Read Unit 2 Chapter 3 (all) and Chapter 4 thru part (b).

The following deals with spinors, matrix eigensolutions, and applications of them 2D-HO
2.4.1 Derive multiplication table for spinor matrix operators:
$\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \sigma_{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \sigma_{B}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{C}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$

	σ_{0}	σ_{A}	σ_{B}	σ_{C}
σ_{0}				
σ_{A}				
σ_{B}				
σ_{C}				

(a)Two of the operators are real mirror-plane reflections (Recall superball Theory in Ch. 4-5) Describe what reflection each of these did.
Consider a normal combination $\sigma(\theta)=\sigma_{A} \cos \theta+\sigma_{B} \sin \theta$. Does it square like a reflection $\sigma(\theta)^{2}=$?
(b)What is its effect on vectors $|x\rangle=\binom{1}{0}$ and $|y\rangle=\binom{0}{1}$? Display on graph for $\theta=30^{\circ}$ and $\theta=45^{\circ}$.
(c) Use the functional spectral decomposition (Lect. 18 around p.61-63) to derive the following matrix functions of the spinor matrices: (Show that more than one answer exists for each.)
$\sqrt{\sigma_{A}}=$ \qquad , $\sqrt{\sigma_{B}}=$ \qquad , $\sqrt{\sigma_{C}}=$ \qquad , $\sqrt{\sigma(\theta)}=$ \qquad ,
$e^{-i \phi \sigma_{A}}=$ \qquad , $e^{-i \phi \sigma_{B}}=$ \qquad , $e^{-i \phi \sigma_{C}}=$ \qquad , $e^{-i \phi \sigma(\theta)}=$ \qquad ,
Compare last four results with what you get from the "Crazy-Thing-Theorem" (Lect. 18 p.31).
(d) 2D-HO phasor space and quantum spin $1 / 2$ is described by a state vector with 4-parameters $|\psi\rangle=\binom{x_{1}+i p_{1}}{x_{2}+i p_{2}}=r\binom{e^{-i \frac{\alpha}{2}} \cos \frac{\beta}{2}}{e^{+i \frac{\alpha}{2}} \sin \frac{\beta}{2}} e^{-i \frac{\gamma}{2}}$. Express the 4 phase phase variables $\left(x_{1}, p_{1}, x_{2}, p_{2}\right)$ in terms of
the radius r, three Euler-polar angles (azimuth α, polar angle β, and phase γ) of spin (Stokes) vector \mathbf{S}. Also express ($x_{1}, p_{1}, x_{2}, p_{2}$) in terms of (A, B, C, D) following projector method in Lect. 18 p.74-75.

