
Lecture 25 
Parametric Resonance and Multi-particle Wave Modes 

(Ch. 7-8 of Unit 4   11.24.15)

Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.)
Schrodinger wave equation related to Parametric resonance dynamics

Electronic band theory and analogous mechanics
Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic

Algebra and geometry of  resonant revivals: Farey Sums and Ford Circles
Relating CN symmetric H and K matrices to differential wave operators

Lecture 20 Parametric 
Resonance 

Tue. 11.24.2015
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x +ω0

2x = Es cos ω st( )

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit . 

Two Kinds of Resonance 

Chapter 4.2 study of FDHO 
(Here damping Γ≅0)
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x +ω0

2x = Es cos ω st( )

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit . 

   
x + ω0

2 + Bcos ω st( )( )x = 0

Nonlinear or multiplicative resonance. 
Example: oscillating magnetic B-field is applied to a cyclotron orbit.  

Also called parametric resonance. 
Frequency parameter or spring constant k=mω2 is being stimulated. 

Chapter 4.2 study of FDHO 
(Here damping Γ≅0)

Chapter 4.7

Two Kinds of Resonance 
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x +ω0

2x = Es cos ω st( )

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit . 

   
x + ω0

2 + Bcos ω st( )( )x = 0

Nonlinear or multiplicative resonance. 
Example: oscillating magnetic B-field is applied to a cyclotron orbit.  

Also called parametric resonance. 
Frequency parameter or spring constant k=mω2 is being stimulated.
...Or pendulum accelerated up and down  (model to be used here)

Chapter 4.2 study of FDHO 
(Here damping Γ≅0)

Chapter 4.7

Two Kinds of Resonance 
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Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.)
Schrodinger wave equation related to Parametric resonance dynamics

Electronic band theory and analogous mechanics
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X

Y

φ



Ax(t)

X-stimulated pendulum:
(Quasi-Linear Resonance)

X

Y

Y-stimulated pendulum:
(Non-Linear Resonance)

φ



d2φ g Ax(t)

dt2  
___ + __ φ = ____

Forced Harmonic Resonance

A Newtonian F=Ma equation

Lorentz equation (with Γ=0)

d2φ g Ay(t)

dt2  
___ + ( _ + ___ ) φ = 0

Parametric Resonance

A Schrodinger-like equation

(Time t replaces coord. x)

Ay(t)

For small φ
(cos φ ~1 ) :

Coupled Rotation and Translation (Throwing)

Early non-human (or in-human) machines: trebuchets, whips.. (3000 BCE-1542 CE)

d2φ g+Ay(t) Ax(t)

dt2  
___ + ______ sin φ + _____ cos φ = 0General case: A Nasty equation!

General φ :

For small φ
(sin φ ~φ ) :

(1542-2012 CE)
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Coupled Rotation and Translation (Throwing)

(a) (b)

Chaotic motion from both linear and non-linear resonance (a) Trebuchet, (b) Whirler .

Positioned for linear resonance Positioned for nonlinear resonance

The “Arkansas Whirler”

(picture of Hog)

device we hope to build
(...someday)
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Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.)
Schrodinger wave equation related to Parametric resonance dynamics

Electronic band theory and analogous mechanics
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(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t
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(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t
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(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t
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(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t
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Let N=2 to get
Band-edge modes

(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t
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Let N=2 to get
Band-edge modes

(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t
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Let N=2 to get
Band-edge modes

(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t

15Monday, March 28, 2016



Let N=2 to get
Band-edge modes

(With m=1 and =1)

main difference:
independent variable

space=x 
becomes
time=t

 

E = 4
ω y

2 g

V0 = 4Ay
For N=2
and =1
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Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.)
Schrodinger wave equation related to Parametric resonance dynamics

Electronic band theory and analogous mechanics
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Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus Ay is zero

  
− d2φ

dx2 = Eφ
  
− d2φ

dt2 =ω0
2φ

Electronic band theory and analogous mechanics

independent variable
space=x 
becomes
time=t
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− d2φ

dx2 = Eφ
  
− d2φ

dt2 =ω0
2φ

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

Electronic band theory and analogous mechanics

   
t ω = φω (t) = e±iω0t

2π
,  where: ω0= g

  
x k = φk (x) = e±ikx

2π
,  where: E=k2

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus Ay is zero
independent variable

space=x 
becomes
time=t
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Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

Bohr has periodic boundary conditions x between 0 and L Pendulum repeats perfectly after a time T.

Electronic band theory and analogous mechanics

  
− d2φ

dx2 = Eφ
  
− d2φ

dt2 =ω0
2φ

   
t ω = φω (t) = e±iω0t

2π
,  where: ω0= g



  
φ(0) = φ(T )⇒eiω0T = 1,  or: ω0= 2πm

T

  
x k = φk (x) = e±ikx

2π
,  where: E=k2

  
φ(0) = φ(L)⇒eikL = 1,  or: k= 2πm

L

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus Ay is zero
independent variable

space=x 
becomes
time=t
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Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

Bohr has periodic boundary conditions x between 0 and L Pendulum repeats perfectly after a time T.

Limit L=2π=T for both analogies. Then the allowed energies and frequencies follow

Electronic band theory and analogous mechanics

  
− d2φ

dx2 = Eφ
  
− d2φ

dt2 =ω0
2φ

   
t ω = φω (t) = e±iω0t

2π
,  where: ω0= g



  
φ(0) = φ(T )⇒eiω0T = 1,  or: ω0= 2πm

T

  ω0 = m = 0,±1,±2,±3,±4,...

  
x k = φk (x) = e±ikx

2π
,  where: E=k2

  
φ(0) = φ(L)⇒eikL = 1,  or: k= 2πm

L

  E = k2 = 0,1,4,9,16...

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus Ay is zero
independent variable

space=x 
becomes
time=t
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Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

Bohr has periodic boundary conditions x between 0 and L Pendulum repeats perfectly after a time T.

Limit L=2π=T for both analogies. Then the allowed energies and frequencies follow

Schrodinger equation with non-zero V solved in Fourier basis

Electronic band theory and analogous mechanics

  
− d2φ

dx2 = Eφ
  
− d2φ

dt2 =ω0
2φ

   
t ω = φω (t) = e±iω0t

2π
,  where: ω0= g



  
φ(0) = φ(T )⇒eiω0T = 1,  or: ω0= 2πm

T

  ω0 = m = 0,±1,±2,±3,±4,...

  
j∑ D + V( ) k k φ = E j φ

Fourier representation: 
   

j D k = j2δ j
k

Matrix eigenvalue equation

   
− d2φ

dx2 +V0cos(Nx)φ = Eφ  ,        D + V( ) φ = E φ

  
x k = φk (x) = e±ikx

2π
,  where: E=k2

  
φ(0) = φ(L)⇒eikL = 1,  or: k= 2πm

L

  E = k2 = 0,1,4,9,16...

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus Ay is zero
independent variable

space=x 
becomes
time=t
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Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

  
x k = φk (x) = e±ikx

2π
,  where: E=k2

   
t ω = φω (t) = e±iω0t

2π
,  where: ω0= g


Bohr has periodic boundary conditions x between 0 and L Pendulum repeats perfectly after a time T.

  
φ(0) = φ(L)⇒eikL = 1,  or: k= 2πm

L   
φ(0) = φ(T )⇒eiω0T = 1,  or: ω0= 2πm

T
Limit L=2π=T for both analogies. Then the allowed energies and frequencies follow

  E = k2 = 0,1,4,9,16...   ω0 = m = 0,±1,±2,±3,±4,...
Schrodinger equation with non-zero V solved in Fourier basis

  
j∑ D + V( ) k k φ = E j φ

Fourier representation:                        and 
   

j D k = j2δ j
k

Electronic band theory and analogous mechanics

  
− d2φ

dx2 = Eφ
  
− d2φ

dt2 =ω0
2φ

Matrix eigenvalue equation

   
− d2φ

dx2 +V0cos(Nx)φ = Eφ  ,        D + V( ) φ = E φ

   

j V k = dx
0

2π
∫

e−i jx

2π
V0cos(Nx) e+i kx

2π
= dx

0

2π
∫

e−i j−k( )x

2π
V0

e−i Nx + ei Nx

2

                                                           =
V0
2

δ j
k+N +δ j

k−N( )

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus Ay is zero
independent variable

space=x 
becomes
time=t
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Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

   
t ω = φω (t) = e±iω0t

2π
,  where: ω0= g


Bohr has periodic boundary conditions x between 0 and L Pendulum repeats perfectly after a time T.

  
φ(0) = φ(T )⇒eiω0T = 1,  or: ω0= 2πm

T
Limit L=2π=T for both analogies. Then the allowed energies and frequencies follow

  ω0 = m = 0,±1,±2,±3,±4,...
Schrodinger equation with non-zero V solved in Fourier basis

  
j∑ D + V( ) k k φ = E j φ

Fourier representation:                        and 
   

j D k = j2δ j
k

Electronic band theory and analogous mechanics

  
− d2φ

dx2 = Eφ
  
− d2φ

dt2 =ω0
2φ

(Move Fourier reps. to top)
Matrix eigenvalue equation

   
− d2φ

dx2 +V0cos(Nx)φ = Eφ  ,        D + V( ) φ = E φ

   

j V k = dx
0

2π
∫

e−i jx

2π
V0cos(Nx) e+i kx

2π
= dx

0

2π
∫

e−i j−k( )x

2π
V0

e−i Nx + ei Nx

2

                                                           =
V0
2

δ j
k+N +δ j

k−N( )

  
x k = φk (x) = e±ikx

2π
,  where: E=k2

  
φ(0) = φ(L)⇒eikL = 1,  or: k= 2πm

L

  E = k2 = 0,1,4,9,16...

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus Ay is zero
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Electronic band theory and analogous mechanics
Schrodinger equation with non-zero V solved in Fourier basis

  
j∑ D + V( ) k k φ = E j φ

Fourier representation:                        and 
   

j D k = j2δ j
k

Matrix eigenvalue equation

   
− d2φ

dx2 +V0cos(Nx)φ = Eφ  ,        D + V( ) φ = E φ

   

j V k = dx
0

2π
∫

e−i jx

2π
V0cos(Nx) e+i kx

2π
= dx

0

2π
∫

e−i j−k( )x

2π
V0

e−i Nx + ei Nx

2

                                                           =
V0
2

δ j
k+N +δ j

k−N( )
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Electronic band theory and analogous mechanics

    

j D + V( ) k =    (for j and k even)                     

           −6 , −4 , −2 , 0 , 2 ,  4 ,  6 , 

Schrodinger equation with non-zero V solved in Fourier basis

   
− d2φ

dx2 +V0cos(Nx)φ = Eφ  ,        D + V( ) φ = E φ

Fourier representation:                        and 

   

j V k = dx
0

2π
∫

e−i jx

2π
V0 cos(Nx) e+i kx

2π
= dx

0

2π
∫

e−i j−k( )x

2π
V0

e−i Nx + ei Nx

2

                                                           =
V0
2

δ j
k+N +δ j

k−N( )
   

j D k = j2δ j
k

  
j∑ D + V( ) k k φ = E j φ

Matrix eigenvalue equation

    

j D + V( ) k =    (for j and k odd )

             −7 , −5 , −3 , −1 , 1 , 3 ,  5 ,

   



62 v
v 42 v

v 22 v
v 0 v

v 22 v
v 42 v

v 62



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

   



72 v
v 52 v

v 32 v
v 12 v

v 12 v
v 32 v

v 52



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  

  
−6

−4

−2

−0

+2

+4

+6

      

  
−7

−5

−3

−1

+1

+3

+5

    

   
Here:  v =

V0
2

=
4Ay

2
=

2Ay


=2Ay   For N=2

and =1
Connection relations

from p. 15-16
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 Eigenvalues for V0=0.2 or v=0.1 and V0=2.0 or v=1.0 .

  

E0 = −0.0050

E1− = 0.8988

E1+ = 1.0987

E2− = 3.9992

E2+ = 4.0042

E3− = 9.0006

E3+ = 9.0006
  

E0 = −0.4551

E1− = −0.1102

E1+ = 1.8591

E2− = 3.9170

E2+ = 4.3713

E3− = 9.0477

E3+ = 9.0784

Em-values vary with amplitude V0 or wiggle amplitude Ay =V0/N2=2v/N2=v/2. (N=2 and
=1 here)

Em-eigenvalue determines pendulum Y-wiggle frequency ωy(m).
implies:

 
ω y(m)=

N
Em

g

= 2

Em
 
Em = N 2

ω y(m)
2

g


(g=1, too)

  

ω y(0) = 2 / .0050 = 28.2843

ω
y(1− )

= 2 / .8988 = 2.10959

ω
y(1+ )

= 2 / 1.0987 = 1.90805

ω
y(2− )

= 2 / 3.9992 = 1.00010

ω
y(2+ )

= 2 / 4.0042 = 0.99948

 Pendulum Y-wiggle frequency ωy(m) for V0=0.2 and for V0=2.0.

  

ω y(0) = 2 / .4551 = 2.9646

ω
y(1− )

= 2 / .1102 = 6.02475

ω
y(1+ )

= 2 / 1.8591 = 1.4668

ω
y(2− )

= 2 / 3.9170 = 1.0105

ω
y(2+ )

= 2 / 4.3713 = 0.9566

inverted

inverted
inverted

inverted

inverted

inverted

When pendulum is “normal” and near its lowest point (φ~0) then cos φ ~1 and sin φ~φ   

When pendulum is "inverted" near highest point (φ ∼π ) then cos φ  ~ -1 and sin φ  ~ π−φ .   

d2φ
dx2 + N 2

ω y
2

g

−
ω y

2 Ay


cos(Nx)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ = 0 = d2φ

dx2 + N 2

ω y
2

g

−

N 2 Ay


cos(Nx)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ,   (where: φ ~ 0)

   

d2φ
dt2 − g


−
ω y

2 Ay


cos(ω yt)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ − π( ) = 0 , 

 (where: φ ~ π)

Connection relations
from p. 15-16
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E=-0.44
V0=2

 
V0 =

N 2Ay


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E=-0.44
V0=2

 
V0 =

N 2Ay



 

E = 4
ω y

2 g

V0 = 4Ay

For N=2
and =1

 
ω y = 2

g

E

29Monday, March 28, 2016



sinφ(t)
0+A

1
Mode

Y-acceleration:A(t)=-Ayωy2cosωyt

Ay=0.5

Equivalent V-well bottoms

ωy(A1)=2.9646

sinφ(t)

ωy(B1)=6.02475

Ay=0.5

1-B
1
Mode

Equivalent V-well tops

0+

1+

1-

2+

2-

3+
3-

Stable Inverted

Band(0)

Stable Hanging

Band(1)

1+

2-
2+

3-

0+
1- B1

B2

A2

A1

A1

B1

B2

Unstable Resonance

Gap (2)

Stable Hanging

Band(2)

V=2.0 Bands

Gap (1)

Unstable Resonance

1+B
2
Mode

Ay=0.5

ωy(B2)=1.4668

Equivalent V-well bottoms

Equivalent V-well tops

sinφ(t)
2-A
2
Mode

ωy(A2)=1.01054

Ay=0.5

2+A
1
Mode

ωy(A1)=0.9566

Ay=0.5

sinφ(t)

sinφ(t)

Gap (1)

Unstable Resonance

JerkIt Web Simulation

JerkIt Web Simulation

JerkIt Web Simulation

JerkIt Web Simulation

JerkIt Web Simulation

JerkIt Web Simulation
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http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=2+
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=2+
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=2-
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=2-
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Amp50Omega147-
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Amp50Omega147-
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Amp50Omega602
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Amp50Omega602
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Amp50Omega296
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Amp50Omega296
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Gap(1)
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html?scenario=Gap(1)


W=15nm

L=5nm

υ2=2
υ2=1

υ2=0

υ2=3

υ2=4

υ2=5
Bohr
Units

Brillouin Band
boundaries

Allowed Band (4)

Allowed Band (5)

Allowed Band (3)

Band (2)

Band (1)
Band (0) Forbidden Gap (1)

Forbidden Gap (2)

Fig. 14.2.7 Bands vs. V.(W=15nm well ,L=5nm barrier) showing Bohr splitting for (N=2)-ring.

A quick look at band splitting for a square periodic potential (Kronig-Penney Model)

(From Ch. 14 Unit 5
Quantum Theory for the 
Computer Age (QTftCA)
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A quick look at band splitting for a square periodic potential (Kronig-Penney Model)

B1

B2

A2

A1

B2 A2

A1

A1

B2

B1

B1
A1

B2

B1

B1B2 crossing

V

E

B1B2 crossing

V

E

N=2

N=6
E
1
E
2

E
2

E
1

E
1

E
2

E
2

E
1

E
1

E
2

Fig. 14.2.13  (B1, B2) crossing for:(N=2) at V=12 and E=16, and (N=6)  at V=144 and E=108.

(From Ch. 14 Unit 5
Quantum Theory for the 
Computer Age (QTftCA)
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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H = A B
B A

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

K = H2 = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

Hamiltonian matrix H or spring-constant matrix K=H2 with B-type or bilateral-balanced symmetry

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry (B-type)

Reflection symmetry σB defined by (σB)2=1 in C2 group product table.    

C2 1 σ B

1 1 σ B

σ B σ B 1
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H = A B
B A

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

K = H2 = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

Hamiltonian matrix H or spring-constant matrix K=H2 with B-type or bilateral-balanced symmetry

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry (B-type)

Reflection symmetry σB defined by (σB)2=1 in C2 group product table.    

C2 1 σ B

1 1 σ B

σ B σ B 1

⏐1〉=1⏐1〉 ⏐σB〉=σB⏐1〉(b) unit base state
|1〉=|y〉=|-1〉=

MM

xx11==11xx11==00

00
11

(a) unit base state
|0〉=|x〉=|2〉 =

MM

xx00==11 xx00==00

11
00

MM

xx00==00 xx11==00

(c) equilibrium zero-state 0
0
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H = A B
B A

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

K = H2 = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

Hamiltonian matrix H or spring-constant matrix K=H2 with B-type or bilateral-balanced symmetry

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry (B-type)

Reflection symmetry σB defined by (σB)2=1 in C2 group product table.    

C2 1 σ B

1 1 σ B

σ B σ B 1

⏐1〉=1⏐1〉 ⏐σB〉=σB⏐1〉(b) unit base state
|1〉=|y〉=|-1〉=

MM

xx11==11xx11==00

00
11

(a) unit base state
|0〉=|x〉=|2〉 =

MM

xx00==11 xx00==00

11
00

MM

xx00==00 xx11==00

(c) equilibrium zero-state 0
0

(σB)2=1 or: (σB)2-1=0 gives projectors:
(σB+1)·(σB-1)=0= p(+1)· p(-1)
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H = A B
B A

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

K = H2 = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

Hamiltonian matrix H or spring-constant matrix K=H2 with B-type or bilateral-balanced symmetry

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry (B-type)

Reflection symmetry σB defined by (σB)2=1 in C2 group product table.    

C2 1 σ B

1 1 σ B

σ B σ B 1

(σB)2=1 or: (σB)2-1=0 gives projectors:
(σB+1)·(σB-1)=0= p(+1)· p(-1)

P(+)=(σB+1)/2 and P(-)=(σB-1)/2 
(Normed so: P(+)+P(-)=1 and: P(m)·P(m)= P(m))

⏐1〉=1⏐1〉 ⏐σB〉=σB⏐1〉(b) unit base state
|1〉=|y〉=|-1〉=

MM

xx11==11xx11==00

00
11

(a) unit base state
|0〉=|x〉=|2〉 =

MM

xx00==11 xx00==00

11
00

MM

xx00==00 xx11==00

(c) equilibrium zero-state 0
0
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H = A B
B A

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

K = H2 = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

Hamiltonian matrix H or spring-constant matrix K=H2 with B-type or bilateral-balanced symmetry

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry (B-type)

Reflection symmetry σB defined by (σB)2=1 in C2 group product table.    

C2 1 σ B

1 1 σ B

σ B σ B 1

C2 symmetry (B-type) modes

(σB)2=1 or: (σB)2-1=0 gives projectors:
(σB+1)·(σB-1)=0= p(+1)· p(-1)

P(+)=(σB+1)/2 and P(-)=(σB-1)/2 
(Normed so: P(+)+P(-)=1 and: P(m)·P(m)= P(m))

xx
00
==11//√√22 xx

11
==11//√√22

(a) Even mode |+〉=|02〉 =
11

11
//√√22

xx
00
==11//√√22 xx

11
==--11//√√22

(b) Odd mode |−〉=|12〉 =
11

--11
//√√22

MM

MM

⏐1〉=1⏐1〉 ⏐σB〉=σB⏐1〉(b) unit base state
|1〉=|y〉=|-1〉=

MM

xx11==11xx11==00

00
11

(a) unit base state
|0〉=|x〉=|2〉 =

MM

xx00==11 xx00==00

11
00

MM

xx00==00 xx11==00

(c) equilibrium zero-state 0
0
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H = A B
B A

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

K = H2 = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

Hamiltonian matrix H or spring-constant matrix K=H2 with B-type or bilateral-balanced symmetry

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry (B-type)

Reflection symmetry σB defined by (σB)2=1 in C2 group product table.    

C2 1 σ B

1 1 σ B

σ B σ B 1

C2 symmetry (B-type) modes

(σB)2=1 or: (σB)2-1=0 gives projectors:
(σB+1)·(σB-1)=0= p(+1)· p(-1)

P(+)=(σB+1)/2 and P(-)=(σB-1)/2 
(Normed so: P(+)+P(-)=1 and: P(m)·P(m)= P(m))

xx
00
==11//√√22 xx

11
==11//√√22

(a) Even mode |+〉=|02〉 =
11

11
//√√22

xx
00
==11//√√22 xx

11
==--11//√√22

(b) Odd mode |−〉=|12〉 =
11

--11
//√√22

MM

MM

Mode state projection:
 
⏐+〉=⏐02〉=P(+)⏐0〉√2 
      =(⏐0〉+⏐2〉)/√2

        =(⏐1〉+⏐ σB〉)/√2

⏐-〉=⏐02〉=P(-)⏐0〉√2 
      =(⏐0〉-⏐2〉)/√2

        =(⏐1〉-⏐ σB〉)/√2

⏐1〉=1⏐1〉 ⏐σB〉=σB⏐1〉(b) unit base state
|1〉=|y〉=|-1〉=

MM

xx11==11xx11==00

00
11

(a) unit base state
|0〉=|x〉=|2〉 =

MM

xx00==11 xx00==00

11
00

MM

xx00==00 xx11==00

(c) equilibrium zero-state 0
0
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H = A B
B A

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

K = H2 = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

Hamiltonian matrix H or spring-constant matrix K=H2 with B-type or bilateral-balanced symmetry

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry (B-type)

Reflection symmetry σB defined by (σB)2=1 in C2 group product table.    

C2 1 σ B

1 1 σ B

σ B σ B 1

C2 symmetry (B-type) modes

(σB)2=1 or: (σB)2-1=0 gives projectors:
(σB+1)·(σB-1)=0= p(+1)· p(-1)

P(+)=(σB+1)/2 and P(-)=(σB-1)/2 
(Normed so: P(+)+P(-)=1 and: P(m)·P(m)= P(m))

xx
00
==11//√√22 xx

11
==11//√√22

(a) Even mode |+〉=|02〉 =
11

11
//√√22

xx
00
==11//√√22 xx

11
==--11//√√22

(b) Odd mode |−〉=|12〉 =
11

--11
//√√22

MM

MM

Mode state projection:
 
⏐+〉=⏐02〉=P(+)⏐0〉√2 
      =(⏐0〉+⏐2〉)/√2

        =(⏐1〉+⏐ σB〉)/√2

⏐-〉=⏐02〉=P(-)⏐0〉√2 
      =(⏐0〉-⏐2〉)/√2

        =(⏐1〉-⏐ σB〉)/√2

p=0 p=1

m=0
2
1 1

m=1
2
1 -1

p= position point (modulo-2)

m=wave-number

or “momentum”

(modulo-2)

C
2
mode phase & character tables

State

norm:

1/√2

Operator

norm:

1/2

p=0 p=1

⏐1〉=1⏐1〉 ⏐σB〉=σB⏐1〉(b) unit base state
|1〉=|y〉=|-1〉=

MM

xx11==11xx11==00

00
11

(a) unit base state
|0〉=|x〉=|2〉 =

MM

xx00==11 xx00==00

11
00

MM

xx00==00 xx11==00

(c) equilibrium zero-state 0
0
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C3 symmetry

3-fold ±120° rotations r=r1 and (r)2=r2=r-1 
obey: (r)3=r3=1=r0 and a C3 g†g-product-table 

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

g=rp heads pth-column. Inverse g†=g-1 heads pth-row
 then unit g†g=1=g-1g occupies pth-diagonal.

H-matrix and each rp-matrix based on g†g-table. 

r0 r1 r2
r2 r0 r1
r1 r2 r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= r0

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r1

0 1 0
0 0 1
1 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r2

0 0 1
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

M

M

M

Point
p=00 mod 3

Point
p=11 mod 3

Point
p=22 mod 3

(a) equilibrium zero-state
x0=x1=x2=0 0

0
0

               H      =     r0 ⋅1         + r1 ⋅r
1         + r2 ⋅r

2

r0=1

Fig. 4.8.1
Unit 4
CMwBang
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C3 symmetry

3-fold ±120° rotations r=r1 and (r)2=r2=r-1 
obey: (r)3=r3=1=r0 and a C3 g†g-product-table 

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

g=rp heads pth-column. Inverse g†=g-1 heads pth-row
 then unit g†g=1=g-1g occupies pth-diagonal.

H-matrix and each rp-matrix based on g†g-table. 

r0 r1 r2
r2 r0 r1
r1 r2 r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= r0

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r1

0 1 0
0 0 1
1 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r2

0 0 1
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

M

M

M

Point
p=00 mod 3

Point
p=11 mod 3

Point
p=22 mod 3

(a) equilibrium zero-state
x0=x1=x2=0 0

0
0

M

M

M
M

M

M

M

M
M

xx00==11

xx11==11 xx22==11

120°
rotation
r1

-120°=240°
rotation
r-1=r+2

11
00
00

00
11
00

00
00
11

(p=0) unit base state
|0〉=r0|0〉

(p=0) unit base state
|0〉=r0|0〉

(p=1) unit base state
|1〉=r1|0〉=r-2|0〉

(p=1) unit base state
|1〉=r1|0〉=r-2|0〉

(p=2) unit base state
|2〉=r2|0〉=r-1|0〉

(p=2) unit base state
|2〉=r2|0〉=r-1|0〉

Unit displacement
of mass point-0
from equilibrium

C3 unit base states                H      =     r0 ⋅1         + r1 ⋅r
1         + r2 ⋅r

2

r0=1

Fig. 4.8.1
Unit 4
CMwBang

43Monday, March 28, 2016



Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C3 symmetry

3-fold ±120° rotations r=r1 and (r)2=r2=r-1 
obey: (r)3=r3=1=r0 and a C3 g†g-product-table 

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

g=rp heads pth-column. Inverse g†=g-1 heads pth-row
 then unit g†g=1=g-1g occupies pth-diagonal.

H-matrix and each rp-matrix based on g†g-table. 

r0 r1 r2
r2 r0 r1
r1 r2 r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= r0

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r1

0 1 0
0 0 1
1 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r2

0 0 1
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Each H-matrix coupling constant rp={r0, r1, r2} is amplitude of its operator power rp={r0, r1, r2}

M

M

M

Point
p=00 mod 3

Point
p=11 mod 3

Point
p=22 mod 3

(a) equilibrium zero-state
x0=x1=x2=0 0

0
0

M

M

M
M

M

M

M

M
M

xx00==11

xx11==11 xx22==11

120°
rotation
r1

-120°=240°
rotation
r-1=r+2

11
00
00

00
11
00

00
00
11

(p=0) unit base state
|0〉=r0|0〉

(p=0) unit base state
|0〉=r0|0〉

(p=1) unit base state
|1〉=r1|0〉=r-2|0〉

(p=1) unit base state
|1〉=r1|0〉=r-2|0〉

(p=2) unit base state
|2〉=r2|0〉=r-1|0〉

(p=2) unit base state
|2〉=r2|0〉=r-1|0〉

Unit displacement
of mass point-0
from equilibrium

C3 unit base states

|0〉

|1〉|2〉

r1
r1

r1
r2

r2

r2

               H      =     r0 ⋅1         + r1 ⋅r
1         + r2 ⋅r

2

r0=1
   =r3

r0=1

Fig. 4.8.1
Unit 4
CMwBang
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.

r-symmetry is cubic r3=1, or r3-1=0 and resolves to factors of 3rd roots of unity ρm=eim2π/3.

ρ0=e
i0=1

ρ1=e
i 3
2π

ρ2 =e
−i 3
2π
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.

r-symmetry is cubic r3=1, or r3-1=0 and resolves to factors of 3rd roots of unity ρm=eim2π/3.

1 = r3  implies :  0 = r3 −1 = (r − ρ01)(r − ρ11)(r − ρ21) where :  ρm = eim 3
2π

Each eigenvalue ρm of r, has idempotent projector P(m) such that r·P(m)=ρmP(m) . 

ρ0=e
i0=1

ρ1=e
i 3
2π

ρ2 =e
−i 3
2π
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.

r-symmetry is cubic r3=1, or r3-1=0 and resolves to factors of 3rd roots of unity ρm=eim2π/3.

1 = r3  implies :  0 = r3 −1 = (r − ρ01)(r − ρ11)(r − ρ21) where :  ρm = eim 3
2π

Each eigenvalue ρm of r, has idempotent projector P(m) such that r·P(m)=ρmP(m) . 
All three P(m) are orthonormal (P(m) P(n) =δmn P(m) ) and complete (sum to unit 1).

  1  =          P(0)   +        P(1)   +         P(2)

ρ0=e
i0=1

ρ1=e
i 3
2π

ρ2 =e
−i 3
2π
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.

r-symmetry is cubic r3=1, or r3-1=0 and resolves to factors of 3rd roots of unity ρm=eim2π/3.

1 = r3  implies :  0 = r3 −1 = (r − ρ01)(r − ρ11)(r − ρ21) where :  ρm = eim 3
2π

Each eigenvalue ρm of r, has idempotent projector P(m) such that r·P(m)=ρmP(m) . 
All three P(m) are orthonormal (P(m) P(n) =δmn P(m) ) and complete (sum to unit 1).

  1  =          P(0)   +        P(1)   +         P(2)

ρ0=e
i0=1

ρ1=e
i 3
2π

ρ2 =e
−i 3
2π

  r  =   ρ0   P(0)  +   ρ1   P(1)  +   ρ2    P(2)
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.

r-symmetry is cubic r3=1, or r3-1=0 and resolves to factors of 3rd roots of unity ρm=eim2π/3.

1 = r3  implies :  0 = r3 −1 = (r − ρ01)(r − ρ11)(r − ρ21) where :  ρm = eim 3
2π

Each eigenvalue ρm of r, has idempotent projector P(m) such that r·P(m)=ρmP(m) . 
All three P(m) are orthonormal (P(m) P(n) =δmn P(m) ) and complete (sum to unit 1).

  1  =          P(0)   +        P(1)   +         P(2)

ρ0=e
i0=1

ρ1=e
i 3
2π

ρ2 =e
−i 3
2π

  r  =   ρ0   P(0)  +   ρ1   P(1)  +   ρ2    P(2)

  r
2 = (ρ0 )2P(0)  + (ρ1)2P(1)  + (ρ2 )2P(2)
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.

r-symmetry is cubic r3=1, or r3-1=0 and resolves to factors of 3rd roots of unity ρm=eim2π/3.

1 = r3  implies :  0 = r3 −1 = (r − ρ01)(r − ρ11)(r − ρ21) where :  ρm = eim 3
2π

Each eigenvalue ρm of r, has idempotent projector P(m) such that r·P(m)=ρmP(m) . 
All three P(m) are orthonormal (P(m) P(n) =δmn P(m) ) and complete (sum to unit 1).

  1  =          P(0)   +        P(1)   +         P(2)

ρ0=e
i0=1

ρ1=e
i 3
2π

ρ2 =e
−i 3
2π

  r  =   ρ0   P(0)  +   ρ1   P(1)  +   ρ2    P(2)

  r
2 = (ρ0 )2P(0)  + (ρ1)2P(1)  + (ρ2 )2P(2)

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

Easy to resolve spectral projectors P(m)
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since is H a combination rprp of powers rp.

r-symmetry is cubic r3=1, or r3-1=0 and resolves to factors of 3rd roots of unity ρm=eim2π/3.

1 = r3  implies :  0 = r3 −1 = (r − ρ01)(r − ρ11)(r − ρ21) where :  ρm = eim 3
2π

Each eigenvalue ρm of r, has idempotent projector P(m) such that r·P(m)=ρmP(m) . 
All three P(m) are orthonormal (P(m) P(n) =δmn P(m) ) and complete (sum to unit 1).

  1  =          P(0)   +        P(1)   +         P(2)

ρ0=e
i0=1

ρ1=e
i 3
2π

ρ2 =e
−i 3
2π

  r  =   ρ0   P(0)  +   ρ1   P(1)  +   ρ2    P(2)

  r
2 = (ρ0 )2P(0)  + (ρ1)2P(1)  + (ρ2 )2P(2)

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )    

(03) = 0 P(0) 3 = 3
1 ( 1       1         1      )  

(13) = 0 P(1) 3 = 3
1 ( 1  e−i2π /3  e+i2π /3) 

(23) = 0 P(2) 3 = 3
1 (1  e+i2π /3  e−i2π /3)   

Easy to resolve spectral projectors P(m) and eigen-bra-vectors 〈(m)⏐

(m3) means: m-modulo-3 (Details follow)
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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ρ2=e
-i2π/3

ρ1=e
+i2π/3

ρ0=1=e
+i0

Real axis

Imaginary
axis

p=0 p=1 p=2

m=0
3
ρ00=1 ρ01= 1 ρ02= 1

m=1
3
ρ10=1 ρ11=e

-i2π/3
ρ12=e

i2π/3

m=2
3
ρ20=1 ρ21=e

i2π/3
ρ22=e

-i2π/3

p is position

wave-number
m=

“momentum”

C3 mode phase character tables

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

* * *

* * *

* * *

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )    

(03) = 0 P(0) 3 = 3
1 ( 1       1         1      )  

(13) = 0 P(1) 3 = 3
1 ( 1  e−i2π /3  e+i2π /3) 

(23) = 0 P(2) 3 = 3
1 (1  e+i2π /3  e−i2π /3)   

Easy to resolve spectral projectors P(m) and eigen-bra-vectors 〈(m)⏐

(m3) means: m-modulo-3 (Details follow)
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ρ2=e
-i2π/3

ρ1=e
+i2π/3

ρ0=1=e
+i0

Real axis

Imaginary
axis

p=0 p=1 p=2

m=0
3
ρ00=1 ρ01= 1 ρ02= 1

m=1
3
ρ10=1 ρ11=e

-i2π/3
ρ12=e

i2π/3

m=2
3
ρ20=1 ρ21=e

i2π/3
ρ22=e

-i2π/3

p is position

wave-number
m=

“momentum”

C3 mode phase character tables

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

* * *

* * *

* * * L=lattice length(=3 here)
     N=symmetry(=3 here)
          a=lattice spacing(=1 here)

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )    

(03) = 0 P(0) 3 = 3
1 ( 1       1         1      )  

(13) = 0 P(1) 3 = 3
1 ( 1  e−i2π /3  e+i2π /3) 

(23) = 0 P(2) 3 = 3
1 (1  e+i2π /3  e−i2π /3)   

Easy to resolve spectral projectors P(m) and eigen-bra-vectors 〈(m)⏐

(m3) means: m-modulo-3 (Details follow)

L

a
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ρ2=e
-i2π/3

ρ1=e
+i2π/3

ρ0=1=e
+i0

Real axis

Imaginary
axis

p=0 p=1 p=2

m=0
3
ρ00=1 ρ01= 1 ρ02= 1

m=1
3
ρ10=1 ρ11=e

-i2π/3
ρ12=e

i2π/3

m=2
3
ρ20=1 ρ21=e

i2π/3
ρ22=e

-i2π/3

p is position

wave-number
m=

“momentum”

C3 mode phase character tables

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

* * *

* * *

* * *

Two distinct types of “quantum” numbers.
 p=0,1,or 2 is power p of operator rp and defines each oscillator’s position point p. 
m=0,1,or 2 is mode momentum m of the waves or wavevector km=2π/λm=2πm/L.  (L=Na=3)

L=lattice length(=3 here)
     N=symmetry(=3 here)
          a=lattice spacing(=1 here)

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )    

(03) = 0 P(0) 3 = 3
1 ( 1       1         1      )  

(13) = 0 P(1) 3 = 3
1 ( 1  e−i2π /3  e+i2π /3) 

(23) = 0 P(2) 3 = 3
1 (1  e+i2π /3  e−i2π /3)   

Easy to resolve spectral projectors P(m) and eigen-bra-vectors 〈(m)⏐

(m3) means: m-modulo-3 (Details follow)

L

a

wavelength λm=2π/km= L/m
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ρ2=e
-i2π/3

ρ1=e
+i2π/3

ρ0=1=e
+i0

Real axis

Imaginary
axis

p=0 p=1 p=2

m=0
3
ρ00=1 ρ01= 1 ρ02= 1

m=1
3
ρ10=1 ρ11=e

-i2π/3
ρ12=e

i2π/3

m=2
3
ρ20=1 ρ21=e

i2π/3
ρ22=e

-i2π/3

p is position

wave-number
m=

“momentum”

C3 mode phase character tables

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

* * *

* * *

* * *

Two distinct types of “quantum” numbers.
 p=0,1,or 2 is power p of operator rp and defines each oscillator’s position point p. 
m=0,1,or 2 is mode momentum m of the waves or wavevector km=2π/λm=2πm/L.  (L=Na=3)

L=lattice length(=3 here)
     N=symmetry(=3 here)
          a=lattice spacing(=1 here)

Each quantum number follows modular arithmetic: sums or products are an integer-modulo-3,
that is, always 0,1,or 2, or else -1,0,or 1, or else -2,-1,or 0, etc., depending on choice of origin. 

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )    

(03) = 0 P(0) 3 = 3
1 ( 1       1         1      )  

(13) = 0 P(1) 3 = 3
1 ( 1  e−i2π /3  e+i2π /3) 

(23) = 0 P(2) 3 = 3
1 (1  e+i2π /3  e−i2π /3)   

Easy to resolve spectral projectors P(m) and eigen-bra-vectors 〈(m)⏐

(m3) means: m-modulo-3 (Details follow)

L

a

wavelength λm=2π/km= L/m
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ρ2=e
-i2π/3

ρ1=e
+i2π/3

ρ0=1=e
+i0

Real axis

Imaginary
axis

p=0 p=1 p=2

m=0
3
ρ00=1 ρ01= 1 ρ02= 1

m=1
3
ρ10=1 ρ11=e

-i2π/3
ρ12=e

i2π/3

m=2
3
ρ20=1 ρ21=e

i2π/3
ρ22=e

-i2π/3

p is position

wave-number
m=

“momentum”

C3 mode phase character tables

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

* * *

* * *

* * *

Two distinct types of “quantum” numbers.
 p=0,1,or 2 is power p of operator rp and defines each oscillator’s position point p. 
m=0,1,or 2 is mode momentum m of the waves or wavevector km=2π/λm=2πm/L.  (L=Na=3)

L=lattice length(=3 here)
     N=symmetry(=3 here)
          a=lattice spacing(=1 here)

Each quantum number follows modular arithmetic: sums or products are an integer-modulo-3,
that is, always 0,1,or 2, or else -1,0,or 1, or else -2,-1,or 0, etc., depending on choice of origin. 

For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= ei4·2π/3= ei1·2π/3 ei2π= ei2π/3=ρ1. 
That is, (2-times-2) mod 3 is not 4 but 1 (4 mod 3=1, the remainder of 4 divided by 3.) 

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )    

(03) = 0 P(0) 3 = 3
1 ( 1       1         1      )  

(13) = 0 P(1) 3 = 3
1 ( 1  e−i2π /3  e+i2π /3) 

(23) = 0 P(2) 3 = 3
1 (1  e+i2π /3  e−i2π /3)   

Easy to resolve spectral projectors P(m) and eigen-bra-vectors 〈(m)⏐

(m3) means: m-modulo-3 (Details follow)

L

a

wavelength λm=2π/km= L/m
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic

60Monday, March 28, 2016



   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       = r0e
i  m⋅0 3

2π
+r(e

i   3
2πm

+e
−i   3

2πm
) = r0 + 2r cos(   3

2πm) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       = r0e
i  m⋅0 3

2π
+r(e

i   3
2πm

+e
−i   3

2πm
) = r0 + 2r cos(   3

2πm) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪

r0 r r
r r0 r
r r r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= r0 + 2r cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H-eigenvalues:                                                        

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       = r0e
i  m⋅0 3

2π
+r(e

i   3
2πm

+e
−i   3

2πm
) = r0 + 2r cos(   3

2πm) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪

r0 r r
r r0 r
r r r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= r0 + 2r cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H-eigenvalues:                                                        K-eigenvalues:
K -k -k
-k K -k
-k -k K

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= K − 2k cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       = r0e
i  m⋅0 3

2π
+r(e

i   3
2πm

+e
−i   3

2πm
) = r0 + 2r cos(   3

2πm) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)
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⎝
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H-eigenvalues:                                                        K-eigenvalues:
K -k -k
-k K -k
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Moving  eigenwave Standing  eigenwaves H − eigenfrequencies K − eigenfrequencies

(+1)3 =
3
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1
e+i2π /3

e−i2π /3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

c3 =
(+1)3 + (−1)3

2
=

6
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2
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⎞
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⎟
⎟⎟
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⎟⎟
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2mπ )

= k0 + k

(0)3 =
3
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1
1
1
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⎝

⎜
⎜⎜
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⎠

⎟
⎟⎟

r0 + 2r k0 − 2k

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3

67Monday, March 28, 2016



   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       = r0e
i  m⋅0 3

2π
+r(e

i   3
2πm

+e
−i   3

2πm
) = r0 + 2r cos(   3

2πm) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪

r0 r r
r r0 r
r r r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= r0 + 2r cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H-eigenvalues:                                                        K-eigenvalues:
K -k -k
-k K -k
-k -k K

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= K − 2k cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

Moving  eigenwave Standing  eigenwaves H − eigenfrequencies K − eigenfrequencies

(+1)3 =
3

   1

1
e+i2π /3

e−i2π /3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

c3 =
(+1)3 + (−1)3

2
=

6
   1

2
−1
−1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r cos(   3
2mπ )

= r0 − r

k0 − 2k cos(   3
2mπ )

= k0 + k

(−1)3 =
3

   1

1
e−i2π /3

e+i2π /3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

s3 =
(+1)3 − (−1)3

i 2
=

2
   1

0
+1
−1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r cos(   3
−2mπ )

= r0 − r

k0 − 2k cos(   3
2mπ )

= k0 + k

(0)3 =
3

   1
1
1
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r k0 − 2k

p=0 p=1 p=2

c
3
2/√6 -1/√6 -1/√6

s
3
0 1/√2 -1/√2

m=0
3
1/√3 1/√3 1/√3

C3 standing wave modes and eigenfrequencies

m=−1 m=+1m=0

ω

03

c3 s3

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3

of K

68Monday, March 28, 2016



   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       = r0e
i  m⋅0 3

2π
+r(e

i   3
2πm

+e
−i   3

2πm
) = r0 + 2r cos(   3

2πm) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪

r0 r r
r r0 r
r r r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= r0 + 2r cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H-eigenvalues:                                                        K-eigenvalues:
K -k -k
-k K -k
-k -k K

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= K − 2k cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

Moving  eigenwave Standing  eigenwaves H − eigenfrequencies K − eigenfrequencies

(+1)3 =
3

   1

1
e+i2π /3

e−i2π /3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

c3 =
(+1)3 + (−1)3

2
=

6
   1

2
−1
−1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r cos(   3
2mπ )

= r0 − r

k0 − 2k cos(   3
2mπ )

= k0 + k

(−1)3 =
3

   1

1
e−i2π /3

e+i2π /3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

s3 =
(+1)3 − (−1)3

i 2
=

2
   1

0
+1
−1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r cos(   3
−2mπ )

= r0 − r

k0 − 2k cos(   3
2mπ )

= k0 + k

(0)3 =
3

   1
1
1
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r k0 − 2k

p=0 p=1 p=2

c
3
2/√6 -1/√6 -1/√6

s
3
0 1/√2 -1/√2

m=0
3
1/√3 1/√3 1/√3

C3 standing wave modes and eigenfrequencies

m=−1 m=+1m=0

ω

03

c3 s3

M
M

MMMM

c3

( 2/√6, -1/√6, -1/√6 )

M
M

M

M MM

03

( 1/√3, 1/√3, 1/√3 )

M

MM M
M

s3

( 0 ,+1/√2, -1/√2 )

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

Transverse (to k) Waves

Radial 
Modes

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3

of K

After:
Fig. 4.8.3
Unit 4
CMwBang

69Monday, March 28, 2016



   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i  m⋅0 3
2π

+r1e
i  m⋅1 3

2π
+r2e

i  m⋅2 3
2π

                                                       = r0e
i  m⋅0 3

2π
+r(e

i   3
2πm

+e
−i   3

2πm
) = r0 + 2r cos(   3

2πm) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪

r0 r r
r r0 r
r r r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= r0 + 2r cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H-eigenvalues:                                                        K-eigenvalues:
K -k -k
-k K -k
-k -k K

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= K − 2k cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

Moving  eigenwave Standing  eigenwaves H − eigenfrequencies K − eigenfrequencies

(+1)3 =
3

   1

1
e+i2π /3

e−i2π /3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

c3 =
(+1)3 + (−1)3

2
=

6
   1

2
−1
−1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r cos(   3
2mπ )

= r0 − r

k0 − 2k cos(   3
2mπ )

= k0 + k

(−1)3 =
3

   1

1
e−i2π /3

e+i2π /3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

s3 =
(+1)3 − (−1)3

i 2
=

2
   1

0
+1
−1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r cos(   3
−2mπ )

= r0 − r

k0 − 2k cos(   3
2mπ )

= k0 + k

(0)3 =
3

   1
1
1
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

r0 + 2r k0 − 2k

p=0 p=1 p=2

c
3
2/√6 -1/√6 -1/√6

s
3
0 1/√2 -1/√2

m=0
3
1/√3 1/√3 1/√3

C3 standing wave modes and eigenfrequencies

m=−1 m=+1m=0

ω

03

c3 s3

Easy to resolve spectral projectors P(m) and eigenvalues ωm or dispersion functions ω(km)

Longitudinal (to k) Waves

mth Eigenvalue of rp

〈m⏐ rp ⏐m〉= e i m·p 2π/3

M

M

M 03

( 1/√3, 1/√3, 1/√3 )

M

M

M

M

M

M

c3 s3

( 2/√6, -1/√6, -1/√6 ) ( 0 ,+1/√2, -1/√2 )

Angular 
modes

of K

70Monday, March 28, 2016



Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic

71Monday, March 28, 2016



C6 Symmetric Mode Model: Distant neighbor coupling

Fig. 12    International Journal of Molecular Science 14, 749 (2013)
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C6 Spectral resolution: 6th roots of unity

Fig. 13    International Journal of Molecular Science 14, 752 (2013)

χ p
m= eikmr

p

= e
2π imp
6
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C6 Spectral resolution of nth Neighbor H: Same modes but different dispersion

1st Neighbor H

2nd Neighbor H

3rd Neighbor H

Fig. 14    International Journal of Molecular Science 14, 754 (2013)
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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C6 Spectra of 1st neighbor gauge splitting by C-type (Chiral, Coriolis,…, 

1st Neighbor H

Fig. 15    International Journal of Molecular Science 14, 755 (2013)
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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hyperbolas:
m·p=const. 

85Monday, March 28, 2016



C256 

phasor
character

table

χ p
m = eikmr

p

  = e
2π imp

256

position point p=0,1,2... 

m
ag

ne
tic

 q
ua

nt
a 

or
 m

om
en

tu
m

 m
=

0,
1,

2.
.. 

Invariant phase
“Uncertainty”
hyperbolas:
m·p=const. 
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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CN Symmetric Mode Models: Made-to-Order Dispersion 
(Making pure linear ω=ck, quadratic ω=ck2 , etc. ?  )

km=m k1

ωm

1 2 3 4 5 6-1-2-3-4-5-6

1

0.5

(a) Constant dispersion

ωm
(b) Linear dispersion

7 8

km=m k1

1 2 3 4 5 6-1-2-3-4-5-6

1

0.5

7 8

ωm
(c) Quadratic dispersion

km=m k1

1 2 3 4 5 6-1-2-3-4-5-6

1

0.5

7 8

ωm
(d) Phonon dispersion

km=m k1

1 2 3 4 5 6-1-2-3-4-5-6

1

0.5

7 8

ωm
(e) Exciton dispersion

km=m k1

1 2 3 4 5 6-1-2-3-4-5-6

1

0.5

7 8

Uncoupled

pendulums

Movie marquis

Xmas lights

Weakly coupled pendu-

lums (No gravity)

Light in vacuum (Exactly)

Sound (Approximately)

Weakly coupled pendu-

lums (With gravity)

Light in fiber (Approx)

Non-relativistic

Schrodinger matter wave

Strongly coupled pendu-

lums (No gravity)

Acoustic mode in solids

Archetypical Examples of Dispersion Functions

Applications:

ωm

km=m k1
1 2 3 4 5 6-1-2-3-4-5-6

1

0.5

8

slope (ω7/k7)
is (7)- phase velocity

slope

(ω8-ω3)/(k8-k3)
is (8,3)- group velocity

slope (ω-8/k-8)
is (-8)-phase velocity

7

Reading Wave Velocity From Dispersion Function by (k,ω) Vectors

Strongly coupled pendu-

lums (With gravity)

Optical mode in solids

Relativistic matter

(If exact hyperbola)

slope

(ω8+ω3)/(k8+k3)
is (8,3)-mean phase velocity

slope

(ω-5-ω-2)/(k-5-k-2)
is

(-5,-2)- group velocity

slope

(ω-5+ω-2)/(k-5+k-2)
is

(-5,-2)-

mean phase velocity

-7-8

Things determined by 
Dispersion ω =ω (k)

Individual phase velocity:

Vphase−1 =
ω (k)
k

Pairwise phase velocity:

Vphase−2 =
ω (ka ) +ω (kb )

ka + kb
Pairwise group velocity:

Vgroup−2 =
ω (ka ) −ω (kb )

ka − kb

eia + eib

2
= e

i a+b
2 e

i a−b
2 + e

− i a−b
2

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 = e
i a+b

2 cos a − b
2

⎛
⎝⎜

⎞
⎠⎟

a = ka ⋅x −ωa ⋅ t
b = kb ⋅x −ωb ⋅ t

(and wave dynamics)

Fig. 4.8.9
Unit 4
CMwBang
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p=0

p=1

p=2
p=3

p=4

p=5

N=2

N=3

N=4

N=5

N=6

H1

H1

H1
H2

H1

H2

H1

H2
H3

H0 H1 H2 H3 H2 H1
H1 H0 H1 H2 H3 H2
H2 H1 H0 H1 H2 H3
H3 H2 H1 H0 H1 H2
H2 H3 H2 H1 H0 H1
H1 H2 H3 H2 H1 H0

Hexagonal 2D Rotor

Made of Quantum Dots

Simulating Complex Systems
With Simpler Ones

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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p=0

p=1

p=2
p=3

p=4

p=5

N=2

N=3

N=4

N=5

N=6

H1

H1

H1
H2

H1

H2

H1

H2
H3

H0 H1 H2 H3 H2 H1
H1 H0 H1 H2 H3 H2
H2 H1 H0 H1 H2 H3
H3 H2 H1 H0 H1 H2
H2 H3 H2 H1 H0 H1
H1 H2 H3 H2 H1 H0

Hexagonal 2D Rotor

Made of Quantum Dots

Simulating Complex Systems
With Simpler Ones

Making pure quadratic ω=ck2 (Bohr dispersion)

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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p=0

p=1

p=2
p=3

p=4

p=5

N=2

N=3

N=4

N=5

N=6

H1

H1

H1
H2

H1

H2

H1

H2
H3

H0 H1 H2 H3 H2 H1
H1 H0 H1 H2 H3 H2
H2 H1 H0 H1 H2 H3
H3 H2 H1 H0 H1 H2
H2 H3 H2 H1 H0 H1
H1 H2 H3 H2 H1 H0

Hexagonal 2D Rotor

Made of Quantum Dots

Simulating Complex Systems
With Simpler Ones

Making pure quadratic ω=ck2 (Bohr dispersion)

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C2 symmetry  
            C2 symmetric (B-type) modes
Harmonic oscillator with cyclic C3 symmetry  
            C3 symmetric spectral decomposition by 3rd roots of unity
             Resolving C3 projectors and moving wave modes
             Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling  
            C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, …)
CN symmetric mode models: Made-to order dispersion functions 
              Quadratic dispersion models: Super-beats and fractional revivals 
              Phase arithmetic
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2-level-system and C2 symmetry phase dynamics 

symmetric A1

vs.

antisymmetric A2 

C2 Character Table describes eigenstates

1= r0 r = r1

0mod2
1 1

±1mod2 1 −1

Phasor C2 Characters describe local state beats

Initial sum

1/4-beat

1/2-beat

3/4-beat

full-beat

AAllwwaayyss
±±ππ//22
pphhaassee
llaagg

C2
02

12

r0

0°

0°

0°

180°

t = 0

1/4

1/2

3/4

0°

45°

-45°

-45°

0°

45°

-45°

|+〉

revivals

or beats

|−〉

|+〉+|−〉
√2

|+〉+i|−〉
√2

|+〉−i|−〉
√2

|+〉−|−〉
√2

(φ= 0) (φ= π)

parity

states

even +45°

odd -45°

localized x

flipped y

L

R

Optical

E(t)
Coupled

Pendular1
C2 Phasor-Character Table

is simplest example of a revival

Re
al

Imaginary
Phasor notation
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C2
02

12

r0

0°

0°

0°

180°

t = 0

1/4

1/2

3/4

0°

45°

-45°

-45°

0°

45°

-45°

|+〉

revivals

or beats

|−〉

|+〉+|−〉
√2

|+〉+i|−〉
√2

|+〉−i|−〉
√2

|+〉−|−〉
√2

(φ= 0) (φ= π)

parity

states

even +45°

odd -45°

localized x

flipped y

L

R

Optical

E(t)
Coupled

Pendular1

0°

0°

0°

+45
°

-45°

-45° +45
°

2-level-system and C2 symmetry phase dynamics 

m=+1, 0, -1

C2 Phasor-Character Table

Initial

1/4-beat

1/2-beat

3/4-beat

full-beat

Initial

1/4-beat

1/2-beat

3/4-beat

full-beat

Space-time plot
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C2
02

12

r0

0°

0°

0°

180°

t = 0

1/4

1/2

3/4

0°

45°

-45°

-45°

0°

45°

-45°

|+〉

revivals

or beats

|−〉

|+〉+|−〉
√2

|+〉+i|−〉
√2

|+〉−i|−〉
√2

|+〉−|−〉
√2

(φ= 0) (φ= π)

parity

states

even +45°

odd -45°

localized x

flipped y

L

R

Optical

E(t)
Coupled

Pendular1

2-level-system and C2 symmetry phase dynamics 
C2 Phasor-Character Table

Initial

1/4-beat

1/2-beat

3/4-beat

full-beat
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C3 symmetry phase in 1, 2, or 3-level-systems 

Non - chiral
C3v system 

Chiral
“quantum-Hall-like”

systems
deserve special treatment 

Re
al

Imaginary
Phasor notation
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C4 symmetry phase in 1, 2, 3 , or 4 level-systems 

Non - chiral
C4v system 

97Monday, March 28, 2016



C5 symmetry phase in 1, 2,...5 level-systems 

Re
al

Imaginary
Phasor notation
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C6 symmetry phase in 1, ...6 level-systems 

Re
al

Imaginary
Phasor notation
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06
16
26
36
46
56

0°

0°

0°

0°

0°

0°

0°

60°

120°

180°

-120°

-60°

0°

120°

-120°

0°

120°

-120°

0°

180°

0°

180°

0°

180°

0°

-120°

120°

0°

-120°

120°

0°

-60°

-120°

180°

120°

60°

C6 Eigenstate Characters
p=0 1 2 3m

N
4 5

t=0
1/12

1/ 6
3/12

2/ 6
5/12

3/ 6
7/12

4/ 6
9/12

5/ 6
11/12

p=0

0°
45°

45°
90°
-135°

135°

-90°

-45°

-45°

1

15°

30°

75°

-75°

-30°

-15°

2

-75°

-30°

-15°

15°

30°

75°

3

135°

-90°

-45°

-45°

0°
45°

45°
90°
-135°

4

-75°

-30°

-15°

15°

30°

75°

5

15°

30°

75°

-75°

-30°

-15°

C6 Revivals

m
N

C3 Eigenstate Characters

C3 Revivals

03
13
23

0°

0°

0°

0°

120°

-120°

0°

-120°

120°

t=0

1/ 3

2/ 3

p=0

0°

90°

-90°

1

-30°

30°

2

-30°

30°

p=0 1 2

Discrete 3-State or Trigonal System

(Tesla’s 3-Phase AC)

Discrete 6-State or Hexagonal System

(6-Phase AC)

Note 3-phase

sub-symmetry

Note 2-phase

sub-symmetry

(The “Mother

of all symme-

try” is C2)

C2

Note

2-phase

AC

Cm algebra of revival-phase dynamics 
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A C3 “Three-fold Moment”

Δm = 9
-15 -10 -5 0 5 10 15 = m

2Δx = 4 %

1/1

0/1

Quantum rotor fractional take turns at Cn symmetry

1/ 3

90° -30° -30°

3-“cloned revival”peaks
pop up at t=τ/3

(Using C3 character tables)

Cm algebra of revival-phase dynamics 

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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Algebra and geometry of  resonant revivals: Farey Sums and Ford Circles
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Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/1
1/1

2Δx = 4 % 0/1
Time t (units of fundamental period     ) τ1

Coordinate     φ   (units of 2π )

0/1

1/10

1/5

3/10

2/5

1/2

3/5

7/10

4/5

9/10

1/1

3/4

1/4

1/21/40-1/4-1/2

1/2
1/4

0
-1/4

-1/2

(Imagine "wrap-around" φ-coordinate) 
+π /2

−π /2

+π−π

3/4

1/4

0/1

1/2

1/1

Time t 

time
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0 = m1 2-2 -1

2Δx = 24%

3/4

1/2

1/4

Δm = 1.5

1/1

0/1

N-level-rotor system revival-beat wave dynamics 
(Just 2-levels (0, ±1)  (and some ±2)  excited)

Simplest quantum revival:
Exciting first two levels

(=0 and =±1)
is like a 

2-level system quantum beat
in space-time

space time

⏐Ψ(x,t)⏐ in space-time

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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0 = m1 2-2 -1

2Δx = 24%

3/4

1/2

1/4

Δm = 1.5

1/1

0/1

0 = m12-2-1 34

Δm = 3

2Δx = 12%

1/1

0/1

(Just 2-levels (0, ±1)  (and some ±2)  excited) (4-levels (0, ±1,±2,±3)  (and some ±4)  excited)
N-level-rotor system revival-beat wave dynamics 

Simplest fractional quantum revivals:   3,4,5-level systems
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Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/1

1/2

1/4

1/6
1/7

1/3

1/5

2/5

2/7

3/7

1/8

Wave packet starts hereZeros start here Zeros start here

Time t
(units of τ1)

Coordinate φ
(units of 2π)

1/1

0/1
0 1/4 1/2-1/2 -1/4

(9 or10-levels (0, ±1, ±2, ±3, ±4,..., ±9, ±10, ±11...)  excited)

1
7

2
7

3
7

4
7

5
7

6
7

4
7

5
7

6
7

0
1

N-level-rotor system revival-beat wave dynamics 

fractional quantum revivals:
in 3,4,…, N-level systems

Number increases rapidly with
number of levels
and/or bandwidth 

of excitation

space

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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Δm = 9

2Δx = 4 %

-15 -10 -5 0 5 10 15 = m

1/1

0/1

1/2

1/4

1/6
1/7

1/3

1/5

2/5

2/7

3/7

1/8

Wave packet starts hereZeros start here Zeros start here

Time t
(units of τ1)

Coordinate φ
(units of 2π)

1/1

0/1
0 1/4 1/2-1/2 -1/4

(9 or10-levels (0, ±1, ±2, ±3, ±4,..., ±9, ±10, ±11...)  excited) Zeros (clearly) and “particle-packets” (faintly) have paths 
labeled by fraction sequences like: 0

7
, 1
7
, 2
7
, 3
7
, 4
7
, 5
7
, 6
7
,1
1

1
7

2
7

3
7

4
7

5
7

6
7

4
7

5
7

6
7

1
1

0
1

N-level-rotor system revival-beat wave dynamics 

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
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2

-2

4

-4
6

-6

Δx=1.5

Δx=0.75
Δx=0.5

Δx=3.0

Δx=0.375

Δx=1.5

Δx=0.75
Δx=0.5

Δx=3.0

Δx=0.375

11//11

11//22

11//33

11//44
11//55
11//66
11//77

v2=0

v2=2

v1=1

Time

Space

The Wall

Time

Space

(a) Big ball moves in and traps small ball between it and The Wall

(b) Trajectory geometry exposed

Y Y

V
y2

V
y2

(a) Big space

Low speed

Bang (1)
12

Bang (2)
20

(b) Decreasing space

Increasing speed

Y

V
y2(c) Small space

High speed

Bang (n)
12

Bang (n+1)
20

V
y
Y = const.

Y

V
y2

Y

V
y2

Y

Vy2

The Classical
“Monster Mash”

Classical introduction to

Heisenberg “Uncertainty” Relations

 

v2 = const.
Y

   or:    Y ⋅v2 = const.

is analogous to:   Δx ⋅ Δp = N ⋅

Farey-Sum arithmetic of revival wave-zero paths 
(How Rational Fractions N/D occupy real space-time)

Recall classical “Monster Mash” in Lecture 5
with small-ball trajectory paths having same geometry 

as revival beat wave-zero paths

Lect. 5 (9.11.14)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

111Monday, March 28, 2016



Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

•
•
•

•
•
•

n1/d1 and n2/d2 path
fractions

numerator/denominator

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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n1+n2
d1+d2

tx=

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

n2/d2
- t

1/2 -φ
= 1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

n1/d1 - t
1/2 -φ = -1/d1

(φx ,tx)

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

x

n1/d1 and n2/d2 path
intersection time

(Farey-Sum)

•
•
•

•
•
•

d1n2-n1d2
d1+d2

φx=

n1/d1 and n2/d2 path
intersection point

(Ford-Cross)

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

 [John Farey, Phil. Mag.(1816)] 
Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
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n1+n2
d1+d2

tx=

Time t
(units of τ1)

0 1/4 1/2

1/d1

1/d2

n2/d2
- t

1/2 -φ
= 1/d2

Coordinate φ
(units of 2π)

1/1

0/1
-1/2 -1/4

n1/d1 - t
1/2 -φ = -1/d1

(φx ,tx)

1/d2

2/d2

3/d2

n2/d2

14/d1
13/d1
12/d1

n1/d1
(n2-1)/d2

(n1+1)/d1

•
•
•

•
•
•

1/d2

2/d2

x

n1/d1 and n2/d2 path
intersection time

(Farey-Sum)

•
•
•

•
•
•

d1n2-n1d2
d1+d2

φx=

n1/d1 and n2/d2 path
intersection point

(Ford-Cross)

n2/d2 path slope is 1/d2

n1/d1 path slope is -1/d1

Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  

[Lester. R. Ford, Am. Math. Monthly 45,586(1938)]          [John Farey, Phil. Mag.(1816)] 
Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)

114Monday, March 28, 2016



Ford-Circle geometry of revival paths 
(How Rational Fractions N/D occupy real space-time)
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Relating CN symmetric H and K matrices to differential wave operators
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K = k(21− r − r−1) analogous to:− k

∂x2
∂2

The 1st neighbor K matrix relates to a 2nd finite-difference matrix of 2nd x-derivative for high CN.

Relating CN symmetric H and K matrices to wave differential operators 

   

1st derivative momentum: p = 
i
∂y
∂x

≈ 
i

y(x + Δx)− y(x)
(Δx)


i

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 −1 ⋅ ⋅ ⋅
⋅ ⋅ 1 −1 ⋅ ⋅
⋅ ⋅ ⋅ 1 −1 ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅
y1

y2

y3

y4

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 
i

⋅
y1 − y0

y2 − y1

y3 − y2

y4 − y3

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

2nd derivative KE: 2mE = -2 ∂2 y
∂x2 ≈ y(x + Δx)− 2y(x)+ y(x − Δx)

(Δx)2

-2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−1 2 −1 ⋅ ⋅ ⋅
⋅ −1 2 −1 ⋅ ⋅
⋅ ⋅ −1 2 −1 ⋅
⋅ ⋅ ⋅ −1 2 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
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⎜

⎞

⎠

⎟
⎟
⎟
⎟
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⋅
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⎜
⎜

⎞
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

	

    

    

i ∂
∂t

ψ = H ψ     ( H-matrix equation)

i ∂
∂t

ψ = (− 
2

2m
∂2

∂x2 +V )ψ   (Scrodinger equation) 
   

− ∂2

∂t2 y = K y                 ( K-matrix equation)

− ∂2

∂t2 y = −k ∂2

∂x2 y       (Classical  wave equation)

H and K matrix equations are finite-difference versions of quantum and classical wave equations.

   


i
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⋅ 1 −1 ⋅ ⋅ ⋅
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⎟
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⎜
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Square p2 gives 1st neighbor K matrix. Higher order p3, p4,.. involve 2nd, 3rd, 4th..neighbor H

   

 p4 ≅

  1 ⋅ ⋅ ⋅
 6 −4 1 ⋅ ⋅
1 −4 6 −4 1 ⋅
⋅ 1 −4 6 −4 1
⋅ ⋅ 1 −4 6 −4
⋅ ⋅ ⋅ 1 −4 6
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⎜
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⎜
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⎜
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Δ = 1
2

 
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Symmetrized finite-difference operators
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