

C_N-Symmetric Wave Modes

(Ch. 5 of Unit 4 3.29.15)

 C₁₂ and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity ½-Sum-½-Diff-theory of 2-CW group and phase velocity
 Algebra and geometry of resonant revivals: Farey Sums and Ford Circles
 Relating C_N symmetric H and K matrices to differential wave operators *Wave resonance in cyclic* C_n *symmetry Harmonic oscillator with cyclic C*₂ *symmetry C*₂ symmetric (*B*-type) modes *Projector analysis of 2D-HO modes and mixed mode dynamics* ¹/₂-Sum-¹/₂-Diff-Identity for resonant beat analysis *Mode frequency ratios and continued fractions Geometry of that 90°-phase lag (again) Harmonic oscillator with cyclic C*₃ *symmetry C*₃ symmetric spectral decomposition by 3rd roots of unity Deriving C₃ projectors Deriving and labeling moving wave modes Deriving dispersion functions and degenerate standing waves Examples by WaveIt animation *C*⁶ *symmetric mode model*:*Distant neighbor coupling C*⁶ moving waves and degenerate standing waves C_6 dispersion functions for 1st, 2nd, and 3rd-neighbor coupling *C*₆ *dispersion functions split by C-type symmetry(complex, chiral, ...)*

C₁₂ and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity ¹/₂-Sum-¹/₂-Diff-theory of 2-CW group and phase velocity **C_N Symmetric Mode Models:**

Sunday, March 27, 2016

3

C_N Symmetric Mode Models:

Fig. 4.8.4 Unit 4 CMwBang

1st Neighbor K-matrix

$$\begin{pmatrix} F_{0} \\ F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ \vdots \\ F_{N-1} \end{pmatrix} = \begin{pmatrix} K & -k_{12} & \ddots & \ddots & \cdots & -k_{12} \\ -k_{12} & K & -k_{12} & \ddots & \cdots & \ddots \\ & & -k_{12} & K & -k_{12} & \cdots & \ddots \\ & & & -k_{12} & K & -k_{12} & \cdots & \ddots \\ & & & & -k_{12} & K & \cdots & \ddots \\ & & & & & -k_{12} & K & \cdots & \ddots \\ & & & & & -k_{12} & K & \cdots & \ddots \\ & & & & & -k_{12} & K & \cdots & \ddots \\ & & & & & -k_{12} & K & \cdots & \ddots \\ & & & & & -k_{12} & K & \end{pmatrix} \bullet \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ \vdots \\ x_{N-1} \end{pmatrix} \text{ where: } k = \frac{Mg}{\ell}$$

1st Neighbor K-matrix

Nth roots of 1 $e^{i m \cdot p 2\pi/N} = \langle m | \mathbf{r}^p | m \rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

Sunday, March 27, 2016

C_N Symmetric Mode Models:

Nth roots of 1 $e^{i m \cdot p 2\pi/N} = \langle m | \mathbf{r}^p | m \rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

transformation matrices

Sunday, March 27, 2016

phasor character table

 C_{64}

 $\chi_p^m = e^{ik_m r^p}$

 $= e^{\frac{2\pi imp}{64}}$

Invariant phase "Uncertainty" hyperbolas: $m \cdot p = const.$

phasor character table

 C_{100}

 $\chi_p^m = e^{ik_m r^p}$ $2\pi imp$ $=e^{100}$

Invariant phase "Uncertainty" hyperbolas: $m \cdot p = const.$

phasor character table

 C_{256}

 $\chi_p^m = e^{ik_m r^p}$

 $= e^{\frac{2\pi imp}{256}}$

Invariant phase "Uncertainty" hyperbolas: $m \cdot p = const.$ *Wave resonance in cyclic* C_n *symmetry Harmonic oscillator with cyclic C*₂ *symmetry C*₂ symmetric (*B*-type) modes *Projector analysis of 2D-HO modes and mixed mode dynamics* ¹/₂-Sum-¹/₂-Diff-Identity for resonant beat analysis *Mode frequency ratios and continued fractions Geometry of that 90°-phase lag (again) Harmonic oscillator with cyclic C*₃ *symmetry C*₃ symmetric spectral decomposition by 3rd roots of unity Deriving C₃ projectors Deriving and labeling moving wave modes Deriving dispersion functions and degenerate standing waves Examples by WaveIt animation *C*⁶ *symmetric mode model*:*Distant neighbor coupling C*⁶ moving waves and degenerate standing waves C_6 dispersion functions for 1st, 2nd, and 3rd-neighbor coupling *C*₆ *dispersion functions split by C-type symmetry*(*complex*, *chiral*, ...)

C₁₂ and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity ¹/₂-Sum-¹/₂-Diff-theory of 2-CW group and phase velocity

Archetypical Examples of C_{12} Dispersion Functions

Archetypical Examples of C_{12} Dispersion Functions

Archetypical Examples of C_{12} Dispersion Functions

Wave resonance in cyclic C_n *symmetry Harmonic oscillator with cyclic C*₂ *symmetry C*₂ symmetric (*B*-type) modes *Projector analysis of 2D-HO modes and mixed mode dynamics* ¹/₂-Sum-¹/₂-Diff-Identity for resonant beat analysis *Mode frequency ratios and continued fractions Geometry of that 90°-phase lag (again) Harmonic oscillator with cyclic C*₃ *symmetry C*₃ symmetric spectral decomposition by 3rd roots of unity Deriving C₃ projectors Deriving and labeling moving wave modes Deriving dispersion functions and degenerate standing waves Examples by WaveIt animation *C*⁶ *symmetric mode model*:*Distant neighbor coupling C*⁶ moving waves and degenerate standing waves C_6 dispersion functions for 1st, 2nd, and 3rd-neighbor coupling *C*₆ *dispersion functions split by C-type symmetry(complex, chiral, ...)*

C₁₂ and higher symmetry mode models: Archetypes of dispersion functions and 1-CW phase velocity /2-Sum-1/2-Diff-theory of 2-CW group and phase velocity The ½-Sum-½-Diff-Identity and 2-CW phase and group velocityGiven 2-CW phases:...find 2-CW phase velocity V_{phase}^{2-CW} and group velocity V_{group}^{2-CW} $a = k_a \cdot x - \omega_a \cdot t$ and $b = k_b \cdot x - \omega_b \cdot t$

The ½-Sum-½-Diff-Identity and 2-CW phase and group velocityGiven 2-CW phases:...find 2-CW phase velocity V_{phase}^{2-CW} and group velocity V_{group}^{2-CW}

$$\frac{e^{ia} + e^{ib}}{2} = e^{i\frac{a+b}{2}} \left(\frac{e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}}}{2} \right) = e^{i\frac{a+b}{2}} \cos\left(\frac{a-b}{2}\right)$$

Velocities depend upon Dispersion function $\omega = \omega(k)$

[Harter, J. Mol. Spec. 210, 166-182 (2001)]

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C_2 symmetry C_2 symmetric (B-type) modes Harmonic oscillator with cyclic C_3 symmetry C_3 symmetric spectral decomposition by 3rd roots of unity Resolving C_3 projectors and moving wave modes Dispersion functions and standing waves C_6 symmetric mode model:Distant neighbor coupling C_6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals \rightarrow Phase arithmetic

2-level-system and C_2 symmetry phase dynamics

Sunday, March 27, 2016

2-level-system and C_2 symmetry phase dynamics

Sunday, March 27, 2016

2-level-system and C_2 symmetry phase dynamics

C_6 symmetry phase in 1, ...6 level-systems

Phasor notation Imaginary

Sunday, March 27, 2016

C_m algebra of revival-phase dynamics

Discrete 3-State or Trigonal System (Tesla's 3-Phase AC)

C_m algebra of revival-phase dynamics

Quantum rotor fractional take turns at Cn symmetry-

AC3 "Three-fold Moment"

3-"cloned revival" peaks pop up at t=t/3 (Using C3 character tables)

-30°

-30°

[Harter, J. Mol. Spec. 210, 166-182 (2001)]

/1

3/4

2/3

1/2

/3

/4

 Δ

 $2\Delta x = 4 \%$

5

 $10 \quad 15 = m$

-15 -10 -5 0

Algebra and geometry of resonant revivals: Farey Sums and Ford Circles

N-level-rotor system revival-beat wave dynamics (Just 2-levels (0, ±1) (and some ±2) excited)

 $|\Psi(\mathbf{x},t)|$ in space-time

Simplest quantum revival: Exciting first two levels (ℓ=0 and ℓ=±1) is like a 2-level system quantum beat in space-time

[Harter, J. Mol. Spec. 210, 166-182 (2001)]

N-level-rotor system revival-beat wave dynamics

(Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)

 $(4-\text{levels}(0,\pm1,\pm2,\pm3) \text{ (and some }\pm4) \text{ excited})$

Simplest *fractional* quantum revivals: 3,4,5-level systems

N-level-rotor system revival-beat wave dynamics

 $(9 \text{ or } 10 \text{ -levels} (0, \pm 1, \pm 2, \pm 3, \pm 4, ..., \pm 9, \pm 10, \pm 11...) \text{ excited})$

fractional quantum revivals:in 3,4,..., N-level systemsNumber increases rapidly withnumber of levelsand/or bandwidth τ_1 of excitation

Lect. 5 (9.11.14) *The Classical "Monster Mash"*

Classical introduction to

Heisenberg "Uncertainty" Relations $v_2 = \frac{const.}{Y}$ or: $Y \cdot v_2 = const.$ is analogous to: $\Delta x \cdot \Delta p = N \cdot \hbar$

Recall classical "Monster Mash" in Lecture 5 with small-ball trajectory paths having same geometry as revival beat wave-zero paths

Farey-Sum arithmetic of revival wave-zero paths (How *Rational Fractions N/D* occupy real space-time)

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Harter; J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Harter; J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

Sunday, March 27, 2016

Ford-Circle geometry of revival paths (How *Rational Fractions N/D* occupy real space-time)

Farey Sum related to vector sum and Ford Circles 1/1-circle has diameter 1

> A. Li and W. Harter, Chem. Phys. Letters, 633, 208-213 (2015)

Harter and Alvason Li Int. Symposium on Molecular Spectroscopy OSU Columbus (2013)

Farey Sum related to vector sum and *Ford Circles*

1/2-circle has diameter $1/2^2=1/4$

1/3-circles have diameter $1/3^2 = 1/9$

n/d-circles have diameter $1/d^2$

A. Li and W. Harter, Chem. Phys. Letters, 633, 208-213 (2015)

Harter and Alvason Li Int. Symposium on Molecular Spectroscopy OSU Columbus (2013)

Sunday, March 27, 2016

A. Li and W. Harter, Chem. Phys. Letters, 633, 208-213 (2015)

Harter and Alvason Li Int. Symposium on Molecular Spectroscopy OSU Columbus (2013)

Relating C_N symmetric H and K matrices to differential wave operators

Relating C_N symmetric H and K matrices to wave differential operators

The 1st neighbor **K** matrix relates to a 2nd *finite-difference* matrix of 2nd x-derivative for high C_N .

H and K matrix equations are finite-difference versions of quantum and classical wave equations. $i\hbar \frac{\partial}{\partial t} |\psi\rangle = \mathbf{H} |\psi\rangle \quad (\mathbf{H}\text{-matrix equation}) \qquad \qquad -\frac{\partial^2}{\partial t^2} |y\rangle = \mathbf{K} |y\rangle \qquad (\mathbf{K}\text{-matrix equation})$ $i\hbar \frac{\partial}{\partial t} |\psi\rangle = (-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V) |\psi\rangle \quad (Scrodinger equation) \qquad \qquad -\frac{\partial^2}{\partial t^2} |y\rangle = -k \frac{\partial^2}{\partial x^2} |y\rangle \quad (Classical wave equation)$

Square p^2 gives 1st neighbor **K** matrix. Higher order p^3 , p^4 ,... involve 2nd, 3rd, 4th...neighbor **H**

1st

Symmetrized finite-difference operators

$$\bar{\Delta} = \frac{1}{2} \begin{pmatrix} \ddots & \vdots & & \\ \cdots & 0 & 1 & & \\ & -1 & 0 & 1 & & \\ & & -1 & 0 & 1 & \\ & & & -1 & 0 & 1 \\ & & & & -1 & 0 \end{pmatrix}, \ \bar{\Delta}^3 = \frac{1}{2^3} \begin{pmatrix} \ddots & \vdots & 0 & -1 & & \\ \cdots & 0 & 3 & 0 & -1 & & \\ 0 & -3 & 0 & 3 & 0 & -1 \\ 1 & 0 & -3 & 0 & 3 & 0 \\ 1 & 0 & -3 & 0 & 3 \\ 1 & 0 & -3 & 0 \end{pmatrix}$$
$$\bar{\Delta}^2 = \frac{1}{2^2} \begin{pmatrix} \ddots & \vdots & 1 & & & \\ \cdots & -2 & 0 & 1 & & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 1 & 0 & -2 & 0 & 1 & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 0 & -2 & 0 & 1 & & \\ 1 & 0 & -4 & 0 & 6 & 0 & -4 & 0 \\ 0 & -4 & 0 & 6 & 0 & -4 & 0 \\ 1 & 0 & -4 & 0 & 6 & 0 & \\ 1 & 0 & -4 & 0 & 6 & 0 & \\ \end{pmatrix}$$