Kepler Geometry of IHQ uouopic tarmonic oseinaory Elliptical Orbits

(Ch. 8 and Ch. 9 of Unit 1)

Kepler“laws” (Some that apply to all central (isotropic) F(r) force fields)

Angular momentum invariance of IHO: F(r)=-k-r with U(r)=k-r’/2 (Derived here)
Angular momentum invariance of Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r (Derived later)
Total energy E=KE+PE invariance of [HO: F(r)=-k'r (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r’ (Derived later)

A confusing introduction to Coriolis-centrifugal force geometry  (Derived better later)

Introduction to dual matrix operator contact geometry (based on IHO orbits)
Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*O '*p=1
Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual O -ellipse position p ( ¥'sp=0=rep’)
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
Q:Where is this headed? A: Lagrangian-Hamiltonian duality

Link = BoxlIt simulation of IHO orbits
Link — IHO orbital time rates of change
Link — THO Exegesis Plot

Thursday, February 25, 2016


http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C0&semiMajor=1.0&semiMinor=0.125
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http://www.uark.edu/ua/modphys/markup/BoxItWeb.html
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html

Kepler“laws” (Some that apply to all central (isotropic) F(r) force fields)

= Angular momentum invariance of IHO: F(r)=-k-r with U(r)=kr*/2 (Derived here)
Angular momentum invariance of Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r (Derived in Unit 5)
lotal energy E=KE+PE invariance of IHO: F(r)=-k-r (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r’ (Derived in Unit 5)
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Some Kepler's “laws” for central (isotropic) force F(r)

...and certainly apply to the IHO: F(r)=-k-r with U(r)=k-r?/2 (Recall from Lect.12 p.19: k= G?’%P@)
Unit 1

0 ' — t?wgm . t :/1:;/%(1)‘ /\Flg 9.8
o a - \% X%}b Q)

1. Area of triangle £ =r X v/2 is constant

{

g

rXV=ry —rv, =acosmi- (ba) cosa)t)— bsinwt - (—c_za) sina)t) =ab-w

L~ for IHO

o

Ty _( X J_ acosa}t v —aa)'sina)t
"y Y bsinwt..- Vy "'-ba)COSa)l‘
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)

...and certainly apply to the IHO: F(r)=-k-r with U(r)=k-r?/2 (Recall from Lect.12 p.19: k= G?mp@)
Unit 1

0 ' — t?ﬂ,g,r(ﬁ . t :/1:;/%(1)‘ /\Flg 9.8
o a - \% X%}b Q)

1. Area of triangle £, =r X v/2 is constant

{

g

rXv=rv —rv.=acosot-(bwcoswt)—asinwt-(—bwsimwt)=ab-w
X"y VX ( ) ( ) l/fOV[HO

2. Angular momentum L =mr Xv 1s conserved

L:mlrxvI:m(rxvy—ryvx)zm-ab-a) L~ for [HO

\

V| =rvsing,

rev| =r1-COSX,
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)

...and certainly apply to the IHO: F(r)=-k-r with U(r)=k-r?/2 (Recall from Lect.12 p.19: k= G?’%P@)
Unit 1

0 — t?wgm . t :/w/%(p‘ /\Flg 9.8
o a - \% X%}b Q)

1. Area of triangle £, =r X v/2 is constant

3

{

rXV=ry —ry, = acosa)t-(ba) cosa)t)— asina)t-(—ba) sina)t) =ab-w

L~ for IHO
2. Angular momentum L = mr X v 1s conserved
L=mIr><VIzm(rxvy—ryvx)zm-ab-a) L~ for IHO
3. Equal area 1s swept by radius vector in each equal time interval T
rrXdr L | L
A, :J = ——dt=—|dt=—T v for IHO
2 2m,~ 2m

|by 2. \

1Xdr| =rdr-sin
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)

...and certainly apply to the IHO: F(r)=-k-r with U(r)=k-r?/2 (Recall from Lect.12 p.19: k= G?’%P@)
Unit 1

0 ' — t?%g,r(ﬁ . t :/1:;/%(1)” /\Flg 9.8
o a - \% X%}b Q)

1. Area of triangle £, =r X v/2 is constant

{

g

rXV=ry —ry, = acosa)t-(ba) cosa)t)— asina)t-(—ba) sina)t) =ab-w

L~ for IHO
2. Angular momentum L = mr XV 1s conserved
21
L:mrXV=m(rxvy—ryv) m-ab-w=m-ab-— " for IHO
T
3. Equal area 1s swept by radius vector in each equal time interval T
T TY X @ T T
AT:J—err: dt dt:f—rxvdt:ijdt:iT v for IHO
2 2 2 2m 2m
1 2m 2mA L
In one period: T=—= r_ e, the area 1s: A_ = bl (=ab- -7 for ellipse orbit)

VDV @ L 2m
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)

...and certainly apply to the IHO: F(r)=-k-r with U(r)=k-r?/2 (Recall from Lect.12 p.19: k= G?’%P@)
Unit 1

0 ' — t?%g,r(ﬁ . t :/1:;/%(1)‘ /xFlg 9.8
o a - \% X%}b Q)

1. Area of triangle £, =r X v/2 is constant

{

g

rXV=ry —ry, = acosa)t-(ba) cosa)t)— asina)t-(—ba) sina)t) =ab-w

L~ for IHO
2. Angular momentum L = mr XV 1s conserved
21
L:mrXV=m(rxvy—ryv) m-ab-w=m-ab-— " for IHO
T
3. Equal area 1s swept by radius vector in each equal time interval T
T TY X dr T T
X d At X L L
AT:J—r o dt dt:f—r thz—Jdtz—T v for IHO
2 2 2 2m 2m
1 2m 2mA L
In one period: T=—= r_ e, the area 1s: A_ = bl (=ab- -7 for ellipse orbit)
vV O L 2m

( Recall from Lecture 7: @ =~k/m=\Gpy4n/3 )
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Some Kepler's “laws” for all central (isotropic) force F(r) fields

Angular momentum invariance of IHO: F(r)=-k-r with U(r)=k-r’/2 (Derived here)
= Angular momentum invariance of Coulomb: F(r)=-GMm/r> with U(r)=-GMm-/r (Derived in Unit 5)
lotal energy E=KE+PE invariance of IHO: F(r)=-k-r (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r’ (Derived in Unit 5)
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k-r with U(r)=k-r*/2 and Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r

(=0 v —— =V
i Uy o

4

| — t e

—U— /w@ﬁa >
~_ | a N~
1. Area of triangle £} =r X v/2 is constant

-

[HO: kil el

ab-\|Gpy4rw/3  for IHO e for IHO

IXV=ry, —1V, =- o
a b\/ GM@ fOl" Coul. (Derived in Unit 5) b~ for Coul.
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k-r with U(r)=k-r*/2 and Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r

=0 =
Coulombi & gg Y. #\
| I% | - t?w@ﬁi t Z/IG/%GT /\
HO- T S_— S
=r X v/2 1S constant

\4
r

1. Area of triangle X

ab-\|Gpy4m/3  for IHO e for IHO

a_l/zb\/ GM@ fOl’ COl/tl (Derived in Unit 5) l/fOI” Coul.
2. Angular momentum L = mr X v 1s conserved

-

FXV=ry —ry, =-

mab-\|Gpy4r /3  for [HO L~ for IHO
m{l_l/zb\/GM(% fOl’ Coul. .. in Unit 5) L~ for Coul.

L=mr><v=m(rxvy—ryvx):4
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k-r with U(r)=k-r*/2 and Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r

o g
Coulomb. S — N S 7
t = o t = t =
[HO. | a N ~_ | T v=pow
1. Area of triangle £} =r X v/2 is constant
ab-\|Gpy4m/3  for IHO e for IHO

FXV=ry —ry, =-

a"b\|GM

2. Angular momentum L = mr X v 1s conserved

L=mr><V:m(rxvy—ryvx):4

-

3. Equal area 1s swept by radius vector in each equal time interval T

In one period:

1 27 2mA, 2mab-m

T=—= = <
vV @ L L
Applies to Applies to
any central IHO and
F(r) Coulomb
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(

mab-\|Gpgy4r /3  for IHO

for Coul. (.. in nit 5) " for Coul

ma”""b\JGM

2mab-m

m-ab-\/Gp@47r /3

2mab-1w

ma”""b\|GM

fOr Coul. (Derived in Unit {Derived in Unit 5) L~ for Coul.

L~ for IHO

L~ for IHO

L~ for Coul.
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Some Kepler's “laws” that apply to any central (isotropic) force F(r)

Apply to IHO: F(r)=-k-r with U(r)=k-r*/2 and Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r
t=0 = v
VgV
= = = —
y \ \ r V:b (6)
1. Area of triangle £} =r X v/2 is constant

-

ab-\|Gpy4m/3  for IHO
a?b\GM,  for Coul.

2. Angular momentum L = mr X v 1s conserved

FXV=ry —ry, =-

L~ for IHO

(Derived in Unit iberived in Unit 5) l/fOV Coul.

L=mrXv= m(rxvy —ryvx):

-

mab-\|Gpydn /3  for IHO v~ for IHO

ma”""b\JGM

for Coul. (.. in nit 5) " for Coul

3. Equal area 1s swept by radius vector in each equal time interval T

In one period:

L 1 27t 2mA_ 2m ‘ab- 1w
vV L L
Applies to Applies to
any central IHO and
F(r) Coulomb
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= <

(

5 - . ) (not a function of a or b)
mab- I L for IHO
m:ab \/GP@ 4rm /3 \/GP@47Z/3 —~ that is Wixo
2 m.ah. T 27T
- = for Coul
md /b V GM@ Cl ______________ GM@\ that is Wcoul
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Some Kepler’s “laws” for all central (isotropic) force F(r) fields

Angular momentum invariance of IHO: F(r)=-k-r with U(r)=k-r’/2 (Derived here)
Angular momentum invariance of Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r  (Derived in Unit 5)
== Total energy E=KE+PE invariance of IHO: F(r)=-kr (Derived here)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r’ (Derived in Unit 5)
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Kepler laws involve X-momentum conservation in isotropic force F(r)

Now consider orbital energy conservation of the IHO: F(r)=-k-r with U(r)=k-r’/2

Total energy=KE + PE 1s constant

KE + PE = lV-M-V + lr-K-r
2 2
B 1( ) m 0 Ve ( ) k O ¥y
=—| v, Vv, |e ° +| 1. 1 e °
2 0 m v, 0 % 7,
— lmv +lmv + lk}"i +lk1’2
2 2 2 2 7

Vy —awsinwt § | | x | | acoswt
v, b coswt ry y bsinwt

Thursday, February 25, 2016

1 1 1
= —m(—awsinwt)’ + Em(ba) coswt)’ + > k(acoswt)” + > k(bsinwt)’

14



Kepler laws involve X-momentum conservation in isotropic force F(r)

Now consider orbital energy conservation of the IHO: F(r)=-k-r with U(r)=k-r’/2
Total IHO energy=KE + PE 1s constant

KE + PE = lV-M-V + lr-K-r
2 2
B 1( ) m 0 Ve ( ) k O ¥y
=—| v, Vv, |e ° +| 1. 1 e °
2 0 m v, 0 % 7,
— lmv +lmv + lk}"i +lk1’2
2 2 2 2 7

1 1 1 1
= Em(—aa) sinwt)” + Em(ba) coswt)’ + > k(acoswt)” + > k(bsinwt)’

1 : 1 1 | :
= Emazwz(smz wt) + —mbza)i(c:os2 W)’ + Ekaz(c:os2 wt) + Ekbz(sm2 wt)

1 [

= Ema)z(a2 + blz) Given : k = mw”

Thursday, February 25, 2016
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Kepler laws involve X-momentum conservation in isotropic force F(r)

Now consider orbital energy conservation of the IHO: F(r)=-k-r with U(r)=k-r’/2
Total IHO energy=KE + PE 1s constant

KE + PE = lV-M-V + lr-K-r
2 2
B 1( ) m 0 Ve ( ) k O ¥y
=—| v, Vv, |e ° +| 1. 1 e °
2 0 m v, 0 % 7,
— lmv +lmv + lk}"i +lk1’2
2 2 2 2 7

1 1 1 1
= Em(—aa) sinwt)” + Em(ba) coswt)’ + > k(acoswt)” + > k(bsinwt)’

1 1 1 1
= 5 ma2a)2|(sin2 wt) + 5 mb’*®* (cos” mt)* + 5 ka®(cos’ wt) + 5 kb*(sin” wt)
I
1 I I
= Emwz(a2 +b%) Given : k = mw’

1 1 /
E=KE+PE:5ma)2(a2+b2)=5k(a2+b2) since: @ = k :\/Gp@47t/3 or: mw’ =k
m

Thursday, February 25, 2016
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Some Kepler's “laws” for all central (isotropic) force F(r) fields

Angular momentum invariance of IHO: F(r)=-k-r with U(r)=k-r’/2 (Derived here)
Angular momentum invariance of Coulomb: F(r)=-GMm/r’ with U(r)=-GMm-/r  (Derived in Unit 5)
lotal energy E=KE+PE invariance of IHO: F(r)=-k-r (Derived here)
== Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r (Derived in Unit 5)
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Kepler laws involve X-momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k-r with U(r)=k-r’/2
Total IHO energy=KE + PE 1s constant

KE + PE = lV-M-V + lr-K-r
2 2
_ 1( ) m O Vx ( ) k 0O I
=—( v, v, | o + 1, e o
2 0 m v, 0 % 7,
= lmv +lmv + lkr,zc +lkr2
2 2 2 2 7

1 1 1 1
= Em(—aa) sinwt)” + Em(ba) coswt)’ + > k(acoswt)” + > k(bsinwt)’

1 1 1 1
= Emazcozl(sin2 wt) + Elfnbzcoz(cos2 W)’ + Ekaz(cos2 wt) + 5 kb*(sin” wt)
I
1 I I
= Ema)z(a2 +b%) Given : k = mw’

1 1 /
E=KE+PE=5ma)2(a2+b2)=§k(a2+b2) since: M = L3 :\/Gp@47t/3 or: mw’ =k
m

We'll see that the Coul. orbits are simpler: (like the period..not a function of b)
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Kepler laws involve X-momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k-r with U(r)=k-r’/2
Total IHO energy=KE + PE 1s constant

KE + PE = lV-M-V + lr-K-r
2 2
B 1( ) m 0 Vs ( ) kK O Fy
=—( v, v, | o + 1, e o
2 0 m v, 0 k 7,
= lmv +lmv + lkri +lkr2
2 2 2 2 7

1 1 1 1
= Em(—aa) sinwt)” + Em(ba) coswt)’ + > k(acoswt)” + > k(bsinwt)’

1 1 1 1
= Emaza)zl(sin2 wt) + Elfnbzcoz(cos2 W)’ + Ekaz(cos2 wt) + 5 kb*(sin” wt)
I
1 I I
= Ema)z(a2 +b%) Given : k = mw’

1 1 /
E=KE+PE=5ma)2(a2+b2)=5k(a2+b2) since: M = L3 :\/Gp@47t/3 or: mw’ =k
m

We'll see that the Coul. orbits are simpler: (like the period..not a function of b)
1 1 k1 1 M M
EZKE+PE=—mv2x+—mv2 ——=—mv2x+—mv2 _G @m:_G oMM
2 2 r 2 2 7 r a
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=3 | confusing introduction to Coriolis-centrifugal force geometry

Thursday, February 25, 2016

(Derived better later)
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(a) “Earthronaut” orbiting (b) “Carnival kid” orbiting in

tunnel inside Earth space attached to a spring
centrifugal centrifugal
force=+kr force=+kr
orbital velocity=V = IMOAT orbital velocity=V —+mw2r
Earthronaut centripetal Carnival kid
says: force= |F = -kr says:
(due to spripg) :
“This is great! “This is awful! Unlt I
w7 I’'m weightless.” [ can hardly Fig. 9.2
hold onto
this darn
spring.”
Unit 1
| Fig. 9.3
. erigee . ..
Negative power / \ (5 0 ;g/ —b) / Velocity Positive power
( FeV=[F|[V|cos 6 <0) | P & o ( FeV=|F||V|cos 6 >0)

mass losing speed : - mass gaining speed
as it rises 9 perhelionfzb -~ N " fs itfafglsp
(Radius r increasin ‘/~ / / o (Radius r decreasing)
Velocity 0 , A\ apogee
v
\Y% : —4 p=
centripetal force F=-kr aphelion=a (x=a, y=0)
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(a) Centrifugal and Coriolis
Forces on Merry-Go-Round

Mathematician Forc

(to hold m back)
Constraint force

keeps m in radial slot ,,giaf pash

Thursday, February 25, 2016

Rotational
velocity

V=omr

Coriolis for.
(depends on l Physicist Force
(where m wants to go)
speed) centrifugal force

\/

oriolis zorce

l centrifugal force

v
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(a) Centrifugal and Coriolis
Forces on Merry-Go-Round

Mathematician Forc

(to hold m back)
Constraint force

keeps m in radial slot ;a1 pash

Rotational
velocity

V=wr

C}Z)’; wel’lj a{; 0; i > E oriolis force
P l Physicist Force l
(where m wants to go) .
speed) centrifugal force centrifugal force

(b) Centrifugal and Coriolis

Forces on Oscillator Orbit
(Falling phase)

Thursday, February 25, 2016

\/

centripetal fc

centrifugal force .

circle

of

lcurvature

Coriolis force
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(a) Centrifugal and Coriolis
Forces on Merry-Go-Round

Mathematician Forc

(to hold m back)
Constraint force

keeps m in radial slot ;a1 pash

Rotational
velocity

V=wr

C}Z)’; wel’lj a{; 0; i > E oriolis force
P l Physicist Force l
(where m wants to go) .
speed) centrifugal force centrifugal force

(b) Centrifugal and Coriolis

Forces on Oscillator Orbit
(Falling phase)

Thursday, February 25, 2016

\/

centripetal fc

centrifugal force .

circle

of

lcurvature

Coriolis force
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(a) Centrifugal and Coriolis
Forces on Merry-Go-Round

Mathematician Force

(to hold m back) -
Constraint force Coriolis for
: : (depends on
keeps m in radial slot ,,;; al path

speed)

(c) Centrifugal and Coriolis
Forces on Oscillator Orbit

centrifugal force (RZS lng P has 8)

Rotational
velocity

V=wr

Physicist Force

(where m wants to go)
centrifugal force

o

RS - centripetal force F=-kr
S | - al
~ o Coriolis forc ~— —7
N N /
N ~ /
N ~
N /
N /
circle Y
v
of
curvature

Thursday, February 25, 2016

oriolis force

:

l centrifugal force

\/
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Thursday, February 25, 2016

(a) Centrifugal and Coriolis
Forces on Merry-Go-Round

Rotational
Mathematician Force velocity
(to hold m back) V=or
Constraint force C(Zlﬁfelffin Physicist Force o foree
keepS m in radial slot radial path (where m wants to go) .
speed) vcentrifugal force Vcentrlfug al force

centrifugal force .

(b) Centrifugal and Coriolis
Forces on Oscillator Orbit
(Falling phase)

circle

of

curvature

(c) Centrifugal and Coriolis
Forces on Oscillator Orbit

centrifugal force (RZS lng P has e)

centripetal force F=-kr

A

elocity  circle NS . ,
of ~ centrifugal force is
curvature Total inertial force F=+kr

Velocity

(d) Centrifugal Force
on Oscillator Orbit
(apogee and perigee)

centripetal force F=-kr

\J

circle

centrifugal force is centripetal force F=-kr

Total inertial force F=+kr

Velocity
A"

Unit 1
Fig. 11.4
a-d

Coriolis force

Quite confusing?

Discussion of Coriolis
forces will be done more elegantly

and made more physically intuitive
in Ch. 12 of Unitl and in Unit 6.




= [11troduction to dual matrix operator contact geometry (based on IHO orbits)
Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*Q ' *p=1
Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation

Thursday, February 25, 2016
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Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by reQer=1 is called positive-definite (if reQer always >0)

reQer =1 /Q)k./r\
( ) ( )
1 r X
a’ X a’ X’ y2
( X y )O L = 1 = ( X y )O = —2 + —2
0 1 Y Y a- b
12 12
\ b A
A inverse matrix O generates an ellipse by p*O '*p=1 called inverse or dual ellipse:
° Q_1 ° =1 Q_l °P
2
2 P a p
( px py )0 a 0 [ o zlz(mt x :a2p2+b2p2
2 2 X y
0 b Py \ b p, )

Thursday, February 25, 2016
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Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by reQer=1 is called positive-definite (if reQer always >0)

reQer =1 /QI/"\: P
( | ) ( )
1o S U 2
a2 X a2 x2 y2 Defined
( X y )O ) :1:( X y )O :—2—|——2 mappmg
0 L Y e d b between
2 2 -
L b ) X b ) ellipses
A inverse matrix O generates an ellipse by p*O '*p=1 called inverse or dual ellipse:
-1
1 _ Q ‘ep=r
PeQ °p =1 I
2
2 P a p
( e P, ). a” 0 | | ¥ zlz(m. S P S,
2 2 X y
0 b Py \ b p, )
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Introduction to dual matrix operator contact geometry (based on IHO orbits)
= Ouadratic form ellipse r*Qer=1 vs.inverse form ellipse p*QO 'sp=1
Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation

Thursday, February 25, 2016
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(a) Quadratic form ellipse and
Inverse quadratic form ellipse

Defined

mapping
between
ellipses

p*Qlep =per = |

Thursday, February 25, 2016

based on
Unit 1
Fig. 11.6
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(a) Quadratic form ellipse and
Inverse quadratic form ellipse

Defined

mapping
between
ellipses

|

\
\

\ \
\\ \
\
\‘\ \
\ \ )
\ /
\ / reQer
. /
\ ,/
\ /
~ h / 7

Inverse ellipse . | .~
poQ']op =per = ]

Here plot of p-ellipse 1s re-scaled by scalefactor S=a b

Original ellipse
rep =/

p-ellipse x-radius=l1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)

Thursday, February 25, 2016

based on
Unit 1
Fig. 11.6
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*QO '*p=1

— Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
Operator geometric sequences and eigenvectors

Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
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(a) Quadratic form ellipse and based on

Inverse quadratic form ellipse FUnilt116
ig. 11.

Defined

mapping
between
ellipses

/IOriginal llipse
rep =/

Inverse elli
p*Qlep =per =/

Quadratic form y*Qer =1 has muiual duality relations with inverse form peQ~ep =1=per

Here plot of p-ellipse 1s re-scaled by scalefactor S=a b
p-ellipse x-radius=l1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)
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(a) Quadratic form ellipse and

based on
Inverse quadratic form ellipse FUnilt116
ig. 11.
Defined
mapping
between
ellipses
°Dp I
poQ']op =per = ]
Quadratic form y*Qer =1 has muiual duality relations with inverse form p*Qep =1= per
r
—~ N — A /\Ij)k/\
1/a> 0 X x/a’ (1/a)cos¢ X=T,=dacosf)=acosmt
p=Qer= o = , |= ) where: . . SO: |per=1
0 1/b’ y y/b (1/b)sin¢ y=r,=bsing =bsinw?

Here plot of p-ellipse 1s re-scaled by scalefactor S=a b

Link = BoxlIt simulation of IHO orbits

p_ellipse X'radiUSZI/a pl()tted at. S(l/a) =b (=1 fOI' a:23 b :1) Link — THO orbital time rates of change
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1) Link — [HO Exegesis Plo
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http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C0&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C0&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C0&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C1&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=1%7C1&semiMajor=1.0&semiMinor=0.125
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html

Introduction to dual matrix operator geometry (based on IHO orbits)

—>

Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*QO '*p=1

Duality norm relations (rep=1)

O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry

Vector calculus of tensor operation

Thursday, February 25, 2016

36



(a) Quadratic form ellipse and (b) Ellipse tangents based on

Inverse quadratic form ellipse FUniltll6
ig. 11.

Inverse elli
p*Q-lep =per =/

Quadratic form y*Qer =1 has muiual duality relations with inverse form peQ~ep =1=per

L 1/a> 0 j [ X ] [ x/a’ ] [ (1/a)cos¢ } X=7r,=acos¢=acosmt

Qer= ° = = , where: , , SO: |per=1
0 1/b° y y/b’ (1/b)sin¢ y=r,=bsing =bsinw?

Here plot of p-ellipse 1s re-scaled by scalefactor S=a b

p-ellipse x-radius=l1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)

Thursday, February 25, 2016
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(a) Quadratic form ellipse and (b) Ellipse tangents based on

Inverse quadratic form ellipse FUni;:116
ig. 11.

p*Q'p =per =/
Quadratic form y*Qer =1 has muiual duality relations with inverse form peQ~ep =1=per
1/a> 0 X x/a’ (1/a)cos¢ X=T,=acosf =acosmt
p=Q-r= ¢ = , |= ) where: . . SO: por:]
0 1/b° y y/b (1/b)sin¢ y=r,=bsing =bsinw?

p is perpendicular to velocity v=r , a muiual orthozonality

" =—as =(1/
f"P:OZ( Fo . ).[ , ]:( —asing bcos¢ ){ aisying ] where: = asing and: p.=(l/a)cosd

’ p, (1/b)sing " 7, =bcos¢ " p,=(1/b)sing

Thursday, February 25, 2016



(a) Quadratic form ellipse and (b) Ellipse tangents
Inverse quadratic form ellipse b(0)

P(O)=p(d+7/2) Unit 1
Fig. 11.6

,/IOriginal llipse
rep =/ S
vector p(0) is

vector p(Q
Inverse elli perpendicula erpendicular
peQ/ep =per = I 10 1(0) 0 |
untt
Quadratic form y*Qer =1 has muiual duality relations with inverse form pQep =1 mutual
projeciion
1/a> 0 X x/a’ (1/a)cos¢ X=T,=acosf =acosmt
p=Qer= o = , |= ) where: . . so: [per=1
0 1/b° y y/b (1/b)sin¢ y=r,=bsing =bsinw?
p is perpendicular to velocity v=r , a muiual orthozonality. So is ¥ perpendicular to p: per=0
.. X 1/a)cos F.=—asin p.={/a)cos
f'Op:O:( r.or, )0 P :( —asing bcoso )0 (17a) , ? where: ¢ and: , ?
D, (1/b)sing F, =bcosg p,=(1/b)sing
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*Q ' *p=1
Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
—) Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
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based on
Fig. 11.7

in Uni

Here b/a=1/2

Thursday, February 25, 2016
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Thursday, February 25, 2016

Diagonal R-matrix acts on vector v*”.

Resulting vector has slope changed by factor ¢

Action of “sqrt-"matrix R=NQO

slope slopé
/ a/b /1

\ slope

\

' b/a

Action of “‘sgrt!-"matrix R-1 =NQ-!
Diaglonal R™'-matrix acts on vector v*"”.

based on
Fig. 11.7
in Uni

Here b/a=1/2

Resulting vector has slope changed by factor b/a.

42



Diagonal R-matrix acts on vector v, slope

Resulting vector has slope changed by factor ¢ a’ _,;,//)3'

e

1/a
0

0
1/b

X
Y

Action of “sqrt-"matrix R=NQ
slop
71

slope
/ a/b

(It increases if @ >b.)

_slope

b/a

(It increases if « >b.)

slope
-, 9

-~ b*/a*

\ — —--(( 1 7 . -] — _]
| _Action of “sqrt’-"matrix R NO

—Diagonal R™'-matrix acts on vector v

based on
Fig. 11.7

in Uni

Here b/a=1/2

Thursday, February 25, 2016
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Diagonal R-matrix acts on vector v*”.

Resulting vector has slope changed by factor «

. 1/a O
YOl oo

(It increases if @ >b.)

2

x/a

y/b*

)

(It increages if @ >b.)

Either progess can go on forever...

n

. 2 .
Diagonal (R*"=Q%)-matrix acts on vecer v*"”.

Resulting vegtor has slope changed by factor ¢ /" =

4.

slop
71

slope

b/a

slope

b?/a?

slope

b3/a3

based on
Fig. 11.7

in Uni

Here b/a=1/2

Thursday, February 25, 2016

Resulting ve

f has slop¢ changed by factor b*"/a™" = 47",

n
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Diagonal R-matrix acts on vector v*”.

Resulting vector has slope changed by factor

Rovi I/a O x| x/a
YT 0 oww |y T
EIGENVECTOR

)

(It increases if

Diagonal (R*=Q)-matrix acts on vector v .

Resulting vector has slope changed by factor
Qev = Va*> 0O x| _ x/a’
0 b Y y/b*

(It increases if

Either process can go on forever...
Diagonal (R*"=Q")-matrix acts on vector v,

Resulting vector has slope changed by factor a”" /b”" = 4.
...Finally, the result approaches EIGENVECTOR |y)= ( (1) )

of co-slope which is "immune" to R , Q or Q" :
R|y)=(1/b)]y) Q'|y)=(/b")"

y)

Here b/a=1/2

Thursday, February 25, 2016

EIGENVEC % OR

X)

Either process can go on forever...
Diagonal (R™"=Q™")-matrix acts on vector v

Resulting vector has slope changed by factor b°"/a”" = 47",
..Finally, the result approaches EIGENVECTOR |x)= ( (1) }

of 0-slope which is "immune"toR™ , Q™' or Q™" :

R™ | x> = (a)| x> Q™ x> =(a’)" x>

45



Diagonal R-matrix acts on vector v*”. Here b/a=1/2

Resulting vector has slope changed by factor « /b =72

.y [1/61 0 J[xj [x/a]
R.V Y = =
0o b || v yib
(It increases if @ >b.) EIGENVECTOR

)

Diagonal (R*=Q)-matrix acts on vector v .
Resulting vector has slope changed by factor ¢ /5" =

Qev Va*> 0O X x/a’
oV = =
0 /b’ Y y/b*

(It increases if « >b.) EIGENVEC % OR

X)

Either process can go on forever... Either process can go on forever...

Diagonal (R*"=Q")-matrix acts on vector v, Diagonal (R™"=Q™")-matrix acts on vector v

Resulting vector has slope changed by factor a”" /b”" = 4. Resulting vector has slope changed by factor b°"/a”" = 47",
...Finally, the result approaches EIGENVECTOR |y)= ( (1) j ..Finally, the result approaches EIGENVECTOR |x)= ( (1) ]
of co-slope which is "immune" to R , Q or Q" : of 0-slope which is "immune"toR™ , Q™' or Q™" :

R[Y)=(b)y) Q) =5y R[x)=@]x)  Q[x)=(a)]x)

> Eigensolution
Eigenvalues Relations Eigenvalues
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*Q ' *p=1
Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
Operator geometric sequences and eigenvectors
=P Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
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You may rescale p-plot by scale factor S=(a'b) Here b/a=1/2
so r-Q-r and p-O'-p ellipses are to be same size

1 slope
PO <p —¢llipse 1/1

a’p,+b’p) =
(a=2, bEI)

«Qer —ellipse

\ 12
Start with|45° unit vector v\ o= :
y 1A2

Here plot of p-ellipse 1s re-scaled by scalefactor S=a-b
p-ellipse x-radius=l1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)
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..or else rescale p-plot by scale factor S=b Here b/a=1/2

to separate r-Q-r and p-O1'-p ellipses into different yegions
—] ——
agore [¥|1=1 and |p|<1
p-Q ' +p|-ellipse 1/1
a’p’+ bzpi =1
(a=2, |b=1)
N 8= —
*Qer —ellipse Start with 45° unit vector W\=| ~ |= 1n2 :
y 12
=l Va=1/2 a="2
> =1/ __

Here plot of p-ellipse 1s re-scaled by scalefactor S=b
p-ellipse x-radius=1/a plotted at: S(1/a)=b/a (=1/2 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=1
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Action of matrix Q that generates an r-ellipse (reQer =1)
on a single r-vector r(¢.1)...

slope

/b=2
P(‘Pl) =Q- r(¢_1)

_ l/cz2
0 1/b*

Variation of r<Qer-ellipse
Fig. 11.7

in Unit 1

(§-1)

A

Here plot of p-ellipse 1s re-scaled by scalefactor S=b
p-ellipse x-radius=1/a plotted at: S(1/a)=b/a (=1/2 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=1
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Action of matrix Q that generates an r-ellipse (reQer =1)
on a single r-vector r(¢.)... is to rotate it to a new

vector p on the p-ellipse (p+Q'p =1),
that is, Q°r(6.1) = p(6+1)

slope
R - /b=2

/

P(¢)=Q-1r(9_)

_| 1/a* 0
0 1/

1
—Cos¢,

slgpe
1/1

0:45

b$1.0 siope
bla-1/2

y G <

1

Py,
Z Sil’l ¢0 ((P])

—_——= N -
S-S

r-Q-r-ellipse

Variation of
Fig. 11.7
in Unit 1
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Action of matrix Q that generates an r-ellipse (e
on a single r-vector r(¢.)... is to rotate it to a new
that is, Q°r(6.1) = p(6+1)

pDer =1)
vector p on the p-¢llipse p+Q'+p =1),

slope
- /b=2
]
p(¢)=Q-r(¢_)
_ l/a2 0
0 1/b°
b—:].Ogﬁ__
| (o
) ;cosd)o (s
B p(e,
%sinqbo ((p-f)

(0]

slagpe

1A
)=43°

slope

0.

a=1/,2

Key points
of
matrix
geometry:
Matrix Q maps any
vector r (o a new
vector p normal to

the tangent 1 to its
r<Q-r-ellipse.

r

r-Q-r-ellipse

Variation of
Fig. 11.7
in Unit 1

Thursday, February 25, 2016
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Action of matrix Q that generates an r-ellipse (re

on a single r-vector r(¢.)... is to rotate it to a new

that is, Q°r(6.1) = p(6+1)

P(¢)=Q-1r(9_)

l/a2 0
0 1/b*

1.0

_—\.

pDer =1)
vector p on the p-¢llipse p+Q-'+p =1),

slope

(o

p(e,

(0.)

slagpe

1A
)=43°

0.

slope

a-1vector p normal to

Key points
of
matrix
geometry:

Matrix Q maps any
vector r to a new

the tangent 1 to its
r<Q-r-ellipse.

Variation of
Fig. 11.7
in Unit 1

Thursday, February 25, 2016

r-Q-r-ellipse

"~
Matrix O maps p
back to r that is
normal to the
tangent p to its

pe O« p-ellipse.
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*Q ' *p=1
Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
— Vector calculus of tensor operation
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B#0

Derive matrix “normal-to-ellipse”geometry by vector calculus:

A B
Let matrix Q = [ B D)

o o

O ™

—

—

< =
Il

A-x+B-y 5 )
( Xy )- =A-x"+2B-xy+D-y =1

define the ellipse 1=rQer =( Xy )( B-x+D-y

Thursday, February 25, 2016
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B=0

Derive matrix “normal-to-ellipse”geometry by vector calculus:

A B
Let matrix Q = [ B D)

& >

define the ellipse 1=r+Qer =| * Y |* Bl © = « y e Azt By =A-x>+2B-xy+D-y’ =1
/i P & D )| vy B-x+D-y

Compare operation by Q on vectorr  with  vector derivative or gradient of r+Qer

0
g(r-Q-r)=V(r-Q-r)
(A B)(x)_£A'x+B'Y] ar
B D y | | B-x+D-y ox ) [ 2A4-x+2B-y
A-x*+2B-xy+D-y?)=
B (A" +2B-xy+D-y) (2B-x+2D-y]
dy

Thursday, February 25, 2016

56



B=0

Derive matrix “normal-to-ellipse”geometry by vector calculus:

A B
Let matrix Q = [ B D)

& >

define the ellipse 1=r+Qer =| * Y |* Bl © = « y e Azt By =A-x>+2B-xy+D-y’ =1
/i P & D )| vy B-x+D-y

Compare operation by Q on vectorr  with  vector derivative or gradient of r+Qer

air(r-Q-r)=V(r-Q-r)
(A Bj£x)_£A-x+B-y] /a
B D y | | B-x+D-y ox ) o [ 2A-x+2B-y
i (A-x*+2B-xy+D-y )—( 2B.%42D-y ]
dy
Very simple result:
0 (reQer r-Q-r)
:V = o
=

Thursday, February 25, 2016
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Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse r*Qer=1 vs.inverse form ellipse p*Q ' *p=1
Duality norm relations (rep=1)
O-Ellipse tangents v/ normal to dual QO -ellipse position p (r'*p=0=rep’)
(Still more) Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
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Action of “sqrt-"matrix R=NQ (R generates another ellipse r-R-r =1 not shown)
on a single r-vector r(¢.)... is to rotate it to w-circle (u-u =1), that is, Rer¢..) = u =(const.)r(¢o)

slope
/b=2
i
u=Q-r(¢_)=R-r(g_)) sipe
1/1
(e o) 2o
0 1/b bsing, l
1.0 slope
1
—acosg, 0
= a =
lbsinqz)
b 0
1
B 2
1
> rQer-¢llipse

a unit vector
on unit-circle

Variation of
Fig. 11.7

in Unit 1
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As before, these processes may be
continued indefinitely.

1.0

=
<

slgpe

N

slope
bla
1

slope

0.

reQer-ellipse

2 /2 2 /12—
r e +r 2/ =1

@20, b==10)

(a =

Thursday, February 25, 2016

20, b==10

Variation of

1g. 11.7
in Unit 1

60



...And includes a cool way to

construct those tangents (@, )..p(@,) etc.

(see exercises!)

0 __a2/b2 slope
; ¢2 /b
slgpe
1/1
i(¢,) /|
~ slope
n r(¢7) (o T\\\ N \ %
é ? 3 O,

slope

. ‘-"\

r<Qer-ellipse
Jrfo/az2 +ry2/b2 =]

@20, b==10)

Thursday, February 25, 2016

2.0, b==10

ariation of
Fig. 11.7

in Unit 1
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Q:Where is this headed?
Preview of Lecture 9

A: Lagrangian-Hamiltonian duality
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The R and QO matrix transformations are like the mechanics rescaling matrices \M and M.

Like O=R>: " Like NO=R: Like O'=R-: "
ike Q= M[ 0 J:R ke NO= \/M_[\/;l 0 ]_RleQ Ml:[l/1 0 J‘Rz

m, 0 \/m72 0 1/m,
(a) Lagrangian L = L(v,v,) FUniltzll (b) Estrangian E '=.E( V], V)
Collision line and 18 14 250 Collision line and
COM tangent slope CO§4 \t/angf/nt slope
/=-m1/m2=—]6 m ,/Nm ,=
Slope=1
COM Bisector
| /Slope = 1/1 \Vl \/m v,
COM Bisector slope
Vi
c) Hamiltonian H = H(p ,,
. () (p] pZ) Collision line and
COM Bisector slope
= mm, =1/16 COM tangent slope
=-1/1
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Unit 1
Fig. 12.2

Lagrangian plot

(a)

L(v)=const.=veMev/2

V2|:p2/m2

OSSR ot

(C) Overlapping plots

L=const = F

sl p /

—

Thursday, February 25, 2016

iltoni Ln{ tangentZ momentum p

is normal to velocity v

{ ] E
o py/m
\I/
I
7
\ | A\(d) Less mass \ Hun
\ | : /I
NV T | —
= il
— (6) More mass\ /
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