a circle diameter subtends a right angle with any circle point P

helps "Relawavity" Thales showed a circle diameter subtends a right angle with any circle point P

Tuesday, April 12, 2016

helps "Relawavity" Thales showed a circle diameter subtends a right angle with any circle point P

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω,ck) dispersion hyperbola ω = Bcoshρ...
 A quick flip to space-time (ct,x) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

 Lorentz transformations of Phase vector P' and Group vector G' in per-space-time Lorentz matrix transformation of (x,ct) space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Tuesday, April 12, 2016

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector P' and Group vector G' in per-space-time Lorentz matrix transformation of (x,ct) space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "*He said-She-said*" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Lorentz transform matrix for u/c=3/5 $\left(\begin{array}{c} \cosh\rho \sinh\rho\\ \sinh\rho \cosh\rho \end{array} \right) = \left(\begin{array}{c} \frac{5}{4} & \frac{3}{4}\\ \frac{3}{4} & \frac{5}{4} \end{array} \right)$

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector P' and Group vector G' in per-space-time
Lorentz matrix transformation of (x,ct) space-time coordinates
Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

<u>Two Famous-Name Coe</u>	<u>effici</u>	<u>ents</u>	$\frac{Time}{(unit)}$	e ct' ts of (2μm)	2		Her Mit 180	rman 1kowski 54-1909	Λ
Albert Einstein 1859-1955					1.5				
This number is called an:Einstein time-dilation (dilated by 25% here)					-0	V'phase=	-1.25	Sp (1	ace x'
This number is called a Lorent z	/		$\langle \rangle$		N group=	0.8		λ_A	$= 1/2\mu m$
length-contraction		1	-0.5			5		1.5	
(contracted by 20% here)	phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{{{ au }_{phase}}}{{{ au }_{A}}}$	$rac{oldsymbol{arphi}_{phase}}{oldsymbol{arphi}_A}$	$rac{\lambda_{_{phase}}}{\lambda_{_A}}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
Hendrik A. Lorentz 1853-1928	group	$rac{1}{b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}}$	$rac{V_{group}}{c}$	$rac{oldsymbol{arphi}_{group}}{oldsymbol{arphi}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$rac{\kappa_{group}}{\kappa_{A}}$	$rac{oldsymbol{ au}_{group}}{oldsymbol{ au}_A}$	$rac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
	rapidity ρ	$e^{-\rho}$	anh ho	$\sinh ho$	$\operatorname{sech}\rho$	$\cosh ho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$
Old-Fashioned Notation	$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{rac{1+eta}{1-eta}}$
Relativistic Terms (Dual plot w/expanded table)	value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1}$ =2.0

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector P' and Group vector G' in per-space-time
 Lorentz matrix transformation of (x,ct) space-time coordinates
 Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation
 → Heighway Paradoxes: A relativistic "He said-She-said" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of (x,ct) space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "*He said-She-said*" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time

Each laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ). A reading of a phase ϕ by Alice at a space-time point <u>must equal</u> reading ϕ' by Bob in spite of <u>unequal</u> readings (*x*,*t*) and (*x'*,*t'*) for that point and <u>unequal</u> readings (ω ,*ck*) and (ω' ,*ck'*) for either a laser group-wave or its phase-wave.

$$\phi'_{phase} \equiv k'_{phase} x' - \omega'_{phase} t' = k_{phase} x - \omega_{phase} t \equiv \phi_{phase}$$
$$\phi'_{group} \equiv k'_{group} x' - \omega'_{group} t' = k_{group} x - \omega_{group} t \equiv \phi_{group}$$

...derives Lorentz transformations...

phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{_{phase}}}{\kappa_{_A}}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$rac{oldsymbol{arphi}_{phase}}{oldsymbol{arphi}_A}$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
group	$\frac{1}{b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}}$	$\frac{V_{group}}{c}$	$rac{oldsymbol{arphi}_{group}}{oldsymbol{arphi}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$rac{\kappa_{group}}{\kappa_A}$	$rac{{{ au }_{group}}}{{{ au }_{A}}}$	$rac{\mathcal{C}}{V_{group}}$	$rac{1}{b_{\scriptstyle RED}^{\scriptstyle Doppler}}$
rapidity ρ	$e^{- ho}$	tanh ho	$\sinh ho$	$\operatorname{sech}\rho$	$\cosh ho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$

Each laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ). A reading of a phase ϕ by Alice at a space-time point <u>must equal</u> reading ϕ' by Bob in spite of <u>unequal</u> readings (*x*,*t*) and (*x'*,*t'*) for that point and <u>unequal</u> readings (ω ,*ck*) and (ω' ,*ck'*) for either a laser group-wave or its phase-wave.

$$\phi'_{phase} \equiv k'_{phase} x' - \omega'_{phase} t' = k_{phase} x - \omega_{phase} t \equiv \phi_{phase}$$
$$\phi'_{group} \equiv k'_{group} x' - \omega'_{group} t' = k_{group} x - \omega_{group} t \equiv \phi_{group}$$

...derives Lorentz transformations...

phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$rac{oldsymbol{arphi}_{phase}}{oldsymbol{arphi}_A}$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
group	$\frac{1}{b_{\textit{BLUE}}^{\textit{Doppler}}}$	$\frac{V_{group}}{c}$	$rac{m{\upsilon}_{group}}{m{\upsilon}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$\frac{\kappa_{group}}{\kappa_{A}}$	$rac{{{ au }_{group}}}{{{ au }_{A}}}$	$rac{c}{V_{group}}$	$rac{1}{b_{\scriptstyle RED}^{\scriptstyle Doppler}}$
rapidity ρ	$e^{- ho}$	anh ho	$\sinh ho$	$\operatorname{sech}\rho$	$\cosh ho$	$\mathrm{csch} ho$	$\mathrm{coth}\rho$	$e^{+ ho}$

Each laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ). A reading of a phase ϕ by Alice at a space-time point <u>must equal</u> reading ϕ' by Bob in spite of <u>unequal</u> readings (*x*,*t*) and (*x'*,*t'*) for that point and <u>unequal</u> readings (ω ,*ck*) and (ω' ,*ck'*) for either a laser group-wave or its phase-wave.

$$\phi'_{phase} \equiv k'_{phase} x' - \omega'_{phase} t' = k_{phase} x - \omega_{phase} t \equiv \phi_{phase}$$
$$\phi'_{group} \equiv k'_{group} x' - \omega'_{group} t' = k_{group} x - \omega_{group} t \equiv \phi_{group}$$

 $\rightarrow k_A x' \sinh \rho_{AB} - \omega_A t' \cosh \rho_{AB} = 0 \cdot x - \omega_A t$

Angular 2-factors

$$= k'_{phase} = k_A \sinh \rho_{AB} \quad \omega'_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = \omega_A \cosh \rho_{AB} \quad k_{phase} = 0 \quad \omega_{phase} = 0 \quad \omega_{$$

$\kappa_A = 2\pi\kappa_A$ $\omega_A = 2\pi\upsilon_A$	
$k_{phase} = 2\pi \kappa_{phase}$ $\omega_{phase} = 2\pi \upsilon_{phase}$	

phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{\it phase}}{\kappa_{\it A}}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$rac{oldsymbol{v}_{phase}}{oldsymbol{v}_A}$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
group	$rac{1}{b_{BLUE}^{Doppler}}$	$rac{V_{group}}{c}$	$rac{m{v}_{group}}{m{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$\frac{\kappa_{group}}{\kappa_{A}}$	$rac{{m au}_{group}}{{m au}_{A}}$	$\frac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{-\rho}$	anh ho	$\sinh ho$	$\operatorname{sech} \rho$	$\cosh ho$	csch <i>p</i>	$\operatorname{coth} \rho$	$e^{+ ho}$

Each laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ). A reading of a phase ϕ by Alice at a space-time point <u>must equal</u> reading ϕ' by Bob in spite of <u>unequal</u> readings (*x*,*t*) and (*x'*,*t'*) for that point and <u>unequal</u> readings (ω ,*ck*) and (ω' ,*ck'*) for either a laser group-wave or its phase-wave.

$$\phi'_{phase} \equiv k'_{phase} x' - \omega'_{phase} t' = k_{phase} x - \omega_{phase} t \equiv \phi_{phase}$$
$$\phi'_{group} \equiv k'_{group} x' - \omega'_{group} t' = k_{group} x - \omega_{group} t \equiv \phi_{group}$$

 $\begin{array}{c} \varphi_{group} = \cdot \cdot \cdot group \\ \hline & grou$

Angular 2π -factors

$$k'_{phase} = k_A \sinh \rho_{AB}$$
 $\omega'_{phase} = \omega_A \cosh \rho_{AB}$ $k_{phase} = 0$ $\omega_{phase} = \omega_A - \omega_A$

$k_A = 2\pi\kappa_A$ $\omega_A = 2\pi\upsilon_A$	
$k_{phase} = 2\pi \kappa_{phase}$ $\omega_{phase} = 2\pi \upsilon_{phase}$	

phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_A}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$rac{oldsymbol{v}_{phase}}{oldsymbol{v}_A}$	$rac{\lambda_{phase}}{\lambda_A}$	V _{phase} C	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
group	$\frac{1}{b_{\textit{BLUE}}^{\textit{Doppler}}}$	V _{group}	$rac{m{v}_{group}}{m{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$rac{\kappa_{group}}{\kappa_{A}}$	$rac{{m au}_{group}}{{m au}_A}$	$rac{C}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{-\rho}$	anh ho	$\sinh ho$	$\operatorname{sech} \rho$	$\cosh ho$	csch <i>p</i>	$\operatorname{coth} \rho$	$e^{+ ho}$

$$\begin{aligned} \varphi'_{phase} &\equiv k'_{phase}x' - \omega'_{phase}t' = k_{phase}x - \omega_{phase}t \equiv \phi_{phase} \\ \varphi'_{group} &\equiv k'_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ \vdots &= \phi_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ \vdots &= \phi_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ \vdots &= \phi_{group}x' - \omega'_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ \vdots &= \phi_{group}x' - \omega'_{group}x' - \omega'_{group}x' - \omega_{group}t' = \phi_{group} \\ \vdots &= k_{A}x' \sinh \rho_{AB} = 0 \cdot x - \omega_{A}t \quad \text{or:} \quad ct = ct' \cosh \rho_{AB} - x' \sinh \rho_{AB} \\ \vdots &= k_{A}x' \cosh \rho_{AB} - \omega_{A}t' \sinh \rho_{AB} = k_{A}x - 0 \cdot t \\ & & & & \\ \hline & k_{group}^{A} = 2\pi v_{A} \\ k_{phase}^{A} = 2\pi v_{A} \\ k_{phase}^{A} = 2\pi v_{A} \\ k_{phase}^{B} = 2\pi v_{A} \\ k_{phase}^{B} = 2\pi v_{phase} \\ \hline & \frac{phase}{b_{Berr}^{Boy}} \frac{c}{v_{phase}} \frac{x_{phase}}{c} = \omega_{A} \sinh \rho_{AB} \quad k_{group}^{A} = k_{A} \quad \omega_{group}^{A} = 0 \\ \hline & & & \\ \hline & k_{group}^{B} = 2\pi v_{Base} \\ k_{group}^{B} = 2\pi v_{group} \\ \hline & & \\ \hline & \frac{group}{b_{BErr}^{Boy}} \frac{1}{v_{phase}^{C}} \frac{v_{group}}{v_{A}} \quad \frac{\lambda_{group}}{\lambda_{A}} \quad \frac{\lambda_{phase}}{v_{A}} \quad \frac{k_{phase}}{v_{A}} \quad \frac{k_{phase}}{v_{BErr}} \quad \frac{k_{phase}}{v_{A}} \quad \frac{k_{phase}}{v_{BERr}} \quad \frac{k_{phase}}{v_{BERr}} \quad \frac{k_{phase}}{v_{A}} \quad \frac{k_{phase}}{v_{A}}$$

$$\begin{pmatrix} \varphi'_{phase} \equiv k'_{phase}x' - \omega'_{phase}t' = k_{phase}x - \omega_{phase}t \equiv \phi_{phase} \\ \varphi'_{group} \equiv k'_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ \downarrow \\ \varphi'_{group} \equiv k'_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ \downarrow \\ \varphi'_{group} \equiv k_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ \downarrow \\ \psi'_{group} \equiv k_{a}x' \sinh \rho_{AB} - \omega_{A}t' \cosh \rho_{AB} = 0 \cdot x - \omega_{A}t \quad \text{or:} \quad ct = ct' \cosh \rho_{AB} - x' \sinh \rho_{AB} \\ \downarrow \\ \psi'_{a}x' \cosh \rho_{AB} - \omega_{A}t' \sinh \rho_{AB} = k_{A}x - 0 \cdot t \quad \text{or:} \quad x = x' \cosh \rho_{AB} - ct' \sinh \rho_{AB} \\ \downarrow \\ \psi'_{a}a = 2\pi \psi_{A} \\ \psi'_{group} = k_{A} \cosh \rho_{AB} \quad \omega'_{group} = \omega_{A} \sinh \rho_{AB} \quad k_{group} = k_{A} \quad \omega_{group} = 0 \\ \hline \\ \psi'_{a}b = \psi'_{a}b = \psi'_{a}b = \psi'_{a}b \\ \psi'_{a}b = \psi'_{a}b = \psi'_{a}b = \psi'_{a}b \\ \psi'_{a}b = \psi'_{a}b = \psi'_{a}b = \psi'_{a}b \\ \psi'_{a}b = \psi'_{a}b = \psi'_{a}b \\ \psi'_{a}b = \psi'_{a}b = \psi'_{a}b \\ \psi'_{a$$

$$\begin{pmatrix} \phi'_{phase} \equiv k'_{phase}x' - \omega'_{phase}t' = k_{phase}x - \omega_{phase}t \equiv \phi_{phase} \\ \phi'_{group} \equiv k'_{group}x' - \omega'_{group}t' = k_{group}x - \omega_{group}t \equiv \phi_{group} \\ (t) \equiv \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ ct \end{pmatrix} = \begin{pmatrix} \cosh\rho - \sinh\rho \\ \cosh\rho \end{pmatrix} \begin{pmatrix} x' \\ h \end{pmatrix} = \begin{pmatrix} h \\ h \end{pmatrix} = \begin{pmatrix} h \\ h \end{pmatrix} \begin{pmatrix} h \\ h \end{pmatrix} = \begin{pmatrix} h \\ h \end{pmatrix} = \begin{pmatrix} h \\ h \end{pmatrix} \begin{pmatrix} h \\ h \end{pmatrix} = \begin{pmatrix} h \end{pmatrix} = \begin{pmatrix} h \\ h \end{pmatrix} = \begin{pmatrix}$$

$$\begin{split} \phi'_{phase} &\equiv k'_{phase} x' - \omega'_{phase} t' = k_{phase} x - \omega_{phase} t \equiv \phi_{phase} \\ \phi'_{group} &\equiv k'_{group} x' - \omega'_{group} t' = k_{group} x - \omega_{group} t \equiv \phi_{group} \\ \downarrow &= \begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} \cosh \rho + \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \cosh \rho - \sinh \rho \\ \cosh \rho \end{pmatrix} \\ \begin{pmatrix} x \\ ct \end{pmatrix} \\$$

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of (x,ct) space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "*He said-She-said*" argument

Phase invariance...derives Lorentz transformations Another view: phasor-invariance and proper time

Tuesday, April 12, 2016

Comparison of group and phase dynamics: $FAST_{(er)}$ ($\beta = u/c = 3/5$) vs SLOW_(er) ($\beta = u/c = 1/5$)

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Geometric construction steps 5,6,...: Per-space-time (ω ,*ck*) dispersion hyperbola ω = Bcosh ρ ... A quick flip to space-time (*ct*,*x*) construction: Minkowski coordinate grid

Lorentz transformations of Phase vector $\mathbf{P'}$ and Group vector $\mathbf{G'}$ in per-space-time Lorentz matrix transformation of *(x,ct)* space-time coordinates Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation Heighway Paradoxes: A relativistic "*He said-She-said*" argument

Phase invariance...derives Lorentz transformations Another view: phas*or*-invariance and proper time
- Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo's Revenge Part I Lect. 23 p.64-75* Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$
- Review of $\frac{1}{2}$ -sum- $\frac{1}{2}$ -difference Phase and Group factors giving relativistic space-axes and time-axes Colliding-CW space-time (*x*,*ct*)-graph *vs* Colliding PW space-time (*R*,*L*)-baseball diamond
- Review of ½-sum-½-difference of phasor angular velocity: *Galileo's Revenge Part II* (Pirelli site) Elementary models: 2-comb Moire' patterns and cosine-law constructions
- Bob, Alice, and Carla combine Doppler shifted ¹/₂-sum-¹/₂-difference Phase and Group factors
 Doppler shifted Phase vector P' and Group vector G' in per-space-time
 Minkowski coordinate grid in space-time
 Animations that compare Doppler shifted colliding CW with colliding PW
- The 16 parameters of Doppler-shifted 2-CW Minkowski geometry Doppler shifted Phase parameters
 - Doppler shifted Group parameters
 - Lorentz transformation matrix and Two Famous-Name Coefficients
- Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

 \rightarrow

Comparing Longitudinal relativity parameter: Rapidity $\rho = \log_{e}(\text{Doppler Shift})$ to a <u>Transverse</u>*relativity parameter: Stellar aberration angle σ *Lewis Carroll Epstein, *Relativitätstheorie*, Birkhäuser, (2004) Earlier English version (1985)-

Comparing Longitudinal relativity parameter: Rapidity ρ = log_e(Doppler Shift) to a <u>Transverse</u>*relativity parameter: Stellar aberration angle σ *Lewis Carroll Epstein, *Relativitätstheorie*, Birkhäuser, (2004) Earlier English version (1985)-

Tuesday, April 12, 2016

76

Tuesday, April 12, 2016

