
Group Theory in Quantum Mechanics
Lecture 24 (4.25.13) 

Harmonic oscillator symmetry U(1)⊂U(2)⊂U(3)...
(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 21-22 )

(PSDS - Ch. 8 )
Review : 1-D a†a algebra of U(1) representations

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions

Left from 4.23.13U(1) Oscillator coherent states (“Shoved” and “kicked” states)   
                Translation operators vs. boost operators
                Applying boost-translation combinations
                Time evolution of coherent state
                Properties of coherent state and “squeezed” states

1Thursday, April 25, 2013



Review : 1-D a†a algebra of U(1) representations

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions

Left from 4.23.13U(1) Oscillator coherent states (“Shoved” and “kicked” states)   
                Translation operators vs. boost operators
                Applying boost-translation combinations
                Time evolution of coherent state
                Properties of coherent state and “squeezed” states

2Thursday, April 25, 2013



   
a ,a†⎡
⎣⎢

⎤
⎦⎥ ≡ aa

†- a†a= 1
2

Mω x+ ip / Mω( ) Mω x− ip / Mω( )− 1
2

Mω x− ip / Mω( ) Mω x+ ip / Mω( )
Commutation relations between a = (X+iP)/2 and a†= (X-iP)/2 with X≡√Mωx/√2  and P≡p/√2M : 

Creation-Destruction a†a algebra

   
a =

X + iP( )
ω

=
Mω x+ ip / Mω( )

2    
a† =

X − iP( )
ω

=
Mω x− ip / Mω( )

2

Define         Destruction operator                          and         Creation Operator

   
a ,a†⎡
⎣⎢

⎤
⎦⎥= 2i

2
px− xp( ) = −i


x ,p⎡⎣ ⎤⎦ = 1  

a ,a†⎡
⎣⎢

⎤
⎦⎥ = 1 or  aa

†=a†a + 1
   x ,p⎡⎣ ⎤⎦ ≡ xp -px=i 1
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1st excited state wavefunction ψ1(x) = 〈x |1〉 
       〈x | a†|0〉 = 〈x |1〉 = ψ1(x)  

The operator coordinate representations generate the first excited state wavefunction. 

Expanding the creation operator 

ψ1(x)

Classical turning points

1st Transition
energy E1 -E0

=ω

   
x a† 0 = 1

2
Mω x x 0 − i x p 0 / Mω( ) = x 1 =ψ1 x( )

ψ0(x)

Classical turning points

Zero-point
energy E0
=ω/2

a†a

Wavefunction creationism (1st Excited state) 

   

x 1 =ψ1 x( ) = 1
2

Mω xψ0 x( ) − i 
i
∂ψ0 x( )

∂x
/ Mω

⎛

⎝
⎜

⎞

⎠
⎟

        = 1
2

Mω x e−Mω x2 /2

const.
− i 

i
∂
∂x

e−Mω x2 /2

const.
/ Mω

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

        = 1
2

e−Mω x2 /2

const.
Mω x + i 

i
Mω x


/ Mω
⎛
⎝⎜

⎞
⎠⎟

        = Mω
2

e−Mω x2 /2

const.
2x( ) = Mω

π
⎛
⎝⎜

⎞
⎠⎟

3/4
2π x e−Mω x2 /2⎛

⎝⎜
⎞
⎠⎟
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Matrix 〈ana†n〉 calculation

n =
a† n 0
const.

,     where:      1= n n =
0 ana† n 0
const.( )2

= n! 0 1+ na†a + .. 0
const.( )2

= n!
const.( )2

Derive normalization for nth state obtained by (a†)n operator:
   
ana† n = n! 1+ na†a +

n n−1( )
2!⋅2!

a† 2a2 +…
⎛

⎝
⎜

⎞

⎠
⎟Use:

a† n =
a† n+1 0

n!
= n +1 a

† n+1 0
n +1( )!

a† n = n +1 n +1

Apply creation a†: Apply destruction a: 

a n =
aa† n 0

n!
=

(na† n−1 + a† na) 0
n!

= n a
† n−1 0
n −1( )!

a n = n n −1

  aa† n = na† n−1 + a† naUse:n =
a† n 0

n!
Root-factorial normalization  

Feynman’s mnemonic rule: Larger of two quanta goes in radical factor 

 

a† =

⋅
1 ⋅

2 ⋅
3 ⋅

4 ⋅
 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

 

 a =

⋅ 1
⋅ 2

⋅ 3
⋅ 4

⋅ 
⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

a†a n =
a†aa† n 0

n!
= n a

†a† n−1 0
n!

= n a
† n 0
n!

= n n
Number operator and Hamiltonian operator
Number operator N=a†a counts quanta. 

Hamiltonian operator is ω N plus zero-point energy 1ω/2 .

  aa† n = na† n−1 + a† naUse:

H |n〉 = ω a†a |n〉 + ω/21 |n〉  =  ω(n+1/2)|n〉

 

H = ω a†a+ 2
11 = ω

0
1
2

3


⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+ ω

1/ 2
1/ 2

1 / 2
1 / 2



⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Hamiltonian operator
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Expectation values of position, momentum, and uncertainty for eigenstate ⏐n〉

 

Mω
2

x = a + a
†

2
 

 
x |n= n x n = 

2Mω
n a + a†( ) n = 0

 
p |n= n p n = i Mω

2
n a† − a( ) n = 0

 

x2 |n= n x2 n =


2Mω
n a + a†( )2 n

  = 
2Mω

n a2 + a†a + aa† + a†2( ) n
  = 

2Mω
2n +1( )

 

p2 |n= n p2 n = i2 Mω
2

n a† − a( )2 n

     = −
Mω

2
n a†2 − a†a − aa† + a2( ) n

     = Mω
2

2n +1( )

Δq( )2 = q − q( )2     or:   Δq = q − q( )2
Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

 
Δx n = x2 =

 2n +1( )
2Mω  

Δp n = p2 =
Mω 2n +1( )

2

 
(Δx ⋅ Δp) n = x2 p2 =

 2n +1( )
2Mω

Mω 2n +1( )
2

Heisenberg uncertainty product for the n-quantum eigenstate ⏐n〉 

 
(Δx ⋅ Δp) 0 =


2

Heisenberg minimum uncertainty product occurs for the 0-quantum (ground) eigenstate. 
  

 

1
2Mω

p = a − a
†

2iOperator for position x: Operator for momentum p:

expectation for position 〈x〉: expectation for momentum 〈p〉:

expectation for (position)2 〈x2〉: expectation for (momentum)2 〈p2〉:

 
(Δx ⋅ Δp) n =  n + 1

2
⎛
⎝⎜

⎞
⎠⎟

 aa† = 1+ a†a
Use:
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|Ψ〉 =  |0〉〈0|Ψ〉 + |1〉〈1|Ψ〉 =  |0〉Ψ0 + |1〉Ψ1 

Harmonic oscillator beat dynamics of mixed states

Ψ(x) = 〈x|Ψ〉 = 〈x|0〉〈0|Ψ〉 + 〈x|1〉〈1|Ψ〉 = ψ0(x) Ψ0 + ψ1(x) Ψ1 

The time dependence Ψ(x,t) of the mixed wave is then
  Ψ(x,t) = ψ0(x) e-iω0t Ψ0 + ψ1(x) e-iω1t Ψ1 = (ψ0(x) e-iω0t + ψ1(x) e-iω1t )/√2

  

Ψ x,t( ) = Ψ*Ψ = e−iω0tψ0 x( ) + e−iω1tψ1 x( )⎛
⎝

⎞
⎠

*
e−iω0tψ0 x( ) + e−iω1tψ1 x( )⎛

⎝
⎞
⎠ / 2

                    = ψ0 x( ) 2
+ ψ1 x( ) 2

+ψ0 x( )ψ1 x( ) ei ω1−ω0( )t + e−i ω1−ω0( )t⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

/ 2

                    = ψ0 x( ) 2
+ ψ1 x( ) 2

+ 2ψ0 x( )ψ1 x( )cos ω1 −ω0( )t⎛
⎝⎜

⎞
⎠⎟

/ 2

t = 0 t = τ/4

t = 3τ/4t = τ/2

ω/2

ω/2

ω/2

E0

E1
ω E

Transition frequency is transition energy/ 
    ΔE = E1←0 transition = E1 - E0 = ω  

Beat frequency is eigenfrequency difference
                   ωbeat = ω1 - ω0 = ω 

Beat frequency ω = Transition frequency ω

ω  is frequency of radiating antenna
of a transmitter or of a receiver, i.e.,

of an emitter or an absorber 
(Usually of a dipole symmetry) 

Need some overlap
somewhere

to get some wiggle
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Oscillator coherent states (“Shoved” and “kicked” states)
Translation operators and generators: (A “shove”)

 Translation operator T(a) shoves x-wavefunctions

T(a).ψ(x) = ψ(x-a) = 〈x|T(a)|ψ〉 = 〈x-a |ψ〉  

9Thursday, April 25, 2013



Oscillator coherent states (“Shoved” and “kicked” states)
Translation operators and generators: (A “shove”)

 Translation operator T(a) shoves x-wavefunctions

T(a).ψ(x) = ψ(x-a) = 〈x|T(a)|ψ〉 = 〈x-a |ψ〉  

Boost operators and generators: (A “kick”)
 Boost operator B(b) boosts p-wavefunctions

B(b).ψ(p) = ψ(p-b) = 〈x|B(b)|ψ〉 = 〈p-b |ψ〉

10Thursday, April 25, 2013



Oscillator coherent states (“Shoved” and “kicked” states)
Translation operators and generators: (A “shove”)

 Translation operator T(a) shoves x-wavefunctions

T(a).ψ(x) = ψ(x-a) = 〈x|T(a)|ψ〉 = 〈x-a |ψ〉  

Boost operators and generators: (A “kick”)
 Boost operator B(b) boosts p-wavefunctions

B(b).ψ(p) = ψ(p-b) = 〈x|B(b)|ψ〉 = 〈p-b |ψ〉

Shoves ψ a-units to right or x-space a-units left
〈x|T(a) = 〈x-a |  or:  T†(a)|x〉= |x-a 〉

11Thursday, April 25, 2013



Oscillator coherent states (“Shoved” and “kicked” states)
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Oscillator coherent states (“Shoved” and “kicked” states)
Translation operators and generators: (A “shove”)

 Translation operator T(a) shoves x-wavefunctions

T(a).ψ(x) = ψ(x-a) = 〈x|T(a)|ψ〉 = 〈x-a |ψ〉  

Boost operators and generators: (A “kick”)
 Boost operator B(b) boosts p-wavefunctions

B(b).ψ(p) = ψ(p-b) = 〈x|B(b)|ψ〉 = 〈p-b |ψ〉
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〈x|T(a) = 〈x-a |  or:  T†(a)|x〉= |x-a 〉  〈p |B(b) = 〈p-b |  , or:  B†(b)|p 〉 = |p-b 〉

Increases momentum of ket-state by b units

Tiny boost b→db is identity 1 plus K·dbTiny translation a→da is identity 1 plus G·da 

T(da) = 1 + G·da    where:
   
G = ∂ T

∂ a a=0
B(db) = 1 + K·db    where:

   
K = ∂B

∂ b b=0
is generator G of translations is generator K of boosts
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Oscillator coherent states (“Shoved” and “kicked” states)
Translation operators and generators: (A “shove”)

 Translation operator T(a) shoves x-wavefunctions
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T(da) = 1 + G·da    where:
   
G = ∂ T

∂ a a=0
is generator G of translations

B(db) = 1 + K·db    where:
   
K = ∂B

∂ b b=0
is generator K of boosts

T(a)= T( a
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
a
N
G⎛

⎝⎜
⎞
⎠⎟
N

= eaG B(b)= B( b
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
b
N
K⎛

⎝⎜
⎞
⎠⎟
N

= ebK
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K = ∂B
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is generator K of boosts

T(a)= T( a
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
a
N
G⎛

⎝⎜
⎞
⎠⎟
N

= eaG B(b)= B( b
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
b
N
K⎛

⎝⎜
⎞
⎠⎟
N

= ebK

    

T(a) ⋅ψ (x) = eaG ⋅ψ (x) = e
−a ∂

∂ x ⋅ψ (x)

 =ψ (x)− a ∂ψ (x)
∂ x

+ a2

2!
∂ 2ψ (x)

∂ x2
− a3

2!
∂3ψ (x)

∂ x3
+…

    

B b( ) ⋅ψ ( p) = ebK ⋅ψ ( p) = e
−b ∂

∂ p ⋅ψ ( p)

 =ψ ( p)− b∂ψ ( p)
∂ p

+ b2

2!
∂ 2ψ ( p)

∂ p2
− b3

2!
∂3ψ ( p)

∂ p3
+…
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Oscillator coherent states (“Shoved” and “kicked” states)
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is generator G of translations

B(db) = 1 + K·db    where:
   
K = ∂B

∂ b b=0
is generator K of boosts

T(a)= T( a
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
a
N
G⎛

⎝⎜
⎞
⎠⎟
N

= eaG B(b)= B( b
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
b
N
K⎛

⎝⎜
⎞
⎠⎟
N

= ebK

    

T(a) ⋅ψ (x) = eaG ⋅ψ (x) = e
−a ∂

∂ x ⋅ψ (x)

 =ψ (x)− a ∂ψ (x)
∂ x

+ a2

2!
∂ 2ψ (x)

∂ x2
− a3

2!
∂3ψ (x)

∂ x3
+…

    

B b( ) ⋅ψ ( p) = ebK ⋅ψ ( p) = e
−b ∂

∂ p ⋅ψ ( p)

 =ψ ( p)− b∂ψ ( p)
∂ p

+ b2

2!
∂ 2ψ ( p)

∂ p2
− b3

2!
∂3ψ ( p)

∂ p3
+…

 


i
∂
∂x

= −i ∂
∂x

G relates to momentum p→ 
 
i ∂
∂ p

= i ∂
∂ k

K relates to position x→ 

 
G = − i


p→− ∂

∂x     
K = i

x→− ∂

∂ p
= −1


∂
∂ k
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Oscillator coherent states (“Shoved” and “kicked” states)
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Tiny boost b→db is identity 1 plus K·dbTiny translation a→da is identity 1 plus G·da 

T(da) = 1 + G·da    where:
   
G = ∂ T

∂ a a=0
is generator G of translations

B(db) = 1 + K·db    where:
   
K = ∂B

∂ b b=0
is generator K of boosts

T(a)= T( a
N
)⎛
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⎞
⎠⎟
N

=limN→∞ 1+
a
N
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⎞
⎠⎟
N
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⎠⎟
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−a ∂
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∂ x

+ a2

2!
∂ 2ψ (x)

∂ x2
− a3

2!
∂3ψ (x)

∂ x3
+…

    

B b( ) ⋅ψ ( p) = ebK ⋅ψ ( p) = e
−b ∂

∂ p ⋅ψ ( p)

 =ψ ( p)− b∂ψ ( p)
∂ p

+ b2

2!
∂ 2ψ ( p)

∂ p2
− b3

2!
∂3ψ ( p)

∂ p3
+…

 


i
∂
∂x

= −i ∂
∂x

G relates to momentum p→ 
 
i ∂
∂ p

= i ∂
∂ k

K relates to position x→ 

 
G = − i


p→− ∂

∂x     
K = i

x→− ∂

∂ p
= −1


∂
∂ k

 T(a) = e
−a i

p
= e a a

†−a( ) Mω /2
    
B b( ) = e

b i

x
= e

ib a†+a( )/ 2Mω
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Oscillator coherent states (“Shoved” and “kicked” states)
Translation operators and generators: (A “shove”)

 Translation operator T(a) shoves x-wavefunctions

T(a).ψ(x) = ψ(x-a) = 〈x|T(a)|ψ〉 = 〈x-a |ψ〉  

Boost operators and generators: (A “kick”)
 Boost operator B(b) boosts p-wavefunctions

B(b).ψ(p) = ψ(p-b) = 〈x|B(b)|ψ〉 = 〈p-b |ψ〉

Shoves ψ a-units to right or x-space a-units left
〈x|T(a) = 〈x-a |  or:  T†(a)|x〉= |x-a 〉  〈p |B(b) = 〈p-b |  , or:  B†(b)|p 〉 = |p-b 〉

Increases momentum of ket-state by b units

Tiny boost b→db is identity 1 plus K·dbTiny translation a→da is identity 1 plus G·da 

T(da) = 1 + G·da    where:
   
G = ∂ T

∂ a a=0
is generator G of translations

B(db) = 1 + K·db    where:
   
K = ∂B

∂ b b=0
is generator K of boosts

T(a)= T( a
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
a
N
G⎛

⎝⎜
⎞
⎠⎟
N

= eaG B(b)= B( b
N
)⎛

⎝⎜
⎞
⎠⎟
N

=limN→∞ 1+
b
N
K⎛

⎝⎜
⎞
⎠⎟
N

= ebK

    

T(a) ⋅ψ (x) = eaG ⋅ψ (x) = e
−a ∂

∂ x ⋅ψ (x)

 =ψ (x)− a ∂ψ (x)
∂ x

+ a2

2!
∂ 2ψ (x)

∂ x2
− a3

2!
∂3ψ (x)

∂ x3
+…

    

B b( ) ⋅ψ ( p) = ebK ⋅ψ ( p) = e
−b ∂

∂ p ⋅ψ ( p)

 =ψ ( p)− b∂ψ ( p)
∂ p

+ b2

2!
∂ 2ψ ( p)

∂ p2
− b3

2!
∂3ψ ( p)

∂ p3
+…

 


i
∂
∂x

= −i ∂
∂x

G relates to momentum p→ 
 
i ∂
∂ p

= i ∂
∂ k

K relates to position x→ 

 
G = − i


p→− ∂

∂x     
K = i

x→− ∂

∂ p
= −1


∂
∂ k

 T(a) = e
−a i

p
= e a a

†−a( ) Mω /2
    
B b( ) = e

b i

x
= e

ib a†+a( )/ 2Mω

Check B(b) on plane-wave with p=k

    
B b( )ei k x = eibx/ei k x = eibx/ei k x = ei k+b/( )x

Check T(a) on plane-wave with p=k

 T(a)e
i k x = e−i ap /ei k x = e−i akei k x = ei k x−a( )

Bottom Line
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first? ??
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?  T(a) = e

−i ap/ or B b( ) = eibx/ ??
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both.

 T(a) = e
−i ap/ or B b( ) = eibx/ ??
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2

 

C(a,b) = ei bx−ap( )/ = eib a
†+a( )/ 2Mω +a a†−a( ) Mω /2

          =eα a
†−α*a = e−α

2 /2eα a
†
e−α*a = eα

2 /2e−α*aeα a
†

Reordering only affects the overall phase. 
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2

 

C(a,b) = ei bx−ap( )/ = eib a
†+a( )/ 2Mω +a a†−a( ) Mω /2

          =eα a
†−α*a = e−α

2 /2eα a
†
e−α*a = eα

2 /2e−α*aeα a
†

Reordering only affects the overall phase. 

 

α a,b( )
= a Mω / 2 + ib/ 2Mω

= a + i b
Mω

⎡
⎣⎢

⎤
⎦⎥
Mω / 2

Complex phasor coordinate α(a,b) is defined by:
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2

 

C(a,b) = ei bx−ap( )/ = eib a
†+a( )/ 2Mω +a a†−a( ) Mω /2

          =eα a
†−α*a = e−α

2 /2eα a
†
e−α*a = eα

2 /2e−α*aeα a
†

Reordering only affects the overall phase. 

 

α a,b( )
= a Mω / 2 + ib/ 2Mω

= a + i b
Mω

⎡
⎣⎢

⎤
⎦⎥
Mω / 2

Complex phasor coordinate α(a,b) is defined by:

 Coherent wavepacket state |α(x0,p0)〉:

 

α0 x0, p0( ) = C(x0, p0 ) 0 = ei x0x− p0p( )/ 0
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2

 

C(a,b) = ei bx−ap( )/ = eib a
†+a( )/ 2Mω +a a†−a( ) Mω /2

          =eα a
†−α*a = e−α

2 /2eα a
†
e−α*a = eα

2 /2e−α*aeα a
†

Reordering only affects the overall phase. 

 

α a,b( )
= a Mω / 2 + ib/ 2Mω

= a + i b
Mω

⎡
⎣⎢

⎤
⎦⎥
Mω / 2

Complex phasor coordinate α(a,b) is defined by:

 Coherent wavepacket state |α(x0,p0)〉:

 

α0 x0, p0( ) = C(x0, p0 ) 0 = ei x0x− p0p( )/ 0

                  = e−α0
2 /2eα0 a†

e−α0* a 0
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2

 

C(a,b) = ei bx−ap( )/ = eib a
†+a( )/ 2Mω +a a†−a( ) Mω /2

          =eα a
†−α*a = e−α

2 /2eα a
†
e−α*a = eα

2 /2e−α*aeα a
†

Reordering only affects the overall phase. 

 

α a,b( )
= a Mω / 2 + ib/ 2Mω

= a + i b
Mω

⎡
⎣⎢

⎤
⎦⎥
Mω / 2

Complex phasor coordinate α(a,b) is defined by:

 Coherent wavepacket state |α(x0,p0)〉:

 

α0 x0, p0( ) = C(x0, p0 ) 0 = ei x0x− p0p( )/ 0

                  = e−α0
2 /2eα0 a†

e−α0* a 0

                  =e−α0
2 /2eα0 a†

0
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2

 

C(a,b) = ei bx−ap( )/ = eib a
†+a( )/ 2Mω +a a†−a( ) Mω /2

          =eα a
†−α*a = e−α

2 /2eα a
†
e−α*a = eα

2 /2e−α*aeα a
†

Reordering only affects the overall phase. 

 

α a,b( )
= a Mω / 2 + ib/ 2Mω

= a + i b
Mω

⎡
⎣⎢

⎤
⎦⎥
Mω / 2

Complex phasor coordinate α(a,b) is defined by:

 Coherent wavepacket state |α(x0,p0)〉:

 

α0 x0, p0( ) = C(x0, p0 ) 0 = ei x0x− p0p( )/ 0

                  = e−α0
2 /2eα0 a†

e−α0* a 0

                  =e−α0
2 /2eα0 a†

0

                  =e−α0
2 /2 α0 a†( )n

n=0

∞
∑ 0 / n!
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?
A. Neither and Both. Define a combined boost-translation operation:

 C(a,b) = e
i bx−ap( )/ T(a) = e

−i ap/ or B b( ) = eibx/ ??

(More like Darboux rotation e-iΘ·J/ than Euler rotation with three factors e-iJzα/e-iJyβ/e-iJzγ/)

eA+B = eAeBe− A,B[ ]/2 = eBeAe A,B[ ]/2  ,  where: A, A,B[ ]⎡⎣ ⎤⎦ = 0 = B, A,B[ ]⎡⎣ ⎤⎦

May evaluate with Baker-Campbell-Hausdorf identity since   [x,p]=i1  and  [[x,p],x]=[[x,p],p]=0.

(left as an exercise)

 

C(a,b) = ei bx−ap( )/ = eibx /e−i ap /e−ab x,p[ ]/22
= eibx /e−i ap /e−iab /2

          =B(b)T(a)e−iab /2=T(a)B(b)eiab /2

 

C(a,b) = ei bx−ap( )/ = eib a
†+a( )/ 2Mω +a a†−a( ) Mω /2

          =eα a
†−α*a = e−α

2 /2eα a
†
e−α*a = eα

2 /2e−α*aeα a
†

Reordering only affects the overall phase. 

 

α a,b( )
= a Mω / 2 + ib/ 2Mω

= a + i b
Mω

⎡
⎣⎢

⎤
⎦⎥
Mω / 2

Complex phasor coordinate α(a,b) is defined by:

 Coherent wavepacket state |α(x0,p0)〉:

 

α0 x0, p0( ) = C(x0, p0 ) 0 = ei x0x− p0p( )/ 0

                  = e−α0
2 /2eα0 a†

e−α0* a 0

                  =e−α0
2 /2eα0 a†

0

                  =e−α0
2 /2 α0 a†( )n

n=0

∞
∑ 0 / n!

                  =e−α0
2 /2 α0( )n

n!n=0

∞
∑ n  ,     where: n =

a†n 0
n!
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Time evolution of coherent state:

 U t,0( )=e-iHt /   Time evolution operator for constant H has general form :

α0 x0, p0( ) =e−α0
2 /2 α0( )n

n!n=0

∞
∑ n
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 U t,0( )=e-iHt /   Time evolution operator for constant H has general form :

 U t,0( ) n =e-iHt / n = e-i n+1/2( )ω t n

Oscillator eigenstate time evolution is simply determined by harmonic phases. 

Time evolution of coherent state: α0 x0, p0( ) =e−α0
2 /2 α0( )n

n!n=0

∞
∑ n
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 U t,0( )=e-iHt /   Time evolution operator for constant H has general form :
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Time evolution of coherent state: α0 x0, p0( ) =e−α0
2 /2 α0( )n

n!n=0

∞
∑ n

U t,0( ) α0 x0, p0( )  =e-iω t /2 α t xt , pt( )
Evolution simplifies to a variable-α0 coherent state with a time dependent phasor coordinate αt:

where:   α t xt , pt( )   =  e-iω t   α0 x0, p0( )
xt + i

pt
Mω

⎡
⎣⎢

⎤
⎦⎥
= e-iω t x0 + i

p0
Mω

⎡
⎣⎢

⎤
⎦⎥
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xt    =   x0 cosω t + p0
Mω

sinω t

pt
Mω

= −x0 sinω t + p0
Mω

cosω t

Real and imaginary parts (xt and pt/Mω) of αt go clockwise on phasor circle

(xt,pt) mimics classical oscillator
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1-D a†a algebra of U(1) representations
           Creation-Destruction a†a algebra
           Eigenstate creationism (and destruction)
                 Vacuum state 
                 1st excited state
           Normal ordering for matrix calculation
                 Commutator derivative identities
                 Binomial expansion identities
           Matrix 〈ana†n〉 calculations
                 Number operator and Hamiltonian operator
                 Expectation values of position, momentum, and uncertainty for eigenstate ⏐n〉
                 Harmonic oscillator beat dynamics of mixed states
           Oscillator coherent states (“Shoved” and “kicked” states)   
                Translation operators vs. boost operators
                Applying boost-translation combinations
                Time evolution of coherent state
                Properties of coherent state and “squeezed” states

2-D a†a algebra of U(2) representations and R(3) angular momentum operators 
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t ≈ 0.0

t = 0.3τ

ω/2

ω/2

expected energy〈Ε〉

classical energyΕc

classical turning points

Ground
state |0〉

Coherent
state |α0〉

〈0 |αt 〉

〈1 |αt 〉

〈2 |αt 〉

〈3 |αt 〉

〈4 |αt 〉

〈5 |αt 〉

〈6 |αt 〉

〈7 |αt 〉

Coherent
state |αt〉

a α0 x0, p0( ) =e−α0
2 /2 α0( )n

n!n=0

∞
∑ a n

              
             

Coherent ket |α(x0,p0)〉 is eigenvector of destruct-op. a.
Properties of coherent state
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∞
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Coherent ket |α(x0,p0)〉 is eigenvector of destruct-op. a.
Properties of coherent state
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2 /2 α0( )n

n!n=0

∞
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Coherent ket |α(x0,p0)〉 is eigenvector of destruct-op. a.

with eigenvalue α0

Properties of coherent state
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              =e−α0
2 /2 α0( )n

n!n=0
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             =α0 α0 x0, p0( )

Coherent ket |α(x0,p0)〉 is eigenvector of destruct-op. a.
Properties of coherent state

with eigenvalue α0

Coherent bra 〈α(x0,p0)⏐ is eigenvector of create-op. a†.

α0 x0, p0( ) a† = α0 x0, p0( ) α0*
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t ≈ 0.0

t = 0.3τ
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ω/2

expected energy〈Ε〉

classical energyΕc

classical turning points
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Coherent
state |α0〉
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              =e−α0
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n!n=0

∞
∑ n n −1

             =α0 α0 x0, p0( )

Coherent ket |α(x0,p0)〉 is eigenvector of destruct-op. a.
Properties of coherent state

with eigenvalue α0

   

E
α0

= α0 x0, p0( )H α0 x0, p0( )

= α0 x0, p0( ) ωa†a + ω
2
1⎛

⎝⎜
⎞
⎠⎟
α0 x0, p0( )

           = ωα0
*α0 +

ω
2

Expected quantum energy has simple time independent form. 

Coherent bra 〈α(x0,p0)⏐ is eigenvector of create-op. a†.

α0 x0, p0( ) a† = α0 x0, p0( ) α0*
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(a) Coherent wave oscillation

(b) Squeezed ground state

(“Squeezed vacuum” oscillation)

Amplitude coordinate x

Time t

Time t

Time t

n=0

n=1

n=2

n=3

n=4

n=5

n=6

n=0

n=2

n=4

n=6

τ
1/2
=π/ω

τ
1/4
=π/2ω

τ
3/4
=3π/2ω

τ
1/2
=π/ω

τ
1/4
=π/2ω

t = 0

t = τ=2π/ω

Properties of “squeezed” coherent states

Yeah! Cosine trajectory!
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(a) Coherent wave oscillation

(b) Squeezed ground state

(“Squeezed vacuum” oscillation)

Amplitude coordinate x

Time t

Time t

Time t

n=0

n=1

n=2

n=3

n=4

n=5

n=6

n=0

n=2

n=4

n=6

τ
1/2
=π/ω

τ
1/4
=π/2ω

τ
3/4
=3π/2ω

τ
1/2
=π/ω

τ
1/4
=π/2ω

t = 0

t = τ=2π/ω

Properties of “squeezed” coherent states

Yeah! Cosine trajectory!

what happens if you apply
operators with non-linear “tensor”
exponents exp(sx2), exp(f p2), etc.
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(a) Coherent wave oscillation

(b) Squeezed ground state

(“Squeezed vacuum” oscillation)

Amplitude coordinate x

Time t

Time t

Time t

n=0

n=1

n=2

n=3

n=4

n=5

n=6

n=0

n=2

n=4

n=6

τ
1/2
=π/ω

τ
1/4
=π/2ω

τ
3/4
=3π/2ω

τ
1/2
=π/ω

τ
1/4
=π/2ω

t = 0

t = τ=2π/ω
(a) Squeezed amplitude

(b) Squeezed phase

Time t

Time t

Low Δx at trough
High Δp at trough

Low Δx at crest

High Δx at zero
Low Δp at zero

High Δx at trough
Low Δp at trough

High Δx at crest

Low Δx at zero
High Δp at zero

Properties of “squeezed” coherent states

50Thursday, April 25, 2013



Review : 1-D a†a algebra of U(1) representations

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions

Left from 4.23.13U(1) Oscillator coherent states (“Shoved” and “kicked” states)   
                Translation operators vs. boost operators
                Applying boost-translation combinations
                Time evolution of coherent state
                Properties of coherent state and “squeezed” states
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)
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First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
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p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D
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p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)
Define a and a† operators 
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Define a and a† operators 
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First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)
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(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.

Define a and a† operators 
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(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Define a and a† operators 
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This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

Define a and a† operators 
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[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

Define a and a† operators 
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 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

H =
H11 H12
H21 H22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

New symmetrized a†man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

Define a and a† operators 
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a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 

x1 = (a†1 + a1 )/√2       p1 = i (a†1 - a1 )/√2

a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

H = H11 a1
†a1 +1/ 2( ) +     H12a1

†a2             = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
H =

H11 H12
H21 H22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= A B − iC

B + iC D
⎛
⎝⎜

⎞
⎠⎟

New symmetrized a†man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

Define a and a† operators 

61Thursday, April 25, 2013



2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 

x1 = (a†1 + a1 )/√2       p1 = i (a†1 - a1 )/√2

a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

H = H11 a1
†a1 +1/ 2( ) +     H12a1

†a2             = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
H =

H11 H12
H21 H22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= A B − iC

B + iC D
⎛
⎝⎜

⎞
⎠⎟

New symmetrized a†man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

Both are elementary "place-holders" for parameters Hmn or A, B±iC, and D.

m n → am† an + anam†( ) / 2 = am† an +δm,n1/ 2

Define a and a† operators 
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Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. 
(am, a†n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a†m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.
If a†m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

    {cm,cn}=cmcn+cncm=0             {cm,c†n}=cmc†n+c†ncm=δmn1            {c†m,c†n}=c†mc†n+c†nc†m =0  

Fermi c†n has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

c†mc†m |0〉 = - c†mc†m |0〉 = 0
Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0.

That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle. 

 c†mcm |0〉 = 0  ,  c†mcm |1〉 = |1〉 ,  c†mcm |n〉 = 0  for: n>1 

Quantum numbers of n=0 and n=1 are the only allowed eigenvalues of the number operator c†mcm.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
Product of individual probabilities |〈x1|Ψ1〉|2 and |〈x2|Ψ2〉|2 respects standard Bayesian probability theory.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
Product of individual probabilities |〈x1|Ψ1〉|2 and |〈x2|Ψ2〉|2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation 〈x1, x2|Ψ1,Ψ2〉 = 〈x2|〈x1||Ψ1〉|Ψ2〉
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
Product of individual probabilities |〈x1|Ψ1〉|2 and |〈x2|Ψ2〉|2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation 〈x1, x2|Ψ1,Ψ2〉 = 〈x2|〈x1||Ψ1〉|Ψ2〉

Must ask a perennial modern question: "How are these structures stored in a computer program?" 
The usual answer is in outer product or tensor arrays. Next pages show sketches of these objects.
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Outer product arrays

 

Type−1                                                         Type− 2                                           

01 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,         02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

Start with an elementary ket basis for each dimension or particle type-1 and type-2.
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Outer product arrays
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Start with an elementary ket basis for each dimension or particle type-1 and type-2.
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Outer products are constructed for the states that might have non-negligible amplitudes. 
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

76Thursday, April 25, 2013



Outer product arrays

 

Type−1                                                         Type− 2                                           

01 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,         02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

 

01 02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 02 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

1
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 22 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

0
0
1

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.
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⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 02 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

1
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 22 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

0
0
1

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

 

Ψ1 Ψ2 =

0 Ψ1

1 Ψ1

2 Ψ1



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0 Ψ2

1 Ψ2

2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 Ψ1 0 Ψ2

0 Ψ1 1 Ψ2

0 Ψ1 2 Ψ2


1 Ψ1 0 Ψ2

1 Ψ1 1 Ψ2

1 Ψ1 2 Ψ2


2 Ψ1 0 Ψ2

2 Ψ1 1 Ψ2

2 Ψ1 2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0102 Ψ1Ψ2

0112 Ψ1Ψ2

0122 Ψ1Ψ2


1102 Ψ1Ψ2

1112 Ψ1Ψ2

1122 Ψ1Ψ2


2102 Ψ1Ψ2

2112 Ψ1Ψ2

2122 Ψ1Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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Outer product arrays

 

Type−1                                                         Type− 2                                           

01 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,         02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

 

01 02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 02 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

1
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 22 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

0
0
1

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

 

Ψ1 Ψ2 =

0 Ψ1

1 Ψ1

2 Ψ1



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0 Ψ2

1 Ψ2

2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 Ψ1 0 Ψ2

0 Ψ1 1 Ψ2

0 Ψ1 2 Ψ2


1 Ψ1 0 Ψ2

1 Ψ1 1 Ψ2

1 Ψ1 2 Ψ2


2 Ψ1 0 Ψ2

2 Ψ1 1 Ψ2

2 Ψ1 2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0102 Ψ1Ψ2

0112 Ψ1Ψ2

0122 Ψ1Ψ2


1102 Ψ1Ψ2

1112 Ψ1Ψ2

1122 Ψ1Ψ2


2102 Ψ1Ψ2

2112 Ψ1Ψ2

2122 Ψ1Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

 

Ψ =

0102 Ψ
0112 Ψ
0122 Ψ


1102 Ψ
1112 Ψ
1122 Ψ


2102 Ψ
2112 Ψ
2122 Ψ


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 =

Ψ00

Ψ01

Ψ02


Ψ10

Ψ11

Ψ12


Ψ20

Ψ21

Ψ22



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

shorthand 
big-bra-big-ket 
notation
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A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  
   
M = M j,k j k

k=1

n
∑

j=1

n
∑

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  

...that might be diagonalized to a combination of n projectors:

   
M = M j,k j k

k=1

n
∑

j=1

n
∑

   
M = µe e e

e=1

n
∑

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  

...that might be diagonalized to a combination of n projectors:

   
M = M j,k j k

k=1

n
∑

j=1

n
∑

   
M = µe e e

e=1

n
∑

So a general two-particle state |Ψ〉 is a combination of entangled products: 
   
Ψ = ψ j,k |Ψ j〉|Ψk〉

k
∑

j
∑

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  

...that might be diagonalized to a combination of n projectors:

   
M = M j,k j k

k=1

n
∑

j=1

n
∑

   
M = µe e e

e=1

n
∑

So a general two-particle state |Ψ〉 is a combination of entangled products: 
   
Ψ = ψ j,k |Ψ j〉|Ψk〉

k
∑

j
∑

...that might be de-entangled to a combination of n terms:
 
Ψ = φe ϕe ϕe

e
∑

Entangled 2-particle states
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
a1

†a1 n1n2 = n1 n1 n2                            a1
†a2 n1n2 = n1 +1 n2 n1 +1n2 −1

a2
†a1 n1n2 = n1 n2 +1 n1 −1n2 +1                          a2

†a2 n1n2 = n2 n1 n2
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
a1

†a1 n1n2 = n1 n1 n2                            a1
†a2 n1n2 = n1 +1 n2 n1 +1n2 −1

a2
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        

 H = A(1/ 2)+ D(1/ 2)+  
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
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a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0
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00 0  ⋅  

01 D  B + iC ⋅  

02 2D  2 B + iC( ) ⋅  
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20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  

Rearrangement of rows and columns brings the matrix to a block-diagonal form. 

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)
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        

 H = A(1/ 2)+ D(1/ 2)+  

Rearrangement of rows and columns brings the matrix to a block-diagonal form. 
Base states |n1〉|n2〉 with the same total quantum number ν= n1 + n2 define each block.

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)
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00 0  ⋅  
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02 2D  2 B + iC( ) ⋅  

         
10 ⋅ B − iC  A  ⋅ 

11 ⋅ 2 B − iC( )  A + D  2 B + iC( ) ⋅ 

12 ⋅  A + 2D  4 B + iC( ) ⋅ 
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20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  

Rearrangement of rows and columns brings the matrix to a block-diagonal form. 
Base states |n1〉|n2〉 with the same total quantum number υ = n1 + n2 define each block.

 

00 01 10 02 11 20 03 12 21 30 

00 0
01 D B + iC

10 B − iC A

02 2D 2 B + iC( )
11 2 B − iC( ) A + D 2 B + iC( )
20 2 B − iC( ) 2A

03 3D 3 B + iC( )
12 3 B − iC( ) A + 2D 4 B + iC( )
21 4 B − iC( ) 2A + D 3 B + iC( )
30 3 B − iC( ) 3A


 H = A(1/ 2)+ D(1/ 2)+

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

Fundamental (ν=1) 
vibrational sub-space

Vacuum (ν=0) 

Overtone (ν=2) 
vibrational sub-space

Overtone (ν=3) 
vibrational sub-space

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2
A = A n1 +

1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )
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Review : 1-D a†a algebra of U(1) representations
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                Time evolution of coherent state
                Properties of coherent state and “squeezed” states
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

Recall decomposition of H
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

 

H =Ω01+Ω •

S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)

Recall decomposition of H

in terms of Jordan-Pauli spin operators. 
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2D-Oscillator eigensolutions

H υ=1
Fundamental =
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1,0 A B − iC
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+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D
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+ A+D
2
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0 1
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2
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⎠⎟

1
2
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H =Ω01+Ω •

S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)

Recall decomposition of H

in terms of Jordan-Pauli spin operators. 

Frequency eigenvalues ω± of H-Ω01/2 and fundamental transition frequency Ω = ω+ - ω- :

ω± = Ω0 ±Ω
2

=
A + D ± 2B( )2 + 2C( )2 + A − D( )2

2
= A + D

2
± A − D

2
⎛
⎝⎜

⎞
⎠⎟
2
+ B2 +C2
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H =Ω01+Ω •
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S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)
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in terms of Jordan-Pauli spin operators. 

Frequency eigenvalues ω± of H-Ω01/2 and fundamental transition frequency Ω = ω+ - ω- :

ω± = Ω0 ±Ω
2

=
A + D ± 2B( )2 + 2C( )2 + A − D( )2

2
= A + D

2
± A − D

2
⎛
⎝⎜

⎞
⎠⎟
2
+ B2 +C2

Polar angles (ϕ,ϑ) of +Ω-vector (or polar angles (ϕ,ϑ±π) of -Ω-vector) gives H eigenvectors.

ω+ =
e−iϕ /2 cosϑ

2

eiϕ /2 sinϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,     ω− =
−e−iϕ /2 sinϑ

2

eiϕ /2 cosϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    where: 
cosϑ= A-D

Ω

tanϕ = C
B

⎧

⎨
⎪⎪

⎩
⎪
⎪
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=
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= A + D
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± A − D
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Polar angles (ϕ,ϑ) of +Ω-vector (or polar angles (ϕ,ϑ±π) of -Ω-vector) gives H eigenvectors.

ω+ =
e−iϕ /2 cosϑ

2

eiϕ /2 sinϑ
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⎜
⎜
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⎠

⎟
⎟
⎟
⎟
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−e−iϕ /2 sinϑ
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eiϕ /2 cosϑ
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⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    where: 
cosϑ= A-D

Ω

tanϕ = C
B

⎧

⎨
⎪⎪

⎩
⎪
⎪

More important for the general solution, are the eigen-creation operators a†+ and a†- defined by

a+† =e−iϕ /2 cosϑ
2
a1

† + eiϕ sinϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟

 ,    a−† =e−iϕ /2 − sinϑ
2
a1

† + eiϕ cosϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟
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cosϑ= A-D

Ω

tanϕ = C
B

⎧

⎨
⎪⎪

⎩
⎪
⎪

More important for the general solution, are the eigen-creation operators a†+ and a†- defined by

a+† =e−iϕ /2 cosϑ
2
a1

† + eiϕ sinϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟

 ,    a−† =e−iϕ /2 − sinϑ
2
a1

† + eiϕ cosϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟

 a±
† create H eigenstates directly from the ground state. 

a+† 0 = ω+  ,    a−† 0 = ω-
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( )
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2
A = A n1 +

1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2

A = A n1 +
1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )

         =Ω0 n1 + n2 +1( ) + Ω
2
n1 − n2( ) =Ω0 υ +1( ) +Ω m
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 m = 

n1 − n2
2  

 

 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

Define total quantum number υ=2j and half-difference or asymmetry quantum number m 

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2

A = A n1 +
1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )

         =Ω0 n1 + n2 +1( ) + Ω
2
n1 − n2( ) =Ω0 υ +1( ) +Ω m

  υ = n1 + n2 = 2 j   
j =

n1 + n2
2

= υ
2
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 m = 

n1 − n2
2  

 

 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

Define total quantum number υ=2j and half-difference or asymmetry quantum number m 

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2

A = A n1 +
1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )

         =Ω0 n1 + n2 +1( ) + Ω
2
n1 − n2( ) =Ω0 υ +1( ) +Ω m

  υ = n1 + n2 = 2 j   
j =

n1 + n2
2

= υ
2

 

υ+1=2j+1 multiplies base frequency ω=Ω0 
 m multiplies beat frequency Ω 

Ω

ω=Ω0

m =+1/2

m =-1/2

υ=1
ω+= Ω0 +Ω(+  )1

2

ω−= Ω0 +Ω(−  )1
2
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

j=3/2

j=1/2

j=2

j=1

j=0

m = +2
+1
0
-1
-2

m = +1
0
-1

m = 0

m = +3/2
+1/2
-1/2
-3/2

m = +1/2
-1/2

SU(2) Multiplets R(3) Multiplets

"spinor" "scalar"

"vector"

"tensor"
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

7
8 j=4

j=7/2

υ=0
1
2
3
4
5
6

ω Ω=ω

j=3

j=5/2

j=2

j=3/2

j=1

j=1/2

Ω=2ω/3Ω=ω/3

9
10 j=5

j=9/2

11
12 j=6

j=11/2

SU(2)

C2A,B,or C

j=3/2

j=1/2

j=2

j=1

j=0

m = +2
+1
0
-1
-2

m = +1
0
-1

m = 0

m = +3/2
+1/2
-1/2
-3/2

m = +1/2
-1/2

SU(2) Multiplets R(3) Multiplets

"spinor" "scalar"

"vector"

"tensor"
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m
j = n1n2  

j = 0      0
0 = 00    "scalar"

j = 1
2

  
1/2
1/2 = 10 = ↑

-1/2
1/2 = 01 = ↓

 "spinor"

j = 1   
1
1 = 20

0
1 = 11

-1
1 = 02

 "3-vector"

j = 3
2

 

1/2
3/2 = 30

1/2
3/2 = 21

-1/2
3/2 = 12

-3/2
3/2 = 03

 "4-spinor"

j = 2 

2
2 = 40

1
2 = 31

0
2 = 22

-1
2 = 13

-2
2 = 04

  "tensor"



⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

  
j=υ

2
= n1 + n2

2

m = n1 − n2

2

⎧

⎨
⎪⎪

⎩
⎪
⎪

       
n1 = j +m = 2υ +m
n2 = j −m = 2υ −m

1 2

1 1 1 2 2 2

1 1 1 1 1 2 1 2 2 2 2 2

1 1 1 1 1 1 1 2 1 1 2 2 1 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2

(vacuum)

1

(a) N-particle 2-level states
= |1 0〉 =a1† |0 0〉

= |0 0〉

2 = |0 1〉 =a2† |0 0〉

1 = |2 0〉 =a1†a1† |0 0〉1
2 = |1 1〉 =a1†a2† |0 0〉1

...or spin-1/2 states

N=1

N=2

N=3

N=4

MS=〈Jz〉
Spin z-component

+1/2 +3/2 +5/2
+1 +2

-1/2-3/2
-1

S=1/2

S=3/2

S=5/2

S=1

S=2

Total Spin S

1 = |↑〉 =| 〉
2 = |↓〉 =| 〉

j = 1/2
m=+1/2
j = 1/2
m=−1/2

n2n1

a1
†a2

a2
†a1 a2

a1a1
†

a2
†

Structure of U(2)
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()00()10()20()30()40

()11()21()31()41
()22()32()42
()33()43 ()44

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Dimension of oscillator

N=1

N=2

N=3

N=4

N=5

N=6

N=7

N=8

υ=1
υ=2

υ=3
υ=4

υ=5
υ=6

υ=7

υ=0
Principal Quantum Number

(a) N-D Oscillator Degeneracy  of quamtum levelυ

υ

(b) Stacking numbers

triangular

numbers

tetrahedral

numbers

( )=N-1+υ
υ

N-1+υ
N-1( )(c) Binomial coefficients

(N-1+υ)!
(N-1)!υ!

=

3

6

10

4

10

Introducing U(N)
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(b) N-particle 3-level states ...or spin-1 states
1 = |1 0 0〉 =a1† |0 0 0〉
2 = |0 1 0〉 =a2† |0 0 0〉
3 = |0 0 1〉 =a3† |0 0 0〉

1 = |↑〉 =| 〉
2 = |↔〉 = | 〉

j = 1
m=+1
j = 1
m=0

3 = |↓〉 = | 〉j = 1
m=-1

(vacuum)
= |0 0 0〉

1 2

3

1 1 1 1 1 2 1 2 2 2 2 2

2 2 3

2 3 3

3 3 3

1 3 3

1 1 3 1 2 3

n2n1

n3

angular
momentum

z-component
M=n

1 -n
3

0

−1

−2

−3

−4

+1

+2

+3

+4

a2
†a1

a1
†a2

a2
†a3

a3
†a2a1

†a3

a3
†a1

Introducing U(3)
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Ψ x1, x2, t( ) = 1
2
ψ10 x1, x2( )e−iω10t +ψ 01 x1, x2( )e−iω01t

2
e− x1

2 +x2
2( ) = e

− x1
2 +x2

2( )
2π

2x1e
−iω10t + 2x1e

−iω01t
2

                 = e
− x1

2 +x2
2( )

π
x1

2 + x2
2 + 2x1x2 cos ω10 −ω01( )t( ) = e

− x1
2 +x2

2( )
π

x1 + x2
2

   for: t=0          

x1
2 + x2

2       for: t=τbeat / 4

x1 − x2
2

  for: t=τbeat / 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

    (21.1.30)
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