Kepler Geometry of IHO (ssortopic Harmonic ossillator) Elliptical Orbits $^{\text {In }}$

 (Ch. 8 and Ch. 9 of Unit 1)Kepler "laws" (Some that apply to all central (isotropic) F(r) force fields)
Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Derived here)
Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r \quad$ (Derived later)
Total energy $E=K E+P E$ invariance of $I H O: F(r)=-k \cdot r$
(Derived here)
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived later)
A confusing introduction to Coriolis-centrifugal force geometry (Derived better later)
Introduction to dual matrix operator contact geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $\mathbf{p} \bullet Q^{-1} \bullet \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
$Q:$ Where is this headed? A: Lagrangian-Hamiltonian duality

```
Link \(\Rightarrow\) BoxIt simulation of IHO orbits
Link \(\rightarrow\) IHO orbital time rates of change
Link \(\rightarrow\) IHO Exegesis Plot
```

Kepler "laws" (Some that apply to all central (isotropic) F(r) force fields)
\longrightarrow Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived here)
Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r \quad$ (Derived in Unit 5) Total energy $E=K E+P E$ invariance of IHO: $F(r)=-k \cdot r$
(Derived here)
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$

Some Kepler's "laws" for central (isotropic) force $F(r)$
... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lect. 12 p.19: $k=G \frac{4 \pi}{3} m \rho_{\oplus}$)
Unit 1

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-b \sin \omega t \cdot(-a \omega \sin \omega t)=a b \cdot \omega\left(\cos ^{2} \omega t+\sin ^{2} \operatorname{lot}^{t}\right)$ for IHO

$$
\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t \ldots} \cdots\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{\square \omega \cos \omega t}
$$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lect. $12 p .19: k=G \frac{4 \pi}{3} m \rho_{\oplus}$)

Unit 1

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega$
\checkmark for IHO
2. Angular momentum $\mathbf{L}=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m|\mathbf{r} \times \mathbf{v}|=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega$
\checkmark for IHO
$|\mathbf{r} \times \mathbf{v}|=r \cdot v \cdot \sin \measuredangle_{r}{ }_{r}$

$|\mathbf{r} \circ \mathbf{v}|=r^{\circ} \cdot v \cdot \cos \underline{\chi}_{r}$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lect. 12 p.19: $k=G \frac{4 \pi}{3} m \rho_{\oplus}$)

Unit 1

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega$
for IHO
2. Angular momentum $\mathbf{L}=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m|\mathbf{r} \times \mathbf{v}|=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{\mid \mathbf{b y}}^{T} d t=\frac{L}{2 m} T
$$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lect. $12 p .19: k=G \frac{4 \pi}{3} m \rho_{\oplus}$)

Unit 1

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega
$$

for IHO
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega=m \cdot a b \cdot \frac{2 \pi}{\tau}
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{0}^{T} d t=\frac{L}{2 m} T
$$

In one period: $\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}$ the area is: $A_{\tau}=\frac{L \tau}{2 m}(=a b \cdot \pi$ for ellipse orbit $)$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lect. $12 p .19: k=G \frac{4 \pi}{3} m \rho_{\oplus}$)

Unit 1

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega
$$

for IHO
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega=m \cdot a b \cdot \frac{2 \pi}{\tau}
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{0}^{T} d t=\frac{L}{2 m} T
$$

In one period: $\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}$ the area is: $A_{\tau}=\frac{L \tau}{2 m}(=a b \cdot \pi$ for ellipse orbit $)$
(Recall from Lecture 7: $\omega=\sqrt{k / m}=\sqrt{G \rho_{\oplus} 4 \pi / 3}$)

Some Kepler's "laws" for all central (isotropic) force F(r) fields

Angular momentum invariance of $\mathrm{IHO}: F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Derived here)
Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r \quad$ (Derived in Unit 5)
Total energy $E=K E+P E$ invariance of $I H O$: $F(r)=-k \cdot r$
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$
(Derived here)
(Derived in Unit 5)

Some Kepler's "laws" that apply to any central (isotropic) force F(r) Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

1. Area of triangle $\measuredangle_{r}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant
\checkmark for IHO
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cc}a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for } \mathrm{IHO} \\ a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul } .\end{array}\right.$
(Derived in Unit 5) for Coul.

Some Kepler's "laws" that apply to any central (isotropic) force F(r) Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

1. Area of triangle $\zeta_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cc}a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. }\end{array}\right.$

- for IHO
(Derived in Unit 5) for Coul.

2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=\left\{\begin{array}{cl}m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. }(\ldots \text { in Unit } 5)\end{array}\right.$

Some Kepler's "laws" that apply to any central (isotropic) force F(r)

 Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cl}
a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\
a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. (Derived in Unit §Derived in Unit 5) }
\end{array}\right.
$$

2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=\left\{\begin{array}{cl}m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. } \ldots \text { in Unit } 5)\end{array}\right.$
3. Equal area is swept by radius vector in each equal time interval T

$$
\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}=\frac{2 m \cdot a b \cdot \pi}{L}=\left\{\begin{array}{c}
\frac{2 m \cdot a b \cdot \pi}{\text { In one period: }_{\begin{array}{c}
\text { Applies to } \\
\text { any central } \\
F(r)
\end{array}} \begin{array}{c}
\text { Applies to } \\
\text { IHO and } \\
\text { Coulomb }
\end{array}}
\end{array}=\left\{\begin{array}{c}
\frac{2 m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3}}{m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}}}
\end{array}\right.\right.
$$

for IHO
for Coul.

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$ Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

Coulomb:

IHO:

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{v}-r_{v}= \begin{cases}a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO }\end{cases}$ $a^{-1 / 2} b \sqrt{G M_{\oplus}}$ for Coul. (Derived in Unit SDerived in Unit 5) \downarrow for Coul.
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=\left\{\begin{array}{cl}m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. }(\ldots \text { in Unit } 5) \text { for IHO } \\ \text { for Coul. }\end{array}\right.$
3. Equal area is swept by radius vector in each equal time interval T

$$
\begin{aligned}
& \text { In one period: } \\
& \tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L_{\begin{array}{c}
\text { Applies to } \\
\text { any central } \\
F(r)
\end{array}}^{\begin{array}{c}
\text { Applies to } \\
\text { IHO and } \\
\text { Coulomb }
\end{array}}}=\frac{2 m \cdot a b \cdot \pi}{L}=\{ \\
& \begin{aligned}
\frac{2 m \cdot a b \cdot \pi}{m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3}} & =\frac{2 \pi \text { (nota finuction of a or b) }_{\sqrt{G \rho_{\oplus} 4 \pi / 3}} \text { for IHO }}{} \\
\frac{2 m \cdot a b \cdot \pi}{m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}}} & =\frac{2 \pi}{a^{-3 / 2} \sqrt{G M_{\oplus}}} \text { for Coul. }
\end{aligned}
\end{aligned}
$$

Some Kepler's "laws" for all central (isotropic) force $F(r)$ fields Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived here) Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m / r \quad$ (Derived in Unit 5)
 Total energy $E=K E+P E$ invariance of $I H O$: $F(r)=-k \cdot r$ (Derived here) Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived in Unit 5)

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t} \\
& \binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}
\end{aligned}
$$

Kepler laws involve Ł-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total IHO energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& =\quad & \text { Given }: k=m \omega^{2}
\end{array}
\end{aligned}
$$

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right) \text { since: } \omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3} \text { or: } m \omega^{2}=k
$$

$$
\begin{aligned}
& K E+P E=\quad \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& =\quad \begin{array}{l}
\text { Given }: k=m \omega^{2}
\end{array}
\end{array}
\end{aligned}
$$

Some Kepler's "laws" for all central (isotropic) force F(r) fields Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Derived here) Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r \quad$ (Derived in Unit 5) Total energy $E=K E+P E$ invariance of $I H O: F(r)=-k \cdot r$
(Derived here)
\longrightarrow Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived in Unit 5)

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$

Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right) \text { since: } \omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3} \quad \text { or: } m \omega^{2}=k
$$

We'll see that the Coul. orbits are simpler:

$$
\begin{aligned}
& K E+P E=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
= & \frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right) & \text { Given }: k=m \omega^{2}
\end{array}
\end{aligned}
$$

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$

 Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$Total $I H O$ energy $=K E+P E$ is constant

$$
E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right) \text { since: } \omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3} \text { or: } m \omega^{2}=k
$$

We'll see that the Coul. orbits are simpler:
(like the period...not a function of b)
$E=K E+P E=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v^{2}{ }_{y}-\frac{k}{r}=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v^{2}{ }_{y}-\frac{G M_{\oplus} m}{r}=-\frac{G M_{\oplus} m}{a}$

$$
\begin{aligned}
& K E+P E=\quad \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& =\quad \begin{array}{l}
\text { Given }: k=m \omega^{2}
\end{array}
\end{array}
\end{aligned}
$$

$\longrightarrow A$ confusing introduction to Coriolis-centrifugal force geometry (Derived better later)

(a) "Earthronaut" orbiting tunnel inside Earth

(b) "Carnival kid" orbiting in space attached to a spring
centrifugal

$$
\text { force }=+k \mathbf{r}
$$

$$
=+m \omega^{2} \mathbf{r}
$$

Unit 1
Fig. 9.2

Unit 1
Fig. 9.3

Positive power ($\mathbf{F} \cdot \mathbf{V}=|\mathbf{F}||\mathbf{V}| \cos \theta>0$)
mass losing speed as it rises
(Radius rincrea.
Velocity
perigee
Negative power ($\mathbf{F} \cdot \mathbf{V}=|\mathbf{F}||\mathbf{V}| \cos \theta<0$)

(a) Centrifugal and Coriolis Forces on Merry-Go-Round

Constraint force keeps m in radial slot
(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(b) Centrifugal and Coriolis

Forces on Oscillator Orbit (Falling phase)

(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(b) Centrifugal and Coriolis Forces on Oscillator Orbit

(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(c) Centrifugal and Coriolis

Forces on Oscillator Orbit

\longrightarrow Introduction to dual matrix operator contact geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry

Vector calculus of tensor operation

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ is called positive-definite (if $\mathbf{r} \bullet Q \cdot \mathbf{r}$ always >0)

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right)}^{\mathbf{r} \bullet \mathbf{Q} \cdot \mathbf{r}} \cdot\binom{x}{y}=1=\left(\sim_{\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}}^{\mathbf{Q} \bullet \mathbf{r}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right.
$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$ called inverse or dual ellipse:

$$
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)}^{\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p}} \cdot\binom{p_{x}}{p_{y}}=1=\left(\sim_{\left(p_{x}\right.}^{p_{y}}\right) \cdot(\overbrace{\binom{a^{2} p_{x}}{b^{2} p_{y}}}^{\mathbf{p}}=a^{2} p_{x}^{2}+b^{2} p_{y}^{2}
$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ is called positive-definite (if $\mathbf{r} \bullet Q \cdot \mathbf{r}$ always >0)

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\binom{x}{y}=1=\left(\sim_{\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}}^{\mathbf{Q} \bullet \mathbf{Q} \cdot \mathbf{r}}=\frac{\mathbf{x}}{a^{2}}+\frac{y^{2}}{b^{2}}\right.
$$

Defined mapping between ellipses

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$ called inverse or dual ellipse:

$$
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right) \cdot\binom{p_{x}}{p_{y}}=1=(\overbrace{\left(\begin{array}{l}
-1 \\
p_{x}
\end{array} p_{y}\right.}^{\mathbf{p} \cdot \mathbf{p}} \cdot\binom{a^{2} p_{x}}{b^{2} p_{y}}=a^{2} p_{x}^{2}+b^{2} p_{y}^{2}
$$

Introduction to dual matrix operator contact geometry (based on IHO orbits)
\longrightarrow Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
(a) Quadratic form ellipse and

(a) Quadratic form ellipse and

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$ p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $\mathbf{p} \bullet Q^{-1} \cdot \mathbf{p}=1$
\longrightarrow Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
(a) Quadratic form ellipse and Inverse quadratic form ellipse

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has murtual duality relations with inverse form $\mathbf{p}^{\cdot} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$ p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$

$$
\mathbf{p} \cdot \mathbf{Q}^{-1} \bullet \mathbf{p}=\mathbf{p} \bullet \mathbf{r}=1
$$

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has mutuald duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \bullet \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
\overbrace{1 / a^{2}} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \cdot\binom{x}{y}=\binom{\overbrace{x / a^{2}}^{\mathbf{p}}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered} \text { so: } \mathbf{p \cdot \mathbf { r } = 1}
$$

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$ p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$

[^0]Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $\mathbf{p} \bullet Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
$\longrightarrow Q$-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \cdot \mathbf{p}=0=\mathbf{r}^{\circ} \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
(a) Quadratic form ellipse and Inverse quadratic form ellipse

(b) Ellipse tangents

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has muatrad duality relations with inverse form $\mathbf{p}^{\cdot} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \cdot\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered} \quad \text { so: } \mathbf{p} \cdot \mathbf{r}=1
$$

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$
p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$
p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$
(a) Quadratic form ellipse and

Inverse quadratic form ellipse

(b) Ellipse tangents

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has montral duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \cdot\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \quad \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered} \text { so: } \mathbf{p} \cdot \mathbf{r}=1
$$

p is perpendicular to velocity $\mathbf{v}=\stackrel{\circ}{\mathrm{r}}, a$ muirual orthogonality

$\stackrel{\mathrm{r}}{ } \bullet \mathrm{p}=0=\left(\begin{array}{ll}\dot{r}_{x} & \dot{r}_{y}\end{array}\right) \bullet\binom{p_{x}}{p_{y}}=\left(\begin{array}{ll}-a \sin \phi & b \cos \phi\end{array}\right) \bullet\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: | $\dot{r}_{x}=-a \sin \phi$ |
| :--- |
| $\dot{r}_{y}=b \cos \phi$ |\quad and: | $p_{x}=(1 / a) \cos \phi$ |
| :--- |
| $p_{y}=(1 / b) \sin \phi$ |

(a) Quadratic form ellipse and Inverse quadratic form ellipse

(b) Ellipse tangents

Unit 1
Fig. 11.6

> vector $\mathbf{p}(\phi)$ is perpendicular
> to $\mathbb{r}(\phi)$
unit
Quadratic form $\mathbf{r} \bullet \mathbf{Q} \cdot \mathbf{r}=1$ has mutual duality relations with inverse form $\mathbf{p}^{\circ} \mathbf{Q}^{-1} \bullet \mathbf{p}=1$
$\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right) \bullet\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: $\begin{gathered}x=r_{x}=a \cos \phi=a \cos \omega t \\ y=r_{y}=b \sin \phi=b \sin \omega t\end{gathered}$
projection
so: $\mathbf{p} \cdot \mathbf{r}=1$
p is perpendicular to velocity $\mathbf{v}=\dot{\mathrm{r}}$, a mutual orthogonality. So is \mathbf{r} perpendicular to $\dot{\mathbf{p}}$.
$\dot{\mathbf{p}} \cdot \mathbf{r}=0$

$\stackrel{\circ}{\mathrm{r}} \bullet \mathbf{p}=0=\left(\begin{array}{ll}\dot{r}_{x} & \dot{r}_{y}\end{array}\right) \bullet\binom{p_{x}}{p_{y}}=\left(\begin{array}{ll}-a \sin \phi & b \cos \phi\end{array}\right) \bullet\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: | $\dot{r}_{x}=-a \sin \phi$ |
| :--- |
| $\dot{r}_{y}=b \cos \phi$ | and: | $p_{x}=(1 / a) \cos \phi$ |
| :--- |
| $p_{y}=(1 / b) \sin \phi$ |

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p \bullet Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$
\longrightarrow Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry

Vector calculus of tensor operation

Diagonal R-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(Slope increases if $a>b$.)
based on
Fig. 11.7
in Unit
Here $b / a=1 / 2$
Diagonal \mathbf{R}^{-1}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor b / a.
$\mathbf{R}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\binom{x}{y}=\binom{x \cdot a}{y \cdot b}$
(Slope decreases if $b<a$.)

Diagonal \mathbf{R}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a / b-2 . \quad a^{2} / b^{2}$
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=4$.
$\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Action of "sqrt-"matrix $R=\sqrt{ } Q$ slope a / b
$\mathbf{R}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\binom{x}{y}=\binom{x \cdot a}{y \cdot b}$
Diagonal $\left(\mathbf{R}^{-2}=\mathbf{Q}^{-1}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2} / a^{2}=1 / 4$.
based on
Fig. 11.7
in Unit/
Here $b / a=1 / 2$
Diagonal \mathbf{R}^{-1}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b / a=1 / 2$.

$$
\mathbf{Q}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)\binom{x}{y}=\binom{x \cdot a^{2}}{y \cdot b^{2}}
$$

Diagonal R-matrix acts on vector $\mathbf{v}^{x / y}$

Resulting vector has slope changed by factor $a / b=2 . a^{3} / b^{3} a^{2} / b^{2}$
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$. Resulting vector has slope changed by factor $a^{2} / b^{2}=4$.
$\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}y / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Either process can go on forever...
Either process can go on foreyer...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
Diagonal $\left(\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$. based on Fig. 11.7 in Unit 1
Here $b / a=1 / 2$

Resulting vector has slope changed by factor $a / b=2$.

$$
\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}
$$

(It increases if $a>b$.)

EIGENVECTOR

$|y\rangle$
Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=$ $\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
...Finally, the result approaches EIGENVECTOR $|y\rangle=\binom{0}{1}$ of ∞-slope which is "immune" to \mathbf{R}, \mathbf{Q} or \mathbf{Q}^{n} :

$$
\mathbf{R}|y\rangle=(1 / b)|y\rangle \quad \mathbf{Q}^{n}|y\rangle=\left(1 / b^{2}\right)^{n}|y\rangle
$$

Here $b / a=1 / 2$

Diagonal ($\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}$)-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$. ...Finally, the result approaches EIGENVECTOR $|x\rangle=\left(\begin{array}{l}1 \\ 0\end{array}\right.$ of 0-slope which is "immune" to $\mathbf{R}^{-1}, \mathbf{Q}^{-1}$ or \mathbf{Q}^{-n} :

$$
\mathbf{R}^{-1}|x\rangle=(a)|x\rangle \quad \mathbf{Q}^{-n}|x\rangle=\left(a^{2}\right)^{n}|x\rangle
$$

EIGENVECTOR
$|x\rangle$

Either process can go on forever...

Resulting vector has slope changed by factor $a / b=2$.

$$
\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}
$$

(It increases if $a>b$.)

EIGENVECTOR

$|y\rangle$

Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=$
$\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
...Finally, the result approaches EIGENVECTOR $|y\rangle=\binom{0}{1}$

EIGENVECTOR
$|x\rangle$

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$. ...Finally, the result approaches EIGENVECTOR $|x\rangle=\left(\begin{array}{l}1 \\ 0\end{array}\right.$ of 0 -slope which is "immune" to $\mathbf{R}^{-1}, \mathbf{Q}^{-1}$ or \mathbf{Q}^{-n} :
$\mathbf{R}|y\rangle=(1 / b)|y\rangle \quad \mathbf{Q}^{n}|y\rangle=\left(1 / b^{2}\right)^{n}|y\rangle$ Eigensolution
Eigenvalues
$\mathbf{R}^{-1}|x\rangle=(a)|x\rangle \quad \mathbf{Q}^{-n}|x\rangle=\left(a^{2}\right)^{n}|x\rangle$
Relations

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \cdot \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$ Operator geometric sequences and eigenvectors
\longrightarrow Alternative scaling of matrix operator geometry
Vector calculus of tensor operation

You may rescale p-plot by scale factor $S=(a \cdot b)$ so $\mathbf{r} \cdot Q \cdot \mathbf{r}$ and $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}$ ellipses are to be same size

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$
p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$
..or else rescale p-plot by scale factor $S=b$ to separate $\mathbf{r} \cdot Q \cdot \mathbf{r}$ and $\mathbf{p} \cdot Q \dagger^{1} \cdot \mathbf{p}$ ellipses into different yegions

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \cdot \mathbf{r}=1)$ on a single \mathbf{r}-vect
$\mathbf{p}\left(\phi_{1}\right)=\mathbf{Q} \cdot \mathbf{r}\left(\phi_{-1}\right)$
$=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}$

Variation of
Fig. 11.7
in Unit 1

Here plot of p-ellipse is re-scaled by scalefactor $S=b$
p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b / a(=1 / 2$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=1$

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \bullet \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$
$\mathbf{p}\left(\phi_{1}\right)=\mathbf{Q} \cdot \mathbf{r}\left(\phi_{-1}\right)$
$=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}$
$=\binom{\frac{1}{a} \cos \phi_{0}}{\frac{1}{b} \sin \phi_{0}}$
$=\binom{\frac{1}{2} \frac{1}{\sqrt{2}}}{\frac{1}{1} \frac{1}{\sqrt{2}}}$

Variation of
Fig. 11.7
in Unit 1

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \cdot \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1 /} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$

Key points

matrix

 geometry:Matrix Q maps any vector \mathbf{r} to a new vector \mathbf{p} normal to the tangent $\dot{\mathbf{r}}$ to its r-Q.r-ellipse.

Variation of
Fig. 11.7 in Unit 1

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \cdot \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1 /} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$
$\mathbf{p}\left(\phi_{1}\right)=\mathbf{Q} \cdot \mathbf{r}\left(\phi_{-1}\right)$
$=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}$

$=\binom{\frac{1}{2} \frac{1}{\sqrt{2}}}{\frac{1}{1} \frac{1}{\sqrt{2}}}$

Variation of
Fig. 11.7 in Unit 1

Key points of

matrix

 geometry:Matrix Q maps any vector \mathbf{r} to a new vector \mathbf{p} normal to the tangent \mathbf{r} to its r-Q.r-ellipse.

Matrix Q^{-1} maps \mathbf{p} back to \mathbf{r} that is normal to the tangent $\dot{\mathbf{p}}$ to its p• $Q^{-1} \cdot \mathbf{p}$-ellipse.

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \bullet \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry
$\longrightarrow \quad$ Vector calculus of tensor operation

Derive matrix "normal-to-ellipse"geometry by vector calculus:
Let matrix $Q=\left(\begin{array}{cc}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{cc}x & y\end{array}\right) \cdot\left(\begin{array}{cc}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

$B \neq 0$

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{ll}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{cc}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

Compare operation by Q on vector \mathbf{r} with vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$

$$
\frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot Q \cdot \mathbf{r})=\nabla(\mathbf{r} \cdot Q \cdot \mathbf{r})
$$

$\left(\begin{array}{cc}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}$

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}\left(A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}\right)=\binom{2 A \cdot x+2 B \cdot y}{2 B \cdot x+2 D \cdot y}
$$

$B \neq 0$

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{cc}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

Compare operation by Q on vector \mathbf{r} with vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$

$$
\frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot Q \cdot \mathbf{r})=\nabla(\mathbf{r} \cdot Q \cdot \mathbf{r})
$$

$\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}$

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}\left(A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}\right)=\binom{2 A \cdot x+2 B \cdot y}{2 B \cdot x+2 D \cdot y}
$$

Very simple result:

$$
\frac{\partial}{\partial \mathbf{r}}\left(\frac{\mathbf{r} \cdot Q \cdot \mathbf{r}}{2}\right)=\nabla\left(\frac{\mathbf{r} \cdot Q \cdot \mathbf{r}}{2}\right)=Q \cdot \mathbf{r}
$$

Introduction to dual matrix operator geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \cdot \mathbf{p}=1$

Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$ (Still more) Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
Action of "sqrt-" matrix $R=\sqrt{ } Q$ (R generates another ellipse $\mathbf{r} \cdot R \cdot \mathbf{r}=1$ not shown) on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to \mathbf{u}-circle $(\mathbf{u} \cdot \mathbf{u}=1)$, that is, $R \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{u}=($ const. $) \mathbf{r}\left(\phi_{0}\right)$

$$
\mathbf{u}=\sqrt{\mathbf{Q}} \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{R} \cdot \mathbf{r}\left(\phi_{-1}\right)
$$

$$
=\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
0 & 1 / b) \\
=\left(b \sin \phi_{0}\right. \\
\frac{1}{a} a \cos \phi_{0} \\
\frac{1}{b} b \sin \phi_{0}
\end{array}\right)=\binom{\cos \phi_{0}}{\sin \phi_{0}}
\end{aligned}
$$

$$
=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

Q:Where is this headed?
Preview of Lecture 9

The R and Q matrix transformations are like the mechanics rescaling matrices $\sqrt{ } \mathbf{M}$ and \mathbf{M} :

(a) Lagrangian $L=L\left(v_{1}, v_{2}\right)$

COM Bisector slope $=1 / 1$

$$
\begin{aligned}
& \text { COM Bisector slope } \\
& =\sqrt{m_{2}} /{ }^{\prime} m_{1}=1 / 4
\end{aligned}
$$ COM tangent slope $=-m_{1} / m_{2}=-16$

(b) Estrangian $E=E\left(V_{1}, V_{2}\right)$ Fig. 12.1 $\quad V_{2}=V_{m_{2}} v_{2} \quad$ Collision line and

COM Bisector slope

$$
=m_{2} / m_{1}=1 / 16
$$

$p_{2}=m_{2} v_{2}$

Collision line and COM tangent slope $V=-1 / 1$

Unit 1
Fig. 12.2
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \bullet \mathbf{M} \bullet \mathbf{v} / 2\end{aligned}$
(b) $\begin{aligned} & \text { plot } \\ & \text { (D) }\end{aligned}$ const. $=\cdot \mathbf{M}^{-1} \bullet / 2 \quad p_{2}=m_{2} v_{2}$

[^0]: Link \Rightarrow BoxIt simulation of IHO orbits
 Link \rightarrow IHO orbital time rates of change
 Link \rightarrow IHO Exegesis Plot

