Read Unit 3 (SRQM by Ruler\& Compass) thru page 28. Study Lecture 25-26

Space-time and per-space-time
Lorentz-Minkowski space-time (or per-space-time) coordinate system graphs (similar to the ones made in class for $u=\frac{3}{5} c$) are attached and available on-line. Let 1 inch squares correspond to (light-sec., sec.) in space-time ($x, c t$) or to the per-spacetime units (light-Hz, Hz) on a (cк,v) graph. Space-time graphs for the problems below require ± 5 values for space and time. Graphs can be flipped so either Lighthouse or else Ship can have square (rest frame) axes. You should do one of each.

NOTE: For this assignment it is recommended you follow the Newtonian graph convention: +x-to-the-right and +ct-down. This conforms to the animations on two of our main relativity web apps: Pirelli Relativity Challenge and RelativIt. Follow these links to go to them directly:
http://www.uark.edu/ua/pirelli/html/lighthouse scenarios.html
http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=22
http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=24

Space-time Terrorism

1 (a) Complete the following happening tables using the Lorentz transformation between ship space-time coordinates $\left(x^{\prime}, c t^{\prime}\right)$ and lighthouse coordinates $(x, c t)$ given that the ship is traveling from right to left at a speed of $u=\frac{3}{5} c$ and passes the lighthouse at $t=0=t^{\prime}$. Calculate answers needed below by algebra and then make a $u=\frac{3}{5} c$ plot to check the results.

Ship emits light	Explosion \#1	Explosion \#2	Explosion \#3
$\mathrm{x}=3$ litesec.	$\mathrm{x}=$	$\mathrm{x}=-1$ litesec.	$\mathrm{x}=$
$\mathrm{t}=-5$ sec.	$\mathrm{t}=$	$\mathrm{t}=-1 \mathrm{sec}$.	$\mathrm{t}=1$ sec.
$\mathrm{x}^{\prime}=$	$\mathrm{x}^{\prime}=-1$ litesec.	$\mathrm{x}^{\prime}=$	$\mathrm{x}^{\prime}=-3$ litesec.
$\mathrm{t}^{\prime}=$	$\mathrm{t}^{\prime}=-3$ sec.	$\mathrm{t}^{\prime}=$	

Draw the space-time paths of light waves emitted right and left from explosions \#1 and \#2 on the space-time graph and answer the following questions.

If lighthouse broadcasts 100 Mhz what v does ship tune to receive it at $t=-1$? \qquad MHz at $t=+1$? \qquad Mhz
(a) What is rapidity of ship relative to lab $\rho_{\mathrm{SvsL}}=$ \qquad ? ... lab relative to ship $\rho_{\mathrm{LvsS}}=$ \qquad $?$
(b) When does light from explosion \#1 hit the lighthouse?
(Lighthouse time)
(c) When does light from explosion \#1 hit the lighthouse? \qquad (Ship time)
(d) When does light from explosion \#2 hit the lighthouse? \qquad (Lighthouse time)
(e) When does light from explosion \#2 hit the lighthouse? \qquad (Ship time)
(f) Draw paths of fragments from explosions \#1 and \#2 for fragment speed $\mathrm{c} / 2$ or $-\mathrm{c} / 2$ relative to the ship.

B.I.G.A.N.N. Investigates

2 Explosions in problem 1 lead to an investigation by B.I.G.A.N.N. (Bureau of Intergalactic Aids to Navigation at Night) .
(a) When does the first fragment from explosion \#1 hit the lighthouse? \qquad (Lighthouse time)
(b) When does a second fragment from explosion \#1 hit the lighthouse? \qquad (Lighthouse time)
(c) When does a fragment from explosion \#1 hit the ship? (Ship time)
(d) When does a fragment from explosion \#2 hit the ship? \qquad (Ship time)
(e) When does a fragment from explosion \#2 hit the Lighthouse? \qquad (Lighthouse time)
(f) ...lighthouse says $1^{\text {st }}$ fragment goes \qquad c using addition formula of rapidity $\rho_{\mathrm{FvsL}}=\rho_{\mathrm{FvsS}}+\rho_{\mathrm{SvsL}}$ and of velocity:
(g) ...lighthouse says $2^{\text {nd }}$ fragment goes \qquad c

The authorities of BIGANN have spotted a causal (as opposed to acausal) connection between all the explosions. To whom does it point?

Better version of Lighthouse-square graph available in class or online.

Better version of Ship-square graph available in class or online.

