Read Unit 2 Chapter 3 (all) and Chapter 4 thru part (b).

The following deals with spinors, matrix eigensolutions, and applications of them 2D-HO

2.4.1 Derive multiplication table for spinor matrix operators:

 $\sigma_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma_{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \sigma_{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_{C} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\frac{\sigma_{0}}{\sigma_{A}}$

(a)Two of the operators are real mirror-plane reflections (Recall superball Theory in Ch. 4-5) Describe what reflection each of these did.

Consider a normal combination $\sigma(\theta) = \sigma_A \cos \theta + \sigma_B \sin \theta$. Does it square like a reflection $\sigma(\theta)^2 = ?$

(b)What is its effect on vectors $|x\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|y\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$? Display on graph for $\theta = 30^{\circ}$ and $\theta = 45^{\circ}$.

(c) Use the functional spectral decomposition (Lect. 18 around p.61-63) to derive the following matrix functions of the spinor matrices: (Show that more than one answer exists for each.)

$$\sqrt{\sigma_A} =$$
_____, $\sqrt{\sigma_B} =$ _____, $\sqrt{\sigma_C} =$ _____, $\sqrt{\sigma(\theta)} =$ _____,

$$e^{-i\phi\sigma_A} =$$
 _____, $e^{-i\phi\sigma_B} =$ _____, $e^{-i\phi\sigma_C} =$ _____, $e^{-i\phi\sigma(\theta)} =$ _____,

Compare last four results with what you get from the "Crazy-Thing-Theorem" (Lect. 18 p.31).

(d) 2D-HO phasor space and quantum spin $\frac{1}{2}$ is described by a state vector with 4-parameters

 $|\psi\rangle = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = r \begin{pmatrix} e^{-i\frac{\alpha}{2}}\cos\frac{\beta}{2} \\ e^{+i\frac{\alpha}{2}}\sin\frac{\beta}{2} \end{pmatrix} e^{-i\frac{\gamma}{2}}.$ Express the 4 phase phase variables (x_1, p_1, x_2, p_2) in terms of

the radius *r*, three Euler-polar angles (azimuth α , polar angle β , and phase γ) of spin (Stokes) vector **S**. Also express (x_1 , p_1 , x_2 , p_2) in terms of (A, B, C, D) following projector method in Lect. 18 p.74-75.