Read Unit 3 (SRQM by Ruler&Compass) thru page 28. Study Lecture 25-26

Space-time and per-space-time

Lorentz-Minkowski space-time (or per-space-time) coordinate system graphs (similar to the ones made in class for $u = \frac{3}{5}c$) are attached and available on-line. Let 1 inch squares correspond to (*light-sec.*, *sec.*) in space-time (*x*, *ct*) or to the per-space-time units (*light-Hz*, *Hz*) on a (ck,v) graph. Space-time graphs for the problems below require ± 5 values for space and time. Graphs can be flipped so either Lighthouse or else Ship can have square (rest frame) axes. You should do one of each.

NOTE: For this assignment it is recommended you follow the Newtonian graph convention: +x-to-the-right and +ct-down. This conforms to the animations on two of our main relativity web apps: *Pirelli Relativity Challenge* and *RelativIt*. Follow these links to go to them directly:

http://www.uark.edu/ua/pirelli/html/lighthouse scenarios.html

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=22

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=24

Space-time Terrorism

1 (a) Complete the following happening tables using the Lorentz transformation between ship space-time coordinates (x',ct') and lighthouse coordinates (x,ct) given that the ship is traveling from right to left at a speed of $u=\frac{3}{5}c$ and passes the

lighthouse at t=0=t'. Calculate answers needed below by algebra and then make a $u=\frac{3}{5}c$ plot to check the results.

Ship emits light	Explosion #1	Explosion #2	Explosion #3
x = 3 litesec.	x =	x = -1 litesec.	x =
t = -5 sec.	t =	t = -1 sec.	t = 1 sec.
x' =	x' = -1 litesec.	x' =	x' = -3 litesec.
t' =	t' = -3 sec.	t' =	t' =

Draw the space-time paths of light waves emitted right and left from explosions #1 and #2 on the space-time graph and answer the following questions.

- (a) What is rapidity of ship relative to lab ρ_{SvsL} =____? ... lab relative to ship ρ_{LvsS} =____? (Lighthouse time) When does light from explosion #1 hit the lighthouse? (Lighthouse time) (When does light from explosion #1 hit the lighthouse? (Ship time) (Lighthouse time) (When does light from explosion #2 hit the lighthouse? (Ship time) (Ship time)
- (f) Draw paths of fragments from explosions #1 and #2 for fragment speed c/2 or -c/2 relative to the ship.

B.I.G.A.N.N. Investigates

2 Explosions in problem 1 lead to an investigation by B.I.G.A.N.N. (Bureau of Intergalactic Aids to Navigation at Night).

		` '
(a)	When does the first fragment from explosion #1 hit the	e lighthouse?(Lighthouse time)
(b)	When does a second fragment from explosion #1 hit th	he lighthouse?(Lighthouse time)
(c)	When does a fragment from explosion #1 hit the ship?	(Ship time)
(d)	When does a fragment from explosion #2 hit the ship?	?(Ship time)
(e)	When does a fragment from explosion #2 hit the Light	nthouse?(Lighthouse time)
(f)	lighthouse says 1st fragment goesc using addit	ition formula of rapidity $\rho_{FvsL} = \rho_{FvsS} + \rho_{SvsL}$ and of velocity:
(g)	lighthouse says 2 nd fragment goesc	

The authorities of BIGANN have spotted a causal (as opposed to acausal) connection between all the explosions. To whom does it point?

Spacetime and per-space-time

1 (a) Using ruler and compass construct on graph paper a +3/5c Lorentz-Minkowski space-time and per-space-time coordinate system graph similar to the ones made in class. Let 1 inch squares correspond to (light-sec., sec.) in spacetime (x,ct) or to the per-space-time units (light-Hz, Hz) on a $(c\kappa,v)$ graph. Spacetime Terrorism

2 (a) Complete the following happening tables using the Lorentz transformation between ship space-time coordinates (x',ct') and lighthouse coordinates (x,ct) given that the ship is traveling from right to left at a speed of $\frac{3}{5}c$ and passes the lighthouse at t=0=t'. Calculate and use a u/c=3/5 graph (exercise 1) to plot and check the results.

Ship emits light	Explosion #1	Explosion #2	Explosion #3
x = 3 litesec.	x = 1	x = -1 litesec.	x = -3
t = -5 sec.	t = -3	t = -1 sec.	t = 1 sec.
x' = 0	x' = -1 litesec.	x' = -2	x' = -3 litesec.
t' = -4	t' = -3 sec.	t' = -2	t' = -1

- (a) Draw the space-time paths of light waves emitted right and left from explosions #1 and #2 on the space-time graph and answer the following questions.
- (a) If lighthouse broadcasts 100 Mhz what v does ship tune to receive it at t=-1? 200MHz at t=+1? 50Mhz Before

passing: blue shift ratio:
$$b = \sqrt{\frac{1 + \frac{u}{c}}{1 - \frac{u}{c}}} = \sqrt{\frac{1 + \frac{3}{5}}{1 - \frac{3}{5}}} = \frac{2}{1}$$
 After passing: red shift ratio: $r = \sqrt{\frac{1 - \frac{u}{c}}{1 + \frac{u}{c}}} = \sqrt{\frac{1 - \frac{3}{5}}{1 + \frac{3}{5}}} = \frac{1}{2}$

- (b) What is rapidity of ship relative to lab $\rho_{SvsL} = \ln(1/2) = -0.6931$? ... lab relative to ship $\rho_{LvsS} = \ln(2) = +0.6931$?

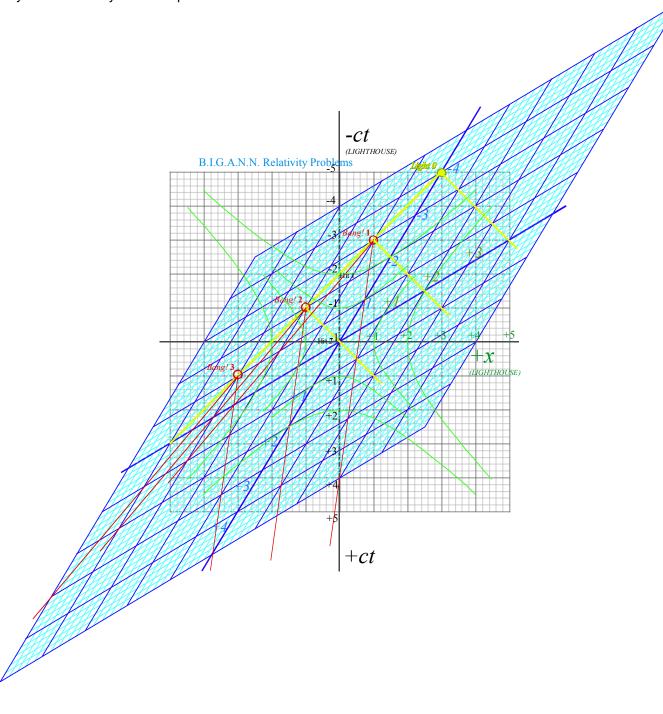
- (f) When does light from explosion #2 hit the lighthouse? 0.0 (Ship time)
- (g) Draw paths of fragments from explosions #1 and #2 for fragment speed c/2 or -c/2 relative to the ship.

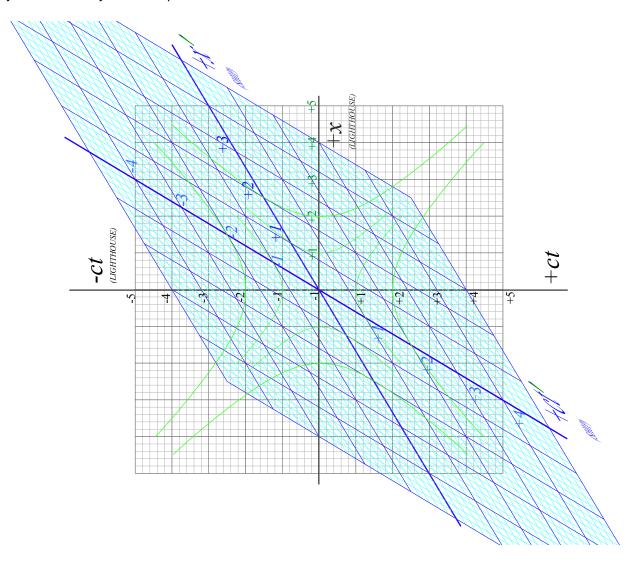
B.I.G.A.N.N. Investigates

- 3 The explosions in problem 2 lead to an investigation by B.I.G.A.N.N. (Bureau of Intergalactic Aids to Navigation at Night) headed by Rollah H. Ann Hoover (secret granddaughter of J. Edgar Hoover).
- (a) When does the first fragment from explosion #1 hit the lighthouse? -20/11=-1.81 (Lighthouse time)
- (b) When does a second fragment from explosion #1 hit the lighthouse? 4 (Lighthouse time)

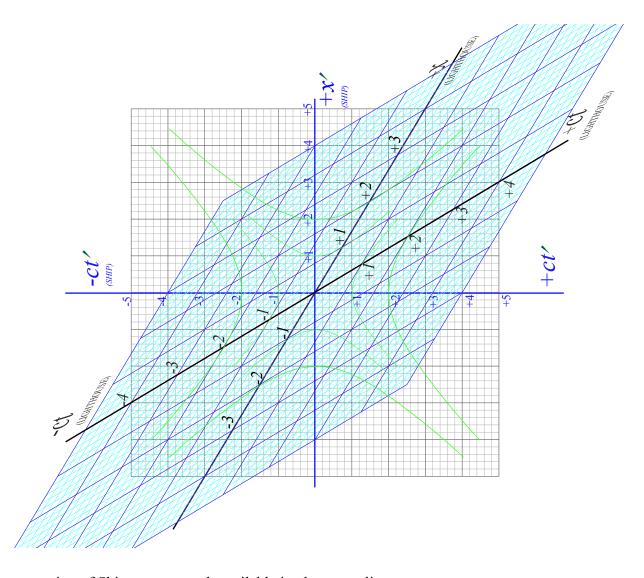
- (f) ...lighthouse says 1st fragment goes -11/13c using addition formula of rapidity $\rho_{\text{FvsL}} = \rho_{\text{FvsS}} + \rho_{\text{SvsL}}$ or of velocity:

$$\frac{u_{FvsL}}{c} = \tanh(\rho_{FvsL}) = \tanh(\rho_{FvsS} + \rho_{SvsL}) = \frac{\tanh(\rho_{FvsS}) + \tanh(\rho_{SvsL})}{1 + \tanh(\rho_{FvsS}) \tanh(\rho_{SvsL})}$$


$$u_{F_1vsL} = \frac{u_{F_1vsS} + v_{SvsL}}{1 + \frac{u}{c} \cdot \frac{v}{c}} = \frac{(-\frac{1}{2}) + (-\frac{3}{5})}{1 + (-\frac{1}{2}) \cdot (-\frac{3}{5})}c = \frac{-5 - 6}{10 + 3}c = \frac{-11}{13}c$$


(g) ...lighthouse says 2nd fragment goes -1/7c

$$u_{F_2vsL} = \frac{u_{F_2vsS} + v_{SvsL}}{1 + \frac{u}{c} \cdot \frac{v}{c}} = \frac{\left(+\frac{1}{2}\right) + \left(-\frac{3}{5}\right)}{1 + \left(+\frac{1}{2}\right) \cdot \left(-\frac{3}{5}\right)} c = \frac{+5 - 6}{10 - 3} c = \frac{-1}{7} c$$


(a) The authorities of BIGANN have spotted a causal (as opposed to acausal) connection between all the explosions. To whom does it point? Ship looks very guilty starting with that light burst at t=-5sec. Was it a set-up? Was he framed?

Ship is traveling from right to left at a speed of $\frac{3}{5}$ c and passes the lighthouse at t=0=t'.

Better version of Lighthouse-square graph available in class or online.

Better version of Ship-square graph available in class or online.