Relawavity: Relativistic wave mechanics I. 1 ${ }^{\text {st }}$-order Doppler shifts

(Unit 3 4.05.16)
Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit ($c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms
Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time
Introduce idea of quantized wavenumber $-\kappa_{\mathrm{n}}$ and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization)
Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams
Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$

If you think you understand quantum mechanics, you don't.

I like relativity and quantum theories
Because I don't understand them
and they make me feel as if space shifted about like a swan
that can't settle,
refusing to sit still and be measured:
and as if the atom were an impulsive thing
always changing its mind.

-D. h. Lawrence

From Jargodzki and Potter "Mad About Physics"

The quote, exact words, "If you think you understand quantum mechanics, you don't..." in Google hits about 16,500 pages. But I can't find anywhere that actually gives a written source! What to do? Possibly, originated with Niels Bohr: "Anyone who is not shocked by quantum theory has not understood it." Similar problems with checking a much older quote "Only 12 people understand relativity..."

My personal opinion about my first graduate advisor: I doubt he meant to attach a Catch-22 to understanding physics.

Current understanding of relativity and QM at UAF

Current understanding of relativity and QM at UAF $\mathrm{F}_{\text {(and the wont) }}$

[1] D. F. Styer, M. S. Balkin, K. M. Becker, M. R. Bums, C. E. Dudley, S. T. Forth, J. S. Gaumer, M. A. Kramer, D. C. Oertel, L. H. Park, M. T. Rinkoski, C. T. Smith, and T. D. Wotherspoon, Nine Formulations of Quantum Mechanics", Am. J. Phys. 70, 288 (2002).

Current understanding of relativity and QM at $\mathrm{UAF}_{\text {(and the wornt }}$

Can we clarify? ...and simplify?

Current understanding of relativity and QM at $\mathrm{UAF}_{\text {(and the wornt }}$

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
$\Rightarrow \mathrm{QM}$ (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
\Rightarrow Galilean relativity, how it fails for light and how it doesn't
\Rightarrow The great light-wave speed-limit ($c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$

Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II : and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

Level 1 Secrets(which really shouldn't be secrets at all!)
Some have forgotten... Special relativity and quantum mechanics are very much a story of the geometry of light-wave motion

Need to review...

- Where Galilean relativity fails for light waves, ...and where it doesn't.

Galilei Galileo 1564-1642
and then see...

- How to make sense of light-wave

(We'll use frequencies divisible by 3)

Some have forgotten... Special relativity and quantum mechanics
are very much a story of
the geometry of light-wave motion

Need to review...

- Where Galilean relativity fails for light waves, ...and where it doesn't.

Galilei Galileo 1564-1642 and then see...

- How to make sense of light-wave by comparing Einstein Pulse Wave (PW) axiom with
Evenson Continuous Wave (CW) axiom
 in space-time and inverse space-time
axiom(s)

Good approximation:
$c \cong 300$ million m / s 300 Megameter/s
(We'll use frequencies divisible by 3)

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
\rightarrow The great light-wave speed-limit ($c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
\rightarrow Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$

Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

- How do you make sense of light-wave

1879-1955

Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

A "road-runner" axiom is a "show-stopper"

Einstein Pulse Wave ($P W$) Axiom: PW speed seen by all observers is c

A "road-runner" axiom is a "show-stopper"

PW Axiom is complicated - ..though it has a Newtonian "Place for everything \& everything in place" feel. PW peaks precisely locate places where wave is.

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR:
or QM : Opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit $(c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
\rightarrow Need better axioms (Occam's Razors \& Evenson's Lasers>. CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization)
Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams
Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

1879-1955

1285-1349

Using

Occam's
Razor
(and Evenson's lasers)
Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

1932-2002

Cut a $P W$ to just one Continuous Wave

1879-1955
 Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

A "road-runner" axiom is a "show-stopper"

PW Axiom is complicated $\phi \quad$..though it has a Newtonian "Place for everything \& everything in place" feel. - PW peaks precisely locate places where wave is.

CW zeros precisely locate places where wave is not.
(and Evenson's lasers)

Simpler 1CW coherence is more "Zen-like"

Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

1932-2002

Can be made more self-evident and productive

Cut a $P W$ to just one Continuous Wave (ICW) that changes Color if you accelerate!

1879-1955

- How do you make sense of light-wave (

Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

$A_{1} \cos \omega t+\overline{A_{2} \cos 2 \omega t+A_{3} \cos 3 \omega+A_{4} \cos 4 \omega t+. .}$

A "road-runner" axiom
is a "show-stopper"

First of all it's Complicated
though comforting to the "A Place for everything and everything in its place" crowd.

Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

1 CW is affected by $1^{\text {st }}$-order Doppler Blue shifts $b=e^{+\rho}$ and
Red shifts $r=e^{-\rho}$ of frequency v and wavenumber κ

Cut a $P W$ to just one Continuous Wave ($1 C W$) that changes Color if you accelerate!

 CW also stands for "Cosine Wave" or "Coherent Wave" or "Colored Wave" (all helpful things!)- How do you make sense of light-wave

A major objection to relativity/QM theory: It's the only major theoretical development that starts with $\underline{2}^{\text {nd }}$-order (and guite mysterious) (anfects.

CW zeros precisely locate places where wave is not.

Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

1 CW is affected by $\underline{1}^{\text {st }}$-order Doppler Blue shifts $b=e^{+\rho}$ and
Red shifts $r=e^{-\rho}$
of frequency v and wavenumber κ
Cut a $P W$ to just one Continuous Wave ($1 C W$) that changes Color if you accelerate! CW also stands for "Cosine Wave" or "Coherent Wave" or "Colored Wave" (all helpful things!)

- How do you make sense of light-wave

1879-1955

A major objection to relativity/QM theory:
It's the only major theoretical development that starts with $\underline{2}^{\text {nd }}$-order (and aquit mysterious) affects.

So lets try doing first-things first!
Using
Occam's
Razor
(and Evenson's lasers)

CW zeros precisely locate places where wave is not.

Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

Cut a $P W$ to just one Continuous Wave ($1 C W$) that changes Color if you accelerate! CW also stands for "Cosine Wave" or "Coherent Wave" or "Colored Wave" (all helpful things!)

- How do you make sense of light-wave

1879-1955 that starts with $\underline{2}^{\text {nd }}$-order (and quite mysterious) effects.

So lets try doing first-things first! ...and start off by dealing with this enigma...Occam's
Razor
(and Evenson's lasers)

CW zeros precisely locate places where wave is not.

Evenson Continuous Wave ($C W$) axiom: CW speed for all colors is c

1932-2002
 and productive 1 CW is affected by $\underline{1}^{\text {st }}$-order Doppler Blue shifts $b=e^{+\rho}$ and
Red shifts $r=e^{-\rho}$
of frequency v of frequency v and wavenumber κ

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: or QM : Opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit $(c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms
\rightarrow Introduce "Keyboard of the god $\boldsymbol{\zeta} \boldsymbol{C W}$ per-space-time (κ, v) that rules (λ, τ) space-time \nless
Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization)
Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams
Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

-How to understand waves and wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

-How to understand waves and wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830
- How to understand waves and wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves and
wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves

RelaWavity Web Simulation Kevboard of the Gods and wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves

RelaWavity Web Simulation Kevboard of the Gods and wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"

Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves and wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"

Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves and wave velocity $V_{\text {wave }}$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

"Keyboard of the gods" is known as "Fourier-space"

Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves and wave velocity $V_{\text {wave }}$

SPACETIME
(λ, τ)-graph
" $1-C W$ " means
"single Continuous Wave"
...That "continues" everywhere..

period τ period τ
(sec. per wave)

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

$$
\begin{array}{r|r}
\begin{array}{c}
\text { frequency } v \\
\text { (waves per sec.) }
\end{array} & \begin{array}{c}
\text { per-SPACETIME } \\
(\kappa, v) \text {-graph }
\end{array} \\
\hline
\end{array}
$$

wave-speed equals slope-to-horizontal v / κ in (κ, v)-graph
"Keyboard of the gods" is known as "Fourier-space"
Jean-Baptiste
Joseph Fourier
1768-1830

- How to understand waves and wave velocity $V_{\text {wave }}$
wave-speed equals slope-to-vertical $\lambda \tau$ in (λ, τ)-graph

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

wave-speed equals slope-to-horizontal v / κ in (κ, v)-graph
wave-velocity formulas $\frac{\text { distance }}{\text { time }}=\frac{\text { wavelength }}{\text { period }}=\frac{\text { frequency }}{\text { wavenumber }}$
$\mathrm{V}_{\text {wave }}=\frac{\lambda}{\tau}=\frac{1 / \kappa}{1 / v}=\frac{v}{\kappa}=\frac{1 / \tau}{1 / \lambda}$
$=\frac{2 / 3}{5 / 4}=\frac{4 / 5}{3 / 2} \quad=\frac{8}{15} \frac{\mathrm{~m}}{\mathrm{~s}}$.
wave arithmetic is simpler to explain using fractions

- How to understand waves and
"1st quantization"
$\kappa \operatorname{in}(\kappa, v)-\underset{\text { period } \tau}{\text { graph }}$ (sec. per wave)

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit ($c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms
Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time
\rightarrow Introduce idea of quantized wavenumber- κ_{n} and amplitude $A_{n}\left(1^{\text {st }}\right.$ and $2^{\text {nd }}$ quantization) $<$
Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams
Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

If a wave is confined to an $L=1 m$. box the "Keyboard of the gods" has its wavenumber κ is "quantized" to multiples of $1 / 2 L=1 / 2$.

$$
\kappa=\frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}, \ldots
$$

-How to understand waves

 and" ${ }^{\text {st }}$ quantization" or κ-quantization

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit $(c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization)
$\boldsymbol{\rightarrow}$ Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams
Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

As will be shown:

$$
\left(\begin{array}{r}
\text { Liglit wave-velocity c is VERY fixed } \\
\mathrm{V}_{\text {light }}=c=\frac{\lambda}{\tau}=\frac{1 / \kappa}{1 / v}=\frac{v}{\kappa}=\frac{1 / \tau}{1 / \lambda}=299,792,458 \frac{\mathrm{~m} .}{\mathrm{s.}}
\end{array} \quad \begin{array}{l}
\text { After } 1982 \text { the } \pm \text { error was } \\
\text { dropped and } c=299,792,458 \mathrm{~m} / \mathrm{s} \\
\text { became the definition of the meter }
\end{array}\right.
$$

As will be shown:

> Liglit wave-velocity c is VERY fixed $V_{\text {light }}=c=\frac{v}{\kappa}=\frac{1 / \kappa}{1 / v}=\frac{\lambda}{\tau}=\frac{1 / \tau}{1 / \lambda}=299,792,458 \frac{\mathrm{~m} .}{\mathrm{s} .}$

After 1982 the \pm error was dropped and $c=299,792,458 \mathrm{~m} / \mathrm{s}$ became the definition of the meter

Then it's convenient to use:

$$
\begin{aligned}
& \text { Dimensionless Light wave-velocity } c / c=1 \\
& \frac{V_{\text {light }}}{c}=\frac{v}{c \kappa}=\frac{\lambda}{c \tau}=1 \quad \text { instead of: } \quad \frac{v}{\kappa}=\frac{\lambda}{\tau}=c
\end{aligned}
$$

Such graphs use c-units of per-time $v=c \pi$ and length $\lambda=c \tau$.

$$
\frac{\mathrm{V}_{\text {light }}}{c}=\frac{v}{c \kappa}=\frac{1 / \kappa}{c / v}=\frac{\lambda}{c \tau}=\frac{1 / \tau}{c / \lambda}=1
$$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

Ways to quantify light waves (1200 THz example)

Ways to quantify light waves (1200 THz example)

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

Ways to quantify light waves (300 THz example)

Ways to quantify light waves (300 THz example)

Ways to quantify light waves (300 THz example)

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit ($c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms
Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time
Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams
\Rightarrow Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

The "Keyboard of the gods" or per-space-per-time graphs versus space-time graphs

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit ($c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms
Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time
Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
\rightarrow Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II: and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)

Bob: " Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"
A really fast Alice shines her $v=300 \mathrm{THz}$ laser

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)

Bob: " Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"
A really fast Alice shines her $v=300 \mathrm{THz}$ laser

Q1: Can Bob tell it's a "phony" 600 THz by measuring his received wavelength?

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)

Bob: " Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"
A really fast Alice shines her $v=300 \mathrm{THz}$ laser

Q1: Can Bob tell it's a "phony" 600 THz by measuring his received wavelength?
Q2:If so, what "phony" λ does Bob see?

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects

 Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)

Bob: " Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"
A really fast Alice shines her $v=300 \mathrm{THz}$ laser

frequency $v=\omega / 2 \pi$
(Inverse period $\mathrm{v}=1 / \tau$)

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)

Bob: " Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"
A really fast Alice shines her $v=300 \mathrm{THz}$ laser

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects

 Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)

Bob: " Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)

Bob: "Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"
A really fast Alice shines her $v=300 \mathrm{THz}$ laser

Clarify Evenson's CW Axiom (All colors go c) by Doppler effects Alice tries to fool Bob that she's shining a 600 THz laser. (Bob's unaware she's moving really fast...)
 Bob: "Alice! My frequency meter reads v=600THz for your laser beam.

Alice: "Well, what is its wavelength λ, Bob!"
A really fast Alice shines her $v=300 \mathrm{THz}$ laser

frequency v
(Inverse period $v=1 / \tau$)

$\lambda=1.00 \mu \mathrm{~m} \quad 0.50 \mu \mathrm{~m} \quad 0.33 \mu \mathrm{~m}$ (inverse wavelength $\kappa=1 / \lambda$)

Also could be labeled :

Linear-(non)-dispersion axiom: $v=c \kappa$

[^0]\[

$$
\begin{aligned}
& \text { "All colors go } c=\lambda v=v / \kappa " \\
& \text { Then Evenson's axiom holds: }
\end{aligned}
$$
\]

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit $(c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{\text {st }}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at c $=v \lambda=v / \kappa$
\Rightarrow Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

Easy Doppler-shift and Rapidity calculation

Alice: Hey, Bob and Carla! Read off your Doppler

 shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.
$v_{A}=600 \mathrm{THz}$

Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$

Bob-Alice Doppler ratio:

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Carla-Alice Doppler ratio:

$$
\langle C \mid A\rangle=\frac{v_{C}}{v_{A}}=\frac{400}{600}=\frac{2}{3}
$$

Easy Doppler-shift and Rapidity calculation

 GAUNTLED

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.

Bob: I see Doppler
Blue shift to 1200THz

$v_{A}=600 \mathrm{THz}$
Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$

Bob-Alice Doppler ratio:

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Carla: I see Doppler
Red shift to 400 THz $1 \operatorname{got}\langle C \mid A\rangle=2 / 3$,

IMPORTANT POINT:
Evenson axiom says Blue, Green, Red, etc. all march in lockstep and so all frequencies Doppler shift in same geometric proportion $\langle\mathrm{R} \mid \mathrm{S}\rangle$.

Easy Doppler-shift and Rapidity calculation

Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$
$v_{A}=600 \mathrm{THz}$

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.

600TH2 1 Encomita

Bob-Alice Doppler ratio:

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Carla: I see Doppler
Red shift to 400 THz $1 \operatorname{got}\langle C \mid A\rangle=2 / 3$,

IMPORTANT POINT:

Evenson axiom says Blue, Green, Red, etc. all march in lockstep and so all frequencies Doppler shift in same geometric proportion $\langle\mathrm{R} \mid \mathrm{S}\rangle$.

If Alice sends $v_{A}=600 \mathrm{THz}$
If Alice sends $v_{A}=60 \mathrm{THz}$
If Alice sends $v_{A}=6 \mathrm{~Hz}$

Bob sees: $v_{B}=\langle B \mid A\rangle v_{A}=1200 \mathrm{THz}$
Bob sees: $v_{B}=\langle B \mid A\rangle v_{A}=120 \mathrm{THz}$
Bob sees: $v_{B}=\langle B \mid A\rangle v_{A}=12 \mathrm{~Hz}$
$\langle B \mid A\rangle=2$ for any frequency Alice and Bob use while they maintain their relative velocity.

Easy Doppler-shift and Rapidity calculation

Alice: Hey, Bob and Carla! Read off your Doppler
shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.

Bob: I see Doppler
Blue shift to 1200THz

Also, rapidity ρ_{BA} and ρ_{CA} relative to me.

600TH2

$v_{A}=600 \mathrm{THz}$
Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$

rapidity:

$\rho_{R S}=\log _{e}\langle R \mid S\rangle$

Definition of Rapidity
Rapidity is most convenient!
1 TeV proton has
$u=0.999995598^{\circ} \mathrm{c}$ (Pain in the A)
or: $\langle R \mid S\rangle=2131.6$ (Better)
or: $\rho_{R S}=7.6646$ (Best)
For low velocity $u \ll c$ rapidity $\rho_{R S}$ approaches u / c

Easy Doppler-shift and Rapidity calculation

ALICE'S
LASER
GAUNTLET

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.

Also, rapidity ρ_{BA} and ρ_{CA} relative to me.

$v_{A}=600 \mathrm{THz}$
Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$
rapidity:
$\rho_{R S}=\log _{e}\langle R \mid S\rangle$

Bob-Alice Doppler ratio:

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Carla-Alice Doppler ratio:

$$
\langle C \mid A\rangle=\frac{v_{C}}{v_{A}}=\frac{400}{600}=\frac{2}{3}
$$

Bob-Alice rapidity:

$$
\rho_{B A}=\log _{e}\langle B \mid A\rangle=\log _{e} \frac{2}{1}
$$

Definition of Rapidity

Easy Doppler-shift and Rapidity calculation

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.

Also, rapidity ρ_{BA} and ρ_{CA} relative to me.

Carla: I see Doppler
Red shift to 400THz $\operatorname{lgot}\langle\mathrm{C} \mid \mathrm{A}\rangle=2 / 3$, and $\rho_{\mathrm{CA}}=\ln (2 / 3)$

$v_{A}=600 \mathrm{THz}$
Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$
rapidity:
$\rho_{R S}=\log _{e}\langle R \mid S\rangle$

Bob-Alice rapidity:

$$
\rho_{B A}=\log _{e}\langle B \mid A\rangle=\log _{e} \frac{2}{1}
$$

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Carla-Alice Doppler ratio:

$$
\langle C \mid A\rangle=\frac{v_{C}}{v_{A}}=\frac{400}{600}=\frac{2}{3}
$$

$$
\begin{aligned}
& \text { Carla-Alice rapidity: } \\
& \qquad \rho_{C A}=\log _{e}\langle C \mid A\rangle=\log _{e} \frac{2}{3}
\end{aligned}
$$

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit ($c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{\text {st }}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
\rightarrow Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum \longleftarrow
Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / C$

Easy Doppler-shift and Rapidity calculation

ALICE'S
LASER
GAUNTLE

Alice: Hey, Bob and Carla! Read off your Doppler
shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.
Bob:I see Doppler
Blue shift to 1200THz

Carla: I see Doppler
Red shift to 400 THz 1 got $\langle C \mid A\rangle=2 / 3$, and $\rho_{\mathrm{CA}}=\ln (2 / 3)$ $=-0.41$

600TH2

$v_{A}=600 \mathrm{THz}$

Doppler ratio:

$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$

rapidity:

$\rho_{R S}=\log _{e}\langle R \mid S\rangle$

$$
\begin{aligned}
& \text { Carla-Alice rapidity: } \\
& \qquad \begin{aligned}
\rho_{C A}=\log _{e}\langle C \mid A\rangle & =\log _{e} \frac{2}{3} \\
\rho_{C A} & =-0.41
\end{aligned}
\end{aligned}
$$

Definition of Rapidity

Bob-Alice rapidity:

$$
\begin{aligned}
& \rho_{B A}=\log _{e}\langle B \mid A\rangle=\log _{e} \frac{2}{1} \\
& \rho_{B A}=0.69 \quad(\text { time-reversed }) \\
& \left(s o: \rho_{A B}=-0.69\right)
\end{aligned}
$$

Bob-Alice Doppler ratio:

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

is time-reversal of:

$$
\langle A \mid B\rangle=\frac{v_{A}}{v_{B}}=\frac{1}{2}
$$

Mnemonic:You can think of rapidity ρ_{BA} as " R " for "Romance"... (+) positive on approach, (-) negative on reproach

Easy Doppler-shift and Rapidity calculation

ALICE'S
LASER
GAUNTLED

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.

Bob: I see Doppler
Blue shift to 1200THz

Carla: I see Doppler
Red shift to 400 THz

Now, Carla, what's your rapidity ρ_{CB} relative to Bob?

I got $\langle\mathrm{C} \mid \mathrm{A}\rangle=2 / 3$,
and $\rho_{\mathrm{CA}}=\ln (2 / 3)$

$$
=-0.41
$$

$v_{A}=600 \mathrm{THz}$
Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$
rapidity:
$\rho_{R S}=\log _{e}\langle R \mid S\rangle$

Definition of Rapidity

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{2}{1}
$$

is time-reversal of:
$\langle A \mid B\rangle=\frac{v_{A}}{v_{B}}=\frac{1}{2}$
Mnemonic:You can think of rapidity ρ_{BA} as " R " for "Romance"... (+) positive on approach, (-) negative on reproach

Easy Doppler-shift and Rapidity calculation

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600 THz beam.

Also, rapidity ρ_{BA} and ρ_{CA} relative to me.

Carla: I see Doppler
Red shift to 400 THz

Now, Carla, what's your rapidity ρ_{CB} relative to Bob?

$$
=-0.41
$$

60071 R 1 Eo rowim

$v_{A}=600 \mathrm{THz}$
Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$

rapidity:

$\rho_{R S}=\log _{e}\langle R \mid S\rangle$
SO:
$\langle R \mid S\rangle=e^{\rho_{R S}}$
Definition of Rapidity

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}
$$

is time-reversed

$$
\langle A \mid B\rangle=\frac{v_{A}}{v_{B}}
$$

Bob-Alice Doppler ratio:

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Bob-Alice rapidity:

$$
\begin{aligned}
& \rho_{B A}=\log _{e}\langle B \mid A\rangle=\log _{e} \frac{2}{1} \\
& \rho_{B A}=0.69 \quad\left(s o: \rho_{A B}=-0.69\right)
\end{aligned}
$$

Carla-Bob Doppler ratio:

$$
\langle C \mid B\rangle=\frac{v_{C}}{v_{B}}=\frac{v_{C}}{v_{A}} \frac{v_{A}}{v_{B}}=\langle C \mid A\rangle\langle A \mid B\rangle
$$

Carla-Bobirapidity:

$$
e^{\dot{\rho}_{C B}}=e^{\rho_{C A}} e^{\rho_{A B}}
$$

Carla-Alice rapidity:

$$
\begin{aligned}
\rho_{C A}=\log _{e}\langle C \mid A\rangle & =\log _{e} \frac{2}{3} \\
\rho_{C A} & =-0.41
\end{aligned}
$$

Carla-Alice Doppler ratio:

$$
\langle C \mid A\rangle=\frac{v_{C}}{v_{A}}=\frac{400}{600}=\frac{2}{3}
$$

```
I got }\langle\textrm{C}|\textrm{B}\rangle=\langle\textrm{C}|\textrm{A}\rangle\langle\textrm{A}|\textrm{B}\rangle=(2/3)(1/2)=1/3
    and }\mp@subsup{\rho}{\textrm{CB}}{}=\mp@subsup{\rho}{\textrm{CA}}{}+\mp@subsup{\rho}{\textrm{AB}}{}=-1.1
        We're in Splitsville!
```

I got $\langle\mathrm{C} \mid \mathrm{B}\rangle=\langle\mathrm{C} \mid \mathrm{A}\rangle\langle\mathrm{A} \mid \mathrm{B}\rangle=(2 / 3)(1 / 2)=1 / 3$, and $\rho_{\mathrm{CB}}=\rho_{\mathrm{CA}}+\rho_{\mathrm{AB}}=-1.10$ We're in Splitsville!

Easy Doppler-shift and Rapidity calculation

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600THz beam. Also, rapidity ρ_{BA} and ρ_{CA} relative to me.

Now, Carla, what's your rapidity ρ_{CB} relative to Bob?

600TH2 I Everomit

$v_{A}=600 \mathrm{THz}$
Doppler ratio:
$\langle R \mid S\rangle=\frac{v_{\text {RECEVER }}}{v_{\text {SOURCE }}}$

rapidity:

$\rho_{R S}=\log _{e}\langle R \mid S\rangle$
or:
$\langle R \mid S\rangle=e^{\rho_{R S}}=e^{-\rho_{S R}}$
Definition of Rapidity

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}
$$

is time-reversed

$$
\langle A \mid B\rangle=\frac{v_{A}}{v_{B}}
$$

Bob-Alice Doppler ratio:

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Bob-Alice rapidity:

$$
\begin{aligned}
& \rho_{B A}=\log _{e}\langle B \mid A\rangle=\log _{e} \frac{2}{1} \\
& \rho_{B A}=0.69 \quad\left(s o: \rho_{A B}=-0.69\right)
\end{aligned}
$$

Carla-Bob Doppler ratio:

$$
\langle C \mid B\rangle=\frac{v_{C}}{v_{B}}=\frac{v_{C}}{v_{A}} \frac{v_{A}}{v_{B}}=\langle C \mid A\rangle\langle A \mid B\rangle
$$

Carla-Bobirapidity:

$$
\begin{aligned}
e^{\rho_{C B}} & =e^{\rho_{C A}} e^{\rho_{A B}} \text { implies: } \rho_{C B} & =\rho_{C A}+\rho_{A B} \\
& =e^{\rho_{C A}+\rho_{A B}} & =-0.41-0.69=-1.10
\end{aligned}
$$

Easy Doppler－shift and Rapidity calculation

Alice：Hey，Bob and Carla！Read off your Doppler shift ratios $\langle\mathrm{B} \mid \mathrm{A}\rangle$ and $\langle\mathrm{C} \mid \mathrm{A}\rangle$ to my 600THz beam．

Also，rapidity ρ_{BA} and ρ_{CA} relative to me．

Bob：I see Doppler
Blue shift to 1200THz

```
I got }\langle\textrm{C}|\textrm{B}\rangle=\langle\textrm{C}|\textrm{A}\rangle\langle\textrm{A}|\textrm{B}\rangle=(2/3)(1/2)=1/3
```

I got }\langle\textrm{C}|\textrm{B}\rangle=\langle\textrm{C}|\textrm{A}\rangle\langle\textrm{A}|\textrm{B}\rangle=(2/3)(1/2)=1/3
and 的配}=\mp@subsup{\rho}{\textrm{CA}}{}+\mp@subsup{\rho}{\textrm{AB}}{}=-1.1
and 的配}=\mp@subsup{\rho}{\textrm{CA}}{}+\mp@subsup{\rho}{\textrm{AB}}{}=-1.1
We're in Splitsville!

```
        We're in Splitsville!
```

Now，Carla，what＇s your rapidity ρ_{CB} relative to Bob？

600TH2

$v_{A}=600 \mathrm{THz}$

Doppler ratio：
$\langle R \mid S\rangle=\frac{v_{\text {RECEIVER }}}{v_{\text {SOURCE }}}$
rapidity：
$\rho_{R S}=\log _{e}\langle R \mid S\rangle$
or：
$\langle R \mid S\rangle=e^{\rho_{R S}}$
Definition of Rapidity
$\langle B \mid A\rangle=\frac{v_{B}}{v_{A}} \quad$ Happy now，Galileo？
is time－reversed

$$
\langle A \mid B\rangle=\frac{v_{A}}{v_{B}}
$$

Bob－Alice Doppler ratio：

$$
\langle B \mid A\rangle=\frac{v_{B}}{v_{A}}=\frac{1200}{600}=\frac{2}{1}
$$

Bob－Alice rapidity：

$$
\begin{aligned}
& \rho_{B A}=\log _{e}\langle B \mid A\rangle=\log _{e} \frac{2}{1} \\
& \rho_{B A}=0.69 \quad\left(s o: \rho_{A B}=-0.69\right)
\end{aligned}
$$

Carla－Bob Doppler ratio：

$$
\langle C \mid B\rangle=\frac{v_{C}}{v_{B}}=\frac{v_{C}}{v_{A}} \frac{v_{A}}{v_{B}}=\langle C \mid A\rangle\langle A \mid B\rangle
$$

Carla－Bob rapidity：

$$
e^{\rho_{C B}}=e^{\rho_{C A}} e^{\rho_{A B} \text { implies }: ~}
$$

$=600 \mathrm{THz}$

$\overline{=}$＝UQNVAS
 $v_{C}=400 \mathrm{THz}$

Carla－Alice Doppler ratio：

$$
\langle C \mid A\rangle=\frac{v_{C}}{v_{A}}=\frac{400}{600}=\frac{2}{3}
$$

Carla－Alice rapidity：

$$
\begin{aligned}
\rho_{C A}=\log _{e}\langle C \mid A\rangle & =\log _{e} \frac{2}{3} \\
\rho_{C A} & =-0.41
\end{aligned}
$$

Galileo＇s Revenge（part 1） Rapidity adds just like Galilean velocity

$$
\begin{aligned}
\boldsymbol{\rho}_{C B} & =\boldsymbol{\rho}_{C A}+\boldsymbol{\rho}_{A B} \\
& =-0.41-0.69=-1.10
\end{aligned}
$$

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit $(c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{s t}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
\rightarrow Bob, Alice, and Carla get Galileo's Revenge Part II.:and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity parameter $\beta_{A B}=u_{A B} / c$
More at Pirelli Challenge page: 'Un Grande Affare'- Light Meets Light

Alice: OK, Bob. We're gonna' hit you from both
sides, now!

Right-moving wave $e^{i(k x-\omega t)}$ CW Dye-laser 600 THz Alice's laser Left-moving wave e $e^{i(-k x-\omega t)}$

(b) Typical Phasor Sum:

Pirelli Challenge Simulation
Phasor Addition

Geometry of the Half-sum Phase and Half-difference Group

Happy now?

Galileo's Revenge (part 2) Phasor angular velocity adds just like Galilean velocity

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit $(c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{\text {st }}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II. and map space-time by phase-group 2-CW
$\Rightarrow 1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$
More at Pirelli Challenge page: 'Un Grande Affare'- Light Meets Light

Right-directed $1 C W e^{i\left(k_{4} x-\omega_{4} t\right)}$ to 1200 THz

Left-directed $1 C W e^{i\left(k_{-1} x-\omega_{-} t\right)}$

Doppler red shifted 600 THz to 300 THz

Alice:
Now our 600 THz lasers move left-to-right. My 600 THz laser is going so fast its beam blasts you with UV 1200THz.

Carla's 600THz laser is going away so you get a nice infrared 300THz.

Carla: My IR 300THz L'
3rd baseline is a lot nicer!

Wavelength $\lambda=2 \pi / k=1 / \kappa$ $\left(1 / 4 \mu \mathrm{~m}=0.25 \cdot 10^{-6} \mathrm{~m}\right)$

Space x^{\prime}

Bob: Sunglasses help.
Wow! Your $1^{\text {st }}$ baseline \mathbf{R}^{\prime} is Doppler blued up by $e^{+\rho}=2$.

$\underset{\text { 1/2-sum vector }}{\text { Phase vector } \mathbf{P}} \quad \mathbf{K}_{\text {phase }}^{\prime}=\mathbf{P}^{\prime}=\frac{\mathbb{R}^{\prime}+\mathbb{L}^{\prime}}{2} \quad \begin{aligned} & \text { Group vector } \mathbf{G} \quad \mathbf{K}_{\text {group }}^{\prime}=\mathbf{G}^{\prime}=\frac{\mathbb{R}^{\prime}-\mathbb{L}^{\prime}}{2}\end{aligned}$

Special Relativity and Quantum Mechanics regarded as mysterious and lacking clarity
Bob\&Alice regard for clarity of SR: foggy or QM: opaque
Can this situation be improved at fundamental axiomatic level?
Evidence and concepts needing critical review:
QM (Planck, 1900) and SR (Einstein, 1905) are both about light (em waves)
Galilean relativity, how it fails for light and how it doesn't
The great light-wave speed-limit $(c=2.99792458 \mathrm{~m} / \mathrm{s}$. by Evenson, ...,Hall 1972)
Need better axioms (Occam's Razors \& Evenson's Lasers): CW axioms outwit old PW axioms Introduce "Keyboard of the gods" CW per-space-time (κ, v) that rules (λ, τ) space-time

Introduce idea of quantized wavenumber- κ_{n} and amplitude A_{n} ($1^{\text {st }}$ and $2^{\text {nd }}$ quantization) Introduce infrared (IR) 300 THz , green 600 THz , and ultra-violet (UV) 1200 THz CW laser beams

Optical Doppler CW frequency shift v_{A} / v_{B} : A hidden key to understanding modern physics
Bob and Alice deduce Evenson's CW Axiom: All colors march together at $c=v \lambda=v / \kappa$
Bob, Alice, and Carla discover rapidity $\left(\rho_{A B}=\ln v_{A} / v_{B}\right)$, a longitudinal measure of speed
Bob, Alice, and Carla get Galileo's Revenge Part I.: $\rho_{C B}=\rho_{C A}+\rho_{A B}$, a simple speed sum
Bob, Alice, and Carla get Galileo's Revenge Part II. and map space-time by phase-group 2-CW
$1 / 2$-sum- $1 / 2$-difference of phasor angular velocity determines space-time geometry
\Rightarrow Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$
More at Pirelli Challenge page: 'Un Grande Affare'- Light Meets Light

Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$

Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$

 Imagine that Bob detects counter-propagating laser beams of frequency $\omega_{R}=\omega_{A}$ going left-to-right (Alice's laser) and $\omega_{L}=\omega_{C}$ going right-to-left (Carla's laser).\Longrightarrow Right-directed $1 C W e^{i\left(k_{4} x-\omega_{4} t\right)}$

W green-laser||S

600 THz Doppler blue shifted to 1200 THz

to 300 THz

We ask two questions:
(1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ?
(2.) What is that frequency ω_{E} ?

Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$

 Imagine that Bob detects counter-propagating laser beams of frequency $\omega_{R}=\omega_{A}$ going left-to-right (Alice's laser) and $\omega_{L}=\omega_{C}$ going right-to-left (Carla's laser).= Right-directed $1 C W e^{i\left(k_{4} x-\omega_{4} t\right)}$

to 300 THz

We ask two questions:
(1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ?
(2.) What is that frequency ω_{E} ?

Query (1.) has a Jeopardy-style answer-by-question:
What is beam group velocity?
$u_{E}=V_{\text {group }}=\frac{\omega_{\text {group }}}{k_{\text {group }}}=\frac{\omega_{R}-\omega_{L}}{k_{R}-k_{L}}=c \frac{\omega_{R}-\omega_{L}}{\omega_{R}+\omega_{L}}$

Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$

 Imagine that Bob detects counter-propagating laser beams of frequency $\omega_{R}=\omega_{A}$ going left-to-right (Alice's laser) and $\omega_{L}=\omega_{C}$ going right-to-left (Carla's laser).$=$ Right-directed $1 C W e^{i\left(k_{4} x-\omega_{4} t\right)}$

We ask two questions:
(1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ?
(2.) What is that frequency ω_{E} ?

Query (1.) has a Jeopardy-style answer-by-question:
What is beam group velocity?
$u_{E}=V_{\text {group }}=\frac{\omega_{\text {group }}}{k_{\text {group }}}=\frac{\omega_{R}-\omega_{L}}{k_{R}-k_{L}}=c \frac{\omega_{R}-\omega_{L}}{\omega_{R}+\omega_{L}}=c \frac{e^{\rho_{E}}-e^{-\rho_{E}}}{e^{\rho_{E}}+e^{-\rho_{E}}}=c \frac{\sinh \rho_{E}}{\cosh \rho_{E}}=c \tanh \rho_{E}$

Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$

 Imagine that Bob detects counter-propagating laser beams of frequency $\omega_{R}=\omega_{A}$ going left-to-right (Alice's laser) and $\omega_{L}=\omega_{C}$ going right-to-left (Carla's laser).\Longrightarrow Right-directed $1 C W e^{i\left(k_{4} x-\omega_{4} t\right)}$

600 THz Doppler blue shifted
to 300 THz

We ask two questions:
(1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ?
(2.) What is that frequency ω_{E} ?

Query (1.) has a Jeopardy-style answer-by-question:
What is beam group velocity?

$$
\begin{array}{r}
u_{E}=V_{\text {group }}=\frac{\omega_{\text {group }}}{k_{\text {group }}}=\frac{\omega_{R}-\omega_{L}}{k_{R}-k_{L}}=c \frac{\omega_{R}-\omega_{L}}{\omega_{R}+\omega_{L}}=c \frac{e^{\rho_{E}}-e^{-\rho_{E}}}{e^{\rho_{E}}+e^{-\rho_{E}}}=c \frac{\sinh \rho_{E}}{\cosh \rho_{E}}=c \tanh \rho_{E} \\
\frac{u_{E}}{c}=\frac{\omega_{R}-\omega_{L}}{\omega_{R}+\omega_{L}}=\frac{1200-300}{1200+300}=\frac{3}{5}
\end{array}
$$

Relating rapidity $\rho_{A B}$ and relativity velocity parameter $\beta_{A B}=u_{A B} / c$

 Imagine that Bob detects counter-propagating laser beams of frequency $\omega_{R}=\omega_{A}$ going left-to-right (Alice's laser) and $\omega_{L}=\omega_{C}$ going right-to-left (Carla's laser).

We ask two questions:
(1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ?
(2.) What is that frequency ω_{E} ?

Query (1.) has a Jeopardy-style answer-by-question:
What is beam group velocity?
$u_{E}=V_{\text {group }}=\frac{\omega_{\text {group }}}{k_{\text {group }}}=\frac{\omega_{R}-\omega_{L}}{k_{R}-k_{L}}=c \frac{\omega_{R}-\omega_{L}}{\omega_{R}+\omega_{L}}=c \frac{e^{\rho_{E}}-e^{-\rho_{E}}}{e^{\rho_{E}}+e^{-\rho_{E}}}=c \frac{\sinh \rho_{E}}{\cosh \rho_{E}}=c \tanh \rho_{E}$
Query (2.) similarly:
What ω_{E} is blue-shift $b \omega_{L}$ of ω_{L} and red-shift ω_{R} / b of ω_{R} ? $c \quad \omega_{R}+\omega_{L} \quad=\frac{1200+300}{1200}=\frac{3}{5}$

$$
\omega_{E}=b \omega_{L}=\omega_{R} / b \Rightarrow b=\sqrt{\omega_{R} / \omega_{L}} \Rightarrow \omega_{E}=\sqrt{\omega_{R} \cdot \omega_{L}}=\sqrt{1200 \cdot 300}=600 \mathrm{THz}
$$

(Geometric Mean)

[^0]: *for each beam and polarization orientation

