Read Unit 2 Chapter 4 (all) and Chapter 5 thru part (9).
1.In class ${ }^{\dagger}$ we constructed a quadratic dispersion (v, κ)-plot (frequency $v v s$ wavenumber κ) for the case of quadratic dispersion $v=\kappa^{2}$. The case involved a 1-CW (single coherent wave) with wavenumber ($v=-1$) colliding with another $1-\mathrm{CW}$ of wavenumber $(v=+2)$ and required you to derive and plot $2-\mathrm{CW}$ (pair of interfering coherent waves) parameters frequency $v_{\text {Phase }}^{2-C W}$ and $v_{\text {Group }}^{2-C W}$ with wavenumbers $\kappa_{\text {Phase }}^{2-C W}, \kappa_{\text {Group }}^{2-C W}$. With these we found wave velocities $V_{\text {Phase }}^{2-C W}$ and $V_{\text {Group }}^{2-C W}$.

Now do this for the case of linear dispersion $v=\kappa^{1}$ involving a 1-CW (single coherent wave) with wavenumber $(v=-1)$ colliding with another 1-CW of wavenumber $(v=+4)$. Use per-spacetime graph paper provided in class ${ }^{\dagger}$ to find 2-CW parameters $v_{\text {Phase }}^{2-C W}, v_{\text {Group }}^{2-\mathrm{CW}}, \kappa_{\text {Phase }}^{2-\mathrm{CW}}, \kappa_{\text {Group }}^{2-\mathrm{CW}}$, and velocities $V_{\text {Phase }}^{2-\mathrm{CW}}$ and $V_{\text {Group }}^{2-\mathrm{CW}}$. Make a table of the wave per-space-time parameters and (reciprocal) space-time ones as done in class.
2.The second part of the class ${ }^{\dagger}$ construction involved using the space-time $2-\mathrm{CW}$ parameters that are reciprocals of $v_{\text {Phase }}^{2-C W}, v_{\text {Group }}^{2-C W}, \kappa_{\text {Phase }}^{2-C W}, \kappa_{\text {Group }}^{2-C W}$, namely periods $\tau_{\text {Phase }}^{2-C W}, \tau_{\text {Group }}^{2-C W}$ and wavelengths $\lambda_{\text {Phase }}^{2-C W}, \lambda_{\text {Group }}^{2-C W}$.

Now do this for the case of linear dispersion $v=\kappa^{1}$ in part 1. and use the provided spacetime graph paper to plot and label a lattice for ideal 2-CW real-zeros in space and time. Label the line segments that correspond to periods and wavelengths as was done in class. Choose points so you make a symmetric array around origin $(0,0)$ having at least 16 cells.
\dagger Class step-by-step constructions are in Lecture 22 ranging from p. 40 to around p. 70.
BohrIt animations in lecture show space-time lattices. First example is around p. 40.

Physics 3922H Physics Colloquium Thur. 3.17.2016

