C_{N}-Symmetric Wave Modes

(Ch. 5 of Unit 4 3.29.15)
C_{12} and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity 1/2-Sum-1/2-Diff-theory of 2-CW group and phase velocity
Algebra and geometry of resonant revivals: Farey Sums and Ford Circles
Relating C_{N} symmetric H and K matrices to differential wave operators

Wave resonance in cyclic C_{n} symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Projector analysis of 2D-HO modes and mixed mode dynamics
$1 / 2$-Sum-1/2-Diff-Identity for resonant beat analysis
Mode frequency ratios and continued fractions
Geometry of that 90°-phase lag (again)
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Deriving C3 projectors
Deriving and labeling moving wave modes
Deriving dispersion functions and degenerate standing waves Examples by WaveIt animation
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} moving waves and degenerate standing waves
C_{6} dispersion functions for $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$-neighbor coupling
C_{6} dispersion functions split by C-type symmetry(complex, chiral, ...)
$\rightarrow C_{12}$ and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity
$1 / 2$-Sum-1/2-Diff-theory of 2-CW group and phase velocity

CN Symmetric Mode Models:

Fig. 4.8.4

Fig. 4.8.4

$$
-\left(\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\vdots \\
F_{N-1}
\end{array}\right)=\left(\begin{array}{ccccccc}
K & -k_{12} & \cdot & \cdot & \cdot & \cdots & -k_{12} \\
-k_{12} & K & -k_{12} & \cdot & \cdot & \cdots & \cdot \\
\cdot & -k_{12} & K & -k_{12} & \cdot & \cdots & \cdot \\
\cdot & \cdot & -k_{12} & K & -k_{12} & \cdots & \cdot \\
\cdot & \cdot & \cdot & -k_{12} & K & \cdots & \cdot \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & -k_{12} \\
-k_{12} & \cdot & \cdot & \cdot & \cdot & -k_{12} & K
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\vdots \\
x_{N-1}
\end{array}\right) \quad \begin{gathered}
K=k+2 k_{12} \\
\text { where: } \\
k=\frac{M g}{\ell} \\
(\cdot)=0 \\
\end{gathered}
$$

C_{N} Symmetric Mode Models:

$\mathbf{1 s t}^{\text {st }}$ Neighbor K-matrix
$-\left(\begin{array}{c}F_{0} \\ F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ \vdots \\ F_{N-1}\end{array}\right)=\left(\begin{array}{ccccccc}K & -k_{12} & \cdot & \cdot & \cdot & \cdots & -k_{12} \\ -k_{12} & K & -k_{12} & \cdot & \cdot & \cdots & \cdot \\ \cdot & -k_{12} & K & -k_{12} & \cdot & \cdots & \cdot \\ \cdot & \cdot & -k_{12} & K & -k_{12} & \cdots & \cdot \\ \cdot & \cdot & \cdot & -k_{12} & K & \cdots & \cdot \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & -k_{12} \\ -k_{12} & \cdot & \cdot & \cdot & \cdot & -k_{12} & K\end{array}\right) \cdot\left(\begin{array}{c}x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ \vdots \\ x_{N-1}\end{array}\right)$ where: $k=\frac{M g}{\ell}$
$\mathbf{N}^{\text {th }}$ roots of $1 e^{i m \cdot p 2 \pi / N}=\langle m| \mathbf{r}^{p}|m\rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

Fig. 4.8.5
Unit 4
CMwBang

C_{N} Symmetric Mode Models:

$\mathbf{N}^{\text {th }}$ roots of $1 e^{i m p 2 \pi / N}=\langle m| \mathbf{r}^{p}|m\rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.
 transformation matrices

phasor

 character table$$
\begin{gathered}
\chi_{p}^{m}=e^{i k_{m} r^{p}} \\
=e^{\frac{2 \pi i m p}{32}}
\end{gathered}
$$

 : Men - Mensuensu ensu ensuensu ensu ensuensu ensuensuensuensuensuensuensuens

 000

 u0 S3jp2.
 position point $p=0,1,2 \ldots$

$$
\begin{gathered}
C_{64} \\
\begin{array}{c}
\text { phasor } \\
\text { character } \\
\text { table }
\end{array} \\
\chi_{p}^{m}=e^{i k_{m^{2}} r^{p}} \\
=e^{\frac{2 \pi i m p}{64}}
\end{gathered}
$$

Invariant phase
"Uncertainty" hyperbolas:
$m \cdot p=c o n s t$.

Wave resonance in cyclic C_{n} symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Projector analysis of 2D-HO modes and mixed mode dynamics
$1 / 2$-Sum-1/2-Diff-Identity for resonant beat analysis
Mode frequency ratios and continued fractions
Geometry of that 90°-phase lag (again)
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Deriving C3 projectors
Deriving and labeling moving wave modes
Deriving dispersion functions and degenerate standing waves Examples by WaveIt animation
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} moving waves and degenerate standing waves
C_{6} dispersion functions for $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$-neighbor coupling
C_{6} dispersion functions split by C-type symmetry(complex, chiral, ...)
$\rightarrow C_{12}$ and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity $1 / 2$-Sum-1/2-Diff-theory of 2-CW group and phase velocity

Archetypical Examples of C_{12} Dispersion Functions

(a) Constant dispersion (b) Linear dispersion

Applications:

Uncoupled pendulums

Movie marquis Xmas lights
(c) Quadratic dispersion (d) Phonon dispersion

(e) Exciton dispersion

Weakly coupled pendulums (With gravity)

Light in fiber (Approx) Acoustic mode in solids Non-relativistic
Schrodinger matter wave

Strongly coupled pendulums (With gravity)

Optical mode in solids Relativistic matter (If exact hyperbola)

Archetypical Examples of C_{12} Dispersion Functions

(a) Constant dispersion
(b) Linear dispersion
(c) Quadratic dispersion (d) Phonon dispersion
(e) Exciton dispersion

Applications:

Uncoupled pendulums

Movie marquis
Xmas lights

Weakly coupled pendulums (No gravity)

Weakly coupled pendulums (With gravity)Light in fiber (Approx)

Non-relativistic
Schrodinger matter wave

Strongly coupled pendulums (With gravity)

Optical mode in solids Relativistic matter (If exact hyperbola)

Archetypical Examples of C_{12} Dispersion Functions

(a) Constant dispersion
(b) Linear dispersion
(c) Quadratic dispersion (d) Phonon dispersion
(e) Exciton dispersion

Applications:

Uncoupled pendulums

Movie marquis Xmas lights

Weakly coupled pendulums (No gravity)

Weakly coupled pendulums (With gravity)

Light in fiber (Approx) Non-relativistic

Strongly coupled pendulums (With gravity)

Optical mode in solids Relativistic matter (If exact hyperbola)

Wave resonance in cyclic C_{n} symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Projector analysis of 2D-HO modes and mixed mode dynamics
$1 / 2$-Sum-1/2-Diff-Identity for resonant beat analysis
Mode frequency ratios and continued fractions
Geometry of that $90^{\circ}-$ phase lag (again)
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Deriving C3 projectors
Deriving and labeling moving wave modes
Deriving dispersion functions and degenerate standing waves Examples by WaveIt animation
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} moving waves and degenerate standing waves
C_{6} dispersion functions for $1^{s t}, 2^{\text {nd }}$, and $3^{\text {rd }}$-neighbor coupling
C_{6} dispersion functions split by C-type symmetry(complex, chiral, ...)
C_{12} and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity $\rightarrow \quad 1 / 2$-Sum-1/2-Diff-theory of 2-CW group and phase velocity

The 1/2-Sum-1/2-Diff-Identity and 2-CW phase and group velocity

Given 2-CW phases: ...find 2-CW phase velocity $V_{\text {phase }}^{2-\mathrm{Cw}}$ and group velocity $V_{\text {group }}^{2-\mathrm{CW}}$ $a=k_{a} \cdot x-\omega_{a} \cdot t$ and $b=k_{b} \cdot x-\omega_{b} \cdot t$

Velocities depend upon Dispersion function

$$
\omega=\omega(k)
$$

(a) 1-CW phase velocity: $V_{\text {phase }}^{1-\mathrm{CW}}=\frac{\omega(k)}{k}$

The 1/2-Sum-1/2-Diff-Identity and 2-CW phase and group velocity

Given 2-CW phases:
 ...find 2-CW phase velocity $V_{\text {phase }}^{2-\mathrm{CW}}$ and group velocity $V_{\text {group }}^{2-\mathrm{CW}}$

$$
\begin{aligned}
& a=k_{a} \cdot x-\omega_{a} \cdot t \text { and } b=k_{b} \cdot x-\omega_{b} \cdot t \\
& \frac{e^{i a}+e^{i b}}{2}=e^{i \frac{a+b}{2}}\left(\frac{e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}}{2}\right)=e^{i \frac{a+b}{2}} \cos \left(\frac{a-b}{2}\right)
\end{aligned}
$$

Velocities depend upon Dispersion function

$$
\omega=\omega(k)
$$

(a) 1-CW phase velocity: $V_{\text {phase }}^{1-\mathrm{CW}}=\frac{\omega(k)}{k}$

The 1/2-Sum-1/2-Diff-Identity and 2-CW phase and group velocity

Given 2-CW phases:
 ...find 2-CW phase velocity $V_{\text {phase }}^{2-\mathrm{CW}}$ and group velocity $V_{\text {group }}^{2-\mathrm{CW}}$

$$
\begin{aligned}
& a=k_{a} \cdot x-\omega_{a} \cdot t \text { and } b=k_{b} \cdot x-\omega_{b} \cdot t \\
& \frac{e^{i a}+e^{i b}}{2}=e^{i \frac{a+b}{2}}\left(\frac{e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}}{2}\right)=e^{i \frac{a+b}{2}} \cos \left(\frac{a-b}{2}\right) \\
& =e^{i \frac{\left(k_{a}+k_{b}\right)}{2} x-\frac{\left(\omega_{a}+\omega_{b}\right)}{2} t} \cos \left(\frac{\left(k_{a}-k_{b}\right)}{2} x-\frac{\left(\omega_{a}-\omega_{b}\right)}{2} t\right)
\end{aligned}
$$

Velocities depend upon Dispersion function

$$
\omega=\omega(k)
$$

(a) 1-CW phase velocity: $V_{\text {phase }}^{1-\mathrm{CW}}=\frac{\omega(k)}{k}$

The 1/2-Sum-1/2-Diff-Identity and 2-CW phase and group velocity

Given 2-CW phases:
 ...find 2-CW phase velocity $V_{\text {phase }}^{2-\mathrm{CW}}$ and group velocity $V_{\text {group }}^{2-\mathrm{CW}}$

$$
\begin{aligned}
& a=k_{a} \cdot x-\omega_{a} \cdot t \text { and } b=k_{b} \cdot x-\omega_{b} \cdot t \\
& \frac{e^{i a}+e^{i b}}{2}=e^{i \frac{a+b}{2}}\left(\frac{e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}}{2}\right)=e^{i \frac{a+b}{2}} \cos \left(\frac{a-b}{2}\right) \\
& =e^{i \frac{\left(k_{a}+k_{b}\right)}{2} x-\frac{\left(\omega_{a}+\omega_{b}\right)}{2} t} \cos \left(\frac{\left(k_{a}-k_{b}\right)}{2} x-\frac{\left(\omega_{a}-\omega_{b}\right)}{2} t\right) \\
& V_{\text {phase }}^{2-\mathrm{CW}}=\frac{\left(\omega_{a}+\omega_{b}\right)}{\left(k_{a}+k_{b}\right)} \quad V_{\text {group }}^{2-\mathrm{CW}}=\frac{\left(\omega_{a}-\omega_{b}\right)}{\left(k_{a}-k_{b}\right)}
\end{aligned}
$$

Velocities depend upon Dispersion function

$$
\omega=\omega(k)
$$

(a) 1-CW phase velocity:

$$
V_{\text {phase }}^{1-\mathrm{CW}}=\frac{\omega(k)}{k}
$$

The 1/2-Sum-1/2-Diff-Identity and 2-CW phase and group velocity

Given 2-CW phases:
 ...find 2-CW phase velocity $V_{\text {phase }}^{2-\mathrm{Cw}}$ and group velocity $V_{\text {group }}^{2-\mathrm{CW}}$

$$
\begin{aligned}
& a=k_{a} \cdot x-\omega_{a} \cdot t \text { and } b=k_{b} \cdot x-\omega_{b} \cdot t \\
& \frac{e^{i a}+e^{i b}}{2}=e^{i \frac{a+b}{2}}\left(\frac{e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}}{2}\right)=e^{i \frac{a+b}{2}} \cos \left(\frac{a-b}{2}\right) \\
& =e^{i \frac{\left(k_{a}+k_{b}\right)}{2} x-\frac{\left(\omega_{a}+\omega_{b}\right)}{2} t} \cos \left(\frac{\left(k_{a}-k_{b}\right)}{2} x-\frac{\left(\omega_{a}-\omega_{b}\right)}{2} t\right) \\
& V_{\text {phase }}^{2-\mathrm{CW}}=\frac{\left(\omega_{a}+\omega_{b}\right)}{\left(k_{a}+k_{b}\right)} \quad V_{\text {group }}^{2-\mathrm{CW}}=\frac{\left(\omega_{a}-\omega_{b}\right)}{\left(k_{a}-k_{b}\right)}
\end{aligned}
$$

Velocities depend upon Dispersion function

$$
\omega=\omega(k)
$$

(a) 1-CW phase velocity:

$$
V_{\text {phase }}^{1-\mathrm{CW}}=\frac{\omega(k)}{k}
$$

(b) 2-CW phase velocity:

$$
V_{\text {phase }}^{2-\mathrm{CW}}=\frac{\omega\left(k_{1}\right)+\omega\left(k_{2}\right)}{k_{1}+k_{2}}
$$

(c) Pairwise group velocity:

$$
V_{\text {group }}^{2-\text { CW }}=\frac{\omega\left(k_{1}\right)-\omega\left(k_{2}\right)}{k_{1}-k_{2}}
$$

$$
-8-7: 6-5-4-3-2-1 \mid 123345 \sigma^{8} 8 k_{m}=m k_{1}
$$

Math Simpler Ones Complex Systems

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals \Rightarrow Phase arithmetic

2-level-system and C_{2} symmetry phase dynamics

C_{2} Character Table describes eigenstates
symmetric A_{1}

Phasor C_{2} Characters describe local state beats

2-level-system and C_{2} symmetry phase dynamics

2-level-system and C_{2} symmetry phase dynamics

C_{2} Phasor-Character Table

C_{3} symmetry phase in 1,(2) or 3-level-systems

C3 Eigenstate Characters

"quantum-Hall-like"
systems deserve special treatment

C_{4} symmetry phase in $1,2,3,0 r 4$ level-systems

 C_{4} Eigenstate Characters

Non - chiral
$C_{4 v}$ system

C_{5} symmetry phase in $1,2, \ldots 5$ level-systems

 C_{5} Eigenstate Characters
C_{5} Revivals

C_{6} symmetry phase in $1, \ldots .6$ level-systems

C_{6} Eigenstate Characters

C_{6} Revivals

C_{m} algebra of revival-phase dynamics

Discrete 3-State or Trigonal System (Tesla's 3-Phase AC)

Discrete 6-State or Hexagonal System (6-Phase AC)
C_{6} Eigenstate Characters

C_{m} algebra of revival-phase dynamics

Quantum rotor fractional take turns at Cn symmetry $1 / 1$

Algebra and geometry of resonant revivals: Farey Sums and Ford Circles

Time t (units of fundamental period τ_{1})

N-level-rotor system revival-beat wave dynamics (Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)

N -level-rotor system revival-beat wave dynamics

 (Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)

Simplest fractional quantum revivals: 3,4,5-level systems

N-level-rotor system revival-beat wave dynamics

 (9 or10-levels $(0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots, \pm 9, \pm 10, \pm 11 .$.$) excited)$
fractional quantum revivals: in $3,4, \ldots, \mathrm{~N}$-level systems
Number increases rapidly with number of levels and/or bandwidth
of excitation

N -level-rotor system revival-beat wave dynamics Zeros (clearly) and "particle-packets" (faintly) have paths

 labeled by fraction sequences like: $\frac{0}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{1}{1}$

Lect. 5 (9.11.14)
The Classical "Monster Mash"

Classical introduction to
Heisenberg "Uncertainty" Relations
$v_{2}=\frac{\text { const } .}{Y} \quad$ or: $\quad Y \cdot v_{2}=$ const.
is analogous to: $\Delta x \cdot \Delta p=N \cdot \hbar$

Recall classical "Monster Mash" in Lecture 5
with small-ball trajectory paths having same geometry as revival beat wave-zero paths

Farey-Sum arithmetic of revival wave-zero paths (How Rational Fractions N/D occupy real space-time)

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
[John Farey, Phil. Mag.(1816)]

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Ford-Circle geometry of revival paths (How Rational Fractions N/D occupy real space-time)

$$
\begin{aligned}
& \text { :(a) }: \frac{0}{1} \\
& \text { Unit Real Interval } \frac{1}{1} \\
& \text { p. } 4 \text {, p. } 5 \\
& \text { (} 17 \\
& 14 \\
& \begin{array}{l}
13 \\
12
\end{array} \\
& \text { 9.0 } \\
& \text { Denominator } \\
& \mathbf{V}_{0}=(0,1) \\
& \text { - } A^{1} / \mathbf{v}_{1}=(1,1) \\
& \text { Numerator Axis } N
\end{aligned}
$$

Farey Sum related to vector sum and
Ford Circles

1/2-circle has diameter $1 / 2^{2}=1 / 4$
$1 / 3$-circles have diameter $1 / 3^{2}=1 / 9$

Farey Sum related to vector sum and Ford Circles

1/2-circle has diameter $1 / 2^{2}=1 / 4$

1/3-circles have diameter $1 / 3^{2}=1 / 9$
n / d-circles have diameter $1 / d^{2}$

Thales Rectangles provide analytic geometry of
fractal structure 633, 208-213 (2015) OSU Columbus (2013)

"Quantized"
Thales Rectangles provide analytic geometry of
fractal structure
A. Li and W. Harter,

Chem. Phys. Letters, 633, 208-213 (2015)

Harter and Alvason Li Int. Symposium on Molecular Spectroscopy OSU Columbus (2013)

Relating C_{N} symmetric H and K matrices to differential wave operators

Relating C_{N} symmetric H and K matrices to wave differential operators

The $1^{\text {st }}$ neighbor \mathbf{K} matrix relates to a $2^{\text {nd }}$ finite-difference matrix of $2^{\text {nd }} x$-derivative for high C_{N}.

$$
\mathbf{K}=k\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{-1}\right) \text { analogous to: }-k \frac{\partial^{2}}{\partial x^{2}}
$$

$$
\text { 2nd derivative KE: } 2 m E=-\hbar^{2} \frac{\partial^{2} y}{\partial x^{2}} \approx \frac{y(x+\Delta x)-2 y(x)+y(x-\Delta x)}{(\Delta x)^{2}}
$$

$$
\frac{\hbar}{i}\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & -1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & -1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & -1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{c}
\cdot \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\cdot
\end{array}\right)=\frac{\hbar}{i}\left(\begin{array}{c}
\cdot \\
y_{1}-y_{0} \\
y_{2}-y_{1} \\
y_{3}-y_{2} \\
y_{4}-y_{3} \\
\cdot
\end{array}\right)
$$

$$
-\hbar^{2}\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 & 2 & -1 & \cdot & \cdot & \cdot \\
\cdot & -1 & 2 & -1 & \cdot & \cdot \\
\cdot & \cdot & -1 & 2 & -1 & \cdot \\
\cdot & \cdot & \cdot & -1 & 2 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{c}
\cdot \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\cdot
\end{array}\right)=\hbar^{2}\left(\begin{array}{c}
. \\
y_{0}-2 y_{1}+y_{2} \\
y_{1}-2 y_{2}+y_{3} \\
y_{2}-2 y_{3}+y_{4} \\
y_{3}-2 y_{4}+y_{5} \\
\cdot
\end{array}\right)
$$

\mathbf{H} and \mathbf{K} matrix equations are finite-difference versions of quantum and classical wave equations.

$$
\begin{array}{llrl}
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\mathbf{H}|\psi\rangle & \text { (H-matrix equation) } & -\frac{\partial^{2}}{\partial t^{2}}|y\rangle=\mathbf{K}|y\rangle & \text { (K-matrix equation) } \\
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right)|\psi\rangle & \text { (Scrodinger equation) } & -\frac{\partial^{2}}{\partial t^{2}}|y\rangle=-k \frac{\partial^{2}}{\partial x^{2}}|y\rangle & \text { (Classical wave equation) }
\end{array}
$$

Square p^{2} gives $1^{\text {st }}$ neighbor \mathbf{K} matrix. Higher order $p^{3}, p^{4}, .$. involve $2^{\text {nd }}, 3{ }^{\text {rd }}, 4^{\text {th }}$. .neighbor \mathbf{H} $\frac{\hbar}{i}\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & -1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & -1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)=\hbar^{2}\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & 2 & -1 & \cdot & \cdot & \cdot \\ \cdot & -1 & 2 & -1 & \cdot & \cdot \\ \cdot & \cdot & -1 & 2 & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 & 2 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)$

$$
p^{4} \cong\left(\begin{array}{cccccc}
\ddots & \vdots & 1 & . & . & . \\
\cdots & 6 & -4 & 1 & . & . \\
1 & -4 & 6 & -4 & 1 & . \\
. & 1 & -4 & 6 & -4 & 1 \\
. & . & 1 & -4 & 6 & -4 \\
. & . & . & 1 & -4 & 6
\end{array}\right)
$$

Symmetrized finite-difference operators

$$
\begin{aligned}
& \bar{\Delta}=\frac{1}{2}\left(\begin{array}{cccccc}
\ddots & \vdots & & & & \\
\cdots & 0 & 1 & & & \\
& -1 & 0 & 1 & & \\
& & -1 & 0 & 1 & \\
& & & -1 & 0 & 1 \\
& & & & -1 & 0
\end{array}\right), \bar{\Delta}^{3}=\frac{1}{2^{3}}\left(\begin{array}{cccccc}
\ddots & \vdots & 0 & -1 & \\
\cdots & 0 & 3 & 0 & -1 & \\
0 & -3 & 0 & 3 & 0 & -1 \\
1 & 0 & -3 & 0 & 3 & 0 \\
& 1 & 0 & -3 & 0 & 3 \\
& & 1 & 0 & -3 & 0
\end{array}\right) \\
& \bar{\Delta}^{2}=\frac{1}{2^{2}}\left(\begin{array}{cccccc}
\ddots & \vdots & 1 & & & \\
\cdots & -2 & 0 & 1 & & \\
1 & 0 & -2 & 0 & 1 & \\
& 1 & 0 & -2 & 0 & 1 \\
& & 1 & 0 & -2 & 0 \\
& & & 1 & 0 & -2
\end{array}\right), \bar{\Delta}^{4}=\frac{1}{2^{4}}\left(\begin{array}{cccccc}
\ddots & \vdots & -4 & 0 & 1 & \\
\cdots & 6 & 0 & -4 & 0 & 1 \\
-4 & 0 & 6 & 0 & -4 & 0 \\
0 & -4 & 0 & 6 & 0 & -4 \\
1 & 0 & -4 & 0 & 6 & 0 \\
& 1 & 0 & -4 & 0 & 6
\end{array}\right)
\end{aligned}
$$

