
Lecture 25 
CN-Symmetric Wave Modes 

(Ch. 5 of Unit 4   3.29.15)

C12 and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity
           ½-Sum-½-Diff-theory of 2-CW group and phase velocity
Algebra and geometry of  resonant revivals: Farey Sums and Ford Circles
Relating CN symmetric H and K matrices to differential wave operators
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C6 symmetric mode model:Distant neighbor coupling 
            C6 moving waves and degenerate standing waves
            C6 dispersion functions for 1st, 2nd, and 3rd-neighbor coupling
            C6 dispersion functions split by C-type symmetry(complex, chiral, …)
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Wave velocities depend on
   Dispersion function 
           ω =ω (k)

(a) 1-CW phase velocity:
     Vphase

1-CW = ω (k)
k

 Vphase
1-CW8 =

ω (k8 )
k8

= 0.9
8

a = k⋅x −ω⋅ t
Given 1-CW phase of wave ei(kx-ωt):

Solve for 1-CW phase velocity
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(a) 1-CW phase velocity:
     Vphase

1-CW = ω (k)
k

a = ka ⋅x −ω a ⋅ t b = kb ⋅x −ωb ⋅ t

The ½-Sum-½-Diff-Identity and 2-CW phase and group velocity
Given 2-CW phases:

and
...find 2-CW phase velocity           and group velocityVphase

2-CW Vgroup
2-CW
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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2-level-system and C2 symmetry phase dynamics 

symmetric A1

vs.

antisymmetric A2 

C2 Character Table describes eigenstates

1= r0 r = r1

0mod2
1 1

±1mod2 1 −1

Phasor C2 Characters describe local state beats

Initial sum

1/4-beat

1/2-beat

3/4-beat

full-beat

AAllwwaayyss
±±ππ//22
pphhaassee
llaagg

C2
02

12

r0

0°

0°

0°

180°

t = 0

1/4

1/2

3/4

0°

45°

-45°

-45°

0°

45°

-45°

|+〉

revivals

or beats

|−〉

|+〉+|−〉
√2

|+〉+i|−〉
√2

|+〉−i|−〉
√2

|+〉−|−〉
√2

(φ= 0) (φ= π)

parity

states

even +45°

odd -45°

localized x

flipped y

L

R

Optical

E(t)
Coupled

Pendular1
C2 Phasor-Character Table

is simplest example of a revival

Re
al

Imaginary
Phasor notation
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C2
02

12

r0

0°

0°

0°

180°

t = 0

1/4

1/2

3/4

0°

45°

-45°

-45°

0°

45°

-45°

|+〉

revivals

or beats

|−〉

|+〉+|−〉
√2

|+〉+i|−〉
√2

|+〉−i|−〉
√2

|+〉−|−〉
√2

(φ= 0) (φ= π)

parity

states

even +45°

odd -45°

localized x

flipped y

L

R

Optical

E(t)
Coupled

Pendular1

0°

0°

0°

+45
°

-45°

-45° +45
°

2-level-system and C2 symmetry phase dynamics 

m=+1, 0, -1

C2 Phasor-Character Table

Initial

1/4-beat

1/2-beat

3/4-beat

full-beat

Initial

1/4-beat

1/2-beat

3/4-beat

full-beat

Space-time plot
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C2
02

12

r0

0°

0°

0°

180°

t = 0

1/4

1/2

3/4

0°

45°

-45°

-45°

0°

45°

-45°

|+〉

revivals

or beats

|−〉

|+〉+|−〉
√2

|+〉+i|−〉
√2

|+〉−i|−〉
√2

|+〉−|−〉
√2

(φ= 0) (φ= π)

parity

states

even +45°

odd -45°

localized x

flipped y

L

R

Optical

E(t)
Coupled

Pendular1

2-level-system and C2 symmetry phase dynamics 
C2 Phasor-Character Table

Initial

1/4-beat

1/2-beat

3/4-beat

full-beat
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C3 symmetry phase in 1, 2, or 3-level-systems 

Non - chiral
C3v system 

Chiral
“quantum-Hall-like”

systems
deserve special treatment 

Re
al

Imaginary
Phasor notation
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C4 symmetry phase in 1, 2, 3 , or 4 level-systems 

Non - chiral
C4v system 
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C5 symmetry phase in 1, 2,...5 level-systems 

Re
al

Imaginary
Phasor notation
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C6 symmetry phase in 1, ...6 level-systems 

Re
al

Imaginary
Phasor notation
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06
16
26
36
46
56

0°

0°

0°

0°

0°

0°

0°

60°

120°

180°

-120°

-60°

0°

120°

-120°

0°

120°

-120°

0°

180°

0°

180°

0°

180°

0°

-120°

120°

0°

-120°

120°

0°

-60°

-120°

180°

120°

60°

C6 Eigenstate Characters
p=0 1 2 3m

N
4 5

t=0
1/12

1/ 6
3/12

2/ 6
5/12

3/ 6
7/12

4/ 6
9/12

5/ 6
11/12

p=0

0°
45°

45°
90°
-135°

135°

-90°

-45°

-45°

1

15°

30°

75°

-75°

-30°

-15°

2

-75°

-30°

-15°

15°

30°

75°

3

135°

-90°

-45°

-45°

0°
45°

45°
90°
-135°

4

-75°

-30°

-15°

15°

30°

75°

5

15°

30°

75°

-75°

-30°

-15°

C6 Revivals

m
N

C3 Eigenstate Characters

C3 Revivals

03
13
23

0°

0°

0°

0°

120°

-120°

0°

-120°

120°

t=0

1/ 3

2/ 3

p=0

0°

90°

-90°

1

-30°

30°

2

-30°

30°

p=0 1 2

Discrete 3-State or Trigonal System

(Tesla’s 3-Phase AC)

Discrete 6-State or Hexagonal System

(6-Phase AC)

Note 3-phase

sub-symmetry

Note 2-phase

sub-symmetry

(The “Mother

of all symme-

try” is C2)

C2

Note

2-phase

AC

Cm algebra of revival-phase dynamics 
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A C3 “Three-fold Moment”

Δm = 9
-15 -10 -5 0 5 10 15 = m

2Δx = 4 %

1/1

0/1

Quantum rotor fractional take turns at Cn symmetry

1/ 3

90° -30° -30°

3-“cloned revival”peaks
pop up at t=τ/3

(Using C3 character tables)

Cm algebra of revival-phase dynamics 

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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Algebra and geometry of  resonant revivals: Farey Sums and Ford Circles
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Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/1
1/1

2Δx = 4 % 0/1
Time t (units of fundamental period     ) τ1

Coordinate     φ   (units of 2π )

0/1

1/10

1/5

3/10

2/5

1/2

3/5

7/10

4/5

9/10

1/1

3/4

1/4

1/21/40-1/4-1/2

1/2
1/4

0
-1/4

-1/2

(Imagine "wrap-around" φ-coordinate) 
+π /2

−π /2

+π−π

3/4

1/4

0/1

1/2

1/1

Time t 

time
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0 = m1 2-2 -1

2Δx = 24%

3/4

1/2

1/4

Δm = 1.5

1/1

0/1

N-level-rotor system revival-beat wave dynamics 
(Just 2-levels (0, ±1)  (and some ±2)  excited)

Simplest quantum revival:
Exciting first two levels

(=0 and =±1)
is like a 

2-level system quantum beat
in space-time

space time

⏐Ψ(x,t)⏐ in space-time

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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0 = m1 2-2 -1

2Δx = 24%

3/4

1/2

1/4

Δm = 1.5

1/1

0/1

0 = m12-2-1 34

Δm = 3

2Δx = 12%

1/1

0/1

(Just 2-levels (0, ±1)  (and some ±2)  excited) (4-levels (0, ±1,±2,±3)  (and some ±4)  excited)
N-level-rotor system revival-beat wave dynamics 

Simplest fractional quantum revivals:   3,4,5-level systems
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Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/1

1/2

1/4

1/6
1/7

1/3

1/5

2/5

2/7

3/7

1/8

Wave packet starts hereZeros start here Zeros start here

Time t
(units of τ1)

Coordinate φ
(units of 2π)

1/1

0/1
0 1/4 1/2-1/2 -1/4

(9 or10-levels (0, ±1, ±2, ±3, ±4,..., ±9, ±10, ±11...)  excited)

1
7

2
7

3
7

4
7

5
7

6
7

4
7

5
7

6
7

0
1

N-level-rotor system revival-beat wave dynamics 

fractional quantum revivals:
in 3,4,…, N-level systems

Number increases rapidly with
number of levels
and/or bandwidth 

of excitation

space

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
40Sunday, March 27, 2016



Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/1

1/2

1/4

1/6
1/7

1/3

1/5

2/5

2/7

3/7

1/8

Wave packet starts hereZeros start here Zeros start here

Time t
(units of τ1)

Coordinate φ
(units of 2π)

1/1

0/1
0 1/4 1/2-1/2 -1/4

(9 or10-levels (0, ±1, ±2, ±3, ±4,..., ±9, ±10, ±11...)  excited) Zeros (clearly) and “particle-packets” (faintly) have paths 
labeled by fraction sequences like: 0

7
, 1
7
, 2
7
, 3
7
, 4
7
, 5
7
, 6
7
,1
1

1
7

2
7

3
7

4
7

5
7

6
7

4
7

5
7

6
7

1
1

0
1

N-level-rotor system revival-beat wave dynamics 

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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2

-2

4

-4
6

-6

Δx=1.5

Δx=0.75
Δx=0.5

Δx=3.0

Δx=0.375

Δx=1.5

Δx=0.75
Δx=0.5

Δx=3.0

Δx=0.375

11//11

11//22

11//33

11//44
11//55
11//66
11//77

v2=0

v2=2

v1=1

Time

Space

The Wall

Time

Space

(a) Big ball moves in and traps small ball between it and The Wall

(b) Trajectory geometry exposed

Y Y

V
y2

V
y2

(a) Big space

Low speed

Bang (1)
12

Bang (2)
20

(b) Decreasing space

Increasing speed

Y

V
y2(c) Small space

High speed

Bang (n)
12

Bang (n+1)
20

V
y
Y = const.

Y

V
y2

Y

V
y2

Y

Vy2

The Classical
“Monster Mash”

Classical introduction to

Heisenberg “Uncertainty” Relations

 

v2 = const.
Y

   or:    Y ⋅v2 = const.

is analogous to:   Δx ⋅ Δp = N ⋅

Farey-Sum arithmetic of revival wave-zero paths 
(How Rational Fractions N/D occupy real space-time)

Recall classical “Monster Mash” in Lecture 5
with small-ball trajectory paths having same geometry 

as revival beat wave-zero paths

Lect. 5 (9.11.14)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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n1+n2
d1+d2

tx=

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

n2/d2
- t

1/2 -φ
= 1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

n1/d1 - t
1/2 -φ = -1/d1

(φx ,tx)

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

x

n1/d1 and n2/d2 path
intersection time

(Farey-Sum)

•
•
•

•
•
•

d1n2-n1d2
d1+d2

φx=

n1/d1 and n2/d2 path
intersection point

(Ford-Cross)

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

 [John Farey, Phil. Mag.(1816)] 
Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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n1+n2
d1+d2

tx=

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

n2/d2
- t

1/2 -φ
= 1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

n1/d1 - t
1/2 -φ = -1/d1

(φx ,tx)

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

x

n1/d1 and n2/d2 path
intersection time

(Farey-Sum)

•
•
•

•
•
•

d1n2-n1d2
d1+d2

φx=

n1/d1 and n2/d2 path
intersection point

(Ford-Cross)

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

[Lester. R. Ford, Am. Math. Monthly 45,586(1938)]          [John Farey, Phil. Mag.(1816)] 
Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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Ford-Circle geometry of revival paths 
(How Rational Fractions N/D occupy real space-time)
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1
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(a) 0
1

Numerator Axis N

D
en
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in
at
or
Ax
is
D

Unit Real Interval Farey Sum 
related to 

vector sum
and

Ford Circles
1/1-circle has

diameter 1

Harter and Alvason Li
 Int. Symposium on

Molecular Spectroscopy
OSU Columbus (2013)

A. Li and W. Harter, 
Chem. Phys. Letters, 
633,  208-213 (2015)
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Unit Real Interval Farey Sum 
related to 

vector sum
and

Ford Circles
1/1-circle has

diameter 1

v2=(1,2)=v0+v1

Farey-Sum of fractions 0/1 and 1/1 is 1/2  
         That is vector sum v0+v1 = (1,2) = v2

Harter and Alvason Li
 Int. Symposium on

Molecular Spectroscopy
OSU Columbus (2013)

A. Li and W. Harter, 
Chem. Phys. Letters, 
633,  208-213 (2015)
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related to 

vector sum
and
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1/1-circle has

diameter 1

v2=(1,2)=v0+v1

Farey-Sum of fractions 0/1 and 1/1 is 1/2  
         That is vector sum v0+v1 = (1,2) = v2

                          This vector v2 

           points to real value 
1/2 =0.5 

Harter and Alvason Li
 Int. Symposium on

Molecular Spectroscopy
OSU Columbus (2013)

A. Li and W. Harter, 
Chem. Phys. Letters, 
633,  208-213 (2015)
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related to 
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1/1-circle has
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v2=(1,2)=v0+v1

Farey-Sum of fractions 0/1 and 1/1 is 1/2  
         That is vector sum v0+v1 = (1,2) = v2

                          This vector v2 

           points to real value 
1/2 =0.5 

v0 circle radius intersecting
                           v2 line      
                                                         

Harter and Alvason Li
 Int. Symposium on

Molecular Spectroscopy
OSU Columbus (2013)

A. Li and W. Harter, 
Chem. Phys. Letters, 
633,  208-213 (2015)
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related to 

vector sum
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1/1-circle has
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v2=(1,2)=v0+v1

Farey-Sum of fractions 0/1 and 1/1 is 1/2  
         That is vector sum v0+v1 = (1,2) = v2

                          This vector v2 

           points to real value 
1/2 =0.5 

v0 circle radius intersecting
                           v2 line      ...points to center
                                                         

Harter and Alvason Li
 Int. Symposium on

Molecular Spectroscopy
OSU Columbus (2013)

A. Li and W. Harter, 
Chem. Phys. Letters, 
633,  208-213 (2015)
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v2=(1,2)=v0+v1

Farey-Sum of fractions 0/1 and 1/1 is 1/2  
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Relating CN symmetric H and K matrices to differential wave operators

64Sunday, March 27, 2016



   
K = k(21− r − r−1) analogous to:− k

∂x2
∂2

The 1st neighbor K matrix relates to a 2nd finite-difference matrix of 2nd x-derivative for high CN.

Relating CN symmetric H and K matrices to wave differential operators 

   

1st derivative momentum: p = 
i
∂y
∂x

≈ 
i

y(x + Δx)− y(x)
(Δx)


i

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 −1 ⋅ ⋅ ⋅
⋅ ⋅ 1 −1 ⋅ ⋅
⋅ ⋅ ⋅ 1 −1 ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅
y1

y2

y3

y4

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 
i

⋅
y1 − y0

y2 − y1

y3 − y2

y4 − y3

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

2nd derivative KE: 2mE = -2 ∂2 y
∂x2 ≈ y(x + Δx)− 2y(x)+ y(x − Δx)

(Δx)2

-2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−1 2 −1 ⋅ ⋅ ⋅
⋅ −1 2 −1 ⋅ ⋅
⋅ ⋅ −1 2 −1 ⋅
⋅ ⋅ ⋅ −1 2 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅
y1

y2

y3

y4

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 2

⋅
y0 − 2y1 + y2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

	
    

    

i ∂
∂t

ψ = H ψ     ( H-matrix equation)

i ∂
∂t

ψ = (− 
2

2m
∂2

∂x2 +V )ψ   (Scrodinger equation) 
   

− ∂2

∂t2 y = K y                 ( K-matrix equation)

− ∂2

∂t2 y = −k ∂2

∂x2 y       (Classical  wave equation)

H and K matrix equations are finite-difference versions of quantum and classical wave equations.

   


i

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 −1 ⋅ ⋅ ⋅
⋅ ⋅ 1 −1 ⋅ ⋅
⋅ ⋅ ⋅ 1 −1 ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟


i

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 −1 ⋅ ⋅ ⋅
⋅ ⋅ 1 −1 ⋅ ⋅
⋅ ⋅ ⋅ 1 −1 ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−1 2 −1 ⋅ ⋅ ⋅
⋅ −1 2 −1 ⋅ ⋅
⋅ ⋅ −1 2 −1 ⋅
⋅ ⋅ ⋅ −1 2 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Square p2 gives 1st neighbor K matrix. Higher order p3, p4,.. involve 2nd, 3rd, 4th..neighbor H

   

 p4 ≅

  1 ⋅ ⋅ ⋅
 6 −4 1 ⋅ ⋅
1 −4 6 −4 1 ⋅
⋅ 1 −4 6 −4 1
⋅ ⋅ 1 −4 6 −4
⋅ ⋅ ⋅ 1 −4 6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
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Δ = 1
2

 
 0 1

−1 0 1
−1 0 1

−1 0 1
−1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

 ,  Δ3 = 1
23

  0 −1
 0 3 0 −1
0 −3 0 3 0 −1
1 0 −3 0 3 0

1 0 −3 0 3
1 0 −3 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

Δ2 = 1
22

  1
 −2 0 1
1 0 −2 0 1

1 0 −2 0 1
1 0 −2 0

1 0 −2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

 , Δ4 = 1
24

  −4 0 1
 6 0 −4 0 1
−4 0 6 0 −4 0
0 −4 0 6 0 −4
1 0 −4 0 6 0

1 0 −4 0 6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

Symmetrized finite-difference operators
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