The first two problems appeared on the 2016 PhD physics qualifying exam (...and I did not suggest them but I did vote for them.)

Superball tower IBM phenomena (Independent Bang Model with initial $V_{k}=-1$)

The 100\% energy transfer limit
1.7.1 Suppose each m_{k} has just the right mass ratio m_{k} / m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+l} so the top ball- N, a lgm pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) $N=2$, (b) $N=3, \quad$ (c) $N=4$.
(d) Give algebraic formula for this Maximum Amplified Velocity factor in terms of N (MAV(N) $=$ \qquad ?).
(e) Give algebraic formula neighbor-mass ratios $R=M_{N-1} / M_{N}$ in terms of $N(R(N)=$ \qquad ?).

The towering limit

1.7.2 Suppose each m_{k} is very much larger than m_{k+l} above it so that final v_{k+l} approaches its upper limit. Then top m_{N} goes off with nearly the highest velocity v_{N} attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) $N=2, \quad$ (b) $N=3, \quad$ (c) $N=4$.
(d) Give algebraic formula for Absolute Maximum Amplified Velocity factor in terms of N (AMAV(N) $=$ \qquad ?).

The optimal idler (An algebra/calculus problem)

1.7.3 Assume the usual initial conditions for IBM. Find optimum mass m_{2} in terms of masses m_{1} and m_{3} that will get the maximum final v_{3} for mass m_{3}. Also, find that v_{3} value.

The last problem was considered too difficult for the 2016 PhD qualifying exam.

Superball tower IBM model constructions (Independent Bang Model with initial $V_{k}=-1$)
The 100\% energy transfer limit
1.7. Suppose each m_{k} has just the right mass ratio m_{k} / m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+1} so the top ball- N, a lgm pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) $N=2$, (b) $N=3$, (c) $N=4$.
(d) Give algebraic formula for this Maximum Amplified Velocity factor in terms of $N(\operatorname{MAV}(N)=$ \qquad ?).
(e) Give algebraic formula neighbor-mass ratios $R=M_{N-1} / M_{N}$ in terms of $N(R(N)=$ \qquad ?)
The towering limit
1.7.2 Suppose each m_{k} is very much larger than m_{k+l} above it so that final v_{k+l} approaches its upper limit. Then top m_{N} goes off with nearly the highest velocity v_{N} attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) $N=2$, (b) $N=3$, (c) $N=4$.
(d) Give algebraic formula for Absolute Maximum Amplified Velocity factor in terms of $N($ AMAV $(N)=$ \qquad ?).

$1^{\text {st }}$ case shows linear series of final velocity. $2^{\text {nd }}$ case shows geometric or exponential series of velocity.

(Solutions to Assignment 5 contd) The optimum idler:

1.7.3 To get highest final v_{3} of mass m_{3} find optimum mass m_{2} in terms of masses m_{1} and m_{3} that will do that.

Let $m_{1}=M, m_{2}=x$ and $m_{3}=m$. Then use (5.1b): $\binom{v_{1}^{F N}}{v_{2}^{F I N}}=\frac{1}{m_{1}+m_{2}}\left(\begin{array}{cc}m_{1}-m_{2} & 2 m_{2} \\ 2 m_{1} & m_{2}-m_{1}\end{array}\right)\binom{v_{1}}{v_{2}}$ in stages. 1st stage gives:
$v_{x}^{E N}=\frac{3 M-x}{M+x}$
$\binom{v_{M}^{E I N}}{v_{x}^{F I N}}=\frac{1}{M+x}\left(\begin{array}{cc}M-x & 2 x \\ 2 M & x-M\end{array}\right)\binom{1}{-1}=\frac{1}{M+x}\binom{M-3 x}{3 M-x}$. The 2nd stage:
$\binom{v_{x}^{E N}}{v_{m}^{E I N}}=\frac{1}{x+m}\left(\begin{array}{cc}x-m & 2 m \\ 2 x & m-x\end{array}\right)\binom{\frac{3 M-x}{M+x}}{-1}$
The velocity v_{m} is to be maximized.
$v_{m}^{F I N}=\frac{2 x \frac{3 M-x}{M+x}-(m-x)}{x+m}=\frac{6 M x-2 x^{2}+(x-m)(M+x)}{(M+x)(x+m)}=\frac{-x^{2}+(7 M-m) x-m M}{x^{2}+(M+m) x+m M}=\frac{N(x)}{D(x)}$
Derivative $\frac{1}{D(x)} \frac{d N}{d x}-N(x) \frac{d}{d x} \frac{1}{D(x)}=\frac{D(x) \frac{d N(x)}{d x}-N(x) \frac{d D(x)}{d x}}{D(x)^{2}}$ is set to zero.

$\left(x^{2}+(M+m) x+m M\right)(-2 x+(7 M-m))$								$-\left(-x^{2}+(7 M-m) x-m M\right)(2 x+(M+m))=0$			
	x^{2}	$+(M+m) x$	$m M$		x^{2}	$-(7 M-m) x$	$m M$				
$-2 x$	$-2 x^{3}$	$-2(M+m) x^{2}$	$-2 m M x$	$2 x$	$-2 x^{3}$	$-2(7 M-m) x^{2}$	$2 m M x$				
$(7 M-m)$	$(7 M-m) x^{2}$	$(7 M-m)(M+m) x$	$(7 M-m) m M$	$(M+m)$	$(M+m) x^{2}$	$-(M+m)(7 M-m) x$	$(M+m) m M$				

Cancellations simplify it.

	$\left(x^{2}+(M+m) x+m M\right)(-2 x+(7 M-m))$				$-\left(-x^{2}+(7 M-m) x-m M\right)(2 x+(M+m))=0$		
	x^{2}	$+(M+m) x$	$m M$		x^{2}	$-(7 M-m) x$	$m M$
$-2 x$		$-2(M) x^{2}$		$2 x$		$-2(7 M) x^{2}$	
($7 M-m$)	$(7 M) x^{2}$		(7M)mM	($M+m$)	(M) x^{2}		(M) mM

Result is quadratic and not cubic equation: $-8 M x^{2}+8 M^{2} m=0$ or $-x^{2}+M m=0$.
The result is geometric mean! $x=\sqrt{ }(M m)$ or: $m_{2}=\sqrt{ }\left(m_{1} m_{3}\right)$. The resulting final velocity is as follows:
$v_{m}^{F I N}=\frac{-{\sqrt{m M}^{2}}^{2}+(7 M-m) \sqrt{m M}-m M}{\sqrt{m M}^{2}+(M+m) \sqrt{m M}+m M}=\frac{-m M+(7 M-m) \sqrt{m M}-m M}{m M+(M+m) \sqrt{m M}+m M}=\frac{(7 M-m) \sqrt{m M}-2 m M}{(M+m) \sqrt{m M}+2 m M}$

Xtra-Credit (Not assigned)

Now try more difficult problem for next stage where lowest mass is coming up with higher speed S but top one is still falling at speed -1 .
Let $m_{1}=M, m_{2}=x$ and $m_{3}=m$. Use (5.1b): $\binom{v_{1}^{E N}}{v_{2}^{E N}}=\frac{1}{m_{1}+m_{2}}\left(\begin{array}{cc}m_{1}-m_{2} & 2 m_{2} \\ 2 m_{1} & m_{2}-m_{1}\end{array}\right)\binom{v_{1}}{v_{2}}$ in stages. 1st stage gives: $v_{x}^{E F N}=\frac{3 M-x}{M+x}$
$\binom{v_{M}^{F / N}}{v_{x}^{F I N}}=\frac{1}{M+x}\left(\begin{array}{cc}M-x & 2 x \\ 2 M & x-M\end{array}\right)\binom{S}{-1}=\frac{1}{M+x}\binom{S M-(S+2) x}{(2 S+1) M-x} \cdot 2$ nd stage: $\binom{v_{x}^{E N}}{v_{m}^{F / N}}=\frac{1}{x+m}\left(\begin{array}{cc}x-m & 2 m \\ 2 x & m-x\end{array}\right)\binom{\frac{3 M-x}{M+x}}{-1}$
Again, velocity v_{m} is to be maximized.

