Read Unit 3 (SRQM by Ruler&Compass) thru page 28. Study Lecture 25-26

Space-time and per-space-time

Lorentz-Minkowski space-time (or per-space-time) coordinate system graphs (similar to the ones made in class for $u = \frac{3}{5}c$) are attached and available on-line. Let 1 inch squares correspond to (light-sec., sec.) in space-time (x, ct) or to the per-spacetime units (*light-Hz*, Hz) on a ($c\kappa$, v) graph. Space-time graphs for the problems below require ± 5 values for space and time. Graphs can be flipped so either Lighthouse or else Ship can have square (rest frame) axes. You should do one of each.

NOTE: For this assignment it is recommended you follow the Newtonian graph convention: +x-to-the-right and +ct-down. This conforms to the animations on two of our main relativity web apps: Pirelli Relativity Challenge and RelativIt. Follow these links to go to them directly:

http://www.uark.edu/ua/pirelli/html/lighthouse scenarios.html http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=22 http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=24

Space-time Terrorism

1 (a) Complete the following happening tables using the Lorentz transformation between ship space-time coordinates (x',ct')and lighthouse coordinates (x,ct) given that the ship is traveling from right to left at a speed of $u = \frac{3}{5}c$ and passes the

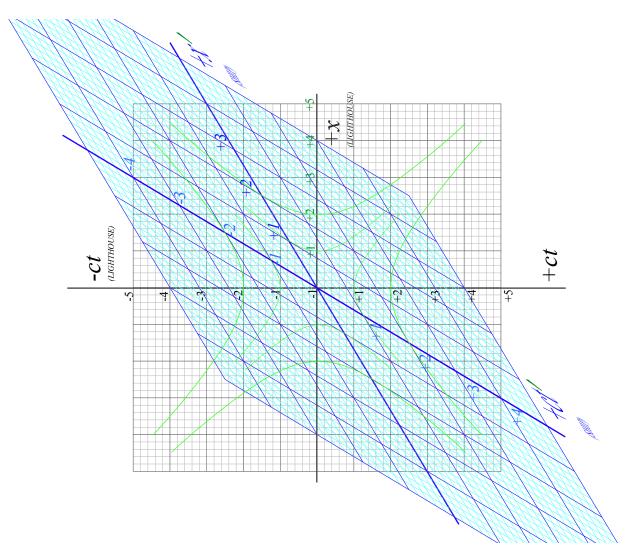
lighthouse at t=0=t'. Calculate answers needed below by algebra and then make a $u=\frac{3}{5}c$ plot to check the results.

Ship emits light	Explosion #1	Explosion #2	Explosion #3
x = 3 litesec.	x =	x = -1 litesec.	x =
t = -5 sec.	t =	t = -1 sec.	t = 1 sec.
x' =	x' = -1 litesec.	x' =	x' = -3 litesec.
t' =	t' = -3 sec.	t' =	t' =

Draw the space-time paths of light waves emitted right and left from explosions #1 and #2 on the space-time graph and answer the following questions.

If lighthouse broadcasts 100 Mhz what v does ship tune to receive it at t=-1? MHz at t=+1? Mhz

- (a) What is rapidity of ship relative to lab ρ_{SvsL} =____? ... lab relative to ship ρ_{LvsS} =___? (b) When does light from explosion #1 hit the lighthouse? ____(Lighthouse time)
- (c) When does light from explosion #1 hit the lighthouse? _____(Ship time)
- (Lighthouse time) (Ship time) (d) When does light from explosion #2 hit the lighthouse?
- (e) When does light from explosion #2 hit the lighthouse?
- (f) Draw paths of fragments from explosions #1 and #2 for fragment speed c/2 or -c/2 relative to the ship.


B.I.G.A.N.N. Investigates

2 Explosions in problem 1 lead to an investigation by B.I.G.A.N.N. (Bureau of Intergalactic Aids to Navigation at Night).


- (Lighthouse time)
- (Lighthouse time)
- (c) When does a fragment from explosion #1 hit the ship? (Ship time)
- (d) When does a fragment from explosion #2 hit the ship? (Ship time)
- (e) When does a fragment from explosion #2 hit the Lighthouse? (Lighthouse time)
- (f) ... lighthouse says 1st fragment goes _____c using addition formula of rapidity $\rho_{FvsL} = \rho_{FvsL} + \rho_{SvsL}$ and of velocity:

(g) ... lighthouse says 2^{nd} fragment goes c

The authorities of BIGANN have spotted a causal (as opposed to acausal) connection between all the explosions. To whom does it point?

Better version of Lighthouse-square graph available in class or online.

Better version of Ship-square graph available in class or online.