Group Theory in Quantum Mechanics Lecture 2 (1.17.13)

Quantum amplitudes, analyzers, and axioms

(Quantum Theory for Computer Age - Ch. 1 of Unit 1) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-2 of Ch. 1)

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

"Abstraction" of bra and ket vectors from a Transformation Matrix

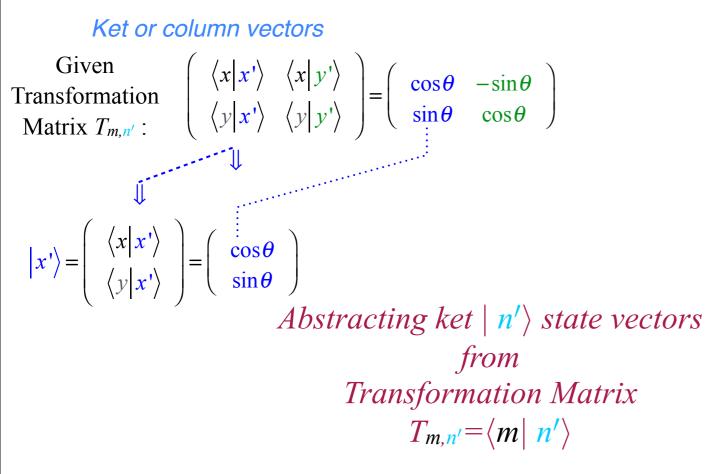
Ket or column vectors

Bra or row vectors

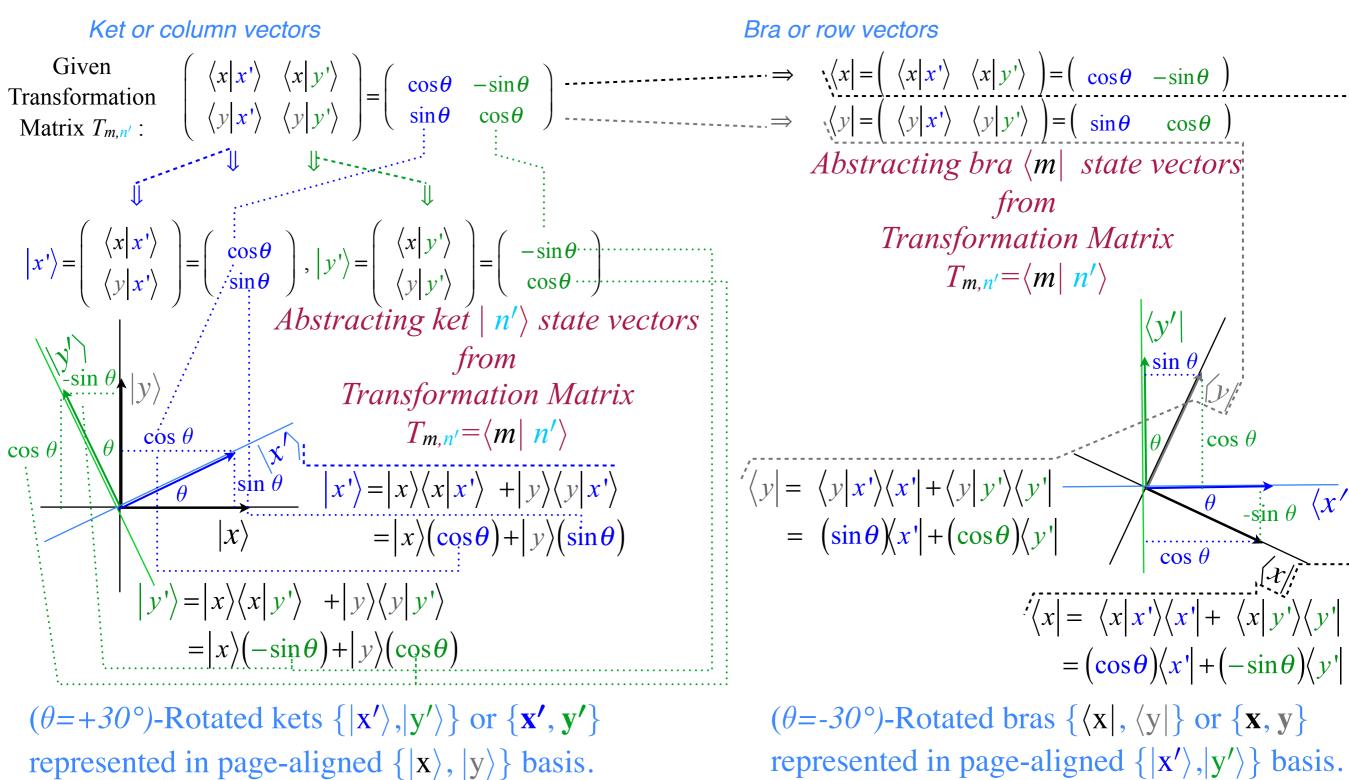
Given Transformation Matrix $T_{m,n'}$: $\begin{pmatrix} \langle x | x' \rangle & \langle x | y' \rangle \\ \langle y | x' \rangle & \langle y | y' \rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$

"Abstraction" of bra and ket vectors from a Transformation Matrix

Bra or row vectors



"Abstraction" of bra and ket vectors from a Transformation Matrix



Ket vector algebra has the order of $T_{m,n'}$ transposed $|x'\rangle = |x\rangle\langle x|x'\rangle + |y\rangle\langle y|x'\rangle = |x\rangle(\cos\theta) + |y\rangle(\sin\theta)$ $|y'\rangle = |x\rangle\langle x|y'\rangle + |y\rangle\langle y|y'\rangle = |x\rangle(-\sin\theta) + |y\rangle(\cos\theta)$

Bra vector algebra has the <u>same</u> order as $T_{m,n'}$

$$\langle x| = \langle x|x' \rangle \langle x'| + \langle x|y' \rangle \langle y'| = (\cos\theta) \langle x'| + (-\sin\theta) \langle y'|$$

$$\langle y| = \langle y|x' \rangle \langle x'| + \langle y|y' \rangle \langle y'| = (\sin\theta) \langle x'| + (\cos\theta) \langle y'|$$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Transformation matrix $T_{m,n'} = \langle m | n' \rangle$ is array of dot or *scalar products* (dot products) of unit vectors $\begin{pmatrix} \langle x | x' \rangle & \langle x | y' \rangle \\ \langle y | x' \rangle & \langle y | y' \rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} (\mathbf{x} \bullet \mathbf{x'}) & (\mathbf{x} \bullet \mathbf{y'}) \\ (\mathbf{y} \bullet \mathbf{x'}) & (\mathbf{y} \bullet \mathbf{y'}) \end{pmatrix}$ or direction cosines. $\{\langle x|, \langle y|\}$ $\{\langle x'|, \langle y'|\}$ components components of $|\Psi\rangle$: of $|\Psi\rangle$: $\langle x | \Psi \rangle = \Psi_x$ $\langle v | \Psi \rangle = \Psi_v$ $\langle x | \Psi \rangle$ $|x\rangle$ $|\chi\rangle$ Any state $|\Psi\rangle$ can be expanded in any basis $\{\langle x|, \langle y|\}, \text{ or } \{\langle x'|, \langle y'|\}, \dots etc.\}$ $|\Psi\rangle = |x\rangle\langle x|\Psi\rangle + |y\rangle\langle y|\Psi\rangle = |x'\rangle\langle x'|\Psi\rangle + |y'\rangle\langle y'|\Psi\rangle$ Transformation matrix $T_{m,n'}$ relates $\{\langle x|\Psi\rangle, \langle y|\Psi\rangle\}$ amplitudes to $\{\langle x'|\Psi\rangle, \langle y'|\Psi\rangle\}$ $\begin{pmatrix} \langle x | \Psi \rangle \\ \langle y | \Psi \rangle \end{pmatrix} = \begin{pmatrix} \langle x | x' \rangle & \langle x | y' \rangle \\ \langle y | x' \rangle & \langle y | y' \rangle \end{pmatrix} \begin{pmatrix} \langle x' | \Psi \rangle \\ \langle y' | \Psi \rangle \end{pmatrix}$ or: $\begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} = \begin{pmatrix} \langle x | x' \rangle & \langle x | y' \rangle \\ \langle y | x' \rangle & \langle y | y' \rangle \end{pmatrix} \begin{pmatrix} \Psi_{x'} \\ \Psi_{y'} \end{pmatrix}$ Hybrid Gibbs-Dirac notation (Ug-ly!)Proof: $\langle x | = \langle x | x' \rangle \langle x' | + \langle x | y' \rangle \langle y' |$ implies: $\langle x | \Psi \rangle = \langle x | x' \rangle \langle x' | \Psi \rangle + \langle x | y' \rangle \langle y' | \Psi \rangle$ $\langle y | = \langle y | x' \rangle \langle x' | + \langle y | y' \rangle \langle y' | \text{ implies: } \langle y | \Psi \rangle = \langle y | x' \rangle \langle x' | \Psi \rangle + \langle y | y' \rangle \langle y' | \Psi \rangle$

Transformation matrix
$$T_{m,n'} = \langle m \mid n' \rangle$$
 is array of dot or *scalar products* (dot products) of unit vectors
or *direction cosines*.

$$\begin{pmatrix} \langle x \mid x' \rangle \langle x \mid y' \rangle \\ \langle y \mid x' \rangle \langle y \mid y' \rangle \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} (\mathbf{x} \cdot \mathbf{x}^{*}) & (\mathbf{x} \cdot \mathbf{y}^{*}) \\ (\mathbf{y} \cdot \mathbf{x}^{*}) & (\mathbf{y} \cdot \mathbf{y}^{*}) \end{pmatrix}$$

$$\begin{pmatrix} (x \mid \langle y \mid \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix} = \begin{pmatrix} \langle x \mid \psi \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix} = \begin{pmatrix} \langle x \mid \psi \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix}$$

$$\begin{pmatrix} (x \mid \langle y \mid \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix} = \begin{pmatrix} \langle x \mid \psi \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix}$$

$$\begin{pmatrix} (x \mid \langle y \mid \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix} = \begin{pmatrix} \langle x \mid \psi \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix} \begin{pmatrix} \langle y \mid \psi \rangle \\ \langle y \mid \psi \rangle \rangle \end{pmatrix}$$

$$(x \mid \psi \rangle = \psi \rangle$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

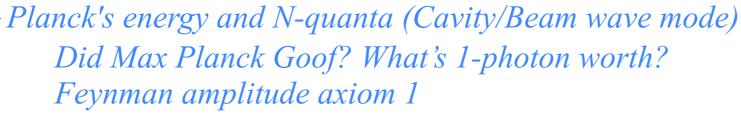
$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle)$$

$$(x \mid \psi \rangle = \psi \rangle \langle y \mid \psi \rangle)$$

$$(x \mid \psi \rangle)$$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products



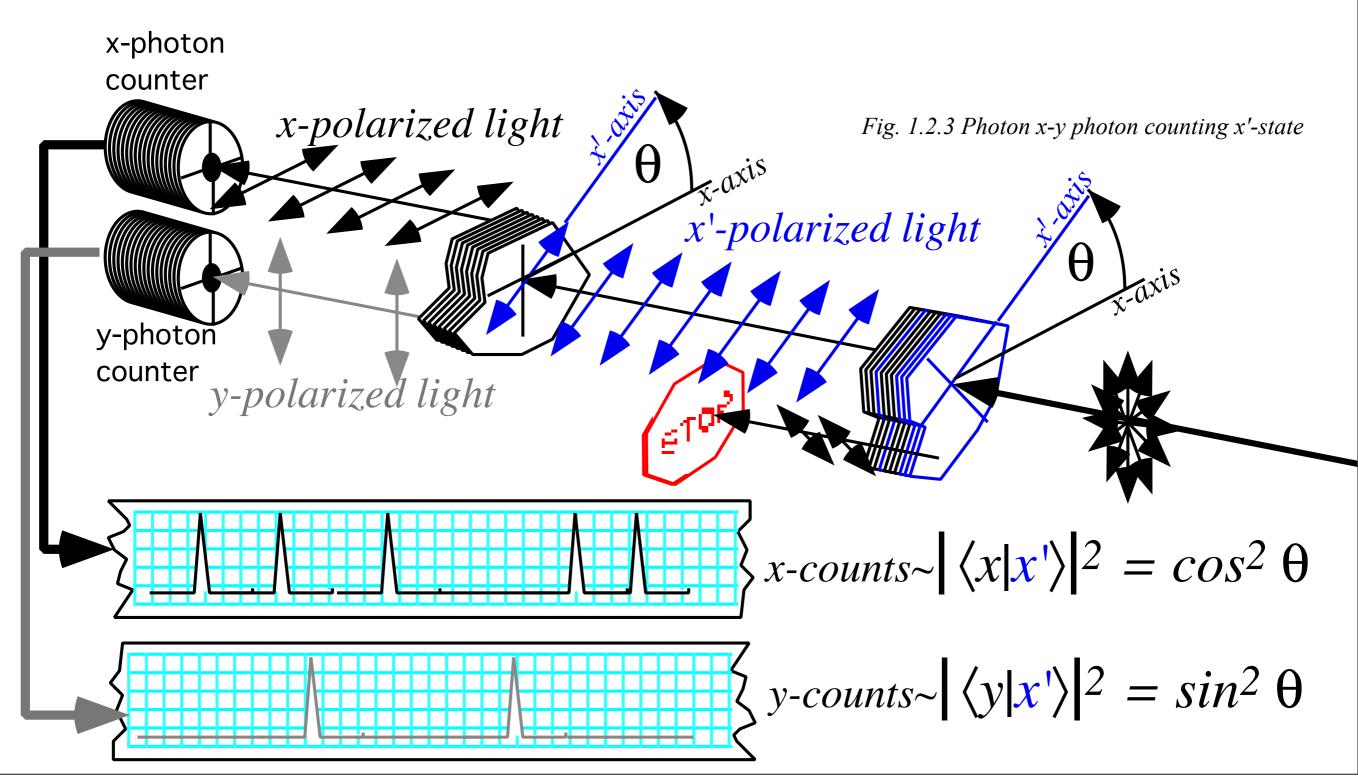
What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Planck's energy and *N*-**quanta** (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi\nu$) *Planck axiom:* **E**-field energy density *U* in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (*N "photons"*)

 $h=2\pi\hbar=6.6310^{-34}Js$ Planck constant

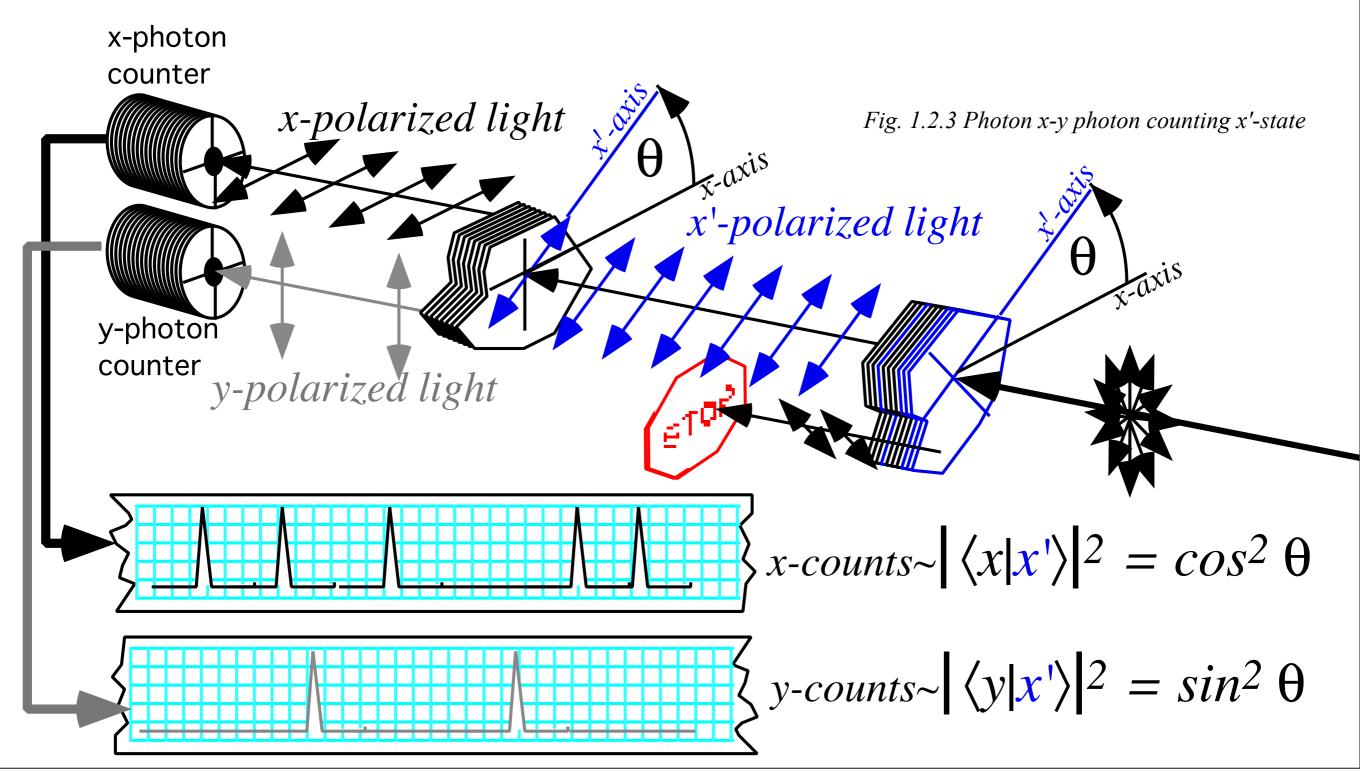
Planck's energy and *N*-**quanta** (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi\nu$) *Planck axiom:* **E**-field energy density *U* in cavity/beam mode- ω is: $U = N\hbar\omega/V = Nh\nu/V$ (*N "photons"*)

 $h=2\pi\hbar=6.63\cdot10^{-34}Js$ Planck constant



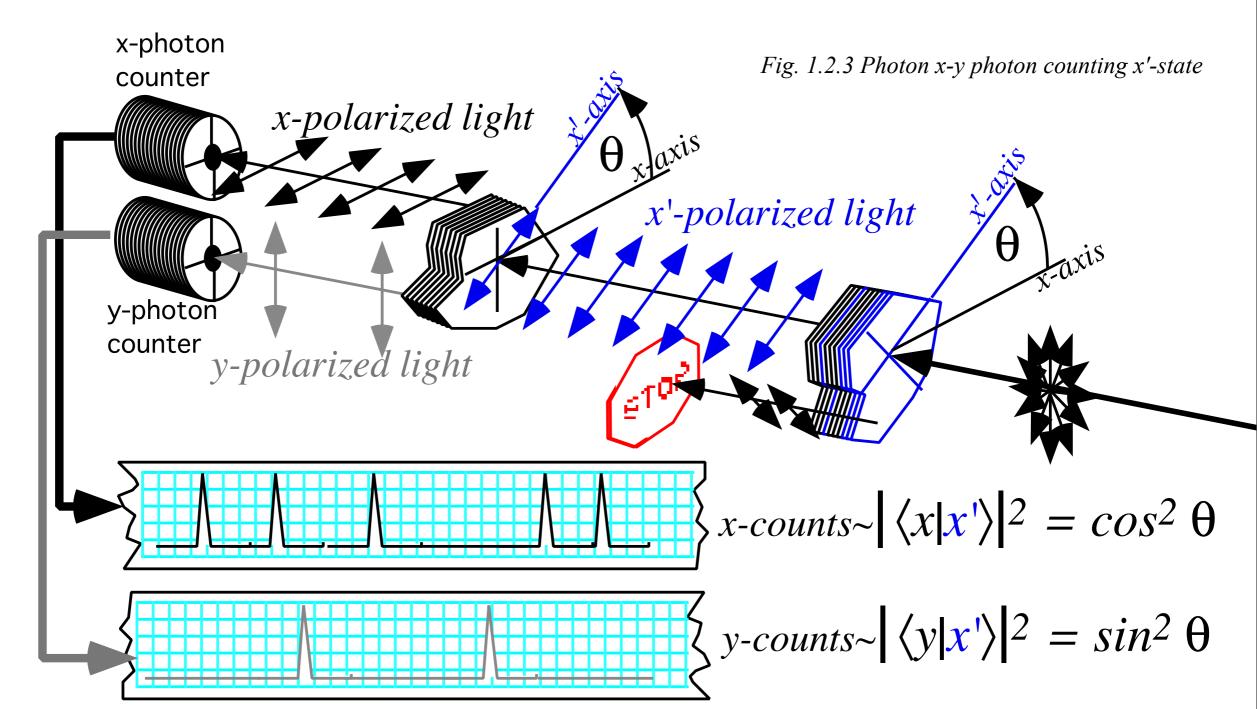
Planck's energy and *N*-**quanta** (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi\nu$) *Planck axiom:* **E**-field energy density *U* in cavity/beam mode- ω is: $U = N\hbar\omega/V = Nh\nu/V$ (*N "photons"*) **E**-field vector (E_x, E_y) = $f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* f.

 $h=2\pi\hbar=6.63\cdot10^{-34}Js$ Planck constant



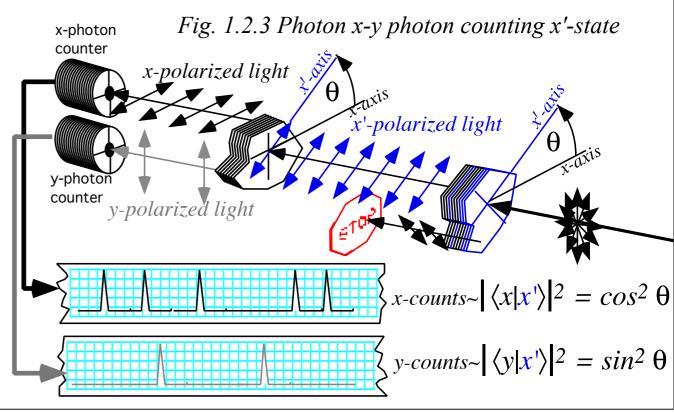
Planck's energy and *N*-**quanta** (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi\nu$) *Planck axiom: E*-field energy density *U* in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (*N "photons"*) *E*-field vector (E_x, E_y) = $f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* f.

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix}^{h=2\pi\hbar=6.63\cdot10^{-34}Js}$$
Planck constant



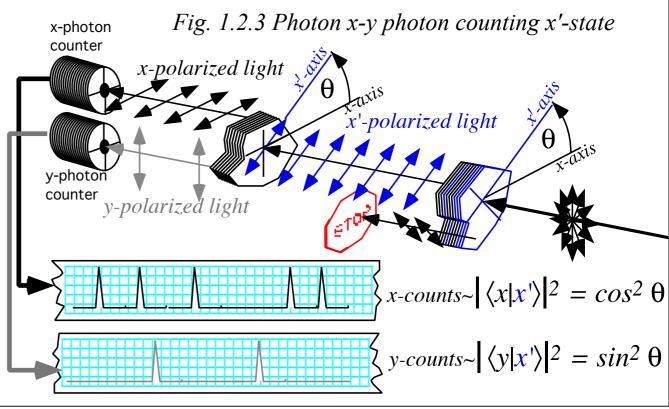
Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{pmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{pmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 J/C$ Quantum $N = |\Psi_x|^2 + |\Psi_y|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory x-photon *Fig. 1.2.3 Photon x-y photon counting x'-state* counter *x*-polarized light θ $x^{-\alpha x^{is}}$ x'-polarized light y-photon counter y-polarized light $\int x - counts \sim |\langle x | x' \rangle|^2 = cos^2 \theta$ $\langle y - counts \sim |\langle y | x' \rangle|^2 = sin^2 \theta$

Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{pmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{pmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 J/C$ Ouantum $N = |\Psi_x|^2 + |\Psi_y|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory *Poynting energy flux* $S(J/m^2s)$ or *energy density* $U(J/m^3)$ of light beam. Classical $S = cU, \text{ where: } U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 \left(E_x^* E_x + E_y^* E_y \right) = \varepsilon_0 \left(E_x^* (0)^2 + E_y^* (0)^2 \right)$ em wave theory



Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{pmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{pmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 J/C$ Ouantum $N = |\Psi_x|^2 + |\Psi_y|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory *Poynting energy flux* $S(J/m^2s)$ or *energy density* $U(J/m^3)$ of light beam. Classical $S = cU, \text{ where: } U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 \left(E_x^* E_x + E_y^* E_y \right) = \varepsilon_0 \left(E_x^* (0)^2 + E_y^* (0)^2 \right)$ em wave theory

Equate U to Planck's N-"photon" quantum energy density $N\hbar\omega/V$



Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{vmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{vmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 J/C$ Ouantum $N = |\Psi_x|^2 + |\Psi_v|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory Poynting energy flux $S(J/m^2s)$ or energy density $U(J/m^3)$ of light beam. Classical $S = cU, \text{ where: } U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 \left(E_x^* E_x + E_y^* E_y \right) = \varepsilon_0 \left(E_x^* (0)^2 + E_y^* (0)^2 \right)$ em wave theory Equate U to Planck's N-"photon" quantum energy density $N\hbar\omega/V$

$$\frac{N\hbar\omega}{V} = U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right)$$

$$N$$

$$Fig. 1.2.3 Photon x-y photon counting x'-state
$$Fig. 1.2.3 Photon x-y photon counting x'-state$$

$$Fig. 1.2.3 Photon x-y photon x-y photon counting x'-state$$

$$Fig. 1.2.3 Photon x-y photon x-y photon counting x'-state$$

$$Fig. 1.2.3 Photon x-y photon x-y$$$$

Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{vmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{vmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 \, J/C$ Ouantum $N = |\Psi_x|^2 + |\Psi_y|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory *Poynting energy flux* $S(J/m^2s)$ or *energy density* $U(J/m^3)$ of light beam. Classical $S = cU, \text{ where: } U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 \left(E_x^* E_x + E_y^* E_y \right) = \varepsilon_0 \left(E_x(0)^2 + E_y(0)^2 \right)$ em wave theory Equate U to Planck's N-"photon" quantum energy density $N\hbar\omega/V$ $\frac{N\hbar\omega}{V} = U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right) \xrightarrow{\text{x-photon counter}}$ *Fig. 1.2.3 Photon x-y photon counting x'-state x*-*p*olarized light Photon number N for beam is: x'-polarized light $N = \frac{U \cdot V}{\hbar \omega} = \frac{\varepsilon_0 V}{\hbar \omega} \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \frac{\varepsilon_0 V}{\hbar \omega} f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right) \right)$ y-photon counter y-polarized light (divide by N)

 $\langle x | x' \rangle^2 = \cos^2 \theta$

 $\frac{1}{2} = \sin^2 \theta$

Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{vmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{vmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 \, J/C$ Ouantum $N = |\Psi_x|^2 + |\Psi_v|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory *Poynting energy flux* $S(J/m^2s)$ or *energy density* $U(J/m^3)$ of light beam. Classical S = cU, where: $U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 \left(E_x^* E_x + E_y^* E_y \right) = \varepsilon_0 \left(E_x(0)^2 + E_y(0)^2 \right)$ em wave theory Equate U to Planck's N-"photon" quantum energy density $N\hbar\omega/V$ $\frac{N\hbar\omega}{V} = U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right) \xrightarrow{\text{x-photor}}_{\text{counter}}$ *Fig. 1.2.3 Photon x-y photon counting x'-state x*-polarized light Photon number N for beam is: x'-polarized light $N = \frac{U \cdot V}{\hbar \omega} = \frac{\varepsilon_0 V}{\hbar \omega} \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \frac{\varepsilon_0 V}{\hbar \omega} f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right) \right]$ y-photon counter y-polarized light $1 = \frac{U \cdot V}{N \hbar \omega} = \frac{\varepsilon_0 V}{N \hbar \omega} \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \frac{\varepsilon_0 V}{\hbar \omega} f^2 \checkmark (divided by N)$

 $\left| \left\langle x | x' \right\rangle \right|^2 = \cos^2 \theta$

 $\langle y - counts \rangle | \langle y | x' \rangle |^2 = sin^2 \theta$

Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{vmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{vmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 \, J/C$ Ouantum $N = |\Psi_x|^2 + |\Psi_v|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory *Poynting energy flux* $S(J/m^2s)$ or *energy density* $U(J/m^3)$ of light beam. Classical S = cU, where: $U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 \left(E_x^* E_x + E_y^* E_y \right) = \varepsilon_0 \left(E_x(0)^2 + E_y(0)^2 \right)$ em wave theory Equate U to Planck's N-"photon" quantum energy density $N\hbar\omega/V$ $\frac{N\hbar\omega}{V} = U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right) \xrightarrow{\text{x-photor}}_{\text{counter}}$ *Fig. 1.2.3 Photon x-y photon counting x'-state* x-polarized light Photon number N for beam is: x'-polarized light $N = \frac{U \cdot V}{\hbar \omega} = \frac{\varepsilon_0 V}{\hbar \omega} \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \frac{\varepsilon_0 V}{\hbar \omega} f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right) \right)$ y-photon counter y-polarized light $1 = \frac{U \cdot V}{N \hbar \omega} = \frac{\varepsilon_0 V}{N \hbar \omega} \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \frac{\varepsilon_0 V}{\hbar \omega} f^2 \checkmark (divided by N)$ $\left| \left\langle x | x' \right\rangle \right|^2 = \cos^2 \theta$ quantum field constant $f f = \sqrt{\frac{\hbar\omega}{V\varepsilon_0}}$ $\langle y|x'\rangle|^2 = \sin^2 \theta$

Saturday, February 2, 2013

Planck's energy and *N*-quanta (*Cavity/Beam of volume V with wave mode of frequency* $\omega = 2\pi \nu$) *Planck axiom:* E-field energy density U in cavity/beam mode- ω is: $U = N\hbar\omega/V = N\hbar\nu/V$ (N "photons") *E*-field vector $(E_x, E_y) = f(\Psi_x, \Psi_y)$ where *quantum field proportionality constant is* $f = f(\hbar, \omega, V, \varepsilon_0)$. $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x(0)e^{ikz-i\omega t} \\ E_y(0)e^{ikz-i\omega t} \end{pmatrix} \cong \begin{pmatrix} E_x(0)e^{-i\omega t} \\ E_y(0)e^{-i\omega t} \end{pmatrix} = f \begin{pmatrix} \Psi_x \\ \Psi_y \end{pmatrix} \begin{vmatrix} h=2\pi\hbar=6.626\ 075\cdot10^{-34}Js & Planck\ constant \\ c=2.997\ 924\ 58\cdot10^8\ ms^{-1} & Light\ speed \\ \varepsilon_0 = 8.854\cdot10^{-12}C^2N^{-1}m^{-2}Electrostatic\ constant \end{vmatrix}$ *Coulomb constant:* $k = 1/4\pi\varepsilon_0$ Ψ -amplitude-squares sum to *exciton-number N*. (...or *photon-number N*) $= 9 \cdot 10^9 \, J/C$ Ouantum $N = |\Psi_x|^2 + |\Psi_y|^2 = \langle x|\Psi \rangle^* \langle x|\Psi \rangle + \langle y|\Psi \rangle^* \langle y|\Psi \rangle$ em wave theory *Poynting energy flux* $S(J/m^2s)$ or *energy density* $U(J/m^3)$ of light beam. Classical S = cU, where: $U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 \left(E_x^* E_x + E_y^* E_y \right) = \varepsilon_0 \left(E_x(0)^2 + E_y(0)^2 \right)$ em wave theory Equate U to Planck's N-"photon" quantum energy density $N\hbar\omega/V$ $\frac{N\hbar\omega}{V} = U = \varepsilon_0 \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \varepsilon_0 f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right)$ *Fig. 1.2.3 Photon x-y photon counting x'-state x-polarized light* Photon number N for beam is: x'-polarized light $N = \frac{U \cdot V}{\hbar \omega} = \frac{\varepsilon_0 V}{\hbar \omega} \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \frac{\varepsilon_0 V}{\hbar \omega} f^2 \left(\left| \Psi_x \right|^2 + \left| \Psi_y \right|^2 \right) \right)$ y-photon counter y-polarized light $1 = \frac{U \cdot V}{N \hbar \omega} = \frac{\varepsilon_0 V}{N \hbar \omega} \left(\left| E_x \right|^2 + \left| E_y \right|^2 \right) = \frac{\varepsilon_0 V}{\hbar \omega} f^2 \checkmark (divided by N)$

Saturday, February 2, 2013

quantum field constant $f = \sqrt{\frac{\hbar\omega}{V\varepsilon_0}} = \sqrt{\frac{|E_x|^2 + |E_y|^2}{N}}$ for *N*-photons

21

 $\langle x - counts \rangle \langle x | x' \rangle |^2 = cos^2 \theta$

 $\langle y|x'\rangle^2 = sin^2 \theta$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Did Max Planck Goof? After his 1900 ($U=\hbar\omega N$)-axiom paper, Max Planck felt despondent and that his ($U=\hbar\omega N$)-axiom was a career-ending goof. Here is one paradox (and its resolution): Paradox: We know... Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A. $\varepsilon = (const.) \omega^2 A^2 = 1/2 \text{ m } \omega^2 A^2$ Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential A. $U = \varepsilon_0 (|E_x|^2 + |E_y|^2) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2$ where: $\mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

But:...

Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

E-field energy density U in cavity mode- ω is: $U = \hbar \omega N/V$ (V=cavity volume)

E-field Poynting flux S = cU in beam mode- ω is: $S = \hbar \omega n / \sigma$ ($\sigma = beam \ area$)

 $\varepsilon = (const.) \ \omega^2 A^2 = 1/2 \ m \ \omega^2 A^2$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential A.

 $U = \varepsilon_0 \left(|E_x|^2 + |E_y|^2 \right) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2 \qquad \text{where: } \mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

But:...

Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

E-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*) *E*-field Poynting flux *S*=*cU* in beam mode- ω is: *S*= $\hbar \omega n/\sigma$ (σ =*beam area*)

Quick Resolution:

Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}| = f\sqrt{N}$ *is linear in* ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \epsilon_0$

 $\varepsilon = (const.) \ \omega^2 A^2 = 1/2 \ m \ \omega^2 A^2$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω *and vector potential* **A***.*

 $U = \varepsilon_0 \left(|E_x|^2 + |E_y|^2 \right) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2 \qquad \text{where: } \mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

But:...

Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

E-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*)

E-field Poynting flux S = cU in beam mode- ω is: $S = \hbar \omega n / \sigma$ ($\sigma = beam \ area$)

Quick Resolution:

 $\widetilde{Given constant}$ (N=1)-quantum field factor f, squared $|\mathbf{E}| = f\sqrt{N}$ is linear in ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \varepsilon_0$

 $\varepsilon = (const.) \ \omega^2 A^2 = 1/2 \ m \ \omega^2 A^2$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω *and vector potential* **A***.*

 $U = \varepsilon_0 \left(|E_x|^2 + |E_y|^2 \right) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2 \qquad \text{where: } \mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

But:...

Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

E-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*)

E-field Poynting flux S = cU in beam mode- ω is: $S = \hbar \omega n / \sigma$ ($\sigma = beam \ area$)

Quick Resolution:

Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}| = f\sqrt{N}$ *is linear in* ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \epsilon_0$

 $\varepsilon = (const.) \ \omega^2 A^2 = 1/2 \ m \ \omega^2 A^2$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω *and vector potential* **A***.*

 $U = \varepsilon_0 \left(|E_x|^2 + |E_y|^2 \right) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2 \qquad \text{where: } \mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

But:...

Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

E-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*)

E-field Poynting flux S = cU in beam mode- ω is: $S = \hbar \omega n / \sigma$ ($\sigma = beam \ area$)

Quick Resolution:

Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}| = f\sqrt{N}$ *is linear in* ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \epsilon_0$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Classical: $c = 2.99\ 792\ 458\cdot 10^8\ ms^{-1}\ \varepsilon_0 = 8.842\cdot 10^{-12}C^2N^{-1}m^2$ $e = 1.602\ 177\cdot 10^{-19}Coul$ Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A. $\varepsilon = (const.)\ \omega^2A^2 = 1/2\ m\ \omega^2A^2$ Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential A.

 $U = \varepsilon_0 \left(|E_x|^2 + |E_y|^2 \right) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2 \qquad \text{where: } \mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

Quantum: $h=2\pi\hbar=6.626\ 075\cdot10^{-34}$ Js $c=2.997\ 924\ 58\cdot10^8\ ms^{-1}\ \varepsilon_0=8.854\cdot10^{-12}C^2N^{-1}m^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

> *E*-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*) *E*-field Poynting flux *S*=*cU* in beam mode- ω is: *S*= $\hbar \omega n/\sigma$ (σ =*beam area*)

Example: $V = (1/4 micron)^3$ cubic cavity fundamental (1/2-wave for 600THz green) with $N = 10^6$ photons

Classical: $c = 2.99\ 792\ 458\cdot10^8\ ms^{-1}\ \varepsilon_0 = 8.842\cdot10^{-12}C^2N^{-1}m^2$ $e = 1.602\ 177\cdot10^{-19}Coul$ Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A. $\varepsilon = (const.)\ \omega^2A^2 = 1/2\ m\ \omega^2A^2$ Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential A.

 $U = \varepsilon_0 \left(|E_x|^2 + |E_y|^2 \right) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2 \qquad \text{where: } \mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

Quantum: $h=2\pi\hbar=6.626\ 075\cdot10^{-34}$ Js $c=2.997\ 924\ 58\cdot10^8\ ms^{-1}\ \varepsilon_0=8.854\cdot10^{-12}C^2N^{-1}m^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

> *E*-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*) *E*-field Poynting flux *S*=*cU* in beam mode- ω is: *S*= $\hbar \omega n/\sigma$ (σ =*beam area*)

Quantum field: H.O. quantum energy eigenvalues: $\omega_N = \hbar \omega (N + 1/2)$ Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}| = f\sqrt{N}$ is linear in ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \epsilon_0$ quantum field const. = $f = \sqrt{\frac{\hbar \omega}{Vc}} = \sqrt{\frac{|E_x|^2 + |E_y|^2}{N}} = \frac{|\mathbf{E}|}{\sqrt{N}}$ for N-photons $\epsilon_0 |\mathbf{E}|^2 = \hbar \omega N/V = U$

constant f

$$\int V \mathcal{E}_{0} \quad \sqrt{N} \quad \sqrt{N} \quad \varepsilon_{0} \quad \omega^{2} |\mathbf{A}|^{2} = \hbar \omega N/V$$

$$= \sqrt{|E_{x}|^{2} + |E_{y}|^{2}} = |\mathbf{E}| \text{ for 1-photon}$$

Example: $V = (1/4 micron)^3$ cubic cavity fundamental (1/2-wave for 600THz green) with $N = 10^6$ photons

Classical: $c = 2.99\ 792\ 458\cdot 10^8\ ms^{-1}\ \varepsilon_0 = 8.842\cdot 10^{-12}C^2N^{-1}m^2$ $e = 1.602\ 177\cdot 10^{-19}Coul$ Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A. $\varepsilon = (const.)\ \omega^2A^2 = 1/2\ m\ \omega^2A^2$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω *and vector potential* **A**. $U = \varepsilon_0 (|E_x|^2 + |E_y|^2) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2$ where: $\mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

Quantum: $h=2\pi\hbar=6.626\ 075\cdot10^{-34}$ Js $c=2.997\ 924\ 58\cdot10^8\ ms^{-1}\ \varepsilon_0=8.854\cdot10^{-12}C^2N^{-1}m^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

> *E*-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*) *E*-field Poynting flux *S*=*cU* in beam mode- ω is: *S*= $\hbar \omega n/\sigma$ (σ =*beam area*)

Quantum field: H.O. quantum energy eigenvalues: $\omega_N = \hbar \omega (N + 1/2)$ Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}| = f\sqrt{N}$ is linear in ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \varepsilon_0$

quantum field const. =
$$f = \sqrt{\frac{\hbar\omega}{V\varepsilon_0}} = \sqrt{\frac{|E_x|^2 + |E_y|^2}{N}} = \frac{|\mathbf{E}|}{\sqrt{N}}$$
 for N-photons $\varepsilon_0 |\mathbf{E}|^2 = \hbar\omega N/V = U$
 $\varepsilon_0 \omega^2 |\mathbf{A}|^2 = \hbar\omega N/V$
 $\varepsilon_0 \omega^2 |\mathbf{A}|^2 = \hbar\omega N/V$

Example: $V=(1/4micron)^3$ cubic cavity fundamental (1/2-wave for 600THz green) with $N=10^6$ photons Energy per N=1 photon = $h\psi=6.63\cdot10^{-34}Js\cdot600\cdot10^{12}/s = 4.0\cdot10^{-19}J=2.5eV$

Classical: $c = 2.99\ 792\ 458\cdot 10^8\ ms^{-1}\ \varepsilon_0 = 8.842\cdot 10^{-12}C^2N^{-1}m^2$ $e = 1.602\ 177\cdot 10^{-19}Coul$ Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A. $\varepsilon = (const.)\ \omega^2A^2 = 1/2\ m\ \omega^2A^2$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential **A**. $U = \varepsilon_0 (|E_x|^2 + |E_y|^2) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2$ where: $\mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

Quantum: $h=2\pi\hbar=6.626\ 075\cdot10^{-34}$ Js $c=2.997\ 924\ 58\cdot10^8\ ms^{-1}\ \varepsilon_0=8.854\cdot10^{-12}C^2N^{-1}m^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

> *E*-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*) *E*-field Poynting flux *S*=*cU* in beam mode- ω is: *S*= $\hbar \omega n/\sigma$ (σ =*beam area*)

Quantum field: H.O. quantum energy eigenvalues: $\omega_N = \hbar \omega (N + 1/2)$ Given constant (N=1)-quantum field factor *f*, squared $|\mathbf{E}| = f \sqrt{N}$ is linear in ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \varepsilon_0$

quantum field
constant f
$$const. = f = \sqrt{\frac{\hbar\omega}{V\varepsilon_0}} = \sqrt{\frac{|E_x|^2 + |E_y|^2}{N}} = \frac{|\mathbf{E}|}{\sqrt{N}} \text{ for } N \text{-photons}$$

$$\varepsilon_0 |\mathbf{E}|^2 = \hbar\omega N/V = U$$

$$\varepsilon_0 \omega^2 |\mathbf{A}|^2 = \hbar\omega N/V$$

$$\varepsilon_0 \omega^2 |\mathbf{A}|^2 = \hbar\omega N/V$$

Example: $V = (1/4 \text{micron})^3$ cubic cavity fundamental (1/2 -wave for 600THz green) with $N = 10^6$ photons Energy per N = 1 photon $= h\upsilon = 6.63 \cdot 10^{-34} Js \cdot 600 \cdot 10^{12}/s = 4.0 \cdot 10^{-19} J = 2.5 eV$ E-field for N = 1 photon $= |\mathbf{E}| = \sqrt{(h\upsilon/V\varepsilon_0)} = 1.7 \cdot 10^6 \text{Volts/m}$

Classical: $c = 2.99\ 792\ 458\cdot 10^8\ ms^{-1}\ \varepsilon_0 = 8.842\cdot 10^{-12}C^2N^{-1}m^2$ $e=1.602\ 177\cdot 10^{-19}Coul$ Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A. $\varepsilon = (const.)\ \omega^2A^2 = 1/2\ m\ \omega^2A^2$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential **A**. $U = \varepsilon_0 (|E_x|^2 + |E_y|^2) = \varepsilon_0 |\mathbf{E}|^2 = \varepsilon_0 \omega^2 |\mathbf{A}|^2$ where: $\mathbf{E} = -\partial_t \mathbf{A} = i\omega \mathbf{A}$

Quantum: $h=2\pi\hbar=6.626\ 075\cdot10^{-34}$ Js $c=2.997\ 924\ 58\cdot10^8\ ms^{-1}\ \varepsilon_0=8.854187817\cdot10^{-12}C^2N^{-1}m^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω .

> *E*-field energy density *U* in cavity mode- ω is: $U = \hbar \omega N/V$ (*V*=*cavity volume*) *E*-field Poynting flux *S*=*cU* in beam mode- ω is: *S*= $\hbar \omega n/\sigma$ (σ =*beam area*)

Quantum field: H.O. quantum energy eigenvalues: $\omega_N = \hbar \omega (N + 1/2)$ Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}| = f\sqrt{N}$ is linear in ω : $|\mathbf{E}|^2 = f^2 N = \hbar \omega N/V \varepsilon_0$

quantum field
constant f
$$const. = f = \sqrt{\frac{\hbar\omega}{V\varepsilon_0}} = \sqrt{\frac{|E_x|^2 + |E_y|^2}{N}} = \frac{|\mathbf{E}|}{\sqrt{N}} \text{ for } N \text{-photons}$$

$$\varepsilon_0 |\mathbf{E}|^2 = \hbar\omega N/V = U$$

$$\varepsilon_0 \omega^2 |\mathbf{A}|^2 = \hbar\omega N/V$$

$$\varepsilon_0 \omega^2 |\mathbf{A}|^2 = \hbar\omega N/V$$

Example:
$$V = (1/4 \text{micron})^3$$
 cubic cavity fundamental $(1/2 \text{-wave for } 600\text{THz green})$ with $N = 10^6$ photons
Energy per $N = 1$ photon $= h \upsilon = 6.63 \cdot 10^{-34} J_s \cdot 600 \cdot 10^{12} / s = 4.0 \cdot 10^{-19} J = 2.5 eV$
E-field for $N = 1$ photon $= |\mathbf{E}| = \sqrt{(h \upsilon / V \varepsilon_0)} = 1.7 \cdot 10^6 \text{Volts/m}$
Energy per $N = 10^6$ photons $= 10^6 h \upsilon = 10^6 6.63 \cdot 10^{-34} J_s \cdot 600 \cdot 10^{12} / s = 4.0 \cdot 10^{-13} J = 2.5 \text{MeV}$

Was Planck's linear-in-frequency-v energy axiom a Goof ?

Not at all. It's really not linear-in-frequency after all.

The $\varepsilon_0 |\mathbf{E}|^2 = h N \cdot v$ axiom IS in fact a product of TWO frequencies! The 2nd "frequency" is COUNT RATE N.

As shown in Unit 2: Both frequencies transform by Relativistic Doppler factor $e^{\pm \rho}$: Coherent frequency is light quality: $v' = e^{\pm \rho} v$. Incoherent frequency is light quantity: $N' = e^{\pm \rho} N$.

This would imply that the $|\mathbf{E}|$ *-field also transforms like a frequency:* $|\mathbf{E}|' = =e^{\pm \rho} |\mathbf{E}|$ *.*

Indeed, E-field amplitude is a frequency, too!

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Feynman amplitude axiom 1

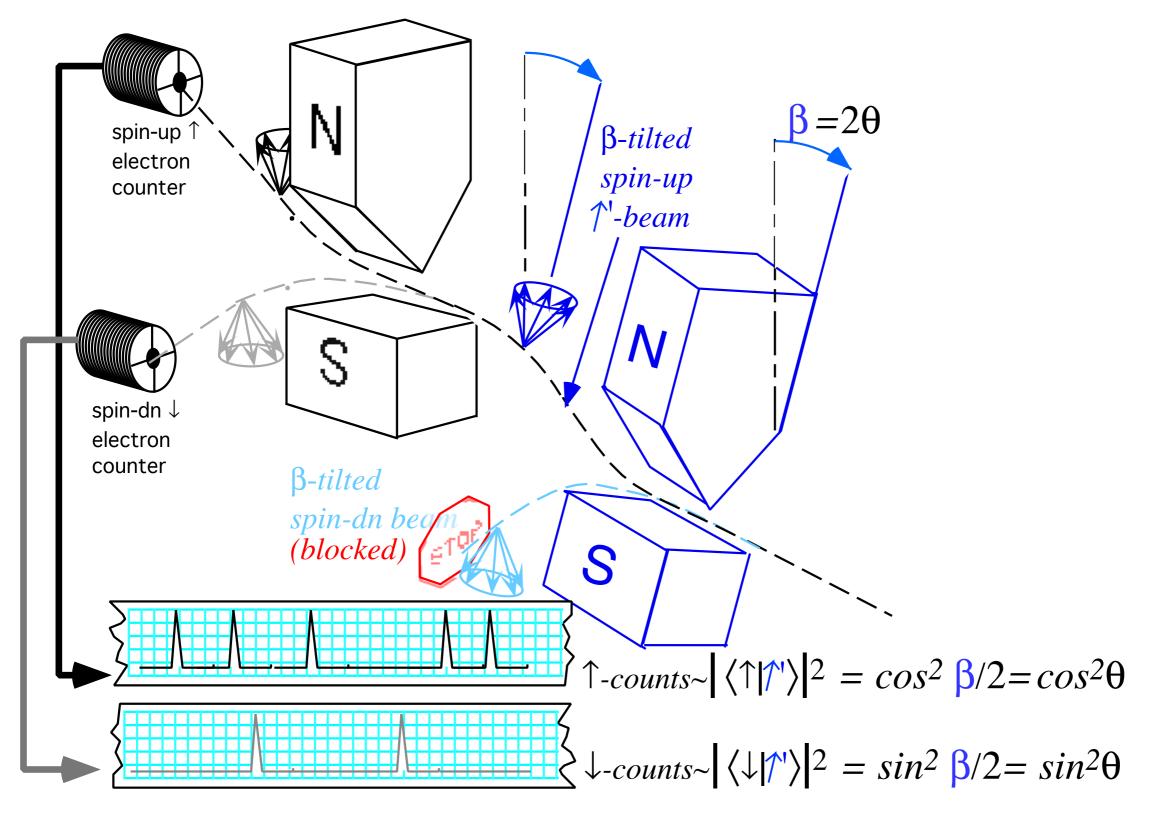
(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\langle j | k' \rangle$.

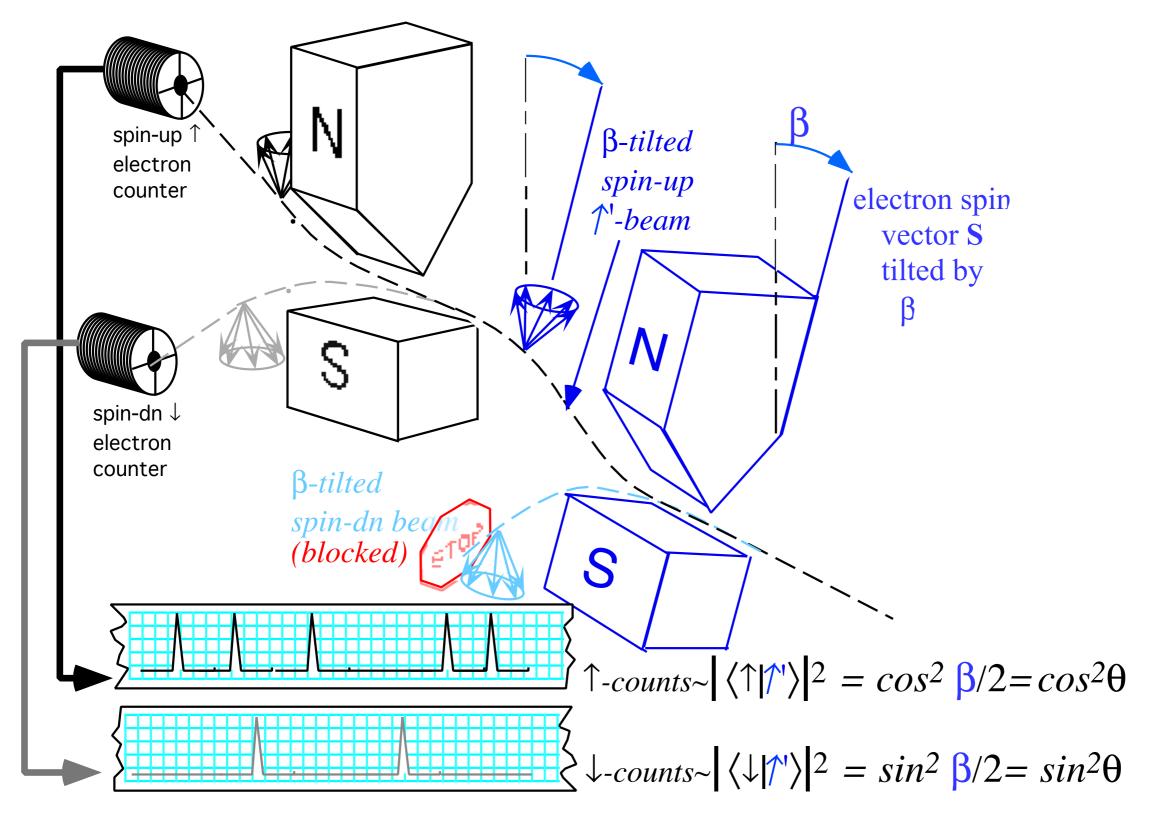
Feynman-Dirac Interpretation of $\langle j|k'\rangle$ =Amplitude of state-j after state-k' is forced to choose from available m-type states

Axiom 1: The absolute square $|\langle j|k' \rangle|^2 = \langle j|k' \rangle^* \langle j|k' \rangle$ gives probability for occurrence in state-j of a system that started in state-k'=1',2',...,or n' from one sorter and then was forced to choose between states j=1,2,...,n by another sorter.

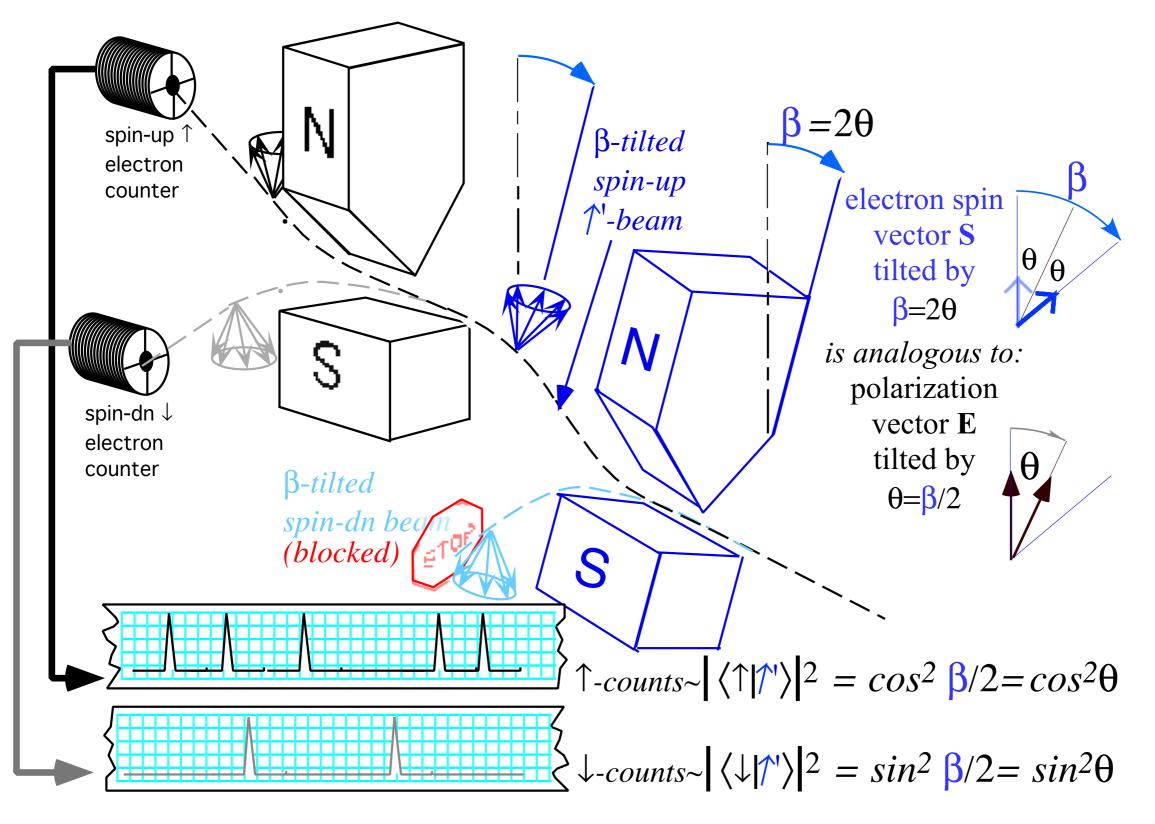
probability Amplitude axioms apply to all intensity-conserving systems This includes, first of all, spin-1/2 electron, proton, ..., ¹³C, ... particles (Fermions)



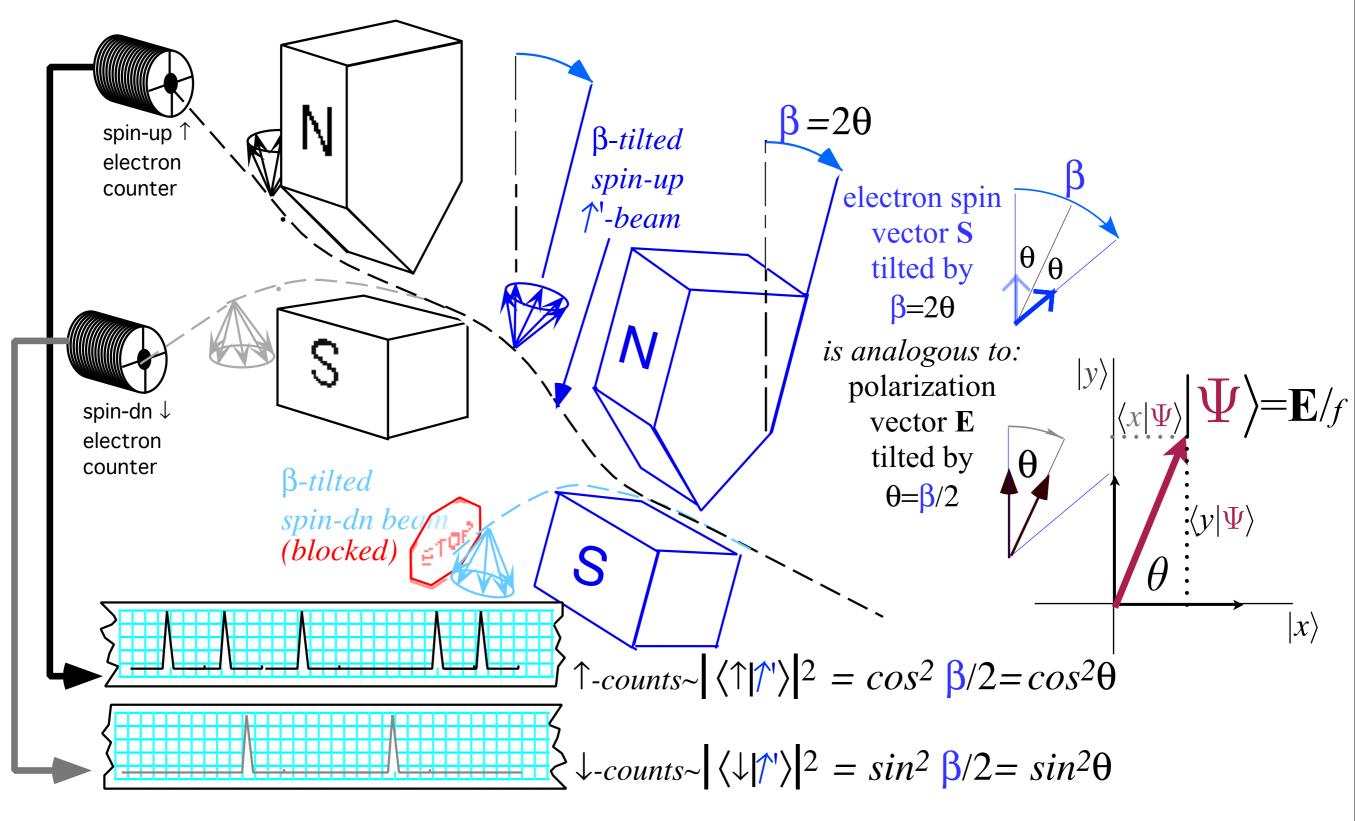
probability Amplitude axioms apply to all intensity-conserving systems This includes, first of all, spin-1/2 electron, proton, ..., ¹³C, ... particles (Fermions)

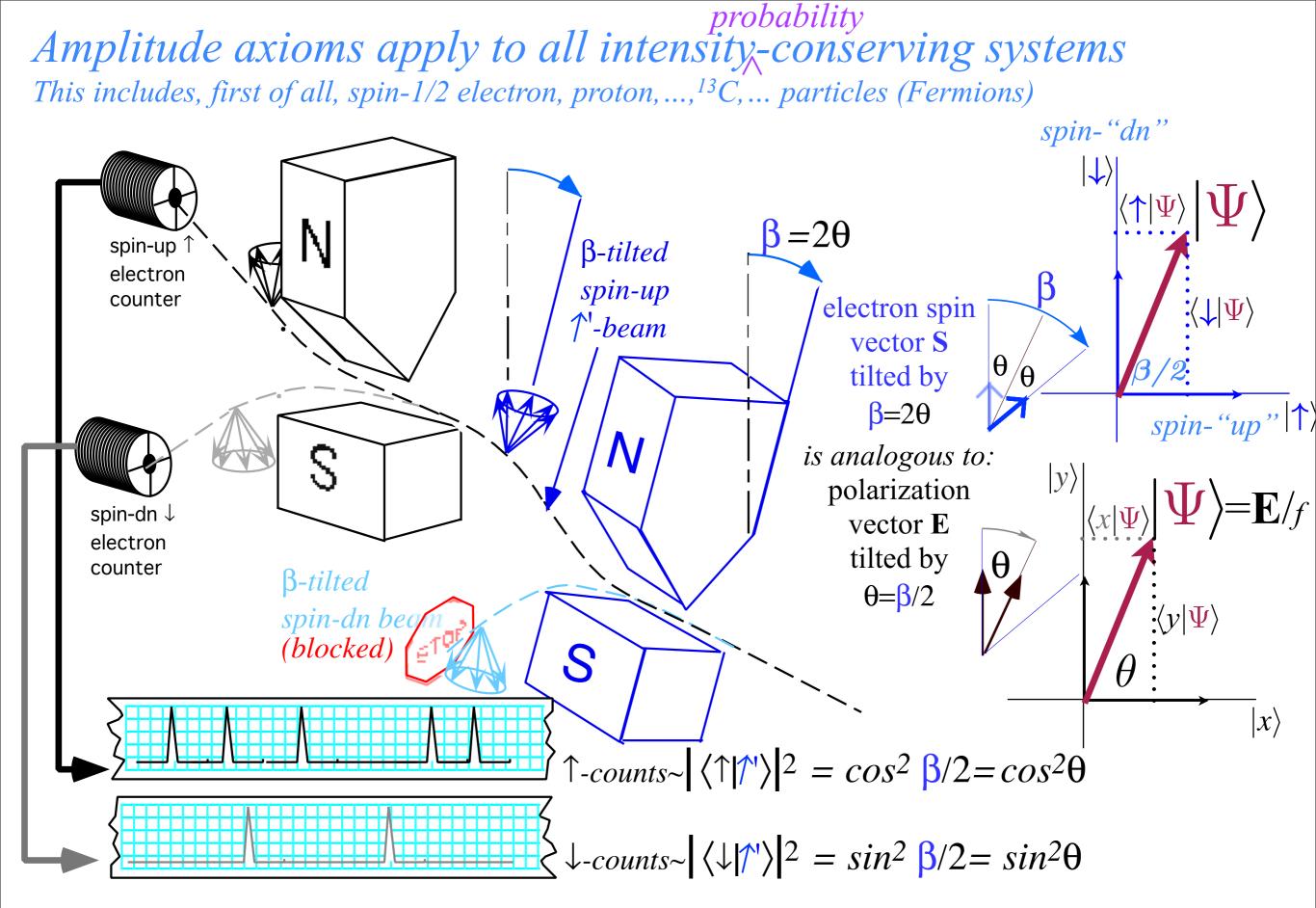


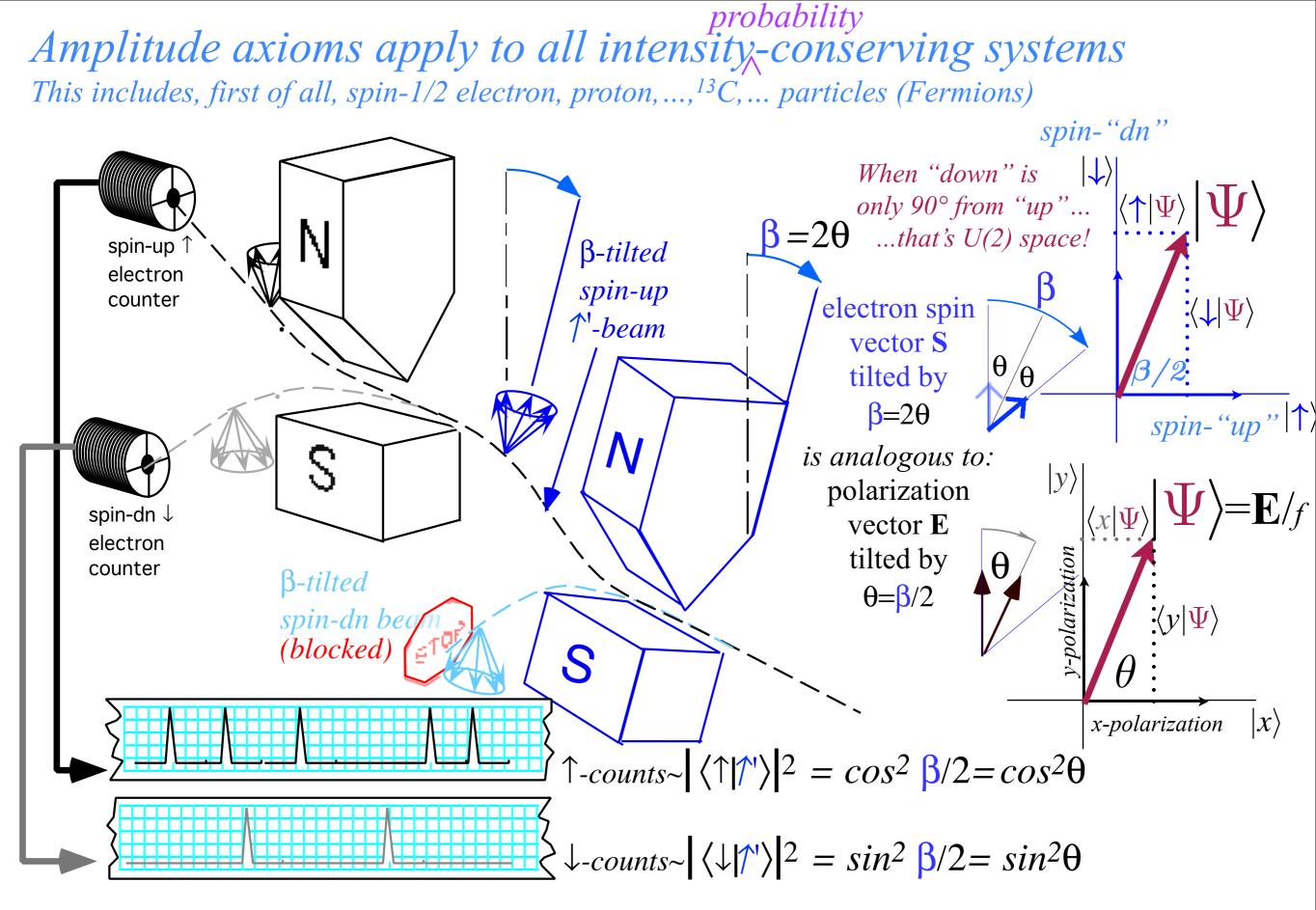
probability Amplitude axioms apply to all intensity-conserving systems This includes, first of all, spin-1/2 electron, proton, ..., ¹³C, ... particles (Fermions)



probability Amplitude axioms apply to all intensity-conserving systems This includes, first of all, spin-1/2 electron, proton, ..., ¹³C, ... particles (Fermions)







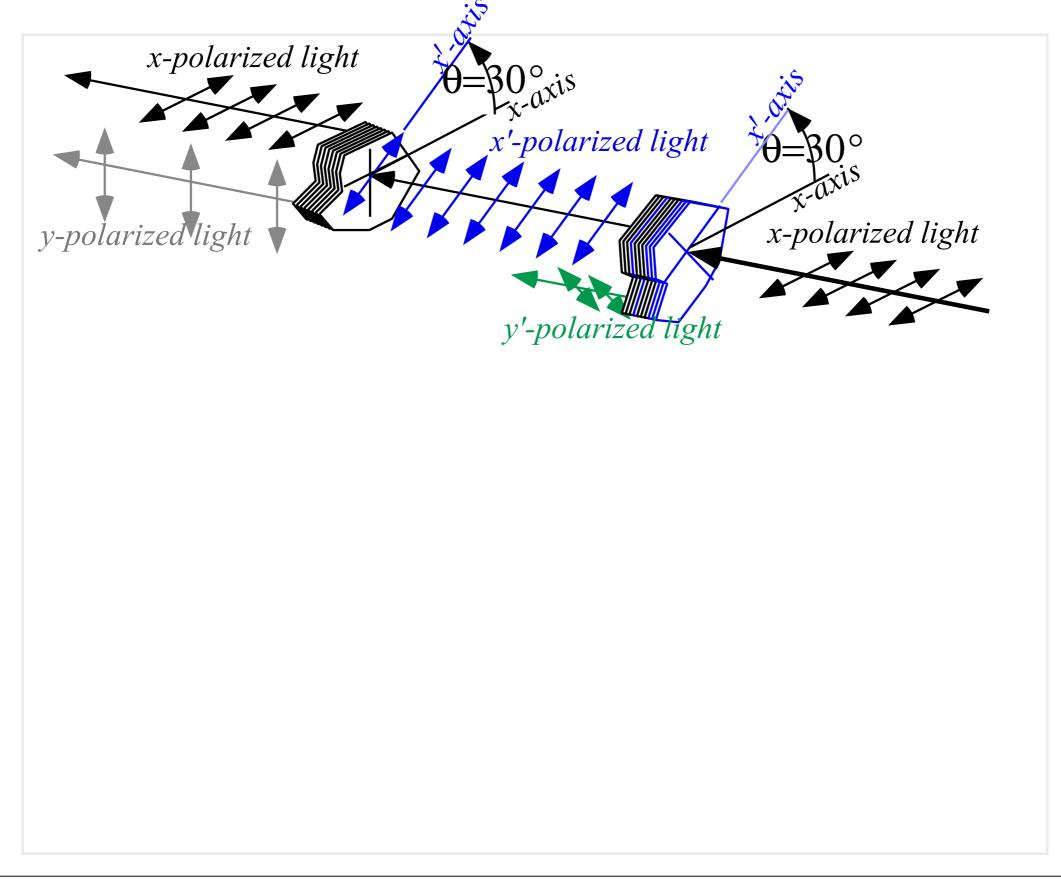
Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

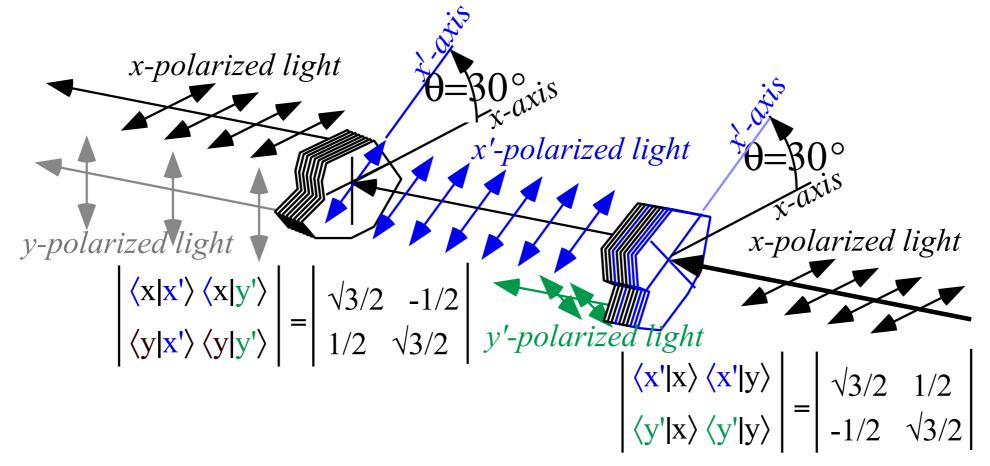
What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

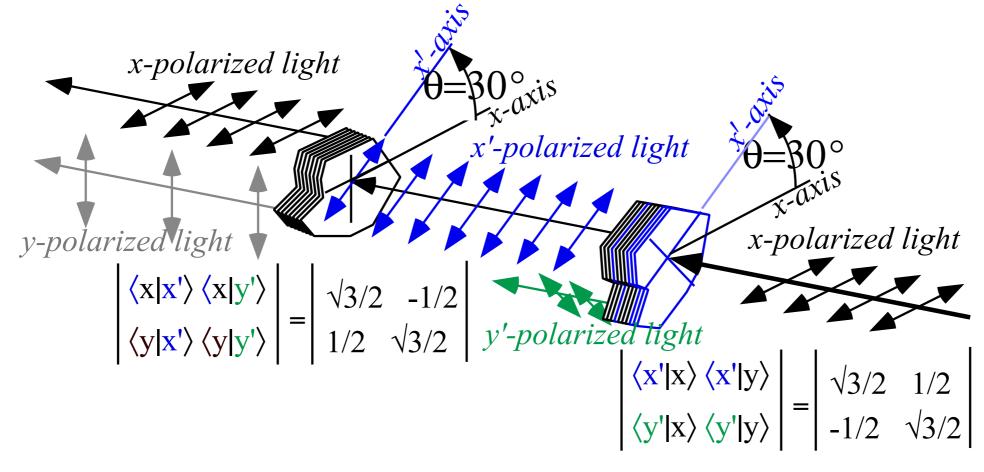
A: Want to determine or calculate:

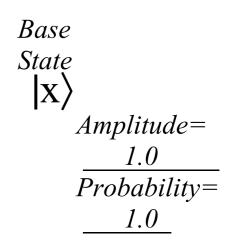


A: Want to determine or calculate:

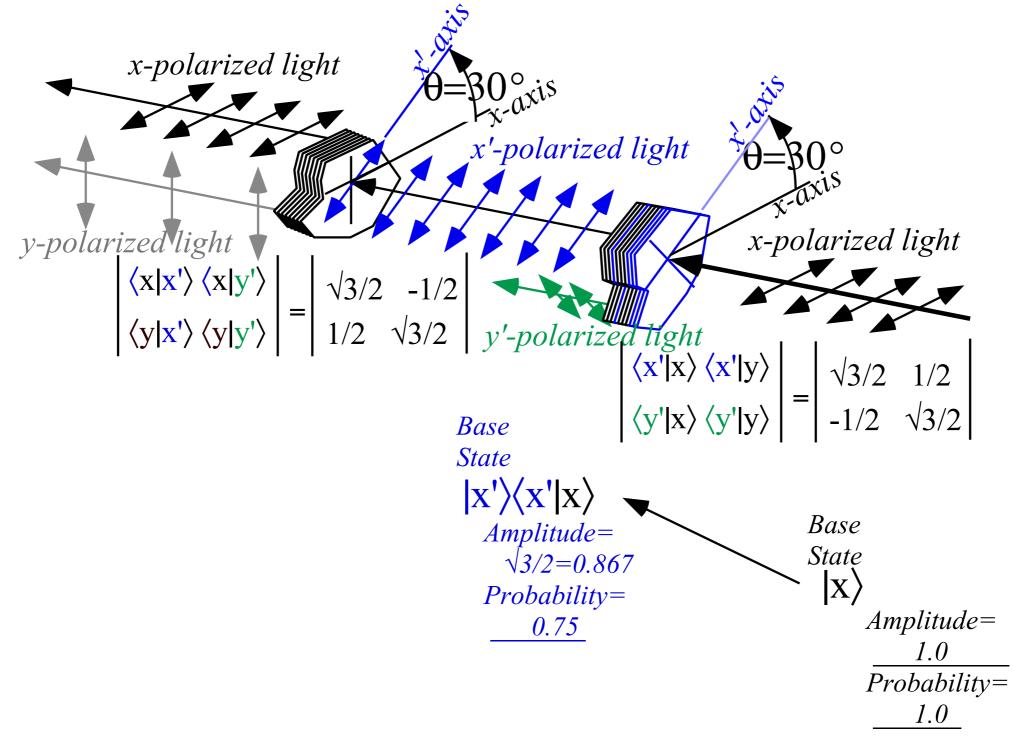


A: Want to determine or calculate:

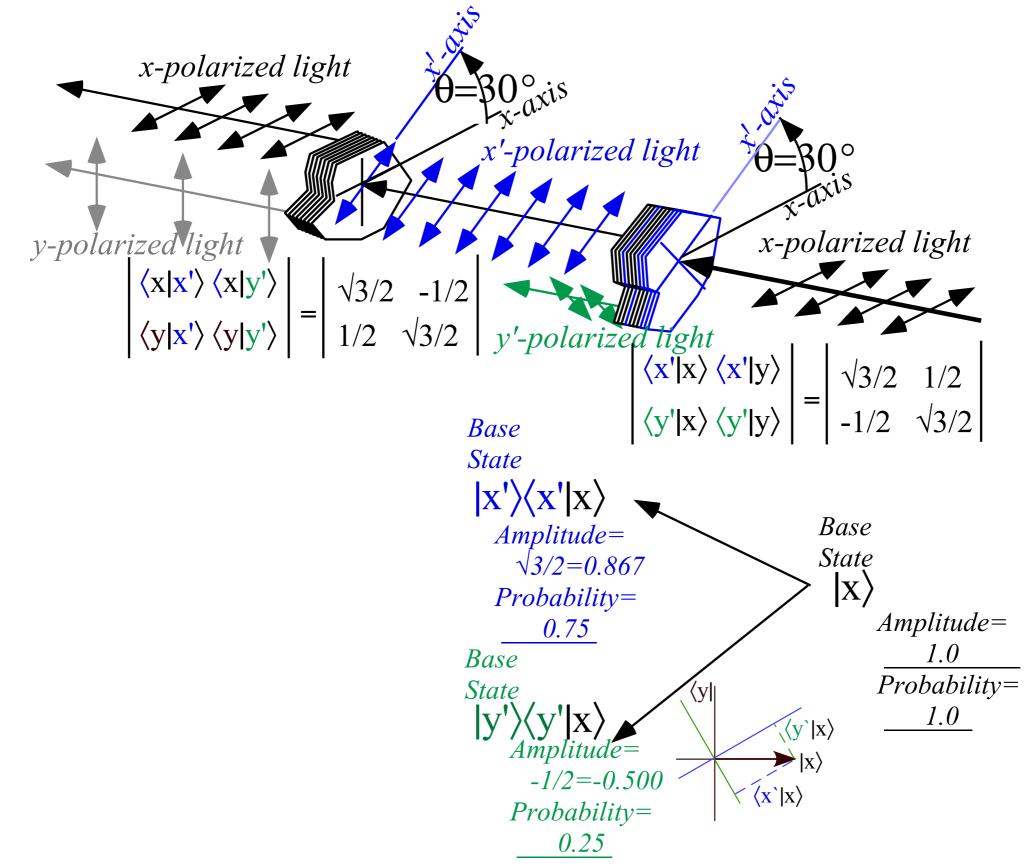




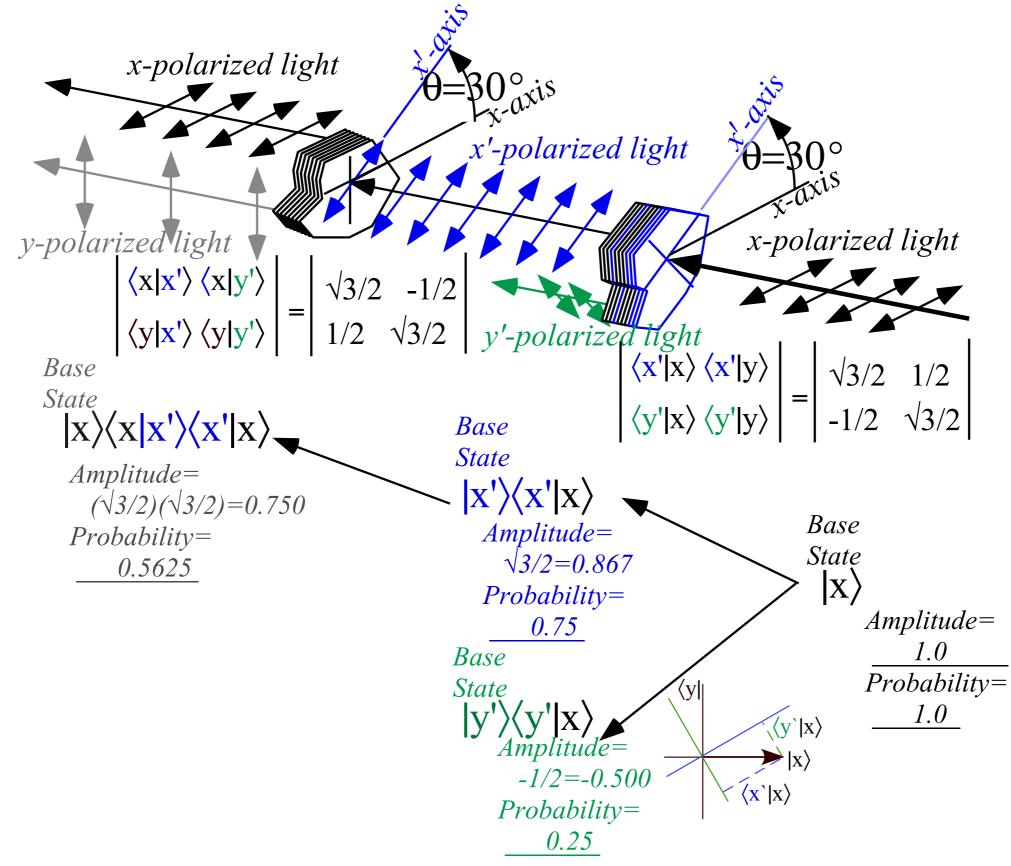
A: Want to determine or calculate:



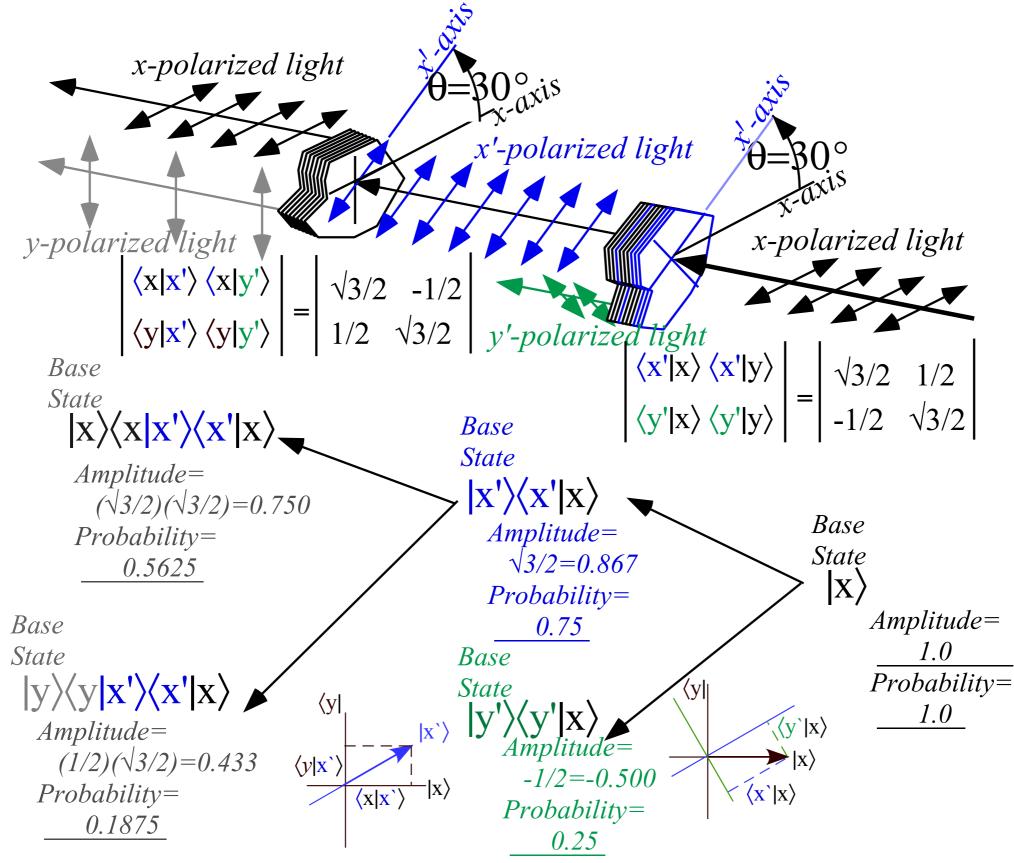
A: Want to determine or calculate:



A: Want to determine or calculate:



A: Want to determine or calculate:



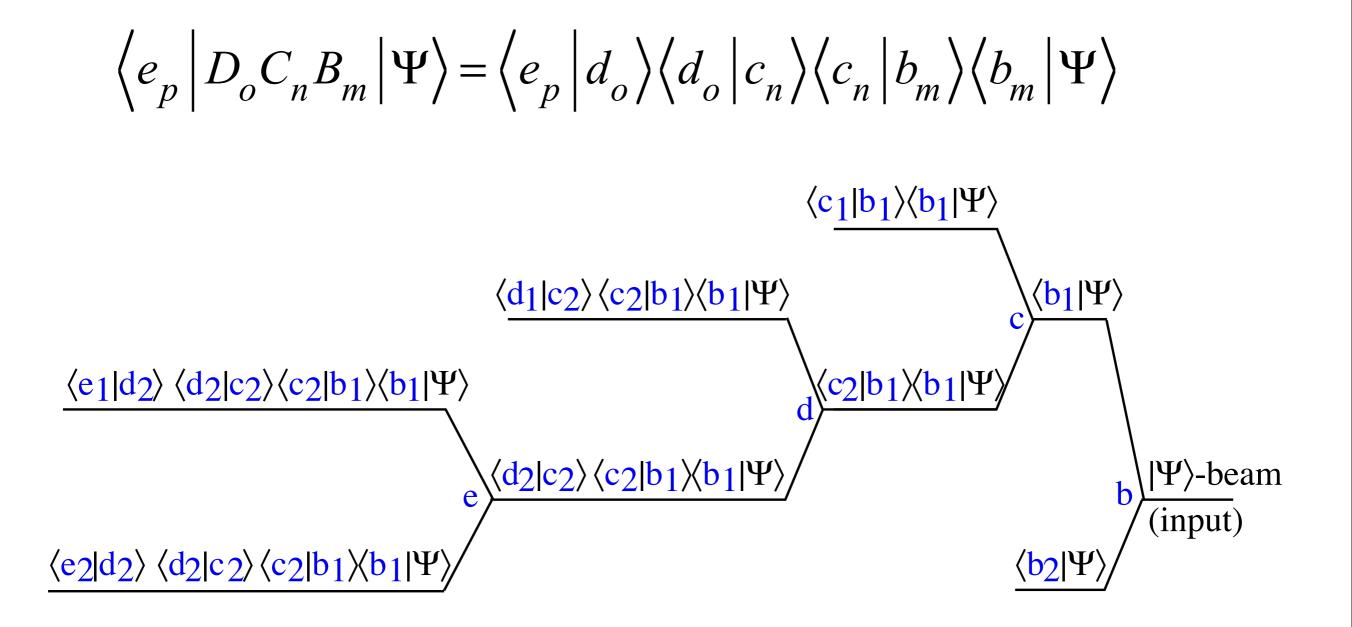


Fig. 1.3.10 Beams-amplitude products for successive beam sorting

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations

Feynman amplitude axioms 2-3

Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Feynman amplitude axiom 1 (Given above p.35)

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\langle j | k' \rangle$.

Axiom 1: The absolute square $|\langle j|k' \rangle|^2 = \langle j|k' \rangle^* \langle j|k' \rangle$ gives probability for from a occurrence in state-j of a system that started in state-k'=1',2',...,or n' from one sorter

and then was forced to choose between states j=1,2,...,n by another sorter.

Feynman-Dirac Interpretation of $\langle j|k' \rangle$ =Amplitude of state-j after state-k' is forced to choose

from available *m*-type states

Feynman amplitude axioms 1-2

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\langle j | k' \rangle$. *Axiom 1: The absolute square* $|\langle j | k' \rangle|^2 = \langle j | k' \rangle^* \langle j | k' \rangle$ gives probability for *occurrence in state-j of a system that started in state-k'=1',2',...,or n' from one sorter and then was forced to choose between states j=1,2,...,n by another sorter.*

Feynman-Dirac Interpretation of $\langle j|k'\rangle$ =Amplitude of state-j after state-k' is forced to choose from available m-type states

(2) The conjugation or inversion axiom (time reversal symmetry)

The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate $\langle j | k' \rangle^* of$ an amplitude $\langle j | k' \rangle$ equals its reverse: $\langle j | k' \rangle^* = \langle k' | j \rangle$

Feynman amplitude axioms 1-3

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\langle j | k' \rangle$. *Axiom 1: The absolute square* $|\langle j | k' \rangle|^2 = \langle j | k' \rangle^* \langle j | k' \rangle$ gives probability for *occurrence in state-j of a system that started in state-k'=1',2',...,or n' from one sorter and then was forced to choose between states j=1,2,...,n by another sorter.*

Feynman-Dirac Interpretation of $\langle j|k'\rangle$ =Amplitude of state-j after state-k' is forced to choose from available m-type states

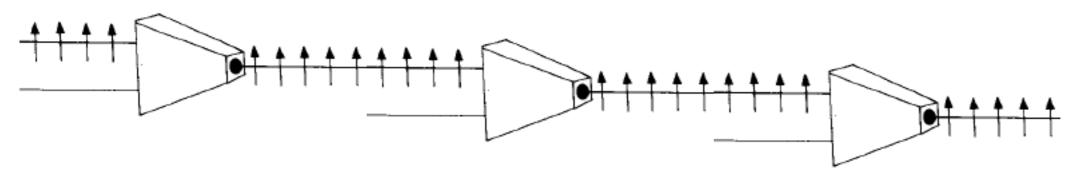
(2) The conjugation or inversion axiom (time reversal symmetry)

The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate $\langle j | k' \rangle^*$ of an amplitude $\langle j | k' \rangle$ equals its reverse: $\langle j | k' \rangle^* = \langle k' | j \rangle$

(3) The orthonormality or identity axiom

The third axiom concerns the amplitude for "re measurement" by the same analyzer. *Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one, and for all others it is zero:* $\begin{bmatrix} 1 & \text{if } i=k \end{bmatrix}$

$$\langle j | k \rangle = \delta_{jk} = \begin{cases} 1 \text{ if: } j = k \\ 0 \text{ if: } j \neq k \end{cases} = \langle j' | k' \rangle$$



Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

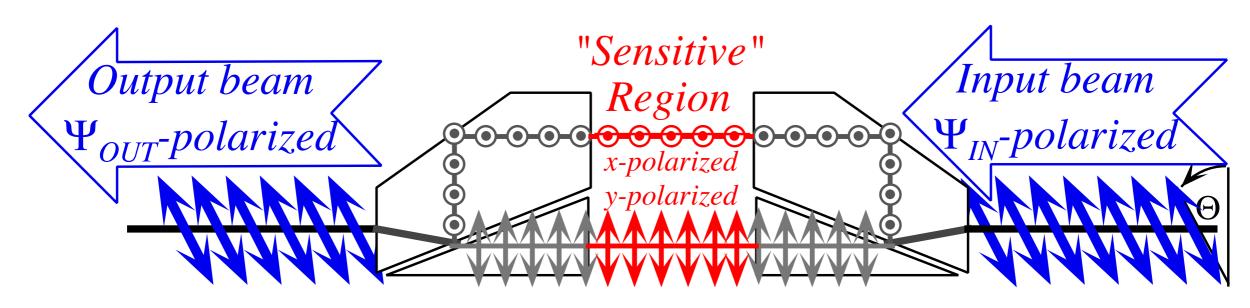


Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

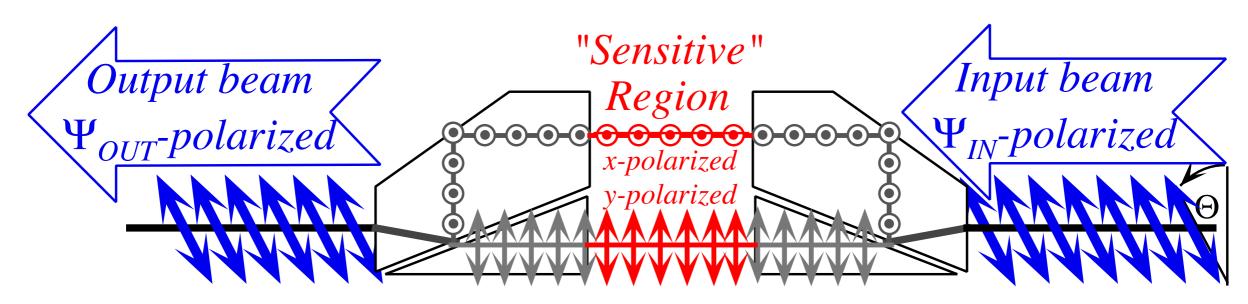


Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

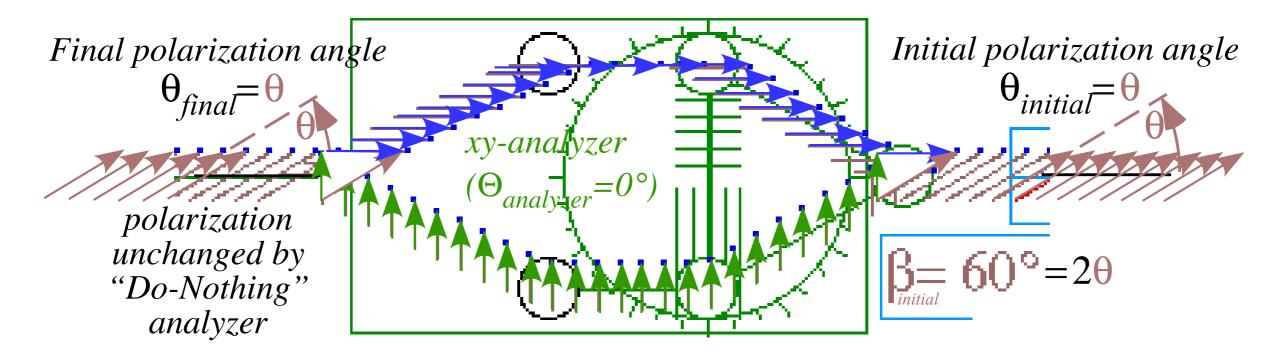


Fig. 1.3.2 Computer sketch of simulated polarization analyzer in "do-nothing" mode

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer
Feynman amplitude axiom 4 Some "Do-Something" analyzers Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

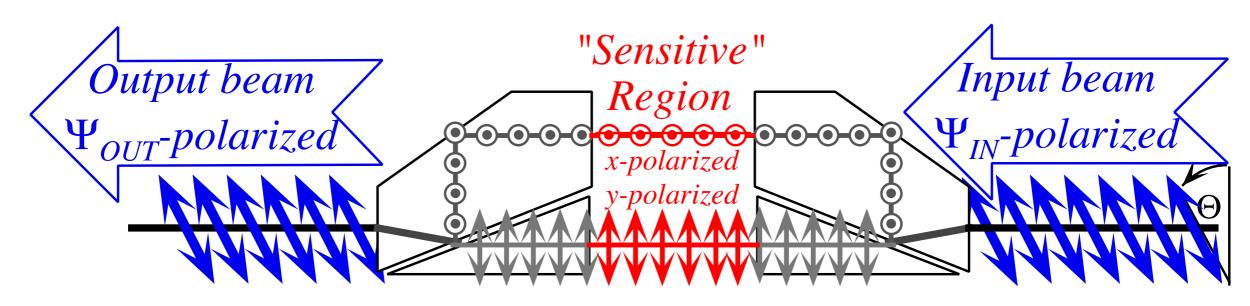
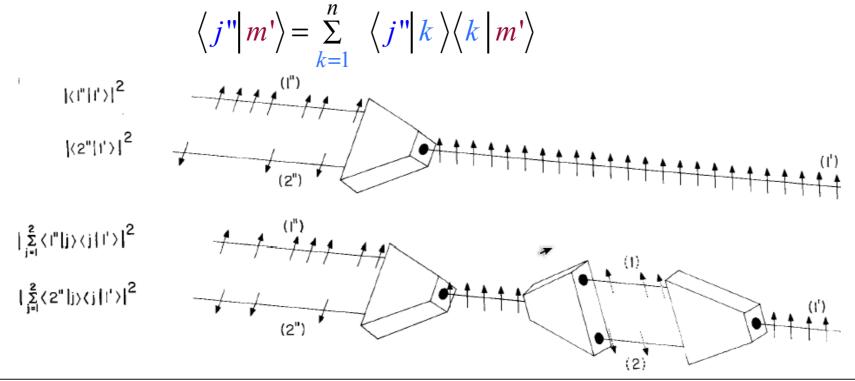


Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

Feynman amplitude axiom 4

(4) The completeness or closure axiom

The fourth axiom concerns the "*Do-nothing*" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above. *Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:*



Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

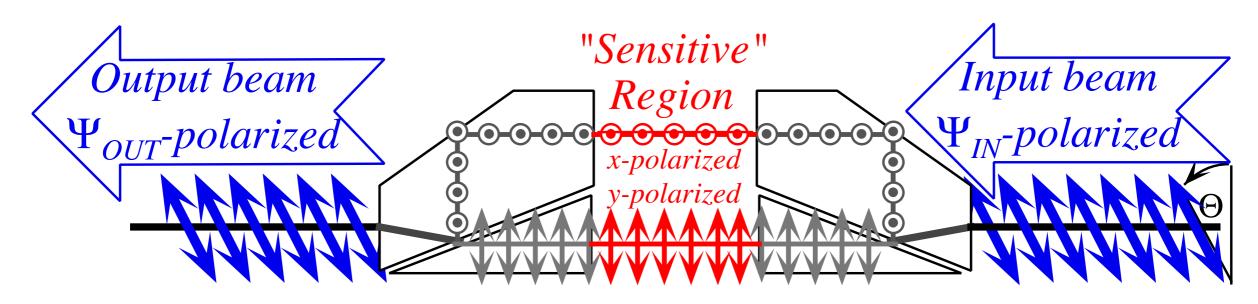


Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

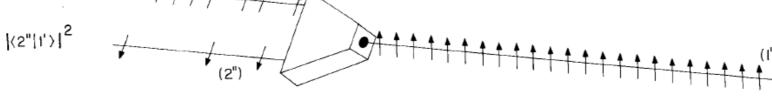
Feynman amplitude axiom 4

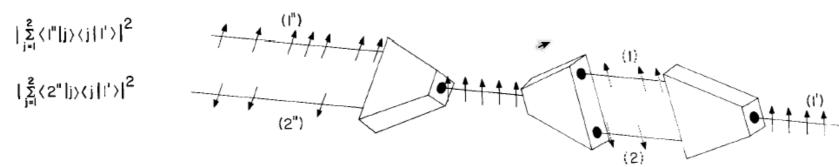
(4) The completeness or closure axiom

The fourth axiom concerns the "*Do-nothing*" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above. *Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:*

$$\langle j'' | m' \rangle = \sum_{k=1}^{n} \langle j'' | k \rangle \langle k | m' \rangle$$

\<!"|I'>|²





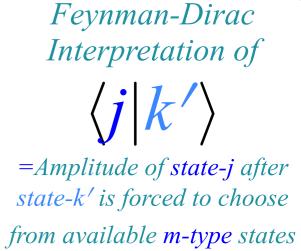
May use axioms 1-3 to prove special case: $1 = \langle m' | m' \rangle_{by 3}$ $\hat{\downarrow}_{bv 1}$

 $\begin{array}{c}
\textcircled{by 2} \\
\sum_{k=1}^{n} \langle m' | k \rangle \langle k | m' \rangle \\
= \langle m' | m' \rangle
\end{array}$

Feynman amplitude axioms 1-4

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\langle j | k' \rangle$. *Axiom 1: The absolute square* $|\langle j | k' \rangle|^2 = \langle j | k' \rangle^* \langle j | k' \rangle$ gives probability for *occurrence in state-j of a system that started in state-k'=1',2',...,or n' from one sorter and then was forced to choose between states j=1,2,...,n by another sorter.*



(2) The conjugation or inversion axiom (time reversal symmetry)

The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate $\langle j | k' \rangle^*$ of an amplitude $\langle j | k' \rangle$ equals its reverse: $\langle j | k' \rangle^* = \langle k' | j \rangle$

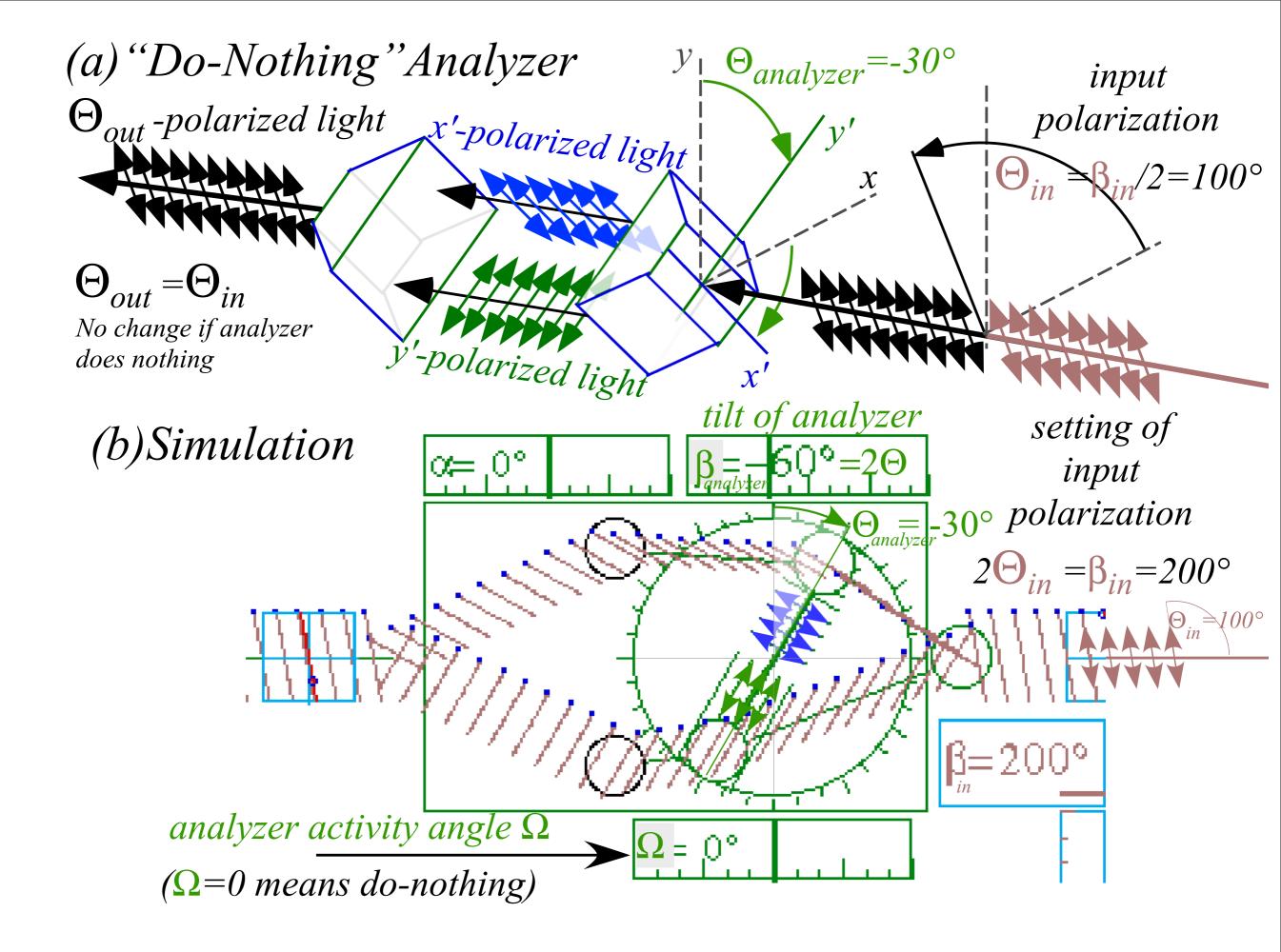
(3) The orthonormality or identity axiom

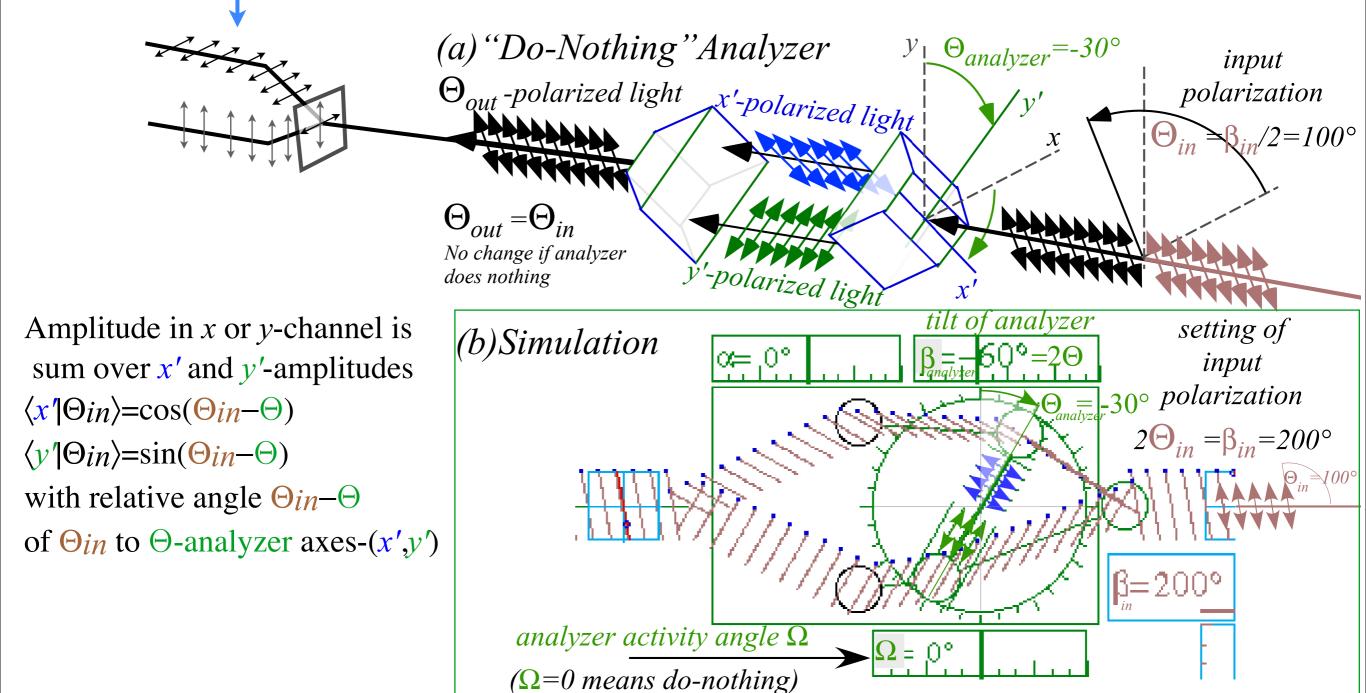
The third axiom concerns the amplitude for "re measurement" by the same analyzer. *Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one, and for all others it is zero:* $\begin{bmatrix} 1 & \text{if } i = k \end{bmatrix}$

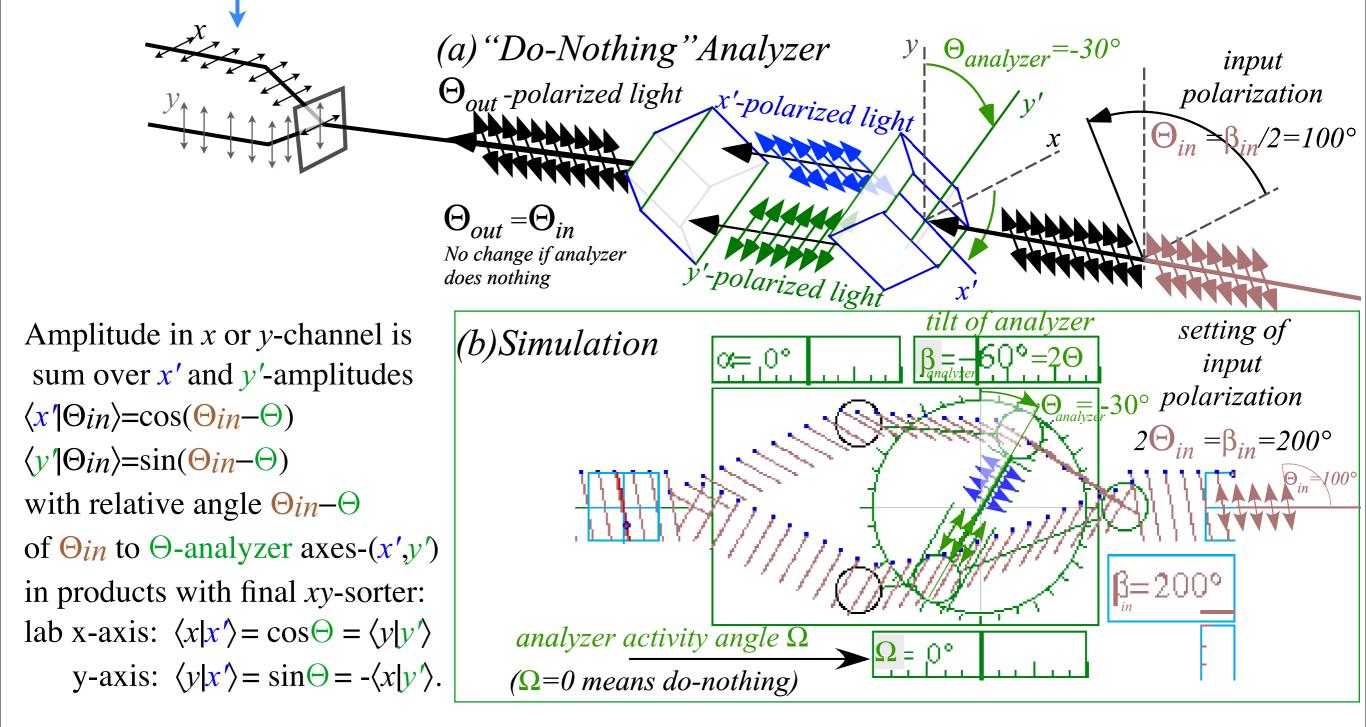
(4) The completeness or closure axiom

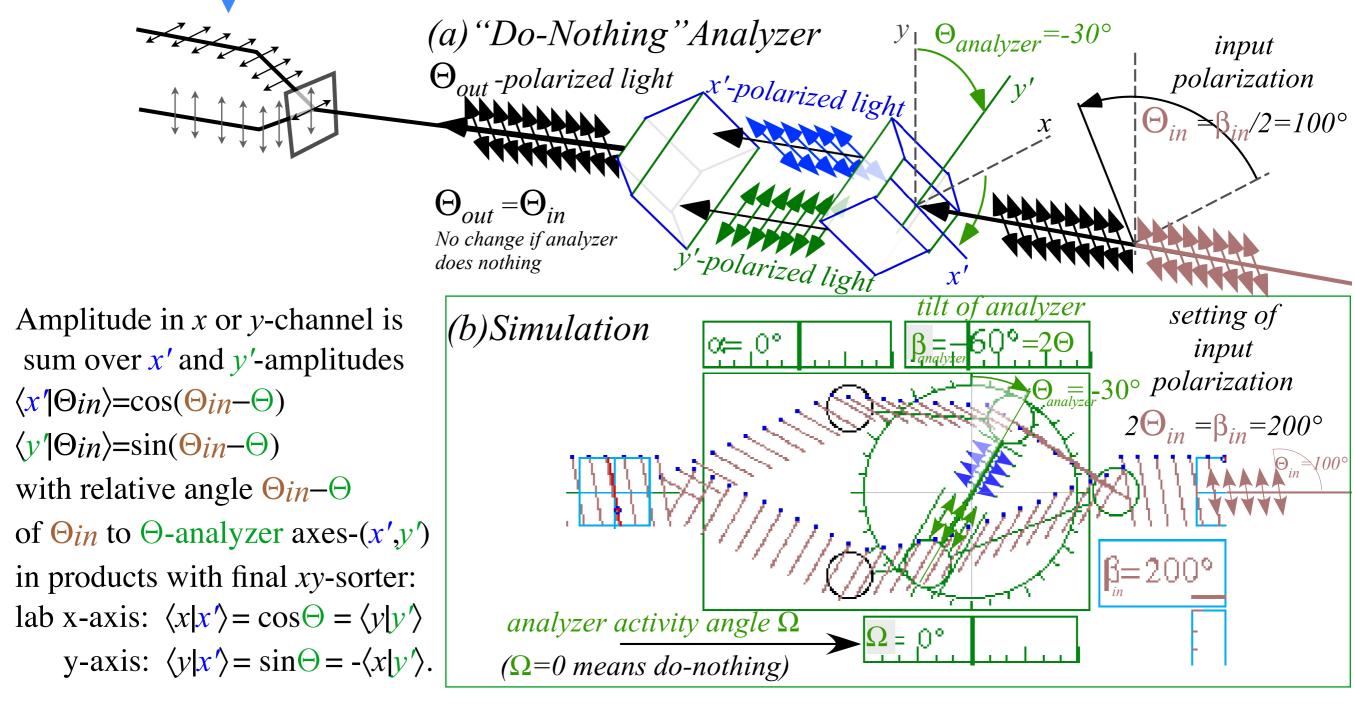
The fourth axiom concerns the "*Do-nothing*" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above. *Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:*

$$\langle j'' | m' \rangle = \sum_{k=1}^{n} \langle j'' | k \rangle \langle k | m' \rangle$$

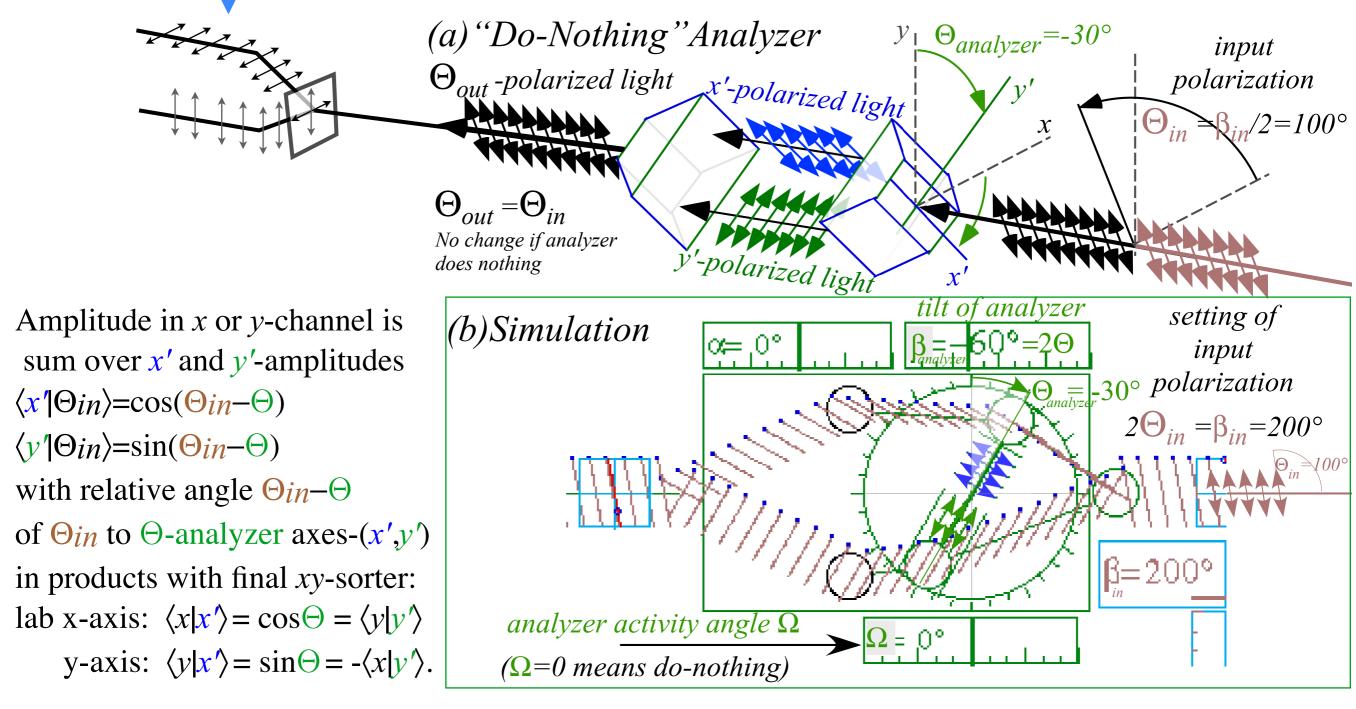








x-Output is: $\langle x | \Theta_{out} \rangle = \langle x | x' \rangle \langle x' | \Theta_{in} \rangle + \langle x | y' \rangle \langle y' | \Theta_{in} \rangle = \cos \Theta \cos (\Theta_{in} - \Theta) - \sin \Theta \sin (\Theta_{in} - \Theta) = \cos \Theta_{in}$ *y*-Output is: $\langle y | \Theta_{out} \rangle = \langle y | x' \rangle \langle x' | \Theta_{in} \rangle + \langle y | y' \rangle \langle y' | \Theta_{in} \rangle = \sin \Theta \cos (\Theta_{in} - \Theta) - \cos \Theta \sin (\Theta_{in} - \Theta) = \sin \Theta_{in}$. (Recall $\cos(a+b) = \cos a \cosh - \sin a \sinh a \sinh \sin(a+b) = \sin a \cosh + \cos a \sinh b$)



x-Output is: $\langle x | \Theta_{out} \rangle = \langle x | x' \rangle \langle x' | \Theta_{in} \rangle + \langle x | y' \rangle \langle y' | \Theta_{in} \rangle = \cos \Theta \cos (\Theta_{in} - \Theta) - \sin \Theta \sin (\Theta_{in} - \Theta) = \cos \Theta_{in}$ *y*-Output is: $\langle y | \Theta_{out} \rangle = \langle y | x' \rangle \langle x' | \Theta_{in} \rangle + \langle y | y' \rangle \langle y' | \Theta_{in} \rangle = \sin \Theta \cos (\Theta_{in} - \Theta) - \cos \Theta \sin (\Theta_{in} - \Theta) = \sin \Theta_{in}$. (Recall $\cos(a+b) = \cos a \cosh - \sin a \sinh a \sinh \sin(a+b) = \sin a \cosh + \cos a \sinh b$)

Conclusion:

 $\langle x | \Theta_{out} \rangle = \cos \Theta_{out} = \cos \Theta_{in}$ or: $\Theta_{out} = \Theta_{in}$ so "Do-Nothing" Analyzer in fact does nothing.

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking output of *x*-high-road and *y*-low-road with counters

 $x-counts \sim |\langle x|x'\rangle|^{2}$ $= cos^{2} \theta = 0.75$ $y-counts \sim |\langle y|x'\rangle|^{2}$ $= sin^{2} \theta = 0.25$ Initial polarization angle $\theta = \beta/2 = 30^{\circ}$ θ

(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking output of *x*-high-road and *y*-low-road with counters

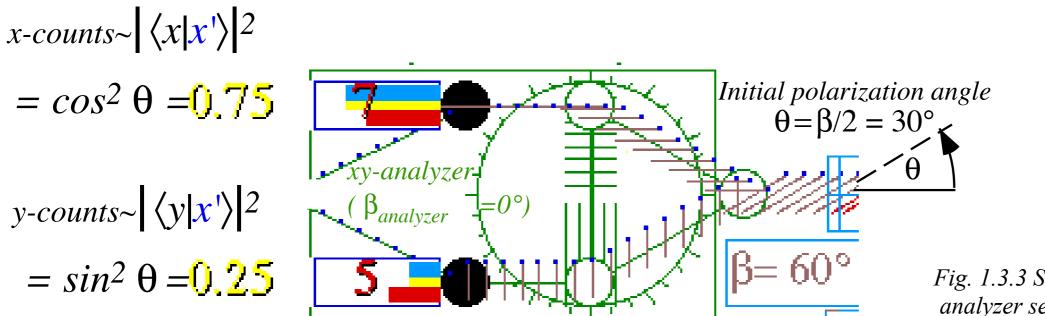


Fig. 1.3.3 Simulated polarization analyzer set up as a sorter-counter

(2) Optical analyzer in a filter configuration (Polaroid[©] sunglasses)

Analyzer blocks one path which may have photon counter without affecting function.

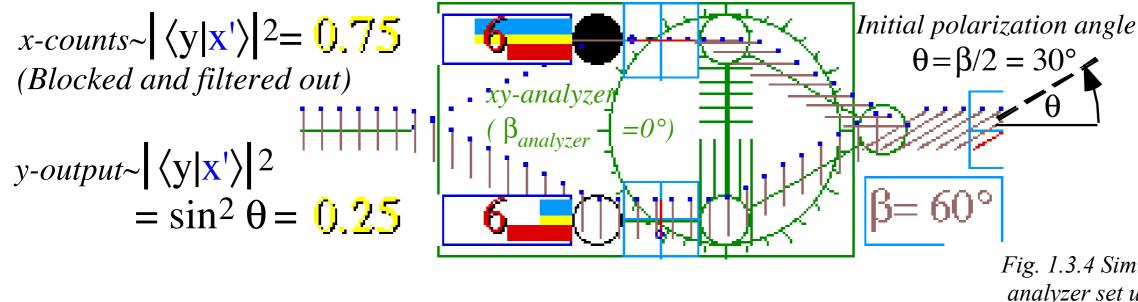
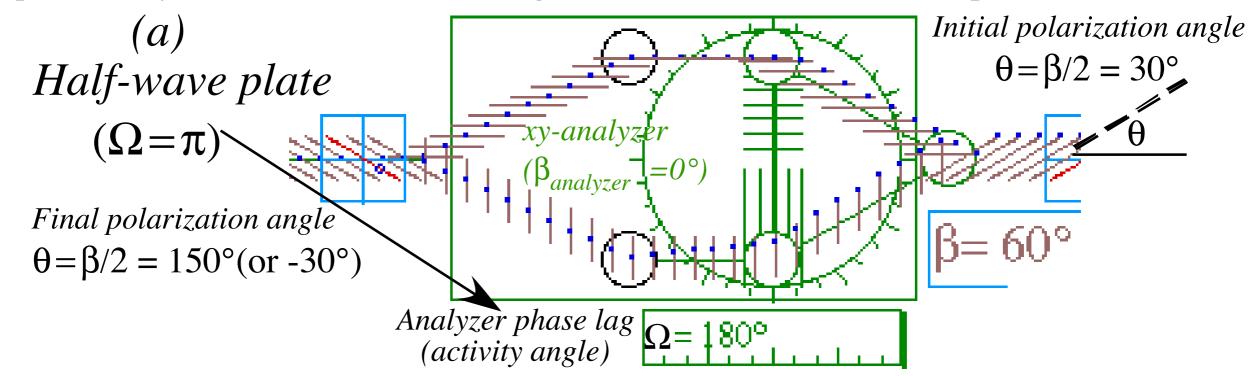


Fig. 1.3.4 Simulated polarization analyzer set up to filter out the x-polarized photons *Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products*

Planck's energy and N-quanta (Cavity/Beam wave mode) Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1

What comes out of a beam sorter channel or branch-b? Sample calculations Feynman amplitude axioms 2-3

Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate (3) Optical analyzers in the "control" configuration: Half or Quarter wave plates



(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

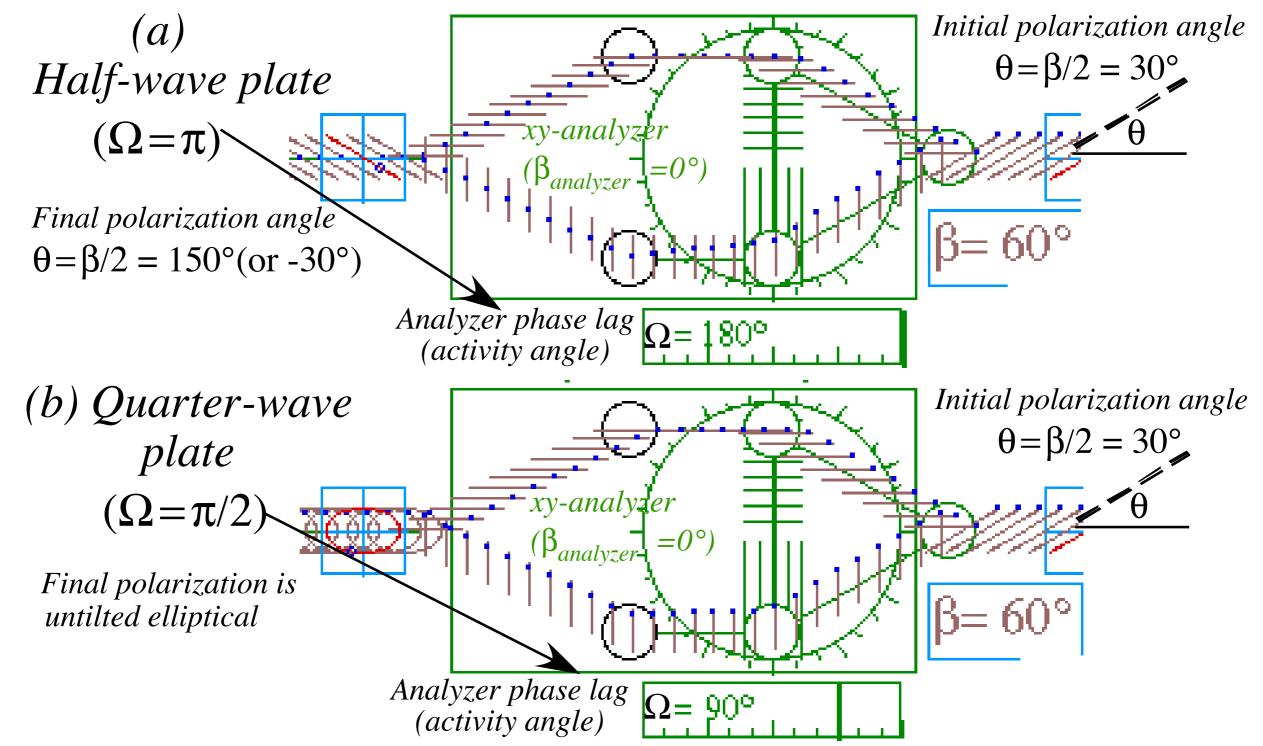
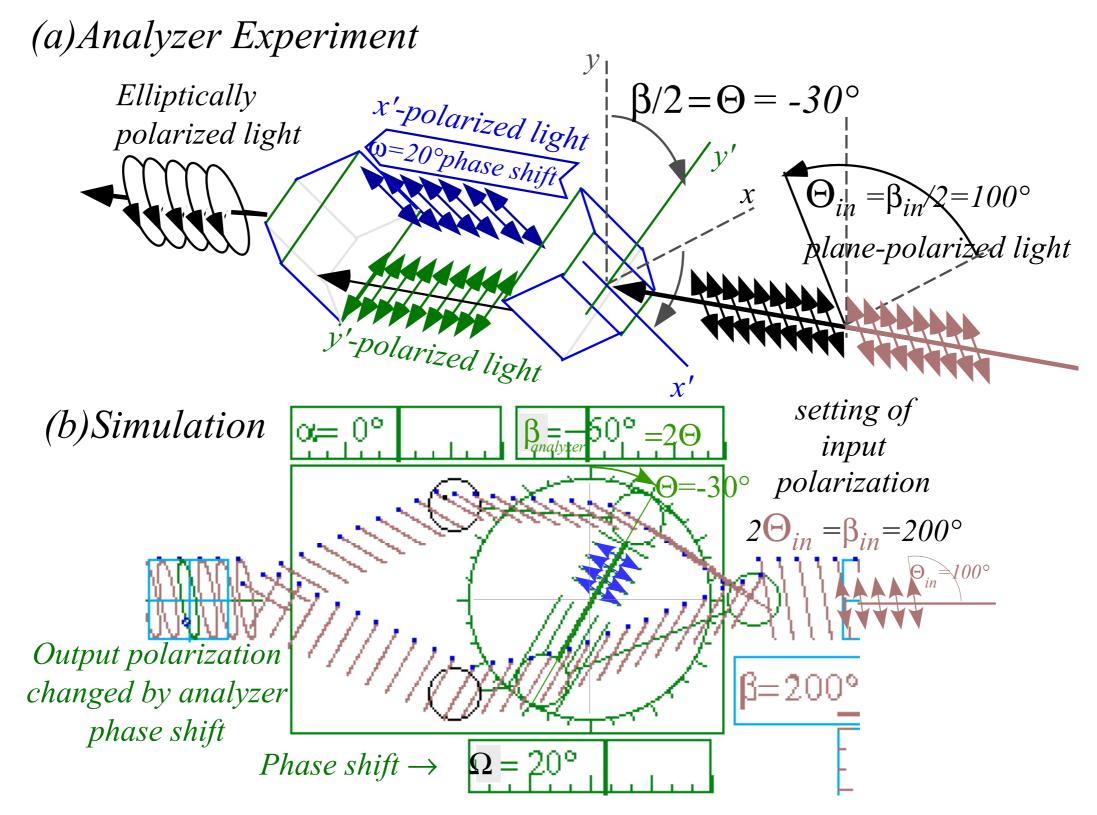


Fig. 1.3.5 Polarization control set to shift phase by (a) Half-wave ($\Omega = \pi$ *) , (b) Quarter wave (* $\Omega = \pi/2$ *)*



Similar to "do-nothing" analyzer but has extra phase factor $e^{-i\Omega} = 0.94 - i \ 0.34$ on the x'-path . x-output: $\langle x | \Psi_{out} \rangle = \langle x | x' \rangle e^{-i\Omega} \langle x' | \Psi_{in} \rangle + \langle x | y' \rangle \langle y' | \Psi_{in} \rangle = e^{-i\Omega} \cos \Theta \cos (\Theta_{in} - \Theta) - \sin \Theta \sin (\Theta_{in} - \Theta)$ y-output: $\langle y | \Psi_{out} \rangle = \langle y | x' \rangle e^{-i\Omega} \langle x' | \Psi_{in} \rangle + \langle y | y' \rangle \langle y' | \Psi_{in} \rangle = e^{-i\Omega} \sin \Theta \cos (\Theta_{in} - \Theta) + \cos \Theta \sin (\Theta_{in} - \Theta)$

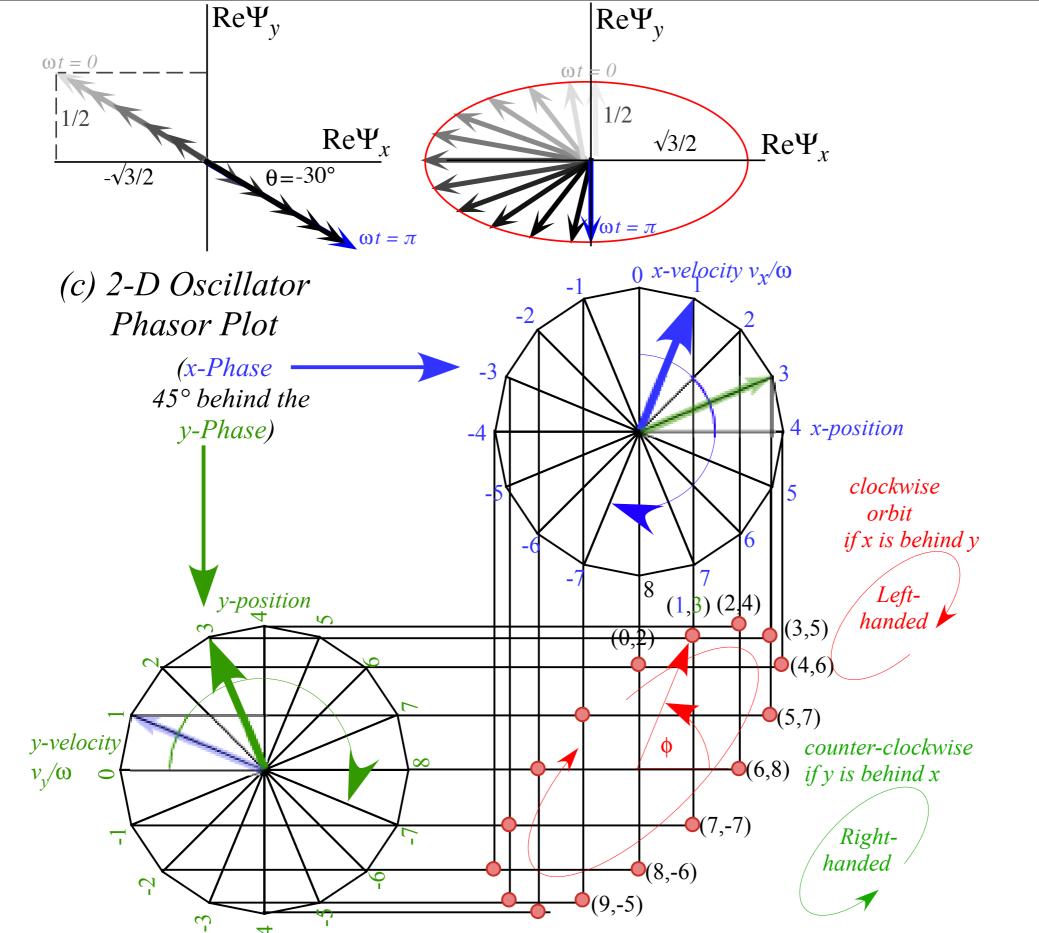


Fig. 1.3.6 Polarization states for (a) Half-wave $(\Omega = \pi)$, (b) Quarter wave $(\Omega = \pi/2)$ (c) $(\Omega = -\pi/4)$