The following is to acquaint you with of some lesser known properties of exponentials and logarithms 1.8.1 Backsides of exponentials
(a) Follow zig-zag scheme shown at the beginning of Lect. 11 to make plots of exponential $y=\mathrm{e}^{x}$ at as many integer points $x=-2,-1,0,1,2, .$. as is practical on full page graph paper provided online or in lab. Then add to the plot precise half-way points $x=-2.5,-1.5,-0.5$, etc... as is practical. Show how a plot of $y=\log _{e} x$ function is obtained from the graph
(b) By algebra or geometry find tangent lines and their slope at integer points $x=-2,-1,0,1,2, .$. (This is equivalent to solving the part (c) of this exercise.)
(c) As a roller-coaster car moves down a track $y=e^{x}$ it shines one laser headlight beam along the track and another droplight beam vertically downward so both make spots on baseline $y=0$. Find the distance between spots as function of x.

1.8.2 Sophomore-Physics-Earth

(a) Follow the zig-zag scheme in Lect. 11 (or in Fig. 8.5 and 8.7 of text) to construct the potential and force curves of the Ideal Uniform Density Earth inside $\left(P E(x)=k x^{2} / 2+P E(0)\right)$ and outside $\left(P E(x)=-x^{-1}\right)$.
(b) On graph show focal point, latus-radius, and directrix of the inside PE parabola. Draw as accurately as possible the parabola's circle of curvature contacting it at $x=0$.
(c) Draw a "kite" (see Fig. 8.4 in text) tangent to parabola at $x=1$ and another tangent at $x=1 / 2$.
1.8.3 Tunnels to UK (5600 miles as an earthworm crawls) are shown below. One high-road is a direct route. A low-road turns at the Earth center. (Travel and turn-around are assumed frictionless and survivable.)
(a) What is the time for each trip? Discuss using geometry or algebra arguments.

(b) Lots of roads

(b) Assume cars in subway tunnels depart Ark. at time $t=0$ as indicated above. Describe curve (thru dots shown) locating car positions at a later mid-trip time t before arrival and at arrival. (Thales geometry of circular chords may help. Recall superball figure 6.1 in text.)
(c) What if the half-way turn-around point is above the Earth-center. Is trip quicker or slower?
(a) Follow zig-zag scheme shown at the beginning of Lect. 11 to make plots of exponential $y=\mathrm{e}^{x}$ at as many integer points $x=-2,-1,0,1,2, .$. as is practical on full page graph paper provided online or in lab. Then add to the plot precise half-way points $x=-2.5,-1.5,-0.5$, etc... as is practical. Show how a plot of $y=\log _{e} x$ function is obtained from the graph

Each slope line intersects $y=0$ exactly -1 unit distance from their x-coordinate point.
If the graph is expanded it clearly shows that there is unit distance $(\Delta x=1)$ between x-axis intersections of any tangent to point $\left(x, y=e^{x}\right)$ and the vertical line $x=x_{1}$ going thru that point.
Quite remarkable! All tangents to $y=e^{x}$ have unit footprints.

Exercise 1.8.3. Tunnels to UK (5600 miles away as an earthworm crawls) are shown below. One highroad is a direct route. The other low-road turns around at the Earth center. Travel and turn-around are assumed frictionless and survivable. (a) How long is each trip? Discuss. Both the same.

(b) Lots of roads

(b) A network of subways leaving Ark. at time $\mathrm{t}=0$. What curve (like the dots) describe each moment? Each is on a circle at distance $r_{A}=D \cos \theta$ from A with $D=R_{\text {earth }}\left(1-\cos \omega_{\text {earth }}\right)$. θ is subway polar angle and $\pi / \omega_{\text {earth }}=42$ minutes is the one-way surface-to-surface trip on each θ path having length $\mathrm{L}=\mathrm{R}$ earth $\cos \theta$.

(c) What if the half-way turn-around point is above the Earth-center. Is trip quicker or slower?

There is a point nearly midway between the bend at Earth-center and the center of the straight Ark. to U.K. track where the bend should be to achieve a minimum travel time and shorter than the others'.

The more difficult problem of deep-V-tunnel global travel is solved similarly, but a geometric solution sketched below is quick (once you see the trick!). The trick is to imagine a pencil of competing tunnels going out from both point A and point B so that the trial runs form two expanding circles that finally touch on a tangent that bisects the A-to-B longitude angle $\phi_{A O B}=\Delta \phi$. We find the angle $\alpha=\pi / 4-\Delta \phi / 4$ between shortest path and quickest path. It approaches $\alpha=45^{\circ}$ in the local limit $\Delta \phi \rightarrow 0$. The $A M B$ vertex angle is $\phi_{A M B}=\pi / 2+\phi_{A O B} / 2$ and approaches a local 90° limit. Half the $A M B$ vertex angle is $\phi_{A M B} /$ $2=\pi / 2-\alpha=\alpha_{C}$ (compliment of α) that is also horizon dip angle between the horizon and the quickest path. For short trips: $\alpha=\alpha_{C}=45^{\circ}$. For longer trips: $\alpha<45^{\circ}$ and $\alpha_{C}>45^{\circ}$.

Each circle diameter $D=2 r$ (in units of Earth radius R_{\oplus}) expands as $D=1-\cos \theta$ where $\theta=\omega t$ is the circular orbit angle subtended by projecting the diameter point to the Earth circle. Travel time T is proportional to angle θ with $\theta=\pi$ corresponding to 42 minutes of a half-circle orbit and $\theta=\pi / 2$ to 21 min . (Going half-way between A and B by the straight tunnel takes 21 minutes.)

The following is a general solution with the $\phi=\Phi / 2=45^{\circ}$ case given numerically.

