Group Theory in Quantum Mechanics Lecture $3_{\text {(1.22.13) }}$

Analyzers, operators, and group axioms

(Quantum Theory for Computer Age - Ch. 1-2 of Unit 1) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1)

Review: Axioms 1-4 and "Do-Nothing"vs" Do-Something" analyzers
Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity
Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and \dagger-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers
Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and \dagger-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss

Feynman amplitude axioms 1-4

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\left\langle j \mid k^{\prime}\right\rangle$. Axiom 1: The absolute square $\left|\left\langle j \mid k^{\prime}\right\rangle\right|^{2}=\left\langle j \mid k^{\prime}\right\rangle^{*}\left\langle j \mid k^{\prime}\right\rangle$ gives probability for occurrence in state-j of a system that started in state- $k^{\prime}=1^{\prime}, 2^{\prime}, .$, or n^{\prime} from one sorter and then was forced to choose between states $j=1,2, \ldots, n$ by another sorter.
(2) The conjugation or inversion axiom (time reversal symmetry)

The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate $\left\langle j \mid k^{\prime}\right\rangle^{*}$ of an amplitude $\left\langle j \mid k^{\prime}\right\rangle$ equals its reverse: $\left\langle j \mid k^{\prime}\right\rangle^{*}=\left\langle k^{\prime} \mid j\right\rangle$

(3) The orthonormality or identity axiom

The third axiom concerns the amplitude for "re measurement" by the same analyzer.
Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one,
and for all others it is zero:

$$
\langle j \mid k\rangle=\delta_{j k}=\left\{\begin{array}{c}
1 \text { if: } j=k \\
0 \text { if: } j \neq k
\end{array}\right\}=\left\langle j^{\prime} \mid k^{\prime}\right\rangle
$$

(4) The completeness or closure axiom

The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above. Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

$$
\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

(a)"Do-Nothing"Analyzer $y_{1} \Theta_{\text {analyzer }}=-30^{\circ}$ $\Theta_{\text {out-polarized light }}$

$\Theta_{o u t}=\Theta_{i n}$
No change if analyzer does nothing

(b)Simulation
setting of input -30° polarization $2 \Theta_{i n}=\beta_{i n}=200^{\circ}$

analyzer activity angle Ω

($\Omega=0$ means do-nothing)

Imagine final $x y$-sorter analyzes output beam into x and y-components.
 $\left\langle x^{\prime} \mid \Theta i n\right\rangle=\cos \left(\Theta_{i n}-\Theta\right)$
$\left\langle y^{\prime} \mid \Theta i n\right\rangle=\sin (\Theta i n-\Theta)$
x-Output is: $\left\langle x \mid \Theta_{o u t}\right\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Theta i n\right\rangle+\langle x \mid y\rangle\left\langle y^{\prime} \mid \Theta i n\right\rangle=\cos \Theta \cos (\Theta i n-\Theta)-\sin \Theta \sin (\Theta i n-\Theta)=\cos \Theta$ in y-Output is: $\langle y \mid \Theta o u t\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Theta i n\right\rangle+\langle y \mid y\rangle\left\langle y^{\prime} \mid \Theta i n\right\rangle=\sin \Theta \cos (\Theta i n-\Theta)-\cos \Theta \sin (\Theta i n-\Theta)=\sin \Theta$ in . (Recall $\cos (a+b)=\cos a \cos b-\sin a \sin b \quad$ and $\sin (a+b)=\sin a \cos b+\cos a \sin b)$

Conclusion:

$\left\langle x \mid \Theta_{o u t}\right\rangle=\cos \Theta_{o u t}=\cos \Theta_{\text {in }}$ or: $\Theta_{o u t}=\Theta_{\text {in so }}$ "Do-Nothing" Analyzer in fact does nothing.

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and \dagger-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Abstraction of Axiom 4 to define projection and unitary operators
Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle\left\langle\mid m^{\prime}\right\rangle\right.$ may be "abstracted" three different ways

Abstraction of Axiom 4 to define projection and unitary operators
Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways
Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways

Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Right abstraction gives ket-transform:

$$
\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}|k\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways

Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Right abstraction gives ket-transform:

$$
\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}|k\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways
Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, . . \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle l^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity
Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and 广-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways
Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, . . \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle l^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways
Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, . . \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways

Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Right abstraction gives ket-transform:

$$
\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}|k\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, \ldots \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Projections: of unit vector onto unit kets $\mid x)^{\prime}$ and $\|y\rangle \quad \mathbf{P}_{y}\left\|x^{\prime}\right\rangle=\|y\rangle\left\langle y \mid x^{\prime}\right\rangle \quad\|y\rangle \cdots \cdots \cdots \mathbf{P}_{x}\left\|x^{\prime}\right\rangle=\|x\rangle\left\langle x \mid x^{\prime}\right\rangle$ $\left.\left(\begin{array}{l}\langle x\| \mathbf{P}_{y}\|x\rangle \\ \langle y\| \mathbf{P}_{y}\|x\rangle\end{array}\langle y\| \mathbf{P}_{y}\|y\rangle, y\right\rangle\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)=\|y\rangle \sin \theta \quad\left\langle\begin{array}{l}\left\langle y \mid x^{\prime}\right\rangle\end{array}\left(\begin{array}{ll}\langle x\| \mathbf{P}_{x}\|x\rangle & \langle x\| \mathbf{P}_{x}\|y\rangle \\ \langle y\| \mathbf{P}_{x}\|x\rangle & \langle y\| \mathbf{P}_{x}\|y\rangle\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right.$	

Projections of general state $|\Psi\rangle$

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways

Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Right abstraction gives ket-transform:

$$
\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}|k\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, . . \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Projections: of unit vector onto unit kets $\mid x)^{\prime}$ and $\|y\rangle \quad \mathbf{P}_{y}\left\|x^{\prime}\right\rangle=\|y\rangle\left\langle y \mid x^{\prime}\right\rangle \quad\|y\rangle \cdots \cdots \cdots \mathbf{P}_{x}\left\|x^{\prime}\right\rangle=\|x\rangle\left\langle x \mid x^{\prime}\right\rangle$ $\left.\left(\begin{array}{l}\langle x\| \mathbf{P}_{y}\|x\rangle \\ \langle y\| \mathbf{P}_{y}\|x\rangle\end{array}\langle y\| \mathbf{P}_{y}\|y\rangle, y\right\rangle\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)=\|y\rangle \sin \theta \quad\left\langle\begin{array}{l}\left\langle y \mid x^{\prime}\right\rangle\end{array}\left(\begin{array}{ll}\langle x\| \mathbf{P}_{x}\|x\rangle & \langle x\| \mathbf{P}_{x}\|y\rangle \\ \langle y\| \mathbf{P}_{x}\|x\rangle & \langle y\| \mathbf{P}_{x}\|y\rangle\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right.$	

Projections of general state $|\Psi\rangle$...must add up to $|\Psi\rangle$
$\mathbf{P}_{x}|\Psi\rangle+\mathbf{P}_{y}|\Psi\rangle=|\Psi\rangle$
$\left(\mathbf{P}_{x}+\mathbf{P}_{y}\right)|\Psi\rangle=|\Psi\rangle$

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways

Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Right abstraction gives ket-transform:

$$
\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}|k\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, . . \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Projectionsiof unit vector onto unit kets $\|x\rangle_{i}^{\prime}$ and $\|y\rangle$	

...and so \mathbf{P}_{m} projectors must add up to identity operator...

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways

Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Right abstraction gives ket-transform:

$$
\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}|k\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, . . \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Projectionsiof unit vector onto unit kets $\|x\rangle_{i}^{\prime}$ and $\|y\rangle$	

Projections of general state $|\Psi\rangle$...must add up to $|\Psi\rangle$
$\mathbf{P}_{x}|\Psi\rangle+\mathbf{P}_{y}|\Psi\rangle=|\Psi\rangle$
$\left(\mathbf{P}_{x}+\mathbf{P}_{y}\right)|\Psi\rangle=|\Psi\rangle$
...and so \mathbf{P}_{m} projectors
must add up to identity operator...

Abstraction of Axiom 4 to define projection and unitary operators Axiom 4: $\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle$ may be "abstracted" three different ways

Left abstraction gives bra-transform:

$$
\left\langle j^{\prime \prime}\right|=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\langle k|
$$

Right abstraction gives ket-transform:

$$
\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}|k\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Center abstraction gives ket-bra identity operator:

$$
\mathbf{1}=\sum_{k=1}^{n}|k\rangle\langle k|=\sum_{k=1}^{n}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right|=\sum_{k=1}^{n}\left|k^{\prime \prime}\right\rangle\left\langle k^{\prime \prime}\right|=\ldots
$$

Resolution of Identity into Projectors $\{|1\rangle\langle 1|,|2\rangle\langle 2| .$.$\} or \left\{\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|,\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| ..\right\}$ or $\left\{\left|1^{\prime \prime}\right\rangle\left\langle 1^{\prime \prime}\right|,\left|2^{\prime \prime}\right\rangle\left\langle 2^{\prime \prime}\right| ..\right\}$

$$
\mathbf{P}_{1}=|1\rangle\langle 1|, \mathbf{P}_{2}=|2\rangle\langle 2|, . . \text { or } \mathbf{P}_{1^{\prime}}=\left|1^{\prime}\right\rangle\left\langle 1^{\prime}\right|, \mathbf{P}_{2^{\prime}}=\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right| \text { etc. }
$$

Projectionsiof unit vector onto unit kets $\|x\rangle_{i}^{\prime}$ and $\|y\rangle$	

Projections of general state $|\Psi\rangle$...must add up to $|\Psi\rangle$
$\mathbf{P}_{x}|\Psi\rangle+\mathbf{P}_{y}|\Psi\rangle=|\Psi\rangle$
$\left(\mathbf{P}_{x}+\mathbf{P}_{y}\right)|\Psi\rangle=|\Psi\rangle$

...and so \mathbf{P}_{m} projectors must add up to identity operator...

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

\rightarrow
Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and †-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Unitary operators and matrices that do something (or "nothing")

Unitary operators and matrices that do something (or "nothing")

First is the "do-nothing" identity operator $\mathbf{1} .$.

$$
\mathbf{1}=\sum_{k=1}^{2}|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|=\mathbf{P}_{x}+\mathbf{P}_{y}
$$

Unitary operators and matrices that do something (or "nothing")

First is the "do-nothing" identity operator $\mathbf{1} .$.

$$
\mathbf{1}=\sum_{k=1}^{2}|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|=\mathbf{P}_{x}+\mathbf{P}_{y}
$$

and matrix representation:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Unitary operators and matrices that do something (or "nothing")

First is the "do-nothing" identity operator $\mathbf{1} .$.

$$
\mathbf{1}=\sum_{k=1}^{2}|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|=\mathbf{P}_{x}+\mathbf{P}_{y}
$$

and matrix representation:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Next is the diagonal "do-something" unitary* operator T...

$$
\mathbf{T}=\sum|k\rangle e^{-i \Omega_{k} t}\langle k|=|x\rangle e^{-i \Omega_{x} t}\langle x|+|y\rangle e^{-i \Omega_{y} t}\langle y|=e^{-i \Omega_{x} t} \mathbf{P}_{x}+e^{-i \Omega_{y} t} \mathbf{P}_{y}
$$

and its matrix representation: $\left(\begin{array}{cc}e^{-i \Omega_{2} t} & 0 \\ 0 & e^{-i \Omega_{2} t}\end{array}\right)=\left(\begin{array}{cc}e^{-i \Omega_{4} t} & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}0 & 0 \\ 0 & e^{-i \Omega_{4} t}\end{array}\right)$

Unitary operators and matrices that do something (or "nothing")

Fig. 3.1.1 Effect of analyzer represented by ket vector transformation of $|\Psi\rangle$ to new ket vector $T|\Psi\rangle$.
input state $|\Psi\rangle$
*Unitary here means
inverse $-\mathrm{T}^{-1}=\mathrm{T}^{\dagger}=\mathrm{T}^{\mathrm{T}^{*}}=$ transpose-conjugate- T
(Time-Reversal-Symmetry)

First is the "do-nothing" identity operator $\mathbf{1} .$.

$$
\mathbf{1}=\sum_{k=1}^{2}|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|=\mathbf{P}_{x}+\mathbf{P}_{y}
$$

and matrix representation:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Next is the diagonal "do-something" unitary* operator T...

$$
\mathbf{T}=\sum|k\rangle e^{-i \Omega_{k} t}\langle k|=|x\rangle e^{-i \Omega_{x} t}\langle x|+|y\rangle e^{-i \Omega_{y} t}\langle y|=e^{-i \Omega_{x} t} \mathbf{P}_{x}+e^{-i \Omega_{y} t} \mathbf{P}_{y}
$$

and its matrix representation:

$$
\left(\begin{array}{cc}
e^{-i \Omega_{2} t} & 0 \\
0 & e^{-i \Omega_{4} t}
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \Omega_{2} t} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & e^{-i \Omega_{2} t}
\end{array}\right)
$$

Unitary operators and matrices that do something (or "nothing")

Fig. 3.1.1 Effect of analyzer represented by ket vector transformation of $|\Psi\rangle$ to new ket vector $\mathrm{T}|\Psi\rangle$.
input state $|\Psi\rangle$
*Unitary here means
inverse $-\mathrm{T}^{-1}=\mathrm{T}^{\dagger}=\mathrm{T}^{\mathrm{T}^{*}}=$ transpose-conjugate- T
(Time-Reversal-Symmetry)

First is the "do-nothing" identity operator $\mathbf{1} .$.

$$
\mathbf{1}=\sum_{k=1}^{2}|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|=\mathbf{P}_{x}+\mathbf{P}_{y}
$$

and matrix representation:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Next is the diagonal "do-something" unitary* operator T...

$$
\mathbf{T}=\sum|k\rangle e^{-i \Omega_{k} t}\langle k|=|x\rangle e^{-i \Omega_{x} t}\langle x|+|y\rangle e^{-i \Omega_{y} t}\langle y|=e^{-i \Omega_{x} t} \mathbf{P}_{x}+e^{-i \Omega_{y} t} \mathbf{P}_{y}
$$

and its matrix representation:

$$
\left(\begin{array}{cc}
e^{-i \Omega_{2} t} & 0 \\
0 & e^{-i \Omega_{2} t}
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \Omega_{2} t} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & e^{-i \Omega_{2} t}
\end{array}\right)
$$

Most "do-something" operators \mathbf{T}^{\prime} are not diagonal, that is, not just $|x\rangle\langle x|$ and $|y\rangle\langle y|$ combinations.

$$
\mathbf{T}^{\prime}=\sum\left|k^{\prime}\right\rangle e^{-i \Omega_{k^{\prime} t} t}\left\langle k^{\prime}\right|=\left|x^{\prime}\right\rangle e^{-i \Omega_{x^{\prime} t}^{\prime} t}\left\langle x^{\prime}\right|+\left|y^{\prime}\right\rangle e^{-i \Omega_{y^{\prime} t}}\left\langle y^{\prime}\right|=e^{-i \Omega_{x^{\prime}} t} \mathbf{P}_{x^{\prime}}+e^{-i \Omega_{y^{\prime} t} t} \mathbf{P}_{y^{\prime}}
$$

Unitary operators and matrices that do something (or "nothing")

Fig. 3.1.1 Effect of analyzer represented by ket vector transformation of $|\Psi\rangle$ to new ket vector $\mathrm{T}|\Psi\rangle$.
input state $|\Psi\rangle$
*Unitary here means
inverse $-\mathrm{T}^{-l}=\mathrm{T}^{\dagger}=\mathrm{T}^{\mathrm{T}^{*}}=$ transpose-conjugate- T
(Time-Reversal-Symmetry)

First is the "do-nothing" identity operator $\mathbf{1} .$.

$$
\mathbf{1}=\sum_{k=1}^{2}|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|=\mathbf{P}_{x}+\mathbf{P}_{y}
$$

and matrix representation:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Next is the diagonal "do-something" unitary* operator T...

$$
\mathbf{T}=\sum|k\rangle e^{-i \Omega_{k} t}\langle k|=|x\rangle e^{-i \Omega_{x} t}\langle x|+|y\rangle e^{-i \Omega_{y} t}\langle y|=e^{-i \Omega_{x} t} \mathbf{P}_{x}+e^{-i \Omega_{y} t} \mathbf{P}_{y}
$$

and its matrix representation:

$$
\left(\begin{array}{cc}
e^{-i \Omega_{2} t} & 0 \\
0 & e^{-i \Omega_{4} t}
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \Omega_{2} t} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & e^{-i \Omega_{2} t}
\end{array}\right)
$$

Most "do-something" operators \mathbf{T}^{\prime} are not diagonal, that is, not just $|x\rangle\langle x|$ and $|y\rangle\langle y|$ combinations.

$$
\mathbf{T}^{\prime}=\sum\left|k^{\prime}\right\rangle e^{-i \Omega_{k^{\prime} t} t}\left\langle k^{\prime}\right|=\left|x^{\prime}\right\rangle e^{-i \Omega_{x^{\prime} t} t}\left\langle x^{\prime}\right|+\left|y^{\prime}\right\rangle e^{-i \Omega_{y^{\prime}} t}\left\langle y^{\prime}\right|=e^{-i \Omega_{x^{\prime}} t} \mathbf{P}_{x^{\prime}}+e^{-i \Omega_{y^{\prime} t} t} \mathbf{P}_{y^{\prime}}
$$

(Matrix representation of \mathbf{T}^{\prime} is a little more complicated. See following pages.)

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
\longrightarrow Non-diagonal unitary operators and \dagger-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate

How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U} \dagger=\mathbf{U}^{\mathrm{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathbf{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Example \mathbf{U} transfomation:

$$
\begin{array}{ll}
\left|x^{\prime}\right\rangle & =\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
\left|y^{\prime}\right\rangle_{-\sin \phi} \phi & \left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle
\end{array}
$$

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathbf{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Example \mathbf{U} transfomation:

$$
\begin{array}{ll}
\left|x^{\prime}\right\rangle & =\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
\left|y^{\prime}\right\rangle_{-\sin \phi} \phi \quad\left|y^{\prime}\right\rangle & =\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle
\end{array}
$$

Ket definition: $\left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle=|x\rangle$ implies: $\langle x|=\left\langle x^{\prime}\right| \mathbf{U}$ implies: $\langle x| \mathbf{U}^{\dagger}=\left\langle x^{\prime}\right|$

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathbf{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Example \mathbf{U} transfomation:

$$
\begin{array}{ll}
\left|x^{\prime}\right\rangle & =\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
\left|y^{\prime}\right\rangle_{-\sin \phi} \phi & \left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle
\end{array}
$$

Ket definition: $\left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle=|x\rangle \quad$ implies: $\quad\langle x|=\left\langle x^{\prime}\right| \mathbf{U} \quad$ implies: $\quad\langle x| \mathbf{U}^{\dagger}=\left\langle x^{\prime}\right|$ Ket definition: $\left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle=|y\rangle \quad$ implies: $\langle y|=\left\langle y^{\prime}\right| \mathbf{U}$ implies: $\langle y| \mathbf{U}^{\dagger}=\left\langle y^{\prime}\right|$

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathbf{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{+} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Example \mathbf{U} transfomation:

$$
\begin{aligned}
& \left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
& \left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle
\end{aligned}
$$

Ket definition: $\left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle=|x\rangle$ implies: $\langle x|=\left\langle x^{\prime}\right| \mathbf{U}$ implies: $\langle x| \mathbf{U}^{\dagger}=\left\langle x^{\prime}\right|$
Ket definition: $\left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle=|y\rangle$ implies: $\langle y|=\left\langle y^{\prime}\right| \mathbf{U}$ implies: $\langle y| \mathbf{U}^{\dagger}=\left\langle y^{\prime}\right|$
...implies matrix representation of operator \mathbf{U}

$$
\left(\begin{array}{ll}
\langle x|: \mathbf{U}|x\rangle\rangle & \langle x| \mathbf{U}|y\rangle \\
\langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
\langle x| x^{\prime} & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
$$

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathrm{T}^{*}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Example \mathbf{U} transfomation: (Rotation by $\phi=30^{\circ}$)

Ket definition: $\left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle=|x\rangle$ implies: $\langle x|=\left\langle x^{\prime}\right| \mathbf{U}$ implies: $\langle x| \mathbf{U}^{\dagger}=\left\langle x^{\prime}\right|$
Ket definition: $\left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle=|y\rangle \quad$ implies: $\langle y|=\left\langle y^{\prime}\right| \mathbf{U}$ implies: $\langle y| \mathbf{U}^{\dagger}=\left\langle y^{\prime}\right|$
...implies matrix representation of operator \mathbf{U} in either of the bases it connects is exactly the same.

$$
\left(\begin{array}{ll}
\langle x| \mathbf{U}|x\rangle & \langle x| \mathbf{U}|y\rangle \\
\langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \vdots \tilde{x}\left|y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{\prime}\right| \mathbf{U}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{U}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{U}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{U}\left|y^{\prime}\right\rangle
\end{array}\right)
$$

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathrm{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{+} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Example \mathbf{U} transfomation: (Rotation by $\phi=30^{\circ}$)

$$
\begin{aligned}
& \left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
& \left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle
\end{aligned}
$$

Ket definition: $\left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle=|x\rangle$ implies: $\langle x|=\left\langle x^{\prime}\right| \mathbf{U}$ implies: $\langle x| \mathbf{U}^{\dagger}=\left\langle x^{\prime}\right|$ Ket definition: $\left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle=|y\rangle$ implies: $\langle y|=\left\langle y^{\prime}\right| \mathbf{U}$ implies: $\langle y| \mathbf{U}^{\dagger}=\left\langle y^{\prime}\right|$...implies matrix representation of operator U in either of the bases it connects is exactly the same.

So also is the inverse

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathrm{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{+} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}$

Example \mathbf{U} transfomation: (Rotation by $\phi=30^{\circ}$)

$$
\begin{aligned}
& \left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
& \left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle
\end{aligned}
$$

Ket definition: $\left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle=|x\rangle$ implies: $\langle x|=\left\langle x^{\prime}\right| \mathbf{U}$ implies: $\langle x| \mathbf{U}^{\dagger}=\left\langle x^{\prime}\right|$ Ket definition: $\left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle=|y\rangle$ implies: $\langle y|=\left\langle y^{\prime}\right| \mathbf{U}$ implies: $\langle y| \mathbf{U}^{\dagger}=\left\langle y^{\prime}\right|$...implies matrix representation of operator \mathbf{U} in either of the bases it connects is exactly the same.

So also is the inverse

$$
\begin{aligned}
& \left(\begin{array}{ll}
\langle x| \mathbf{U}^{\dagger}|x\rangle & \langle x| \mathbf{U}^{\dagger}|y\rangle \\
\langle y| \mathbf{U}^{\dagger}|x\rangle & \langle y| \mathbf{U}^{\dagger}|y\rangle
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{\prime}\right| \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle^{*} & \left.\left.\left.\langle y|\right|^{\prime}\right\rangle^{\prime}\right\rangle^{*} \\
\left\langle x \mid y^{\prime}\right\rangle^{*} & \left.\left.\left.\langle y|\right|^{\prime}\right\rangle^{\prime}\right\rangle^{*}
\end{array} \begin{array}{l}
\text { Axiom-3 consistent with } \\
\text { inverse } \mathbf{U}=\text { tranpose-conjugate } \mathbf{U}^{\dagger}=\mathbf{U}^{\mathrm{T}^{*}}
\end{array}\right.
\end{aligned}
$$

Unitary operators \mathbf{U} satisfy "easy inversion" relations: $\mathbf{U}^{-l}=\mathbf{U}^{\dagger}=\mathbf{U}^{\mathrm{T}}$ They are "designed" to conserve probability and overlap so each transformed ket $\left|\Psi^{\prime}\right\rangle=\mathbf{U}|\Psi\rangle$ has the same probability $\langle\Psi \mid \Psi\rangle=\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{+} \mathbf{U}|\Psi\rangle$ and all transformed kets $\left|\Phi^{\prime}\right\rangle=\mathbf{U}|\Phi\rangle$ have the same overlap $\quad\langle\Psi \mid \Phi\rangle=\left\langle\Psi^{\prime} \mid \Phi^{\prime}\right\rangle=\langle\Psi| \mathbf{U}^{\dagger} \mathbf{U}|\Phi\rangle$ where transformed bras are defined by $\left\langle\Psi^{\prime}\right|=\langle\Psi| \mathbf{U}^{\dagger}$ or $\left\langle\Phi^{\prime}\right|=\langle\Phi| \mathbf{U}^{\dagger}$ implying $\mathbf{1}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U} \mathbf{U}^{\dagger}$

Example \mathbf{U} transfomation: (Rotation by $\phi=30^{\circ}$)

$$
\begin{array}{ll}
\left|x^{\prime}\right\rangle & =\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
\left|y^{\prime}\right\rangle_{-\sin \phi} \mid & \left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle
\end{array}
$$

Ket definition: $\left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle=|x\rangle$ implies: $\langle x|=\left\langle x^{\prime}\right| \mathbf{U}$ implies: $\langle x| \mathbf{U}^{\dagger}=\left\langle x^{\prime}\right|$ Ket definition: $\left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle$ implies: $\quad \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle=|y\rangle \quad$ implies: $\langle y|=\left\langle y^{\prime}\right| \mathbf{U}$ implies: $\langle y| \mathbf{U}^{\dagger}=\left\langle y^{\prime}\right|$
...implies matrix representation of operator \mathbf{U} in either of the bases it connects is exactly the same.

$$
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{c}
\langle x| \mathbf{U}|x\rangle \\
\langle y| \mathbf{U}|y\rangle \\
\langle y| \mathbf{U}|x\rangle
\end{array}\langle y| \mathbf{U}|y\rangle\right)=\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \vdots x\left|y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\binom{\left\langle x^{\prime}\right| \mathbf{U}\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right| \mathbf{U}\left|y^{\prime}\right\rangle}{\left\langle y^{\prime}\right| \mathbf{U}\left|x^{\prime}\right\rangle\left\langle y^{\prime}\right| \mathbf{U}\left|y^{\prime}\right\rangle}
$$

So also is the inverse

$$
\begin{array}{r}
\left(\begin{array}{ll}
\langle x| \mathbf{U}^{\dagger}|x\rangle & \langle x| \mathbf{U}^{\dagger}|y\rangle \\
\langle y| \mathbf{U}^{\dagger}|x\rangle & \langle y| \mathbf{U}^{\dagger}|y\rangle
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{U}^{\dagger}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{U}^{\dagger}\left|y^{\prime}\right\rangle
\end{array}\right) \\
=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle^{*} & \left\langle\left\langle y \mid x^{\prime}\right\rangle^{*}\right. \\
\left\langle x \mid y^{\prime}\right\rangle^{*} & \left\langle y \mid y^{\prime}\right\rangle^{*}
\end{array}\right) \begin{array}{l}
\text { Axiom-3 consistent with } \\
\text { inverse } \mathbf{U} \text { =tranpose-conjugate } \mathbf{U}^{\dagger}=\mathbf{U}^{\mathrm{T}^{*}}
\end{array}
\end{array}
$$

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and †-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

$$
\begin{aligned}
& \left|x^{\prime}\right\rangle=\mathbf{U}|x\rangle=\cos \phi|x\rangle+\sin \phi|y\rangle \\
& \left|y^{\prime}\right\rangle_{-\sin \phi} \quad\left|y^{\prime}\right\rangle=\mathbf{U}|y\rangle=-\sin \phi|x\rangle+\cos \phi|y\rangle \\
& \left|x^{\prime}\right\rangle \\
& \cos \phi \sin \phi \\
& \left(\begin{array}{ll}
\langle x| \mathbf{U}|x\rangle & \langle x| \mathbf{U}|y\rangle \\
\langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& \xrightarrow{|x\rangle}\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& \text { Projector } \mathbf{P}_{x}=|x\rangle\langle x| \text { in } \phi \text {-tilted polarization bases }\left\{\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle\right\} \text { is not diagonal. } \\
& =\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{U}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{U}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{U}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{U}\left|y^{\prime}\right\rangle
\end{array}\right)
\end{aligned}
$$

Projector $\mathbf{P}_{x}=|x\rangle\langle x|$ is what is called an outer or Kronecker tensor (\otimes) product of ket $|x\rangle$ and bra $\langle x|$.

Projector $\mathbf{P}_{x}=|x\rangle\langle x|$ is what is called an outer or Kronecker tensor (\otimes) product of ket $|x\rangle$ and bra $\langle x|$.

$$
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle
\end{array}\right)=\binom{\left\langle x^{\prime} \mid x\right\rangle}{\left\langle y^{\prime} \mid x\right\rangle} \otimes\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left.\left\langle x \mid y^{\prime}\right\rangle\right)
\end{array}\right.
$$

Projector $\mathbf{P}_{x}=|x\rangle\langle x|$ in ϕ-tilted polarization bases $\left\{\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle\right\}$ is not diagonal.
 $$
\left(\begin{array}{ll} \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\ \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \end{array}\right)=\left(\begin{array}{ll} \left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle \end{array}\right)
$$

Projector $\mathbf{P}_{x}=|x\rangle\langle x|$ is what is called an outer or Kronecker tensor (\otimes) product of tet $|x\rangle$ and bra $\langle x|$.

$$
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle
\end{array}\right)=\binom{\left\langle x^{\prime} \mid x\right\rangle}{\left\langle y^{\prime} \mid x\right\rangle} \otimes\left(\begin{array}{c}
\left\langle x \mid x^{\prime}\right\rangle
\end{array}\left\langle x \mid y^{\prime}\right\rangle\right)
$$

The $x^{\prime} y^{\prime}$-representation of $\mathbf{P}_{\mathbf{X}}: \quad \mathbf{P}_{x}=|x\rangle\langle x| \rightarrow\binom{\cos \phi}{-\sin \phi} \otimes\left(\begin{array}{ll}\cos \phi & -\sin \phi\end{array}\right)$

$$
=\left(\begin{array}{cc}
\cos ^{2} \phi & -\sin \phi \cos \phi \\
-\sin \phi \cos \phi & \sin ^{2} \phi
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)_{(\text {for } \phi=0)}
$$

$\because\langle\mid y\rangle$

$$
\begin{aligned}
\left(\begin{array}{cc}
\langle x| \mathbf{U}|x\rangle & \langle x| \mathbf{U}|y\rangle \\
\langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle
\end{array}\right) & =\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
\underline{|x\rangle}\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) & =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

Projector $\mathbf{P}_{x}=|x\rangle\langle x|$ in ϕ-tilted polarization bases $\left\{\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle\right\}$ is not diagonal.

$$
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle
\end{array}\right)
$$

Projector $\mathbf{P}_{x}=|x\rangle\langle x|$ is what is called an outer or Kronecker tensor (\otimes) product of Ret $|x\rangle$ and bra $\langle x|$.

$$
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc:c}
\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle & \left\langle y^{\prime} \mid x\right\rangle\left\langle x \mid y^{\prime}\right\rangle
\end{array}\right)=\binom{\left\langle x^{\prime} \mid x\right\rangle}{\left\langle y^{\prime} \mid x\right\rangle} \otimes\left(\left\langle x \mid x^{\prime}\right\rangle\left\langle x \mid y^{\prime}\right\rangle\right)
$$

The $x^{\prime} y^{\prime}$-representation of $\mathbf{P}_{\mathbf{X}}: \quad \mathbf{P}_{x}=|x\rangle\langle x| \rightarrow\binom{\cos \phi}{-\sin \phi} \otimes\left(\begin{array}{ll}\cos \phi & -\sin \phi\end{array}\right)$

$$
=\left(\begin{array}{cc}
\cos ^{2} \phi & -\sin \phi \cos \phi \\
-\sin \phi \cos \phi & \sin ^{2} \phi
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)_{(\text {for } \phi=0)}
$$

The $x^{\prime} y^{\prime}$-representation of Py :

$$
\begin{aligned}
& \mathbf{P}_{y}=|y\rangle\langle y| \rightarrow\binom{\sin \phi}{\cos \phi} \otimes\left(\begin{array}{cc}
\sin \phi & \cos \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sin ^{2} \phi & \sin \phi \cos \phi \\
\sin \phi \cos \phi & \cos ^{2} \phi
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)_{(\text {for } \phi=0)}
\end{aligned}
$$

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and †-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Axiom-4 similarity transformations (Using: $\mathbf{1}=\sum|k\rangle\langle k|$)

Axiom-4 is basically a matrix product as seen by comparing the following.

$$
\begin{aligned}
& \left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\left\langle j^{\prime \prime}\right| \mathbf{1}\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle \\
& \left(\begin{array}{cccc}
\left\langle 1^{\prime \prime} \mid 1^{\prime}\right\rangle & \left\langle 1^{\prime \prime} \mid 2^{\prime}\right\rangle & \cdots & \left\langle 1^{\prime \prime} \mid n^{\prime}\right\rangle \\
\left\langle 2^{\prime \prime} \mid 1^{\prime}\right\rangle & \left\langle 2^{\prime \prime} \mid 2^{\prime}\right\rangle & \cdots & \left\langle 2^{\prime \prime} \mid n^{\prime}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle n^{\prime \prime} \mid 1^{\prime}\right\rangle & \left\langle n^{\prime \prime} \mid 2^{\prime}\right\rangle & \cdots & \left\langle n^{\prime \prime} \mid n^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cccc}
\left\langle 1^{\prime \prime} \mid 1\right\rangle & \left\langle 1^{\prime \prime} \mid 2\right\rangle & \cdots & \langle 1 " \mid n\rangle \\
\langle 2 " \mid 1\rangle & \langle 2 " \mid 2\rangle & \cdots & \langle 2 " \mid n\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle n " \mid 1\rangle & \langle n " \mid 2\rangle & \cdots & \langle n " \mid n\rangle
\end{array}\right) \bullet\left(\begin{array}{cccc}
\left\langle 1 \mid 1^{\prime}\right\rangle & \left\langle 1 \mid 2^{\prime}\right\rangle & \cdots & \left\langle 1 \mid n^{\prime}\right\rangle \\
\left\langle 2 \mid 1^{\prime}\right\rangle & \left\langle 2 \mid 2^{\prime}\right\rangle & \cdots & \left\langle 2 \mid n^{\prime}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle n \mid 1^{\prime}\right\rangle & \left\langle n \mid 2^{\prime}\right\rangle & \cdots & \left\langle n \mid n^{\prime}\right\rangle
\end{array}\right) \\
& T_{j^{\prime \prime} m^{\prime}}\left(\begin{array}{c}
\text { prime } \\
\text { to } \\
\text { double-prime }
\end{array}\right)=\sum_{k=1}^{n} T_{j^{\prime \prime} k}\left(\begin{array}{c}
\text { unprimed } \\
\text { to } \\
\text { double }- \text { prime }
\end{array}\right) T_{k m^{\prime}}\left(\begin{array}{c}
\text { prime } \\
\text { to } \\
\text { unprimed }
\end{array}\right) \\
& \mathbf{T}\left(b^{\prime \prime} \leftarrow b^{\prime}\right)=\mathbf{T}\left(b^{\prime \prime} \leftarrow b\right) \bullet \mathbf{T}\left(b \leftarrow b^{\prime}\right)
\end{aligned}
$$

Axiom-4 similarity transformations (Using: $\mathbf{1}=\sum|k\rangle\langle k|$)

Axiom-4 is basically a matrix product as seen by comparing the following.

$$
\begin{aligned}
& \left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\left\langle j^{\prime \prime}\right| \mathbf{1}\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle
\end{aligned}
$$

Axiom-4 similarity transformations (Using: $\mathbf{1}=\sum|k\rangle\langle k|$)

Axiom-4 is basically a matrix product as seen by comparing the following.

$$
\begin{aligned}
& \left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\left\langle j^{\prime \prime}\right| \mathbf{1}\left|m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle \\
& \left(\begin{array}{cccc}
\left\langle 1^{\prime \prime} \mid 1^{\prime}\right\rangle & \left\langle 1^{\prime \prime} \mid 2^{\prime}\right\rangle & \cdots & \left\langle 1^{\prime \prime} \mid n^{\prime}\right\rangle \\
\left\langle 2^{\prime \prime} \mid 1^{\prime}\right\rangle & \left\langle 2^{\prime \prime} \mid 2^{\prime}\right\rangle & \cdots & \left\langle 2^{\prime \prime} \mid n^{\prime}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle n^{\prime \prime} \mid 1^{\prime}\right\rangle & \left\langle n^{\prime \prime} \mid 2^{\prime}\right\rangle & \cdots & \left\langle n^{\prime \prime} \mid n^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cccc}
\left\langle 1^{\prime \prime} \mid 1\right\rangle & \left\langle 1^{\prime \prime} \mid 2\right\rangle & \cdots & \left\langle 1^{\prime \prime} \mid n\right\rangle \\
\langle 2 " \mid 1\rangle & \langle 2 " \mid 2\rangle & \cdots & \langle 2 " \mid n\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle n^{\prime \prime} \mid 1\right\rangle & \left\langle n^{\prime \prime} \mid 2\right\rangle & \cdots & \langle n " \mid n\rangle
\end{array}\right) \cdot\left(\begin{array}{cccc}
\left\langle 1 \mid 1^{\prime}\right\rangle & \left\langle 1 \mid 2^{\prime}\right\rangle & \cdots & \left\langle 1 \mid n^{\prime}\right\rangle \\
\left\langle 2 \mid 1^{\prime}\right\rangle & \left\langle 2 \mid 2^{\prime}\right\rangle & \cdots & \left\langle 2 \mid n^{\prime}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle n \mid 1^{\prime}\right\rangle & \left\langle n \mid 2^{\prime}\right\rangle & \cdots & \left\langle n \mid n^{\prime}\right\rangle
\end{array}\right) \\
& T_{j^{\prime \prime} m^{\prime}}\left(\begin{array}{c}
\text { prime } \\
\text { to } \\
\text { double }- \text { prime }
\end{array}\right)=\sum_{k=1}^{n} T_{j^{\prime \prime} k}\left(\begin{array}{c}
\text { unprimed } \\
\text { to } \\
\text { double }- \text { prime }
\end{array}\right) T_{k m^{\prime}}\left(\begin{array}{c}
\text { prime } \\
\text { to } \\
\text { unprimed }
\end{array}\right) \\
& \mathbf{T}\left(b^{\prime \prime} \leftarrow b^{\prime}\right)=\mathbf{T}\left(b^{\prime \prime} \leftarrow b\right) \bullet \mathbf{T}\left(b \leftarrow b^{\prime}\right)
\end{aligned}
$$

(1) The closure axiom

Products $a b=c$ are defined between any two group elements a and b, and the result c is contained in the group.
(2) The associativity axiom

Products (ab)c and $a(b c)$ are equal for all elements a, b, and c in the group .
(3) The identity axiom

There is a unique element 1 (the identity) such that $1 \cdot a=a=a \cdot 1$
for all elements a in the group ..
4) The inverse axiom

For all elements a in the group there is an inverse element a^{-1} such that $a^{-1} a=1=a \cdot a^{-1}$.

Axiom-4 is applied twice to transform operator matrix representation. Example: Find

$$
\text { Find: }\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{\boldsymbol{x}}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)^{\text {given: }} \quad\left(\begin{array}{ll}
\langle x| \mathbf{P}_{\mathbf{P}}|x\rangle & \langle x| \mathbf{P}_{\mathbf{P}}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \text { and T-matr }
\end{array}\right)
$$

The old "P=1•P•1-trick" where: $\mathbf{1}=\sum|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|$;

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:

$$
\text { Find: }\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)^{\text {given: }}\left(\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)
$$

The old "P=1•P•1-trick" where: $\mathbf{1}=\sum|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|$;

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

$\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right| \mathbf{1} \cdot \mathbf{P}_{x} \cdot \mathbf{1}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right|(|x\rangle\langle x|+|y\rangle\langle y|) \cdot \mathbf{P}_{x}(|x\rangle\langle x|+|y\rangle\langle y|)\left|y^{\prime}\right\rangle$

Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:

$$
\begin{aligned}
& \text { Example: Find: } \\
& \left.\qquad \begin{array}{cc}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)
\end{aligned} \begin{array}{ll}
\text { given: } & \left.\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \\
\text { The old "P=1•P•1 trick" where: } \mathbf{1}=\sum|k\rangle\langle k|= & |x\rangle\langle x|+|y\rangle\langle y| ;
\end{array}
$$

$\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right| \mathbf{1} \cdot \mathbf{P}_{x} \cdot \mathbf{1}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right|(|x\rangle\langle x|+|y\rangle\langle y|) \cdot \mathbf{P}_{x} \cdot(|x\rangle\langle x|+|y\rangle\langle y|)\left|y^{\prime}\right\rangle=\left(\left\langle x^{\prime} \mid x\right\rangle\langle x|+\left\langle x^{\prime} \mid y\right\rangle\langle y|\right) \cdot \mathbf{P}_{x} \cdot\left(|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle\right)$

Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:

$$
\begin{aligned}
& \text { Find: } \\
& \left.\begin{array}{lll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)^{\text {given: }}\left(\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{\boldsymbol{x}}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned} \quad=\left(\begin{array}{cc}
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)
$$

The old "P=1•P•1-trick" where: $\mathbf{1}=\sum|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|$;
$\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right| \mathbf{1} \cdot \mathbf{P}_{x} \cdot \mathbf{1}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right|(|x\rangle\langle x|+|y\rangle\langle y|) \cdot \mathbf{P}_{x} \cdot(|x\rangle\langle x|+|y\rangle\langle y|)\left|y^{\prime}\right\rangle=\left(\left\langle x^{\prime} \mid x\right\rangle\langle x|+\left\langle x^{\prime} \mid y\right\rangle\langle y|\right) \cdot \mathbf{P}_{x} \cdot\left(|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle\right)$ $=\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle$

Axiom-4 is applied twice to transform operator matrix representation.
Example: Find

$$
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)^{\text {given: }}\left(\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)
$$

The old "P=1•P•1-trick" where: $\mathbf{1}=\sum|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|$;

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

$\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right| \mathbf{1} \cdot \mathbf{P}_{x} \cdot \mathbf{1}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right|(|x\rangle\langle x|+|y\rangle\langle y|) \cdot \mathbf{P}_{x} \cdot(|x\rangle\langle x|+|y\rangle\langle y|)\left|y^{\prime}\right\rangle=\left(\left\langle x^{\prime} \mid x\right\rangle\langle x|+\left\langle x^{\prime} \mid y\right\rangle\langle y|\right) \cdot \mathbf{P}_{x} \cdot\left(|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle\right)$ $=\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle$
More elegant matrix product:

$$
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)\left(\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)
$$

Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:

$$
\left(\begin{array}{ll}
\left\langle i_{1}\right. \\
\left\langle x^{\prime}\right| \mathbf{P}_{\boldsymbol{P}}\left|x^{\prime}\right\rangle & \left\langle x^{\prime} \mathbf{P}_{\mid} \mid y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)^{\text {given: }}\left(\begin{array}{ll}
\langle x| \mathbf{P}_{\boldsymbol{P}}|x\rangle & \langle x| \mathbf{P}_{\boldsymbol{P}}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \boldsymbol{P}_{x}|y\rangle
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

The old "P=1•P•1-trick" where: $\mathbf{1}=\sum|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|$;

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

$\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right| \mathbf{1} \cdot \mathbf{P}_{x} \cdot \mathbf{1}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right|(|x\rangle\langle x|+|y\rangle\langle y|) \cdot \mathbf{P}_{x} \cdot(|x\rangle\langle x|+|y\rangle\langle y|)\left|y^{\prime}\right\rangle=\left(\left\langle x^{\prime} \mid x\right\rangle\langle x|+\left\langle x^{\prime} \mid y\right\rangle\langle y|\right) \cdot \mathbf{P}_{x} \cdot\left(|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle\right)$ $=\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle$
More elegant matrix product:

$$
\begin{aligned}
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right) & \left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)\left(\begin{array}{rl}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{cc}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:

The old " $\mathbf{P}=\mathbf{1} \cdot \mathbf{P} \cdot \mathbf{1}$-trick" where: $\mathbf{1}=\sum|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|$;

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

$\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right| \mathbf{1} \cdot \mathbf{P}_{x} \cdot \mathbf{1}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right|(|x\rangle\langle x|+|y\rangle\langle y|) \cdot \mathbf{P}_{x} \cdot(|x\rangle\langle x|+|y\rangle\langle y|)\left|y^{\prime}\right\rangle=\left(\left\langle x^{\prime} \mid x\right\rangle\langle x|+\left\langle x^{\prime} \mid y\right\rangle\langle y|\right) \cdot \mathbf{P}_{x} \cdot\left(|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle\right)$ $=\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle$
More elegant matrix product:

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)\left(\begin{array}{lll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & 0 \\
-\sin \phi & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} \phi & -\cos \phi \sin \phi \\
-\sin \phi \cos \phi & \sin ^{2} \phi
\end{array}\right)
\end{aligned}
$$

Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:

$$
\begin{aligned}
& \text { Find: } \\
& \left\langle\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right)^{\text {given: }}\left(\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
\text { and T-mo } \\
0 & 0
\end{array}\right)
\end{aligned}
$$

The old " $\mathbf{P}=\mathbf{1} \cdot \mathbf{P} \cdot \mathbf{1}$-trick" where: $\mathbf{1}=\sum|k\rangle\langle k|=|x\rangle\langle x|+|y\rangle\langle y|$;

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
\end{aligned}
$$

$\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right| \mathbf{1} \cdot \mathbf{P}_{x} \cdot \mathbf{1}\left|y^{\prime}\right\rangle=\left\langle x^{\prime}\right|(|x\rangle\langle x|+|y\rangle\langle y|) \cdot \mathbf{P}_{x} \cdot(|x\rangle\langle x|+|y\rangle\langle y|)\left|y^{\prime}\right\rangle=\left(\left\langle x^{\prime} \mid x\right\rangle\langle x|+\left\langle x^{\prime} \mid y\right\rangle\langle y|\right) \cdot \mathbf{P}_{x} \cdot\left(|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle\right)$

$$
=\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|x\rangle\left\langle x \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid x\right\rangle\langle x| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\langle y| \mathbf{P}_{x}|y\rangle\left\langle y \mid y^{\prime}\right\rangle
$$

More elegant matrix product:

$$
\begin{aligned}
\left(\begin{array}{ll}
\left\langle x^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{P}_{x}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{P}_{x}\left|y^{\prime}\right\rangle
\end{array}\right) & =\left(\begin{array}{cc}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)\left(\begin{array}{ll}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{cc}
\langle x| \mathbf{P}_{x}|x\rangle & \langle x| \mathbf{P}_{x}|y\rangle \\
\langle y| \mathbf{P}_{x}|x\rangle & \langle y| \mathbf{P}_{x}|y\rangle
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & 0 \\
-\sin \phi & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{ccc}
\cos ^{2} \phi & -\cos \phi \sin \phi \\
-\sin \phi \cos \phi & \sin ^{2} \phi
\end{array}\right)
\end{aligned}
$$

This checks with the $\mathbf{P}_{x}=|x\rangle\langle x| \rightarrow\binom{\cos \phi}{-\sin \phi} \otimes\left(\begin{array}{cc}\cos \phi & -\sin \phi\end{array}\right)=\left(\begin{array}{cc}\cos ^{2} \phi & -\sin \phi \cos \phi \\ -\sin \phi \cos \phi & \sin ^{2} \phi\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)_{(\text {for } \phi=0)}$
previous result 4-pages back:

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and †-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate

How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters

$$
\left.\begin{array}{lll}
x \text {-counts } \sim\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2} \\
=\cos ^{2} \theta=0.75 & 2 & \begin{array}{c}
\text { Initial polarization angle } \\
\theta=\beta / 2=30^{\circ}
\end{array}
\end{array} \begin{array}{c}
\text { Analyzer matrix: } \\
\begin{array}{c}
\langle x| \mathbf{T}|x\rangle \\
\langle y| \mathbf{T}|x\rangle
\end{array} \\
y \text {-counts } \sim|\mathbf{T}| y|y\rangle
\end{array}\right)
$$

(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters

Analyzer matrix:

$$
\begin{gathered}
\langle x| \mathbf{T}|x\rangle \\
\langle y| \mathbf{T}|x\rangle \\
\langle y| \mathbf{T}|y\rangle \\
=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

Fig. 1.3.3 Simulated polarization
analyzer set up as a sorter-counter
Analyzer matrix:
(2) Optical analyzer in a filter configuration (Polaroid ${ }^{\circledR}$ sunglasses)

Analyzer blocks one path which may have photon counter without affecting function.
$\left.\begin{array}{ll}\langle x| \mathbf{P}_{y}|x\rangle & \langle x| \mathbf{P}_{y}|y\rangle \\ \langle y| \mathbf{P}_{y}|x\rangle & \langle y| \mathbf{P}_{y}|y\rangle\end{array}\right)$
x-counts $\sim\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}=0.7 \leftrightharpoons$ (Blocked and filtered out)

$$
\begin{aligned}
y \text {-output } \sim & \left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2} \\
& =\sin ^{2} \theta=0.25
\end{aligned}
$$

Initial polarization angle

$$
=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Fig. 1.3.4 Simulated polarization analyzer set up to filter out the x-polarized photons

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and †-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

(a)

Half-wave plate

Final polarization angle $\theta=\beta / 2=150^{\circ}$ (or -30°)

Initial polarization angle $\theta=\beta / 2=30^{\circ}$

Analyzer phase lag (activity angle)

(b) Quarter-wave plate

\bigcirc
Final polarization is untilted elliptical Analyzer matrix: $\quad\left(\begin{array}{ll}\langle x| \mathbf{U}|x\rangle & \langle x| \mathbf{U}|y\rangle \\ \langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle\end{array}\right)=\left(\begin{array}{cc}e^{-i \Omega_{2}, t} & 0 \\ 0 & e^{-i \Omega, t}\end{array}\right)$

$$
\begin{aligned}
& \text { Analyzer phase lag } \begin{array}{l}
\text { (activity angle) } \\
\left(\begin{array}{ll}
\langle x| \mathbf{U}|x\rangle & \langle x| \mathbf{U}|y\rangle \\
\langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \Omega_{2} t} & 0 \\
0 & e^{-i \Omega_{2} t}
\end{array}\right)
\end{array}
\end{aligned}
$$

Initial polarization angle $\theta=\beta / 2=30^{\circ}$,

$$
\left(\begin{array}{ll}
\langle x| \mathbf{U}|x\rangle & \langle x| \mathbf{U}|y\rangle \\
\langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right)
$$

Analyzer matrix: $\left.\begin{array}{ll}\langle x| \mathbf{U}|x\rangle & \langle x| \mathbf{U}|y\rangle \\ \langle y| \mathbf{U}|x\rangle & \langle y| \mathbf{U}|y\rangle\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
0=60^{\circ}
$$

Fig. 1.3.5 Polarization control set to shift phase by (a) Half-wave $(\Omega=\pi)$, (b) Quarter wave $(\Omega=\pi / 2)$
(a)Analyzer Experiment

Similar to "do-nothing" analyzer but has extra phase factor $e^{-i S_{x^{\prime}}}=0.94-i 0.34$ on the x^{\prime}-path (top).
x-output: $\left\langle x \mid \Psi_{\text {out }}\right\rangle=\left\langle x \mid x^{\prime}\right\rangle e^{-i \Omega_{x^{\prime}}}\left\langle x^{\prime} \mid \Psi_{\text {in }}\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi_{\text {in }}\right\rangle=e^{-i \Omega_{x^{\prime}}} \cos \Theta \cos \left(\Theta_{\text {in }}-\Theta\right)-\sin \Theta \sin \left(\Theta_{\text {in }}-\Theta\right)$
y-output: $\left\langle y \mid \Psi_{\text {out }}\right\rangle=\left\langle y \mid x^{\prime}\right\rangle e^{-i \Omega_{x^{\prime}}}\left\langle x^{\prime} \mid \Psi_{\text {in }}\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi_{\text {in }}\right\rangle=e^{-i \Omega_{x^{\prime}}} \sin \Theta \cos \left(\Theta_{\text {in }}-\Theta\right)+\cos \Theta \sin \left(\Theta_{\text {in }}-\Theta\right)$

Fig. 1.3.6 Polarization stàtes for (a) Half-wave $(\Omega=\pi)$, (b) Quarter wave $(\Omega=\pi / 2)$ (c) $(\Omega=-\pi / 4)$

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity
Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and †-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
\geq How analyzers "peek" and how that changes outcomes
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

How analyzers may "peek" and how that changes outcomes

A "peeking" eye (Looksfor x-photons)

Initial polarization angle

$$
\theta=\beta / 2=30^{\circ}
$$

If eye sees an x-photon then the output particle is 100% x-polarized. (75\% probability for that.)
$\beta=60^{\circ}$

If eye sees no x-photon then the output particle is 100\% y-polarized (25\% probability.)

$$
\begin{gathered}
0.25 \\
1
\end{gathered}
$$

Initial polarization angle $\theta=\beta / 2=30^{\circ}$

Fig. 1.3.7 Simulated polarization analyzer set up to "peek" if the photon is x-or y-polarized

How analyzers "peek" and how that changes outcomes
Simulations

Fig. 1.3.8 Output with $\beta / 2=30^{\circ}$ input to: (a) Coherent xy-"Do nothing" or
(b) Incoherent xy-"Peeking" devices

How analyzers "peek" and how that changes outcomes

Fig. 1.3.9 Beams-amplitudes of (a) xy-"Do nothing" and (b) xy-"Peeking" analyzer each with input

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n^{\prime} WITHOUT "peeking"
Do-Nothing-analyzer

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \\
& \left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)
\end{aligned}
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n ' WITHOUT"peeking"

$$
\begin{aligned}
& A\left(x^{\prime}\right)=\left\langle x^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& A\left(y^{\prime}\right)=\left\langle y^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle y^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =-\frac{\sqrt{3}}{4}(1)+\frac{\sqrt{3}}{4}=0=P\left(y^{\prime}\right)
\end{aligned}
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability P(n^{\prime}) at counter n^{\prime} WITH "peeking"
Suppose " x-eye" puts phase $e^{i \phi}$ on each x-photon with random ϕ distributed over unit circle $(-\pi<\phi<\pi)$.

$$
\begin{aligned}
A\left(x^{\prime}\right) & =\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}
\end{aligned}
$$

So $e^{i \phi}$ averages to zero!

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n ' WITHOUT"peeking"

$$
\begin{aligned}
& A\left(x^{\prime}\right)=\left\langle x^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& A\left(y^{\prime}\right)=\left\langle y^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle y^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =-\frac{\sqrt{3}}{4}(1)+\frac{\sqrt{3}}{4}=0=P\left(y^{\prime}\right)
\end{aligned}
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability P(n^{\prime}) at counter n^{\prime} WITH "peeking"
Suppose " x-eye" puts phase $e^{i \phi}$ on each x-photon with random ϕ distributed over unit circle $(-\pi<\phi<\pi)$.

$$
\begin{aligned}
A\left(x^{\prime}\right) & =\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}
\end{aligned}
$$

So $e^{i \phi}$ averages to zero!

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n ' WITHOUT"peeking"

$$
\begin{aligned}
& A\left(x^{\prime}\right)=\left\langle x^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =\frac{3}{4}(1) \quad+\quad \frac{1}{4}=1=P\left(x^{\prime}\right) \\
& A\left(y^{\prime}\right)=\left\langle y^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle y^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =-\frac{\sqrt{3}}{4}(1)+\frac{\sqrt{3}}{4}=0=P\left(y^{\prime}\right)
\end{aligned}
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n^{\prime} WITH "peeking"
Suppose " x-eye" puts phase $e^{i \phi}$ on each x-photon with random ϕ distributed over unit circle $(-\pi<\phi<\pi)$.

$$
\begin{aligned}
A\left(x^{\prime}\right) & =\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4} \\
P\left(x^{\prime}\right) & =\left(\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}\right)^{*}\left(\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}\right) \\
& =\frac{5}{8}+\frac{3}{16}\left(e^{-i \phi}+e^{i \phi}\right)=\frac{5+3 \cos \phi}{8}
\end{aligned}
$$ So $e^{i \phi}$ averages to zero!

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n^{\prime} WITHOUT "peeking"

$$
\begin{aligned}
A\left(x^{\prime}\right) & =\left\langle x^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =\frac{3}{4}(1) \\
A\left(y^{\prime}\right) & =\left\langle y^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle y^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \text { Without } \\
& =-\frac{1}{4}(1)=P\left(x^{\prime}\right)
\end{aligned}
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n^{\prime} WITH "peeking"
Suppose "x-eye" puts phase $e^{i \phi}$ on each x-photon with random ϕ distributed over unit circle $(-\pi<\phi<\pi)$.

$$
\begin{aligned}
A\left(x^{\prime}\right) & =\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4} \\
P\left(x^{\prime}\right) & =\left(\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}\right)^{*}\left(\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}\right) \\
& =\frac{5}{8}+\frac{3}{16}\left(e^{-i \phi}+e^{i \phi}\right)=\frac{5+3 \cos \phi}{8} \\
A\left(y^{\prime}\right) & =\left\langle y^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle y^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =-\frac{\sqrt{3}}{4}\left(e^{i \phi}\right) \quad+\frac{\sqrt{3}}{4}
\end{aligned}
$$

$$
\text { So } e^{i \phi} \text { averages to zero! }
$$

With

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n^{\prime} WITHOUT "peeking"

$$
\begin{aligned}
A\left(x^{\prime}\right) & =\left\langle x^{\prime} \mid x\right\rangle(1)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
= & \frac{3}{4}(1)
\end{aligned}
$$

Amplitude $A\left(n^{\prime}\right)$ and Probability $P\left(n^{\prime}\right)$ at counter n^{\prime} WITH "peeking"
Suppose " x-eye" puts phase $e^{i \phi}$ on each x-photon with random ϕ distributed over unit circle $(-\pi<\phi<\pi)$.
So $e^{i \phi}$ averages to zero!

$$
\begin{aligned}
A\left(x^{\prime}\right) & =\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4} \\
P\left(x^{\prime}\right) & =\left(\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}\right)^{*}\left(\frac{3}{4}\left(e^{i \phi}\right)+\frac{1}{4}\right) \\
& =\frac{5}{8}+\frac{3}{16}\left(e^{-i \phi}+e^{i \phi}\right)=\frac{5+3 \cos \phi}{8} \\
A\left(y^{\prime}\right) & =\left\langle y^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle y^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle \\
& =-\frac{\sqrt{3}}{4}\left(e^{i \phi}\right) \\
P\left(y^{\prime}\right) & =\left(-\frac{\sqrt{3}}{4}\left(e^{i \phi}\right)+\frac{\sqrt{3}}{4}\right)^{*}\left(-\frac{\sqrt{3}}{4}\left(e^{i \phi}\right)+\frac{\sqrt{3}}{4}\right) \\
& =\frac{3}{8}-\frac{3}{16}\left(e^{-i \phi}+e^{i \phi}\right)=\frac{3-3 \cos \phi}{8}
\end{aligned}
$$

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)
$$

Review: Axioms 1-4 and"Do-Nothing"vs" Do-Something" analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or "nothing")
Diagonal unitary operators
Non-diagonal unitary operators and †-conjugation relations
Non-diagonal projection operators and Kronecker \otimes-products
Axiom-4 similarity transformation
Matrix representation of beam analyzers
Non-unitary "killer" devices: Sorter-counter, filter
Unitary "non-killer" devices: 1/2-wave plate, 1/4-wave plate
How analyzers "peek" and how that changes outcomes
\longrightarrow
Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Classical Bayesian probability vs. Quantum probability
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=$
$\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x \text {-beam }\end{array}\right)+\left(\begin{array}{c}\text { probability that } \\ \text { photon in } y \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } y \text {-beam }\end{array}\right)$
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\left|\left\langle x^{\prime} \mid x\right\rangle\right|^{2}\right) *\left(\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2}\right)+\left(\left|\left\langle x^{\prime} \mid y\right\rangle\right|^{2}\right) *\left(\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}\right)$

Classical Bayesian probability vs. Quantum probability
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\begin{array}{cc}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$
$\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x \text {-beam }\end{array}\right)+\left(\begin{array}{c}\text { probability that } \\ \text { photon in } y \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } y \text {-beam }\end{array}\right)$
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\left|\left\langle x^{\prime} \mid x\right\rangle\right|^{2}\right) *\left(\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2}\right)+\left(\left|\left\langle x^{\prime} \mid y\right\rangle\right|^{2}\right) *\left(\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}\right)=\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right) *\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right)+\left(\left|\frac{-1}{2}\right|^{2}\right) *\left(\left|\frac{1}{2}\right|^{2}\right)=\frac{5}{8}$

Classical Bayesian probability vs. Quantum probability
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\begin{array}{cc}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$
$\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x \text {-beam }\end{array}\right)+\left(\begin{array}{c}\text { probability that } \\ \text { photon in } y \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } y \text {-beam }\end{array}\right)$
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\left|\left\langle x^{\prime} \mid x\right\rangle\right|^{2}\right) *\left(\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2}\right)+\left(\left|\left\langle x^{\prime} \mid y\right\rangle\right|^{2}\right) *\left(\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}\right)=\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right) *\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right)+\left(\left|\frac{-1}{2}\right|^{2}\right) *\left(\left|\frac{1}{2}\right|^{2}\right)=\frac{5}{8}$
$\left.\begin{array}{c}\text { Quantum probability } \\ \text { at } x^{\prime} \text {-counter }\end{array}\right)=\left|\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}$
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\begin{array}{cc}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$
$\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x \text {-beam }\end{array}\right)+\left(\begin{array}{c}\text { probability that } \\ \text { photon in } y \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } y \text {-beam }\end{array}\right)$

$$
\binom{\text { Probability that }}{\left.\begin{array}{c}
\text { photon in } x^{\prime} \text {-input } \\
\text { becomes } \\
\text { photon in } x^{\prime} \text {-counter }
\end{array}\right)_{\text {classical }}=\left(\left|\left\langle x^{\prime} \mid x\right\rangle\right|^{2}\right) *\left(\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2}\right)+\left(\left|\left\langle x^{\prime} \mid y\right\rangle\right|^{2}\right) *\left(\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}\right)=\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right) *\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right)+\left(\left|\frac{-1}{2}\right|^{2}\right) *\left(\left|\frac{1}{2}\right|^{2}\right)=\frac{5}{8}, ~}
$$

$\left.\begin{array}{c}\text { Quantum probability } \\ \text { at } x^{\prime} \text {-counter }\end{array}\right)=\left|\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}$

$=\left|\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\right|^{2}+\left|\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}+e^{-i \phi}\left\langle x^{\prime} \mid x\right\rangle^{*}\left\langle x \mid x^{\prime}\right\rangle^{*}\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle+e^{i \phi}\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid y\right\rangle^{*}\left\langle y \mid x^{\prime}\right\rangle^{*}=1$
$=(\quad$ classical probability $)+(\quad$ Phase-sensitive or quantum interference terms $)$
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\begin{array}{cc}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$
$\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x \text {-beam }\end{array}\right)+\left(\begin{array}{c}\text { probability that } \\ \text { photon in } y \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } y \text {-beam }\end{array}\right)$

$$
\left(\begin{array}{c}
\left.\begin{array}{c}
\text { Probability that } \\
\text { photon in } x^{\prime} \text {-input } \\
\text { becomes } \\
\text { photon in } x^{\prime} \text {-counter }
\end{array}\right)_{\text {classical }}=\left(\left|\left\langle x^{\prime} \mid x\right\rangle\right|^{2}\right) *\left(\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2}\right)+\left(\left|\left\langle x^{\prime} \mid y\right\rangle\right|^{2}\right) *\left(\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}\right)=\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right) *\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right)+\left(\left|\frac{-1}{2}\right|^{2}\right) *\left(\left|\frac{1}{2}\right|^{2}\right)=\frac{5}{8} \\
\\
\hline
\end{array}\right)
$$

$\left.\begin{array}{c}\text { Quantum probability } \\ \text { at } x^{\prime} \text {-counter }\end{array}\right)=\left|\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}$

$=\left|\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\right|^{2}+\left|\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}+e^{-i \phi}\left\langle x^{\prime} \mid x\right\rangle^{*}\left\langle x \mid x^{\prime}\right\rangle^{*}\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle+e^{i \phi}\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid y\right\rangle^{*}\left\langle y \mid x^{\prime}\right\rangle^{*}=1$
$=(\quad$ classical probability $)+(\quad$ Phase-sensitive or quantum interference terms $)$
$\binom{$ Quantum probability }{ at x^{\prime}-counter }$=\left|\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\right|+\left|\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}$
$\left(\begin{array}{c}\text { Probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right)_{\text {classical }}=\left(\begin{array}{cc}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$
$\left.\begin{array}{c}\text { probability that } \\ \text { photon in } x \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } x \text {-beam }\end{array}\right)+\left(\begin{array}{c}\text { probability that } \\ \text { photon in } y \text {-beam } \\ \text { becomes } \\ \text { photon in } x^{\prime} \text {-counter }\end{array}\right) *\left(\begin{array}{c}\text { probability that } \\ \text { photon in } x^{\prime} \text {-input } \\ \text { becomes } \\ \text { photon in } y \text {-beam }\end{array}\right)$

$$
\binom{\left.\left.\begin{array}{c}
\text { Probability that } \\
\text { photon in } x^{\prime} \text {-input } \\
\text { becomes } \\
\text { photon in } x^{\prime} \text {-counter }
\end{array}\right)_{\text {classical }}=\left(\left|\left\langle x^{\prime} \mid x\right\rangle\right|^{2}\right) *\left(\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2}\right)+\left(\left|\left\langle x^{\prime} \mid y\right\rangle\right|^{2}\right) *\left(\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}\right)=\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right) *\left(\left|\frac{\sqrt{3}}{2}\right|^{2}\right)+\left(\left|\frac{-1}{2}\right|^{2}\right) *\left(\left|\frac{1}{2}\right|^{2}\right)=\frac{5}{8}\right)}{\left.\right|^{2}}
$$

$\left.\begin{array}{c}\text { Quantum probability } \\ \text { at } x^{\prime} \text {-counter }\end{array}\right)=\left|\left\langle x^{\prime} \mid x\right\rangle\left(e^{i \phi}\right)\left\langle x \mid x^{\prime}\right\rangle+\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}$

$=\left|\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\right|^{2}+\left|\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2}+e^{-i \phi}\left\langle x^{\prime} \mid x\right\rangle^{*}\left\langle x \mid x^{\prime}\right\rangle^{*}\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle+e^{i \phi}\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid y\right\rangle^{*}\left\langle y \mid x^{\prime}\right\rangle^{*}=1$
$=(\quad$ classical probability $)+(\quad$ Phase-sensitive or quantum interference terms $)$
$\left.\binom{$ Quantum probability }{ at x^{\prime}-counter }$=\left|\left\langle x^{\prime} \mid x\right\rangle\left\langle x \mid x^{\prime}\right\rangle\right|+\left|\left\langle x^{\prime} \mid y\right\rangle\left\langle y \mid x^{\prime}\right\rangle\right|^{2} \right\rvert\,$ Square of sum
 Sum of squares

Group axioms

(1) The closure axiom

Products $a b=c$ are defined between any two group elements a and b, and the result c is contained in the group.
(2) The associativity axiom

Products $(a b) c$ and $a(b c)$ are equal for all elements a, b, and c in the group .
(3) The identity axiom

There is a unique element 1 (the identity) such that $1 \cdot a=a=a \cdot 1$
for all elements a in the group ..
4) The inverse axiom

For all elements a in the group there is an inverse element a^{-1} such that $a^{-1} a=1=a \cdot a^{-1}$.
(5) The commutative axiom (Abelian groups only)

All elements a in an Abelian group are mutually commuting: $a \cdot b=b \cdot a$.

