
Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits
(Ch. 8 and Ch. 9 of Unit 1) 

Kepler“laws” (Some that apply to all central (isotropic) F(r) force  fields)
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived later)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived later)

A confusing introduction to Coriolis-centrifugal force geometry     (Derived better later)

Introduction to dual matrix operator contact geometry (based on IHO orbits)
Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q -1•p=1 

Duality norm relations ( r•p=1)
Q-Ellipse tangents r′ normal to dual Q -1-ellipse position p ( r′•p=0=r•p′)  

Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry

Vector calculus of tensor operation
Q:Where is this headed? A: Lagrangian-Hamiltonian duality

Lecture  12 advanced 
Thur. 2.25.2016

Link → IHO orbital time rates of change 
Link → IHO Exegesis Plot

Link ⇒ BoxIt simulation of IHO orbits
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http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C0&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C0&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C0&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C1&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C1&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html


Kepler“laws” (Some that apply to all central (isotropic) F(r) force  fields)
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5)
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− bsinω t ⋅ −aω sinω t( ) = ab ⋅ω cos2ω t + sin2ω t( )

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Unit 1
Fig. 9.8 

Some Kepler’s “laws” for central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2   

    for IHO
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 (Recall from Lect.12 p.19:  k=G 4π

3
mρ⊕ )
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω

2. Angular momentum  L = mr × v  is conserved

 L = m |r × v |= m rxvy − ryvx( ) = m ⋅ab ⋅ω

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

r
v

|r×v| =r·v·sinr
v

Unit 1
Fig. 9.8 

|r•v| =r·v·cosr
v

 (Recall from Lect.12 p.19:  k=G 4π

3
mρ⊕ )
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T

 AT =
r × dr

20

T

∫ =
r × dr

dt
2

dt
0

T

∫ = r × v
2

dt
0

T

∫ = L
2m

dt
0

T

∫ = L
2m

T     for IHO

by 2.

r
dr

|r×dr| =r·dr·sinr
dr

Unit 1
Fig. 9.8 

 (Recall from Lect.12 p.19:  k=G 4π

3
mρ⊕ )
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω
2. Angular momentum  L = mr × v  is conserved

 L = mr × v = m rxvy − ryvx( ) = m ⋅ab ⋅ω = m ⋅ab ⋅ 2π
τ
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T
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20
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r × dr

dt
2

dt
0

T

∫ = r × v
2
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dt
0

T

∫ = L
2m
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In one period: τ= 1
υ

= 2π
ω

= 2mAτ

L
  the area is: Aτ =

Lτ
2m

 ( = ab ⋅π   for ellipse orbit)

Unit 1
Fig. 9.8 

 (Recall from Lect.12 p.19:  k=G 4π

3
mρ⊕ )
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO
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L
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 (  Recall from Lecture 7:  ω = k /m = Gρ⊕4π / 3  )

Unit 1
Fig. 9.8 
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3
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Some Kepler’s “laws” for all central (isotropic) force F(r) fields
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5)

8Thursday, February 25, 2016



 

1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx =
ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul. 

⎧
⎨
⎪

⎩⎪

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

t = 0 v
v

r r
rba

v

v
rCoulomb:

IHO:

    for Coul.(Derived in Unit 5)
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx =
ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul.

⎧
⎨
⎪

⎩⎪2. Angular momentum  L = mr × v  is conserved

 L = mr × v = m rxvy − ryvx( ) = m·ab ⋅ Gρ⊕4π / 3 for IHO
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

    for IHO

t = 0 v
v

r r
rba

v

v
rCoulomb:

IHO:

    for Coul.

    for Coul.

(Derived in Unit 5)

(... in Unit 5)
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx =
ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul.

⎧
⎨
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⎩⎪2. Angular momentum  L = mr × v  is conserved
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T

τ= 1
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= 2π
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= 2m·ab ⋅π
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=
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m·ab ⋅ Gρ⊕4π / 3
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In one period: 

Applies to
any central 

F(r) 
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IHO and 
Coulomb

(Derived in Unit 5)(Derived in Unit 5)

(... in Unit 5)

    for IHO

    for Coul.
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Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

    for IHO
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(not a function of a or b)

12Thursday, February 25, 2016



Some Kepler’s “laws” for all central (isotropic) force F(r) fields
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5)
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Kepler laws involve -momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2
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Kepler laws involve -momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

 

Total IHO energy=KE+PE  is constant
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Some Kepler’s “laws” for all central (isotropic) force F(r) fields
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5)
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Kepler laws involve -momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

We'll see that the Coul. orbits are simpler:                 (like the period...not a function of b)
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Kepler laws involve -momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2
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A confusing introduction to Coriolis-centrifugal force geometry     (Derived better later) 
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F = -kr

orbital velocity=V

(b) “Carnival kid” orbiting in
space attached to a spring

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to spring)

Carnival kid
says:

“This is awful!
I can hardly
hold onto
this darn
spring.”

F = -kr

orbital velocity=V

(a) “Earthronaut” orbiting
tunnel inside Earth

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to gravity)

Earthronaut
says:

“This is great!
I’m weightless.”

apogee
(x=a, y=0)aphelion=a

perigee
(x=0,y=b)

θperhelion=b
mass gaining speed

as it falls

Velocity
V

θVelocity
V centripetal force F=-kr

Negative power
( F•V=|F||V|cos θ <0)

Positive power
( F•V=|F||V|cos θ >0)

mass losing speed
as it rises

Unit 1
Fig. 9.2

Unit 1
Fig. 9.3

(Radius r decreasing)(Radius r increasing)
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(a) Centrifugal and Coriolis

Forces on Merry-Go-Round
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centripetal force F=-kr
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(d) Centrifugal Force

on Oscillator Orbit

(apogee and perigee)

Velocity

V

centripetal force F=-kr

centrifugal force is

Total inertial force F=+kr

Unit 1
Fig. 11.4 

a-d

Quite confusing? 
Discussion of Coriolis
forces will be done more elegantly 
and made more physically intuitive 
in Ch. 12 of Unit1 and in Unit 6.

Physicist Force 
(where m wants to go)

Mathematician Force 
(to hold m back)

Constraint force 
keeps m in radial slot
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Introduction to dual matrix operator contact geometry (based on IHO orbits)
Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q -1•p=1 

Duality norm relations ( r•p=1)
Q-Ellipse tangents r′ normal to dual Q -1-ellipse position p ( r′•p=0=r•p′)  

Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry

Vector calculus of tensor operation
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Quadratic forms and tangent contact geometry of their ellipses

   

r •Q• r  = 1

x y( )•
1

a2
0

0 1

b2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

• x
y

⎛

⎝
⎜

⎞

⎠
⎟ = 1= x y( )•

x
a2

y
b2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= x2

a2
+ y2

b2
 

A inverse matrix Q-1 generates an ellipse by p•Q -1•p=1 called inverse or dual ellipse:

   

p•Q−1•p        = 1

px py( )• a2 0

0 b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
•

px
py

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1= px py( )• a2 px

b2 py

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= a2 px

2 + b2 py
2  

 Q• r

 r

  Q
−1•p

 p

A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)
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Quadratic forms and tangent contact geometry of their ellipses
A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)

   

r •Q• r  = 1

x y( )•
1

a2
0

0 1

b2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

• x
y

⎛

⎝
⎜

⎞

⎠
⎟ = 1= x y( )•

x
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y
b2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= x2

a2
+ y2

b2
 

A inverse matrix Q-1 generates an ellipse by p•Q -1•p=1 called inverse or dual ellipse:

   

p•Q−1•p        = 1

px py( )• a2 0

0 b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
•

px
py

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1= px py( )• a2 px

b2 py

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= a2 px

2 + b2 py
2  

 Q• r = p

 r

  Q
−1•p = r

 p

Defined
mapping
between
ellipses
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r(φ)

φ=ω t

ab

b-circle

a-circle

Original ellipse

r•Q•r = r•p = 1

Inverse ellipse

p•Q-1•p =p•r = 1

p(φ)

(a) Quadratic form ellipse and

Inverse quadratic form ellipse

 p = Q• r

  r = Q−1•p

Defined
mapping
between
ellipses

Q

Q-1

based on
Unit 1

Fig. 11.6 
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p•Q-1•p =p•r = 1

p(φ)

(a) Quadratic form ellipse and

Inverse quadratic form ellipse

 p = Q• r

  r = Q−1•p

Defined
mapping
between
ellipses

Q

Q-1

based on
Unit 1

Fig. 11.6 

Here plot of p-ellipse is re-scaled by scalefactor S=a ·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)
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Here plot of p-ellipse is re-scaled by scalefactor S=a ·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
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r(φ)

φ=ω t
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b-circle
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(a) Quadratic form ellipse and

Inverse quadratic form ellipse

Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r

 

p =Q i r = 1/ a2 0
0 1/ b2

⎛

⎝
⎜

⎞

⎠
⎟ •

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x / a2

y / b2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

(1 / a)cosφ
(1 / b)sinφ

⎛

⎝
⎜

⎞

⎠
⎟   where:

x = rx = acosφ = acosω t
y = ry = bsinφ   = bsinω t  

 so:   p i r = 1

 p = Q• r

  r = Q−1•p

Defined
mapping
between
ellipses

Q

Q-1

based on
Unit 1

Fig. 11.6 

r pQ

Here plot of p-ellipse is re-scaled by scalefactor S=a ·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)

Link → IHO orbital time rates of change 
Link → IHO Exegesis Plot

Link ⇒ BoxIt simulation of IHO orbits
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Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r
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Here plot of p-ellipse is re-scaled by scalefactor S=a ·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)
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r •p = 0 = rx ry( )• px
py

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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⎜
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⎠
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⎜
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Unit 1
Fig. 11.6 
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Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

based on
Fig. 11.7 
in Unit 1
Here b/a=1/2
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Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(Slope increases if a >b.)

 

Diagonal R−1-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b/a.

R−1 i v x/y = a 0
0 b

⎛
⎝⎜

⎞
⎠⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x ⋅a
y ⋅b

⎛

⎝
⎜

⎞

⎠
⎟

(Slope decreases if b< a.)

based on
Fig. 11.7 
in Unit 1
Here b/a=1/2

Action of “sqrt-1-”matrix R -1 =√Q -1 

Action of “sqrt-”matrix R=√Q 
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Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.
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Diagonal R−1-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b/a=1/2.
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slope
1/1

slope
a/b

slope
b/a
slope
b2/a2

slope
a2/b2

slope
b3/a3

slope
a3/b3

 

Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.

Q i v x/y =
1/a2 0

0 1/b2

⎛

⎝
⎜
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⎠
⎟
⎟
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⎛
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⎟ =

x/a2

y/b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
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(It increases if a >b.)

 

Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(It increases if a >b.)

Either process can go on forever... 
Diagonal (R2n=Qn )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2n /b2n = 4n.

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

based on
Fig. 11.7 
in Unit 1
Here b/a=1/2
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slope
1/1

slope
a/b

slope
b/a
slope
b2/a2

slope
a2/b2

slope
b3/a3

slope
a3/b3

 

Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.

Q i v x/y =
1/a2 0

0 1/b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a2

y/b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(It increases if a >b.)

 

Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(It increases if a >b.)

Either process can go on forever... 
Diagonal (R2n=Qn )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2n /b2n = 4n.

...Finally, the result approaches EIGENVECTOR y = 0
1

⎛
⎝⎜

⎞
⎠⎟

of ∞-slope which is "immune" to R , Q or Qn :
         R y = (1/b) y         Qn y = (1/b2 )n y

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

...Finally, the result approaches EIGENVECTOR x = 1
0

⎛
⎝⎜

⎞
⎠⎟

of 0-slope which is "immune" to R−1  , Q−1  or Q−n :
         R−1 x = (a) x         Q−n x = (a2 )n x

EIGENVECTOR
             y

EIGENVECTOR
             x

Here b/a=1/2
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slope
1/1

slope
a/b

slope
b/a
slope
b2/a2

slope
a2/b2

slope
b3/a3

slope
a3/b3

 

Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.

Q i v x/y =
1/a2 0

0 1/b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a2

y/b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(It increases if a >b.)

 

Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(It increases if a >b.)

Either process can go on forever... 
Diagonal (R2n=Qn )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2n /b2n = 4n.

...Finally, the result approaches EIGENVECTOR y = 0
1

⎛
⎝⎜

⎞
⎠⎟

of ∞-slope which is "immune" to R , Q or Qn :
         R y = (1/b) y         Qn y = (1/b2 )n y

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

...Finally, the result approaches EIGENVECTOR x = 1
0

⎛
⎝⎜

⎞
⎠⎟

of 0-slope which is "immune" to R−1  , Q−1  or Q−n :
         R−1 x = (a) x         Q−n x = (a2 )n x

EIGENVECTOR
             y

EIGENVECTOR
             x

Eigensolution
RelationsEigenvalues Eigenvalues

Here b/a=1/2
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q -1•p=1 

Duality norm relations ( r•p=1)
Q-Ellipse tangents r′ normal to dual Q -1-ellipse position p ( r′•p=0=r•p′)  

Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry

Vector calculus of tensor operation

47Thursday, February 25, 2016



Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

You may rescale p-plot by scale factor  S=(a·b) 
so r•Q•r and p•Q-1•p ellipses are to be same size

 

riQir − ellipse
r2x
a2

+
r2y
b2

= 1

(a = 2, b = 1)

 

piQ−1ip − ellipse
a2p2x + b

2p2y = 1
(a = 2, b = 1)

Here b/a=1/2

Here plot of p-ellipse is re-scaled by scalefactor S=a·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)
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Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

 

riQir − ellipse
r2x
a2

+
r2y
b2

= 1

(a = 2, b = 1)

 

piQ−1ip − ellipse
a2p2x + b

2p2y = 1
(a = 2, b = 1)

1/a = 1/ 2

2

b = 1

a = 2

1/b = 1

Here b/a=1/2..or else rescale p-plot by scale factor  S=b 
to separate r•Q•r and p•Q-1•p ellipses into different regions

Here plot of p-ellipse is re-scaled by scalefactor S=b
p-ellipse x-radius=1/a plotted at: S(1/a)=b/a (=1/2 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=1

|r|≥1 and |p|≤1
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Action of matrix Q that generates an r-ellipse (r•Q• r =1)
on a single r-vector r(φ-1)...

acos!0

bsin!0

r(φ-1)φ0

φ-1

a

b

Variation of
Fig. 11.7 
in Unit 1

Here plot of p-ellipse is re-scaled by scalefactor S=b
p-ellipse x-radius=1/a plotted at: S(1/a)=b/a (=1/2 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=1
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1
2

1
1

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1)
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1),
 that is,  Q•r(φ-1) = p(φ+1)

Variation of
Fig. 11.7 
in Unit 1
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1
2

1
1

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1)
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1),
 that is,  Q•r(φ-1) = p(φ+1)

Key points
of

matrix
geometry:

Matrix Q maps any
vector r to a new 
vector p normal to 
the tangent    to its 
r•Q•r-ellipse. 

r
p

  r

  r

Variation of
Fig. 11.7 
in Unit 1
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1
2

1
1

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1)
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1),
 that is,  Q•r(φ-1) = p(φ+1)

Key points
of

matrix
geometry:

Matrix Q maps any
vector r to a new 
vector p normal to 
the tangent    to its 
r•Q•r-ellipse. 

r
p

  r

  r

Matrix Q-1 maps p
back to r that is 
normal to the 
tangent    to its
p• Q-1• p-ellipse. 

  p

  p

  p

Variation of
Fig. 11.7 
in Unit 1
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q -1•p=1 

Duality norm relations ( r•p=1)
Q-Ellipse tangents r′ normal to dual Q -1-ellipse position p ( r′•p=0=r•p′)  

Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry

Vector calculus of tensor operation
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Derive matrix “normal-to-ellipse”geometry by vector calculus:
Let matrix Q =              

define the ellipse 1=r•Q•r =

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  r
rp

  r

B = 0 B ≠ 0
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Derive matrix “normal-to-ellipse”geometry by vector calculus:
Let matrix Q =              

define the ellipse 1=r•Q•r =

Compare operation by Q on vector r       with      vector derivative  or gradient of r•Q•r 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  r
rp

  r

 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

A ⋅ x + B ⋅ y
B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r
r iQ i r( ) = ∇ r iQ i r( )

∂
∂x
∂
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

A ⋅ x2 + 2B ⋅ xy + D ⋅ y2( ) = 2A ⋅ x + 2B ⋅ y
2B ⋅ x + 2D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

B = 0 B ≠ 0
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Derive matrix “normal-to-ellipse”geometry by vector calculus:
Let matrix Q =              

define the ellipse 1=r•Q•r =

Compare operation by Q on vector r       with      vector derivative  or gradient of r•Q•r 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  r
rp

  r

Very simple result:

 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

A ⋅ x + B ⋅ y
B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r
r iQ i r( ) = ∇ r iQ i r( )

∂
∂x
∂
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

A ⋅ x2 + 2B ⋅ xy + D ⋅ y2( ) = 2A ⋅ x + 2B ⋅ y
2B ⋅ x + 2D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r

r iQ i r
2

⎛
⎝⎜

⎞
⎠⎟ = ∇ r iQ i r

2
⎛
⎝⎜

⎞
⎠⎟ =Q i r

B = 0 B ≠ 0
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q -1•p=1 

Duality norm relations ( r•p=1)
Q-Ellipse tangents r′ normal to dual Q -1-ellipse position p ( r′•p=0=r•p′)  

(Still more) Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry

Vector calculus of tensor operation
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

u = Q i r(φ−1) = R i r(φ−1)

= 1/ a 0
0 1/ b

⎛

⎝⎜
⎞

⎠⎟
acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

acosφ0

1
b

bsinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
cosφ0
sinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of “sqrt-”matrix R=√Q                          (R generates another ellipse r•R•r =1 not shown)
on a single r-vector r(φ-1)... is to rotate it to  u-circle (u•u =1), that is,  R•r(φ-1) = u =(const.)r(φ0)

a unit vector
on  unit-circle

u

Variation of
Fig. 11.7 
in Unit 1
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slope
b2/a2

As before, these processes may be 
continued indefinitely.

Variation of
Fig. 11.7 
in Unit 1

60Thursday, February 25, 2016



slope
b2/a2

...And includes a cool way to 
construct those tangents             ...           etc. 
(see exercises!)

 r(φ−2 )

 r(φ−2 )

 p(φ1)

 p(φ1)

Variation of
Fig. 11.7 
in Unit 1
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Q:Where is this headed?         A: Lagrangian-Hamiltonian duality
Preview of Lecture 9
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(a) Lagrangian L = L(v1,v2)

v1

v2
(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisector
slope = 1/1

Collision line and
COM tangent slope
= -m1/m2 =-16

Collision line and
COM tangent slope
=-√m1/√m2=-4

COM Bisector slope
= √m2/√m1 =1/4

Collision line and
COM tangent slope

= -1/1

COM Bisector slope
= m2/m1 =1/16

slope
√m1
√m2

=4

slope=1

The R and Q matrix transformations are like the mechanics rescaling matrices √M and M:
Like Q=R2:                               Like √Q=R:                                 Like Q-1=R-2:

M =
m1 0
0 m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= R2 M =

m1 0

0 m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= R M−1 =

1/m1 0
0 1 /m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= R−2

Unit 1
Fig. 12.1 
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p2=m2v2

p1
=m1v1

Hamiltonian plot
H(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=
p1 /m1

(a)

v v = ∇∇pH
=M-1•p

p = ∇∇vL
=M•v

p

Lagrangian tangent at velocity v
is normal to momentum p

Hamiltonian tangent at momentum p
is normal to velocity v

(c) Overlapping plots
v

p

v

p

p

v (d) Less mass

(e) More mass

H=const = E

L=const = E

H=const = E

Unit 1
Fig. 12.2 
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