Pseudo-Rotations

Exercise 4.1 Estrangian plot in text Fig. 4.2 (Details on p. 64 of Lect. 3to4x. See p.131, too.) has mass ratio $M_{1} / m_{2}=49 / 1$ and has nearly (but not quite) periodic path plot. (Let the pen-mass be $m_{2}=1$ here.)

Changing to $M_{1}=48.37$ gives more nearly periodic paths shown below. (Seems perfect but it's not.)
(Experiment using BounceIt on web. lhttp://www.uark.edu/ua/modphys/markup/BounceItWeb.php)

Derive a closed formula for value of $M_{1}=48.37 \ldots$ (to at least 7 figures) having exactly periodic behavior. Simplest formula should relate to tangent of a desired Estrangian rotation half-angle $\theta / 2$ for mass M_{1}.

Pseudo-Vibrations

Exercise 4.2 On p.50-55 of Lect. 5to6, is shown pseudo-harmonic motion of the large mass $M=50 \mathrm{~kg}$ attacked on either side by a pair of tiny masses $m=0.1 \mathrm{~kg}$ each traveling back and forth in a range of $Y_{0}=3.5 \mathrm{~m}$ at an average speed of $20 \mathrm{~m} / \mathrm{sec}$. The calculation seems to come up a period about $\sqrt{3}$ times too big for mass M. Explain what was overlooked and derive an improved formula for the period.

