Group Theory in Quantum Mechanics
Lecture 24 (12513

Harmonic oscillator symmetry U(1)CU(2)CU(3)...

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 21-22 )
(PSDS - Ch. 8 )

Review : 1-D ata algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basics
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator eigensolutions

U(1) Oscillator coherent states (“Shoved” and “kicked” States) Loft from 4.93.13
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and “squeezed” states
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* Review : [-D ata algebra of U(1) representations
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Review :  Creation-Destruction ata algebra

4 N
4 N , [ 7o o ot [agn
(X-I—iP) ( /Ma)x+ip/~/Ma)) aT:(X_lP):( Mo X—ip/ M(U)
Y Ton Jho J2n
Define { Destruction operator ) and \ Creation Operator y

Commutation relations between a = (X+iP)/2 and a'= (X-iP)/2 with X=VMoxA2 and P=pAN2M :
_a,aqzaaT-aTa=£(\/Mw x+ip/\/Ma))(\/Ma) x—ip/\/Ma))—i(\/Ma) x—ip/x/Ma))(\/Ma) x+ip/\/Ma))

a,ang(px—xp):%[x,p]ﬂ @a,aqzﬂ or (aaT=aTa+1) [ x,p |=xp-px=hi1
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Review :  Wavefunction creationism (15" Excited state)

Ist excited state wavefunction yy(x)=(e 11y N o~ =/

<x |aT|O> B <X |1> — Wi (X) st Transition . 75
energy by-Egy Q| WAD N L D) s
Expanding the creation operator =ho N s I
<x‘a7‘0>:%(«/Ma) <x‘x’0>—i<x‘p‘0>/«/Ma))=<x‘1>:1//1 (x) Claivical turningploints X
2n TTT-T-ITj IS SN SODE DAk

The operator coordinate rgpresentatiqns generate the first excited statefwavefunction.

)=o) | i o) )

l

2 2
—Mwx“/2h —Mwx“/2h T
BN N Y e e d d

\ 2% Cconst. i dx  const.

1 —wa2/2h

= c [\/Ma)x+zEwa/\/ ) """ _

\/E const. l
2 3/4
—Mwx“/2h o)
:\/Ma) e (2x)=(@] /27t(xe_wa /2h]
\/E const. 7th
Zero-point
energy EO .......
=h/2
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Review : Matrix <a“a*‘“> calculation

n\ln—1
Derive normalization for n* state obtained by (a')" operator: ~ Use: a"a™ =n!| 1+na'a+ %a’fzﬁ T

fn natn ¥ |
|n>:a_|0>’ Where. 1:<n|n>:<0|a a |20>:n!<0|1+na a;..|o>: n
COnSt. (const.) (const.) (const.)
tn
a 0 ) tn _ tn—1 Tn
|n) = 0) Root-factorial normalization Use: @aa'" =na'™ "+a"a
Jn!
Apply creation a': Apply destruction a:
tn+l tn+l tn tn—1 tn tn—1
N - |0>_\/—a 0) ~aa'"|0) (ma'""+a'a)0) ~—a'""’|0)
) Jn! " (n+1)! ) Jn! Jn! (n—1)!
(af[n)=nr1|n+1) aln)=+ln|n—1))
Feynman's mnemonic rule: Larger of two quanta goes 1n radical factor
| 1
. .
sz
Ty — a) = . \/g
* - Use: aa”=na™ '+al"a

Number operator and Hamiltonian operator
v v a'aa’™|0) a'a”'|0) a'"|0)

Number operator N=a'a counts quanta. a'a|n)= =n =n =n|n
Hamiltonian operator 0 1 172 s
H |n) = ho a'a |n) + 10/21 |n) = ho(n+1/2)n)  H=relaat)=io 2 +ho 1/2

3 1/2

Hamiltonian operator is ho N plus zero-point energy 120/2 .
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Review : Expectation values of position, momentum, and uncertainty for eigenstate |n)

.. T
Operator for position X: ,/A;I;’x = aJ;a

expectation for position (X):

X| :<n|x|n>:,/ n|(a+aT)|n> 0
(

expectation for (posztlon)2 X?):

x21,=(n|x?|n) = <n|(a+aT) [n)

M
h 2 ataiaa +ai?
=5 <n|(a +a'a+aa' +a )|n)
0]
h
=—— (2n+1)
2Mw

aa' =1+a'a

a—a'
pP= :
2hM @ 21

Operator for momentum P:

expectation for momentum (P):

B1,= (rlpln) =122 s~y =0

expectati()n for (momentum)? (p?):
P = (nlp?|m) =2 2 (n](a" - |

= hMTw(n|(aT2 ~a'a-aa' +a2)|n)

:hMTw (2n+1)

Uncertainty or standard deviation Aqg of a statistical quantity ¢ 1s its root mean-square difference.

(Aq)° =

Ax| _ i _ h(2n+1)
" X \ 2Mo

(¢-7)°

or: qu\/ (q—c7)2

S MMo(2n+1
Ap|n= p :\/ (2 )

Heisenberg uncertainty product for the n-quantum eigenstate |n)

(Av-Ap)], F\/T—\/

2n+1

2M®

2

\/th(2n+1)

[(Ax-Ap)ln - h(n%D

Heisenberg minimum uncertainty product occurs for the 0-quantum (ground) eigenstate.

[(AX'AP)‘() ==

h
2

J
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Review : Harmonic oscillator beat dynamics of mixed states

[7) = [0)01%) + [1X11¥) = 10)¥, + [1)¥;

P(x) = (xI¥) = (x|0)XO01Z) + (X[ 1)XLI) = 1ho(x) WO + 91 (x) 1
The time dependence ¥(x,t) of the mixed wave 1s then
W)= o) €Wy + () €T = (Yofx) €7+ () €2

*

“P(x,t)‘ =V¥'P = \/(e_i“’ot v, (x) + e_iwltlljl ( x)) (e"'a’ofwo ( x) + e—iwlfll,l ( x)) /9 Need some overlap

somewhere
to get some wiggle

Beat frequency is eigenfrequency difference
Wpear = W7 - Wy = W

Beat frequency w = Transition frequency

Transition frequency 1s transition energy/h

AE=FE; o transition=E; - E)=hw

w is frequency of radiating antenna
of a transmitter or of a receiver, i.e.,

of an emitter or an absorber
(Usually of a dipole symmetry)
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U(1) Oscillator coherent states (“Shoved” and “kicked” States) Loft from 4.93.13 ‘
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and “squeezed” states
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”)

Translation operator T(a) shoves x-wavefunctions

T(a)-y(x) = y(x-a) = xT(a)ly) = (x-a|y)
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”)

Translation operator T(a) shoves x-wavefunctions

T(a)-y(x) = y(x-a) = xT(a)ly) = (x-a|y)

Boost operators and generators: (A “kick”)

Boost operator B(b) boosts p-wavefunctions

B(b)-y(p) = y(p-b) = xIBD)Iy) = {p-bly)
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators: (A “shove”)

Translation operator T(a) shoves x-wavefunctions

T(a)y(x) = Y(x-a) = T (@)ly) = (x-aly)
Shoves  a-units to right or x-space a-units left
X|T(a)={x-a| or: T (a)x)=|x-a)

Boost operators and generators: (A “kick”)

Boost operator B(b) boosts p-wavefunctions

B(b)-y(p) = y(p-b) = xIBD)Iy) = {p-bly)
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”) Boost operators and generators: (A “kick”)
Translation operator T(a) shoves x-wavefunctions Boost operator B(b) boosts p-wavefunctions
T(a)y(x) = y(x-a) = xT(@)ly) = x-aly) B(D)-y(p) = W(p-b) = xBD)lY) = {p-by)
Shoves  a-units to right or x-space a-units left Increases momentum of ket-state by 5 units

&IT(@)=(x-a| or: T'(a)x)=|x-a) (p IB(b) ={p-b| ,or: B'(D)|p)=|p-b)
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Oscillator coherent states (“Shoved™ and “kicked” states)
Translation operators vs. boost operators

Applying boost-translation combinations

Time evolution of coherent state

Properties of coherent state and “squeezed’” states
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”) Boost operators and generators: (A “kick”)
Translation operator T(a) shoves x-wavefunctions Boost operator B(b) boosts p-wavefunctions
T(a)y(x) = y(x-a) = xT(@)ly) = x-aly) B(D)-y(p) = W(p-b) = xBD)lY) = {p-by)
Shoves  a-units to right or x-space a-units left Increases momentum of ket-state by 5 units

&IT(@)=(x-a| or: T'(a)x)=|x-a) (p IB(b) ={p-b| ,or: B'(D)|p)=|p-b)
Tiny translation a—da 1s 1dentity 1 plus G-da Tiny boost b—db 1s 1dentity 1 plus K-db
T(da) =1+G-da where: G= a—z B(db) =1+K-:db where: K :aa—lz
is generator G of translations = 1s generator K of boosts =
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”) Boost operators and generators: (A “kick”)
Translation operator T(a) shoves x-wavefunctions Boost operator B(b) boosts p-wavefunctions
T(a)y(x) = y(x-a) = xT(@)ly) = x-aly) B(D)-y(p) = W(p-b) = xBD)lY) = {p-by)
Shoves  a-units to right or x-space a-units left Increases momentum of ket-state by 5 units

&IT(@)=(x-a| or: T'(a)x)=|x-a) (p IB(b) ={p-b| ,or: B'(D)|p)=|p-b)
Tiny translation a—da 1s 1dentity 1 plus G-da Tiny boost b—db 1s 1dentity 1 plus K-db
T(da) =1+G-da where: G:a—: B(db) =1+K.db where: K :aa—lz
1S generator GNof translations . 0 1S generator K of boosts N -

T<a>=(T<%>) =limN%(l+%G) = ¢ B<b>=(B<%>j =limw(1+%1<) =e™
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”) Boost operators and generators: (A “kick”)
Translation operator T(a) shoves x-wavefunctions Boost operator B(b) boosts p-wavefunctions
T(@)y(x) = Y(x-a) = AT(@)ly) = x-a|y) B(b)-y(p) = w(p-b) = xIB(D)IW) = {p-b|y)
Shoves  a-units to right or x-space a-units left Increases momentum of ket-state by 5 units

&IT(@)=(x-a| or: T'(a)x)=|x-a) (p IB(b) ={p-b| ,or: B'(b)lp)=|p-b)
Tiny translation a—da 1s 1dentity 1 plus G-da Tiny boost b—db 1s 1dentity 1 plus K-db
T(da) =1+G-da where: G:a—T B(db) =1+K-:db where: K :a&’—]z

“la=0 b=0
is generator G of translations 1S generator ;V( of boosts N
N N b . b
T(a)=(T(%)) =limN%(l+%G) = ¢C B(b)Z(B(N)j :th%(l; WK) =e™
_g? 9

T(a)-w(x)=e"C y(x)=e 0% y(x) B(b) y(p)=e" y(p)=e 97 y(p)

_ W (x)  a® Pyx)_ @ Py im0 B Pw(p) B Pup)

=y (x)—a ENRLIY PR TR +... y(p)—b 3 = PO TR +...
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”) Boost operators and generators: (A “kick”)
Translation operator T(a) shoves x-wavefunctions Boost operator B(b) boosts p-wavefunctions
T(@)y(x) = Y(x-a) = AT(@)ly) = x-a|y) B(b)-y(p) = w(p-b) = xIB(D)IW) = {p-b|y)
Shoves  a-units to right or x-space a-units left Increases momentum of ket-state by 5 units

&IT(@)=(x-a| or: T'(a)x)=|x-a) (p IB(b) ={p-b| ,or: B'(b)lp)=|p-b)
Tiny translation a—da 1s 1dentity 1 plus G-da Tiny boost b—db 1s 1dentity 1 plus K-db
T(da) =1+Gda where: G=2T% B(db) = 1+K-db where: K = 5’8‘;

a
a=0
is generator G of translations 1S generator %/( of boosts N
N N b . b
T(CZ)=(T(%)) =limN%m(1+%G) = eaG B(b)Z(B(N)j thN%m(l;- ﬁKj = ebK
_g? 9
T(a)-y(x)=e"C . l//(x)z e Ox. w(x) B(b) y(p)=e" y(p)=e 97 y(p)
2 3 2 32 3 93
() LX) > y(x) a9 yx) —y(p)-p 2P B W(p) b Iv(p)
dx 21 9y 2! 5,3 dp 20 9pr 2 9p’
ho ., d Jd . d

G relates to momentum Pp— —— = —ifi— K relates to position X— fii—=i—

9 [ Ox o0x K o _1 g Jdp Jdk

G=—p->o—— =—X——

P75 n T ap h ok
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators.: (A “shove”) Boost operators and generators: (A “kick”)

Translation operator T(a) shoves x-wavefunctions
T(a)y(x) = y(x-a) = X[T(a)ly) = x-a|y)

Shoves  a-units to right or x-space a-units left
X|T(a)={x-a| or: T (a)x)=|x-a)

Tiny translation a—da 1s 1dentity 1 plus G-da

T(da) = 1+G-da where: G:a—T

a

Boost operator B(b) boosts p-wavefunctions
B(b)-y(p) = W(p-b) = xIB(b)Iy) = {p-bly)
Increases momentum of ket-state by 5 units

(p IB(b) ={p-b| , or: B'(D)|p)=|p-b)

Tiny boost b—db 1s 1dentity 1 plus K-db
B(db) = 1+K-db where: K:i)—lz
a=0

1s generator K of boosts

b=0
is generator G of translations
N

T(a)=(T(%)) =limN%(1;%G) = ¢
T(a) w(x)=e"Cy(x)=c 9% y(x)

(), @ Py @ Pyx)

IR e TR S TR
h o . d

G relates to momentum p— — —=—ih—

; p [ Ox ox
G=—p—>——

h P ox

i
— _p _

T(a)= e P _ ea(a alNMw/2n

b\ b\
B(b):(B(N)) :limN%(1+ﬁKj =™
9
B(b)w(p)=" w(p)=e 97 -y(p)

ow(p) b Py(p) b Py(p)

V=TS T 0,7 20 9,
. .dJd . d
K relates to position X— hi—=i—
i Jd _-1d Ip Ik

“h T ap h ok
X ib(aha)/\/thw
e
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Oscillator coherent states (“Shoved” and “kicked” states)

Translation operators and generators. (A “shove”)

Translation operator T(a) shoves x-wavefunctions
T(a)y(x) = y(x-a) = X[T(a)ly) = x-a|y)

Shoves  a-units to right or x-space a-units left
X|T(a)={x-a| or: T (a)x)=|x-a)

Tiny translation a—da 1s 1dentity 1 plus G-da

T(da) = 1+G-da where: G:a—T

a

a=0
is generator G of translations
N

T(a)=(T(%)) =limN%(1:%G) = e
T(a) w(x)=e"Cy(x)=c 9% y(x)

(), @ Py @ Pyx)

IR e TR S TR
h o ., 0
G relates to momentum p— —— = —ifi—
; p [ Ox ox
G=—p—>—-——
h P ox
—a-p a(aT—a)\/Mw/Zh

T(a)=e " =e¢
Check T(a) on plane-wave with p=nhk

T(a)eikx — e—iap/heikx —

Bottom Line
_ eik(x—a)

—iak ikx
e e

Boost operators and generators: (A “kick”)

Boost operator B(b) boosts p-wavefunctions
B(b)-y(p) = W(p-b) = xIB(b)Iy) = {p-bly)
Increases momentum of ket-state by 5 units

(p IB(b) ={p-b| , or: B'(D)|p)=|p-b)

Tiny boost b—db 1s 1dentity 1 plus K-db

B(db) = 1+K.db where: K:i)—lz

b=0
1s generator K of boosts

b\ b\
B(b):(B(N)) :limN%(1+ﬁKj =™
9
B(b)w(p)=" w(p)=e 97 -y(p)

ow(p) b Py(p) b Py(p)

=y(p)—>b

dp 20 9p2 20 9p’
. .dJd . d
K relates to position X— hi—=i—
. ) _-19 dp ok
dp h dk
b X ib(aha)/\/thw
B(b):e ho=e

Check B(b) on plane-wave with p=nhk

B(b)e = oibWhgikx _ pibx/h ik _ SieHbin)x
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Oscillator coherent states (“Shoved™ and “kicked” states)
Translation operators vs. boost operators

* Applying boost-translation combinations ‘

Time evolution of coherent state
Properties of coherent state and “squeezed’” states

Thursday, April 25, 2013
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first?

27
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e"'P" or B(b)=¢€'"*" 27
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Applying boost-translation combinations
T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e"'P" or B(b)=¢€'"*" 27

A. Neither and Both.

Thursday, April 25, 2013 23



Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e"'P" or B(b)=¢€'"*" 27

A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e"'P" or B(b)=¢€'"*" 27

A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-iIO-J/h -ZJZ(X/he-lJyB/he-lJzY/h)

(More like Darboux rotation e than Euler rotation with three factors e
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e"'P" or B(b)=¢€'"*" 27

A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-iIO-J/h -lJzoﬁ/he-lJyB/he-lJzY/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — eAeBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-i®-J/h -lJz(X/he-lJyB/he-lJzY/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘t\eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(a)B(b)eiab/2h
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-i®-J/h -lJz(X/he-lJyB/he-lJzY/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘t\eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(a)B(b)eiab/2h

Reordering only affects the overall phase.
C(a,b)= ei(bx—ap)/h _ eib(aua)/ 2th+a(aT—a)\/m

Ty | y? T % 2 vk T
oa aa:e|a| 2 oa’, oca:e|oc| /2 ~o*a o8

= e

Thursday, April 25, 2013 28



Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-i®-J/h -lJz(X/he-lJyB/he-lJzY/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘t\eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(a)B(b)eiab/2h

Reordering only affects the overall phase. Complex phasor coordinate o(a,b) 1s defined by:
_ i(bx—ap)in _ ib(aT+a)/ 2th+a(aT—a)\/Ma)/2h a(a.b)
Cla,b)=e =€ =aM®/2h +ib/N2hM o
Ty | y? T % 2 vk T _ . b
_poa-ora _ || /Zeoca po0a :e|oc| /2e o*a o _[aHM—w}/Mw/zh
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-i®-J/h -lJz(X/he-lJyB/he-lJzY/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘t\eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(a)B(b)eiab/2h

Reordering only affects the overall phase. Complex phasor coordinate o(a,b) 1s defined by:
_ i(bx—ap)in _ ib(aT+a)/ 2th+a(aT—a)\/Ma)/2h a(a.b)
Cla,b)=e =€ =aM®/2h +ib/N2hM o
Ty | y? T % 2 vk T _ . b
_poa-ora _ || /Zeoca po0a :e|oc| /2e o*a o _[aHM—w}/Mw/zh

Coherent wavepacket state |0(xg,po)): | (x0.po))=C(xg.p)|0) = ¢! FoXx=poP)h |0)
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-i®-J/h -lJz(X/he-lJyB/he-lJ2Y/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘o‘eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(Cl)B(b)€iab/2h

Reordering only affects the overall phase. Complex phasor coordinate o(a,b) 1s defined by:
_ i(bx—ap)in _ ib(aT+a)/ 2th+a(aT—a)\/Ma)/2h a(a.b)
Cla,b)=e =€ =aM®/2h +ib/N2hM o
Ty | y? T % 2 vk T _ . b
_poa-ora _ || /Zeoca po0a :e|oc| /2e o*a o _[aHM—w}/Mw/zh

Coherent wavepacket state |0xo,po)): | (x0.po))=C(xg.p)|0)= ! (oX=PaP)/h 0)

= ol 2,008 o |0)
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-i®-J/h -lJz(X/he-lJyB/he-lJ2Y/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘o‘eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(Cl)B(b)€iab/2h

Reordering only affects the overall phase. Complex phasor coordinate o(a,b) 1s defined by:
_ i(bx—ap)in _ ib(aT+a)/ 2th+a(aT—a)\/Ma)/2h a(a.b)
Cla,b)=e =€ =aM®/2h +ib/N2hM o
Ty | y? T % 2 vk T _ . b
_poa-ora _ || /Zeoca po0a :e|oc| /2e o*a o _[aHM—w}/Mw/zh

Coherent wavepacket state |0(xy,po)): |0 (xg.p0)) = Clxg,py)|0) = ! X=PoP )t |0)
= e_|a°|2/2ea0 20" a |0)

=e_|060|2/2806O al | 0>
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(b X—ap)/h

-i®-J/h -lJz(X/he-lJyB/he-lJ2Y/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘o‘eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(Cl)B(b)€iab/2h

Reordering only affects the overall phase. Complex phasor coordinate o(a,b) 1s defined by:
_ i(bx—ap)in _ ib(aT+a)/ 2th+a(aT—a)\/Ma)/2h a(a.b)
Cla,b)=e =€ =aM®/2h +ib/N2hM o
Ty | y? T % 2 vk T _ . b
_poa-ora _ || /Zeoca po0a :e|oc| /2e o*a o _[aHM—w}/Mw/zh

Coherent wavepacket state |0(x,po)): | (x0.po))=C(xg.p)|0) = ¢! (o X=Pop)/h |0)
= €_|a0|2/2€a0 2l |0)

=e_|050|2/2806O al | 0>

2 (%)
=11 3, (ap@") |0} /!
n=0
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Applying boost-translation combinations

T(a) and B(b) operations do not commute. Q. Which should come first? T(a)=e P or B(b)=e'"*" 79
A. Neither and Both. Define a combined boost-translation operation: C(a,b) = ei(bx—ap)/ L

-i®-J/h -lJz(X/he-lJyB/he-lJ2Y/h)

(More like Darboux rotation e than Euler rotation with three factors e

May evaluate with Baker-Campbell-Hausdorf identity since [X,p]=ii1 and [[X,p].X]=[[X.p].P]=0.

AtB — e‘o‘eBe_[‘L\’B]/2 = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]] (left as an exercise)

C(a.b)= ei(bx—ap)/h _ SibX/h e—iap/he—ab[x,p]/2h2 — ibXIh ~iap/h ~iab/2h

=B(b)T(a)e—iab/2h =T(Cl)B(b)€iab/2h

Reordering only affects the overall phase. Complex phasor coordinate o(a,b) 1s defined by:
_ i(bx—ap)in _ ib(aT+a)/ 2th+a(aT—a)\/Ma)/2h a(a.b)
Cla,b)=e =€ =aM®/2h +ib/N2hM o
Ty | y? T % 2 vk T _ . b
_poa—ara _ || /Zeoca po0*a :e|oc| /26 o*a oa _[aHM_w}/Mw/zh

Coherent wavepacket state |0Uxg,po)): |t (x9.po))=C(xg.p)|0) = ¢! X=PoP)/h |0)

= €_|a0|2/2€a0 aTe_ao* 2 | 0>
:e_|a°’2/2€ao al | O>

ol 2 3 (@) |0)/n!

n=0
n n
2 g () 1y _a”]o)
= 170 ’EO 75 |n) ,  where: |n) T
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Oscillator coherent states (“Shoved™ and “kicked” states)
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and “squeezed” states
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n
Time evolution of coherent state: ‘050 (x0-P0 )> _ ool 12 ¥ %VO

Time evolution operator for constant H has general form : U( t,()):e'th /h

Thursday, April 25, 2013
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n
Time evolution of coherent state: ‘050 (x0-P0 )> _ ool 12 ¥ M| n)

n=0 \/;

Time evolution operator for constant H has general form : U( t,0)=e'th /h

Oscillator eigenstate time evolution 1s simply determined by harmonic phases.
U(t,())| n>=e-th/h|n> _ e-i(n+1/2)a)t|n>
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n
0

n

n=0\/a|>

Time evolution operator for constant H has general form : U( t,()) _oiH1/n

Time evolution of coherent state: ‘Ofo(xo,l?o )>=e—|%|2/2 § ()

Oscillator eigenstate time evolution 1s simply determined by harmonic phases.
U(t,())| n>=e-th/h|n> _ e-i(n+1/2)a)t|n>

Coherent state evolution results. . .
U(t,O)‘OCO (x(),p() )> :e—\oc0|2/2 E (050 ) U(t,0)|n>:e_|ao|2/2 § (OC()) e-i(

n=0 \/ﬁ n=0 \/;

: 2 4 ©0 e
=e—za)t/2e—|oc0| /2 ¥ ( 0

n=0 \/; | n>

n+1/2)mt | n>
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n
Time evolution of coherent state: ‘Ofo(xo,po )>=e—|ao|2/2 ¥ @M)

n=0 \/;

Time evolution operator for constant H has general form : U( l‘,O):e_th h
Oscillator eigenstate time evolution 1s simply determined by harmonic phases.
U(t,O)| n>=e'th/h|n> _ e-i(n+1/2)a)t|n>
Coherent state evolution results. . .
U(t,O)‘(xO (%0, Po )> _ ol 12 § (oo ) U(t,0)|n>=e_|%|2/2 § () e-i(n+1/2)a)t|n>

n=0 \/ﬁ n=0 \/;

it )n

. 2 oo Olne
=e-l(l)t/2e_|a0| /2 2 ( O

n=0 \/; | n>

Evolution simplifies to a variable-a coherent state with a time dependent phasor coordinate a;:

Tt

U(,0)| et (x0.p0)) =¢"“"|et, (x,.p,)) where:  @(xp,) = ™" o (x0.p0)

[xt+i1‘];t }:e'iwt[x0+i]\1;0 }
()] ()]

Thursday, April 25, 2013

39



n
Time evolution of coherent state: ‘Ofo(xo,po )>=e—|ao|2/2 ¥ MM)

n=0 \/;

Time evolution operator for constant H has general form : U( l‘,O):e_th h
Oscillator eigenstate time evolution 1s simply determined by harmonic phases.
U(z,0) n>=e'th/h|n> _ e-i(n+1/2)a)t|n>
Coherent state evolution results. . .
U(t,O)‘(xO (%0, Po )> _ ol 12 § (oo ) U(t,0)|n>=e_|%|2/2 § () e-i(n+1/2)a)t|n>

n=0 \/ﬁ n=0 \/;

It

) )

_ w2 o[’z (aoe
=e e 2 —
n=0 n!

Evolution simplifies to a variable-ay coherent state with a time dependent phasor coordinate a;:

U(2,0) e (x0.P0)) =¢"®"?|at, (x,,p,)) where: @ (xp) =™ ag(x0.p0)

[xt+i1‘];t }:e'iwt[x0+i]\1;0 }
()] ()]

(x,p,) mimics classical oscillator Po

X, = XpCoSWt+-——sIinmt
Mw

i :—xosina)t+&cosa)t

M Mo

Real and imaginary parts (x, and p/Mw®) of o go clockwise on phasor circle
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Oscillator coherent states (“Shoved™ and “kicked” states)
Translation operators vs. boost operators
Applying boost-translation combinations

Time evolution of coherent state

Properties of coherent state and “squeezed’” states ‘
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Properties of coherent state o
v 4 Coherent ket |at(x0,p0)) is eigenvector of destruct-op. a.

L B (71,

= 1 (610,)

alar (9. o) =107 5 190 g1

n=0 \/;

classical turning points Ft ‘??_:3 (5 |0°t>

<

(4]o,)

(red energyy e, _ (3o, )
————— I i R | *W'O‘ﬁ
h J<1loct>

(0o, )

IBEE ZonBBEEEREE
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Properties of coherent state o
v 4 Coherent ket |at(x0,p0)) is eigenvector of destruct-op. a.

=l B T(7 e, ’ (0 )"
| al o (x o [* 12 \%0) o
o .ah} (6|O€t> ‘ 0 0> p0)> ,E‘o \/n_ | >
. i . '-!-—"-\_l?ﬁ
ilaSSlCCll turning points h? (5 |0°t> =e_|a0|2/2 ( ) \/—| I 1>
CF (410,) - o J_.
Gted energy (b (3ley,)
ho/2 % 5 T _ e =
- o I A _ E< 5 |at>
(1o, )
(0o, )

IBEE ZonBBEEEREE
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Properties of coherent state o
v 4 Coherent ket |at(x0,p0)) is eigenvector of destruct-op. a.

a| oy (x9.pg))= el 2 S ((f/(;—) 2L aln)

n=0

L B (71,

= 1 (610,)

I classical turning points Ft ‘??_:3 (5 |0°t>

Al § (00 )"
\/— e n|n-1)

(4lo,) n=0
cred energy(B) oo , (3let,) = oty ety (%0
..... s S A U ria YEI
T (1o, )

(0o, )

IBEE ZonBBEEEREE
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Properties of coherent state

I classical turning points

i9(h---<7|0‘t>

= 1 (610,)

el (5o,

(4o, )

(3 o)

(2o, )

(1o, )

(0o, )

TG

o] -] -

Coherent ket |at(x0,p0)) is eigenvector of destruct-op. a.

a| oy (x9.pg))= el 2 S ((f/(;—) 2L aln)

n=0
_|O‘0‘ /2 ( ) nln—
n:O \/_ \/_| 1>

= ao‘ao X0 Po )> with eigenvalue oy
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Properties of coherent state

(710,

(6o, )

(5o, )

(4o, )

(3 o)

(2o, )

(1o, )

(0o, )

TG

o] -] -

Coherent ket |at(x0,p0)) is eigenvector of destruct-op. a.

a| oy (x9.pg))= el 2 S ((f/(;—) 2L aln)

n=0

Al § (00 )"
\/— e n|n-1)

n:O

= ao‘ao X0 Po )> with eigenvalue oy

Coherent bra {ou(x(0,p0)| is eigenvector of create-op. af.

<050(X0,P0 ‘aT <0‘o(xo,l90 ‘050

Thursday, April 25, 2013

46



Properties of coherent state

Coherent ket |at(x0,p0)) is eigenvector of destruct-op. a.

a| oy (x9.pg))= el 2 S ((f/(;—) 2L aln)

n=0

(710,

(6o, )

(5o, )

Al g (@) o
J—\/_| )

(4o, ) n=0

(3o, = 060‘060 Xy Po )> with eigenvalue oy

(2o, )

(1l,) Coherent bra {oux(0,p0)| is eigenvector of create-op. ar.

(0o, )

<050(X0’P0 ‘aT <0‘o(xo»l90 ‘050

Expected quantum energy has simple time independent form

<E>‘a0 = (g (%0, po ) Hjexg (x0: 2o )}

= <O‘0 (xo,po)‘ (hwaTa + h7w1j‘ o (xo,po )>

_ * how
= (0050060+—

IBEE ZonBBEEEREE
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Properties of “squeezed” coherent states

(a) Coherent wave oscillation

=T=21W/® ¢

]

|-

",

uENNAREN

Time t

Amplitude coordinate x

>

Yeah! Cosine trajectory!
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Properties of “squeezed” coherent states

(a) Coherent wave oscillation

=T=21W/® ¢
Time t

LI

1 I_!_I 1

-

L]

Yeah! Cosine trajectory!

Time t ' T;/4=T/20

SENRRANRRRRRY

Amplitude coordinate x

>

(b) Squeezed ground state
(“Squeezed vacuum” oscillation)

’

LI

what happens if you apply
operators with non-linear “tensor”

”C3/4=3TC/2(D

Zni exponents exp(sX?), exp(f p?), etc.

TI/ZZTC/(D

[k

E [
!

|
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Properties of “squeezed” coherent states

(a) Coherent wave oscillation

=T=21W/® ¢
Time t

LI

(a) Squeézed amplitude

Time t

1 I_!_I 1

High Ax at zero
Low Ap at zero

Time t

NuNARARARANAN

s L

Amplitude coordinate x

>

(b) Squeezed ground state
(“Squeezed vacuum” oscillation)

ow Ax at crest .

(b) Squeezed phase A

Time t

ujan

T3/4=37'C/20)

B High Mx-griroug
_ Low Ap at-troug

TI/ZZTC/(D

--- Low Ax at zero
L] n=4 High Ap at zero

ek

at crest T

E [
!

|
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* 2-D ata algebra of U(2) representations and R(3) angular momentum operators ‘
2D-Oscillator basics

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator eigensolutions
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= E(plz +x12)+B(x1x2 +pP2 )+ C(X;P, —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kj;, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (a.kl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (an -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (an -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ X/, P2l=0=[X>,p:], [a;,a",]=0=[a,,a’/]
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (an -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

[ a,, aT]] =1, [a,, aT2] =1
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aTma aTn] = aTmaTn - aTnaer: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H H
H- 11 Hipp
Hy Hy

Thursday, April 25, 2013 59



2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H=H, (aja,+1/2)+ Hala, ( - H”J

Hy Hy

+H,aa,;+Ho, (aga2 +1/ 2)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (a.kl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H=Hy (afa, +1/2)+ Haja, = Alafa, +1/2)+(#-iC)ala, (Hu H12] ( A —iC}
H-= =

+H,aa, + H,, (aga2 +1/ 2) +(B+iC)aba, + D(aga2 +1/ 2)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (a.kl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H-= 11 12 =( A iC }
Hy Hy

+iC D

+H,aa, + H,, (aga2 +1/ 2) +(B+iC)aba, + D(aga2 +1/ 2)

Both are elementary "place-holders" for parameters H,,, or A, 5+iC, and D.

mY(n|—(a'a +a.a’ |/2=a'a. +5 .1/2
m=n n—m m=n m.,n
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basics
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Anti-commutation relations
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Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
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Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.
(a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a¥,, raises electromagnetic mode quantum number m to m+1 it is said to create a photon.
If a¥,, raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a',, raises liquid “He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity 1s named Fermi-Dirac symmetry or anti-symmetry. It 1s found 1n electron waves.

Fermi operators (C,,,C,) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.
{€1,C1}=C1C\C,C,=0 {emchi=c,c’+c’,c,=5,,1 {cneh=c’,c’+c’c, =0

Fermi ¢, has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.
Creating two Fermions of the same type 1s punished by death. This 1s because x=-x implies x=0.
ch,ch00=-¢c',cl,10)=0
That no two indistinguishable Fermions can be in the same state, 1s called the Pauli exclusion principle.

Quantum numbers of #=0 and n=1 are the only allowed eigenvalues of the number operator €',,C,.

¢c,00=0, cc,|l)=1), ¢',c,|n)=0 for: n>1
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n;)|ny)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states W )|W,) : eigenstates |n)|ny), or (n[{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n;)|ny)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states W )|W,) : eigenstates |n)|ny), or (n[{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 <x1”q,1>|\{,2>‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 <x1”q,1>|\{,2>‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2

Product of individual probabilities ‘(x Y 1>|2 and ‘<X2|\Pg>‘2 respects standard Bayesian probability theory.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 (x1||‘1’,)|‘{’2)‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2

Product of individual probabilities ‘(x Y 1>|2 and ‘(Xgl\P2>‘2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation {x;,x,|¥;,¥,) = (6| )Y )
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 (x1||‘1’,)|‘{’2)‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2

Product of individual probabilities ‘(x Y 1>|2 and ‘(Xgl\P2>‘2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation {x;,x,|¥;,¥,) = (6| )Y )

Must ask a perennial modern question: "How are these structures stored in a computer program?"
The usual answer 1s 1n outer product or tensor arrays. Next pages show sketches of these objects.
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
| O 1 10 _| O _| 1 _| 0
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
0 1 0 0 1 0
0,)= 0 )= ]21)= 05)= )= 0 [22)=

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0 0 0
0 1 0 0

0 0 0 0

1\(1) |0 1\(0) |0 0V(1) |1 0Y(0) |0

ollo| [0 oll1] |0 1ol [0 1ol [0
|01>|02>: ollol™ 1o |01>|12>: ollol™ 1o |11>|02>: ollol" 1o |11>|22>: oll11711
0 0 0 0

0 0 0 0

0 0 0 0
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1

10,)=

)=

0
1

,121)

0
0
1

Type—?2

0,)=

1
0
0

1) =

O =

|22)=

0
0

Outer products are constructed for the states that might have non-negligible amplitudes.

o O

S O O -

e O O O e

S =

S O O -

e O O O ek

S O =l O O

e O O O ek

o O

—_ O O .-

e O () S| e

Herein lies conflict between standard
oo-D analysis and finite computers
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1

10,)=

Type—?2

0,)=

9

Ip)=

O =

bl

2,)=

0
0

Outer products are constructed for the states that might have non-negligible amplitudes.

o O

S O O -

e O O O e

S =

S O O -

e O O O ek

o O

S O =

e O O O ek

o O

—_ O O .-

e O () S| e

Herein lies conflict between standard
oo-D analysis and finite computers

Make adjustable-size finite phasor

arrays for each particle/dimension.
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1

10,)=

Type—?2

0,)=

9

Ip)=

(@I

bl

2,)=

0
0

Outer products are constructed for the states that might have non-negligible amplitudes.

1)1
0(0
010

o O

S O O -

e O O O e

S =

S O O -

O O O

o O

S O =

O O O

o O

—_ O O .-

O O O e

Herein lies conflict between standard
oo-D analysis and finite computers

Make adjustable-size finite phasor
arrays for each particle/dimension.

Convergence is achieved by orderly
upgrades in the number of phasors to

a point where results do not change.
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
| 0 _| 1 | O .. _| 0 _| 1 _| 0]
0,)= N )= N 2))= E 0,) N L) NE 2;) Ll

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0 0 0
0 1 0 0 o .
Herein lies conflict between standard
0 0 0 0 . .
: : : : co-D analysis and finite computers
(1) |o 1\(0) |o 0Y(1) |1 0)(0) |0
offo] [0 of 1] [0 1{{o] |o 1{{o] |0 . : :
0102)=1 ol o 1510 [ 10012 =| o {1 o IF Lo | 121020 = g 1l o 1= 1o | 1220=] o |l 1= 4 Make adjustable-size finite phasor
: : : o S ERE arrays for each particle/dimension.
0 0 0 0
0 0 0 0 Convergence is achieved by orderly
0 0 0 0 upgrades in the number of phasors to
: a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

Thursday, April 25, 2013 79



Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
0 1 0 0 1 0
0,)= 0 )= ]21)= . 05)= 0 )= 0 [22)=

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0 0 0
0 1 0 0 — .
Herein lies conflict between standard
0 0 0 0 . .
: : : : co-D analysis and finite computers
(1) |o 1\(0) |o 0Y(1) |1 0)(0) |0
ofjo| |o of1]| |0 1{jo| |o 1{{o] |0 . . .
0,)|0,)= ollol=1o 10)|1,)= ollol=1o 1,}]0,)= ollol=1o 11,)]2,)= ol 171 Make adjustable-size finite phasor
- : : ; : : N ; arrays for each particle/dimension.
0 0 0 0
0 0 0 0 Convergence is achieved by orderly
0 0 0 0 upgrades in the number of phasors to
: a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.
<O|\P1><O|‘P2> <0102 |\P1‘P2>
(O[F )(1[¥2) || (0,1 |W))
(O[)2[¥2) | | (0.2:[¥¥,)

) (o)) | TEIEs | | T
(L %)
Cle) || e | 7| el || e

GO | | GO )
L) | | 2w w,)
Cle)ew)| | Colee)
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1
1
0 1
0,)= 0 )= ]21)=

0
0

Type—?2
1 0
0 1
0,) = )= [25)=
0

0
0

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0

0 1

0 0

1\(1) |0 1Y(0) |0

010 0 011 0
|01>|02>: 0 0 = 0 |Ol>|12>: O 0 = 0
0 0

0 0

0 0

o O
o O

P — (a») Ol...

A T N Y I

o o Ol
o O Ol

Herein lies conflict between standard
oo-D analysis and finite computers

Make adjustable-size finite phasor
arrays for each particle/dimension.

Convergence is achieved by orderly
upgrades in the number of phasors to

a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

(0¥, )(0]¥:)

(o] )11+
(ol (2].)

<0102 |\P1‘{]2>
(0,1,[¥,¥,)
(0.2, |¥%,¥,)

(L0,['¥)¥,) shorthand

<<11;22 |I$;22>> big-bra-big-ket 1¥)=
: notation

<2102 |\qu]2>

(2, |¥,¥,)

(2.2, |¥,¥,)

0,0, |¥)
(0,1,['¥)
(0.2,[¥)

€
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basics
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states ‘
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator eigensolutions
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

Thursday, April 25, 2013

83



Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

n n

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7

)k
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

n n

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7’

)k

n
...that might be diagonalized to a combination of n projectors: M= X ,ue‘ e><e‘
e=1
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

n n

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7

)k

n
...that might be diagonalized to a combination of n projectors: M= X ,ue‘ e><e‘
e=1

So a general two-particle state |¥) is a combination of entangled products: “P>=22l// j k|\lj j>|\lj k>
jk o
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

n n

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7

)k

n
..that might be diagonalized to a combination of n projectors: M= X ,ue‘ e><e‘
e=1

So a general two-particle state [¥) is a combination of entangled products: “P>=22l// j k|\lj j>|\lj k>
jk o

...that might be de-entangled to a combination of n terms: “P>=Z¢e‘(Pe>‘ (Pe>
e
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz :aﬂnl ’nz =\/n + ‘nl+1n2 a§|nln2>=|nl>a§‘n2 =\/n2+ ‘nl n2+1>
al"’ll”lz a1|n1 ’nz \/7|n1—1n2 a2|nln2 —|n1 az‘nz \/7|n1n2—1
a;"finds" its type-1 ay"finds" its type-2
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz :aﬂnl ’nz =\/n + ‘nl+1n2 a§|nln2>=|nl>a§‘n2 =\/n2+ ‘nl n2+1>
al"’ll”lz a1|n1 ’nz \/7|n1—1n2 a2|nln2 —|n1 az‘nz \/7|n1n2—1
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

REIRCI

|myny) = g 111y !
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator @k acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz aﬂnl ’nz =\/n + ‘nl+1n2 a2|nln2 —|n1 az‘nz =\/n, +1 ‘nl n2+1
al‘nlnz a1|n1 ’nz \/7|n1—1n2 a2|nln2 —|n1 az‘nz \/7|n1 n2—1
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.
(aI)n1 (adg)n2 H=H,, (a{fa1 +1/ 2)+ H,aja,

|I’l1n2> = |0 O>
NIRY

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.
H =A(afa1+1/2)+( —iC)aja,

+Hyaa; + Hy, (aga2 +1/ 2)

+(z+iC)aba, + D(aga2 + 1/2)
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator @k acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz :aﬂnl ’nz =\/n + ‘nl+1n2 a§|nln2>=|nl>a§‘n2 =\/n2+ ‘nl n2+1>
al‘nlnz a1|n1 ’nz \/7’111—1112 a2|nln2 —|n1 az‘nz \/7|n1n2—1
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.
(aI)n1 (a;)”2 H=H,, (a{fa1 +1/ 2)+ H,aja,

|I’l1n2> = |0 O>
NIRY

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.
H =A(aIa1+1/2)+( —iC)aja,

+Hyaa; + Hy, (aga2 +1/ 2)

afal |n1n2> = n1|n1 n2> aifa2|n1n2> = \/nl +1\/n2 |n1 +1n, —1>

a§a1 |n1n2> = \/nl \/nz +1|n1 —1n, +1> a§a2|nln2> = n2|nl n2>

+(z+iC)aba, + D(aga2 + 1/2)
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz aﬂnl |n2 =\/n + |n1+1n2 a2|nln2>—|nl a2|n2 =\/n, +1 |n1 n2+1
a1|n1n2 a1|n1 |n2 \/7|n1 1n2 a2|nln2>—|nl a2|n2 \/7|n1 Ny —
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

(ai{-)nl (a; )l’lz H = Hll (a}-al + 1 / 2)+ leai;-az
|I’l1n2> = |0 0>
v ling! +H,,ata, +H22(a§a2 +1/2)

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H =A(aja,+1/2)+(5-iC)a/a,
aja;|mmy)=m|n ny) aja,|nmny)=Jny +1ny |y +1n, ~1) ( )

a§a1 |n1n2> = \/nl \/nz +1|n1 —1n,+ 1> a§a2|nln2> = n2|nl n2>
00) |o1) 02) | |10) 1) 12) | |20 21) 22)
(00| | 0 |
(01 D

(02| 2D

+(z+iC)aba, + D(aga2 + 1/2)

<1:0|
(1]

(H)=A(1/2)+ D(1/2)+ (2]
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz aﬂnl |n2 =\/n + |n1+1n2 a2|nln2>—|nl a2|n2 =\/n, +1 |n1 n2+1
a1|n1n2 a1|n1 |n2 \/7|n1 1n2 a2|nln2>—|nl a2|n2 \/7|n1 Ny —
a;"'finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

(ai{-)nl (a; )l’lz H = Hll (a}-al + 1 / 2)+ leai;-az
|I’l1n2> = |0 0>
v ling! +H,,ata, +H22(a§a2 +1/2)

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = A(aira1 +1/2)+( —iC)aja,

3I31|”1”2>:”1|”1”2> airaz|”1”l2>:\/”1+1\/”2|”1+1”l2—1> : ) . ( . 1 )
+(1s+iC)ala, + Dlala, +1/2
a§a1|n1n2>=\/nl\/n2+1|n1—1n2+1> a;az|nln2>:n2|nl n2> 2= 272
oo) Jony  Jo2) | o) ) 12) | o) 2 |22)

(00| | ©

(01] D | B+iC

(02] 2D J2(B+iC)

aol| - r-ic | a

(11 . 2(B=iC) - A+D
(H)=A(1/2)+ DA/2)+ 1 | A+2D

(20

(21]

(22|
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz aﬂnl |n2 =\/n + |n1+1n2 a2|nln2>—|nl a2|n2 =\/n, +1 |n1 ny +1
a|niny) =@ [ny)|ny) = | my —1ny) ay|myny) =|ny yag|ny) = \Jny [y my = 1)
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

(a-{)n] (a; )l’lz H = Hll (a}-al + 1 / 2)+ leai;-az
|I’l1n2> = |0 0>
v ling! +H,,ata, +H22(a§a2 +1/2)

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = A(aira1 +1/2)+( —iC)aja,

aja,|mny) = n|ny ny) aja,|nmny)=Jny +1ny |y +1n, ~1) : \ai ( . )
+(5+iC)asa; + D(asa, +1/2
a§a1|n1n2>=\/nl\/n2+1|n1—1n2 +1> a;az|nln2>:n2|nl n2>
|00) |01) |02) | |10) 111) 12) 20) |21) 22)

(00| | 0

(01] D .| B+iC

(02| 2D .- J2(B+iC)

(11] . 2(B=ic) - A+D | V2(B+iC)
(H)y=A(1/2)+ D(1/2)+ (12 | T JE(5+iC)

(20| . 2(B=iC) 2A

(21] : Ja(B-ic) - 2A+D

(22| : 2A+2D .-
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basics
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators

U(2) Hamiltonian and irreducible representations ‘
2D-Oscillator eigensolutions
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2-dimensional HO Hamiltonian matrices.: U(2) irreducible representations

|00) |01) 102)

10)

1)

12)

20) 121) 122)

(00|
(01]
(02|

0
D

2D

+iC

V2 (B+iC)

"Big-Endian"

indexing

(...01,02,..10,11 ...

20,21..)

o
|

(H)=A1/2)+DA/2)+ (12

A+ D

A+2D

V2(5+iC)
Va(B+iC)

0
o
2

2A
2A+D
2A+2D

Rearrangement of rows and columns brings the matrix to a block-diagonal form.
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2-dimensional HO Hamiltonian matrices.: U(2) irreducible representations

00)

[01)

02)

10)

1)

12)

20) 121) 122)

(00|
(01]
(02|

0

D

2D

+iC

V2 (B+iC)

"Big-Endian"

indexing

(...01,02,..10,11 ...

20,21..)

o
|

(H)=A1/2)+DA/2)+ (12

A+ D

A+2D

| N2(B+iC)

Va(B+iC)

0
o
2

2A
2A+D
2A4+2D .-

Rearrangement of rows and columns brings the matrix to a block-diagonal form.

CBase states |n )|n,) with the same total quantum number v=n; + n, define each block.)
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2-dimensional HO Hamiltonian matrices.: U(2) irreducible representations
[12)

|00) |01) 102)

10)

1)

20)

21)

22)

(00|
(01]
(02|

0
D

2D

+iC

V2 (B+iC)

"Big-Endian"
indexing
(...01,02,..10,11 ...
20,21...)

(10
(|

(H)=A1/2)+DA/2)+ (12

A+ D

A+2D

V2(B+iC)

Va(B+iC)

0
o
2

2A

2A+ D

Rearrangement of rows and columns brings the matrix to a block-diagonal form.

2A+2D

CBase states |n;)|n,) with the same total quantum number v = n; + n, define each block)

|00) | |01)  [10) |02)

[11)

20)

|03) 12)

21)

30)

"Big-Endian"

0 | Vacuum (v=0)

indexing

D
—iC

+iC
A

Fundamental (v=1)
vibrational sub-space

(..01,02,..10,11 ..
20,21...)

(H)=A1/2)+DA/2)+ (1

2D

V2(5-iC)

V2(B+iC)
A+D

V2(5-iC)

V2 (B+iC)

2A

Overtone (V=2)
vibrational sub-space

3D

V3(B-iC)

V3 (1 +iC)
A+2D

Ja(B-ic)

Ja(p+ic)
2A+D

J3(B-iC)

V3(2+iC)

3A

Overtone (V=3)
vibrational sub-space

H* :A(afa1+1/2)+:D

(a§a2 +1/2)

A
nn,

2 2

A+D
2

(ny+n,+1)+

(”1"”2)
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basics
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations

2D-Oscillator eigensolutions ‘
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2D-Oscillator eigensolutions "Little-Endian" indexing (... 10, 01, .20,11,21...)

Fundamental eigenstates I G Lo) o) )
. . . . Fundamental _ .
The first step is to diagonalize the fundamental 2-by-2 matrix . Hh- B 21’0 S
0,1 | B+iC D
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2D-Oscillator eigensolutions

Fundamental eigenstates

The first step 1s to diagonalize the fundamental 2-by-2 matrix .

+2B01 +
1 0 )2

Recall decomposition of H

( A peic }+—A;D1=(A+D)

B+iC D

Fundamental _

O =

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

Thursday, April 25, 2013

ny,ny 1,0> O,1>
=0l A z-ic +A;D1
0,1 | B+iC D
0 |1
-1 )2
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2D-Oscillator eigensolutions "Little-Endian" indexing (... 10, 01, .20,11,21...)

Fundamental eigenstates m.ny | [1,0) ]0.1)

. . . . <H>andamental _ <1’0| A _ic |+
The first step 1s to diagonalize the fundamental 2-by-2 matrix . v=I o
0,1 +iC D

A+ D
2

1

Recall decomposition of H
A =G APy ) DO i O L b o] O L b0 L
+iC D 2 0 1 0 )2 i 0 )2 0 -1 )2

in terms of Jordan-Pauli spin operators.

p—

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)
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2D-Oscillator eigensolutions "Little-Endian" indexing (... 10, 01, .20,11,21...)

Fundamental eigenstates Lo mm Lo oy |
The first step 1s to diagonalize the fundamental 2-by-2 matrix . ) B 21’0: S
0,1 +iC D

Recall decomposition of H
A B Ay aep) DO pan OO0 Lol O a0 L
+iC D 2 0 10 )2 i 0 )2 0 -1 )2

in terms of Jordan-Pauli spin operators.

p—

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

. QutQ A+DE|(2 )2+(2C)2+(A—D)2_A+D+\/(A—Dj2+ 2, 2
. _ _ArD, (AP
- 2 2 2 2
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2D-Oscillator eigensolutions

m.ny | [1,0) [0,1)

Fundamental eigenstates

<H>Fundamental _ <1’0| A

Fun —iC
(0.1]

The first step 1s to diagonalize the fundamental 2-by-2 matrix . .
+1i D

Recall decomposition of H
I 0

( A B-iC ]+—A+D1=(A+D)(
+iC D 2 0

in terms of Jordan-Pauli spin operators.

p—

J

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

0 1L ol O -
1 0 )2 i

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

L QuEQ  A+DE(28P+(20) +(A= DY _A+D+\/(A—Dj2+ 2, 2
- B - 2

. =
+ 2 2 2

Polar angles (¢,%) of +€2-vector (or polar angles (¢,9%m) of —2-vector) gives H eigenvectors.

i Y _ioi2 . U A-D

¢ 92 cos —e P2 gin— cosz‘/‘:?
|a)+>= p , |a)_>= p where: 1 p
ade sinE e cos— tang = —

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A+D
2

+ 1
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2D-Oscillator eigensolutions "Little-Endian" indexing (.. 10, 01, ...20,11,21...

Fundamental eigenstates m.ny | [1,0) ]0.1)

. . . . <H>andamental _ <1’0| A _ic |+
The first step 1s to diagonalize the fundamental 2-by-2 matrix . v=I o
0,1 +iC D

A+D
2

1

Recall decomposition of H
A B Ay aep) DO pan OO0 Lol O a0 L
+iC D 2 0 10 )2 i 0 )2 0 -1 )2

in terms of Jordan-Pauli spin operators.

p—

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

L QuEQ  A+DE(28P+(20) +(A= DY _A+D+\/(A—Dj2+ 2, 2
- B - 2

. =
+ 2 2 2

Polar angles (¢,%) of +€2-vector (or polar angles (¢,9%m) of —2-vector) gives H eigenvectors.

i 1% —iop2 . U A-D
e ipl2 COSE —€ ipl2 SIHE COS'L9=?
|a)+>= p , |a)_>= p where: 1
ade sinE e cos— tang = —

More important for the general solution, are the eigen-creation operators aT+ and at- defined by

_ (% 0 . U e .U : (%
al =e 02 (cosgaf+e’¢ smgag) . a =92 (—smEaI+e’¢ cosaag)
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2D-Oscillator eigensolutions "Little-Endian" indexing (.. 10, 01, ...20,11,21...

Fundamental eigenstates m.ny | [1,0) ]0.1)

. . . . <H>andamental _ <1’0| A _ic |+
The first step 1s to diagonalize the fundamental 2-by-2 matrix . v=I o
0,1 +iC D

A+D
2

1

Recall decomposition of H
A B Ay aep) DO pan OO0 Lol O a0 L
+iC D 2 0 10 )2 i 0 )2 0 -1 )2

in terms of Jordan-Pauli spin operators.

p—

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

. QutQ A+DE|(2 )2+(2C)2+(A—D)2_A+D+\/(A—Dj2+ 2, 2
. _ _ArD, (AP
- 2 2 2 2

Polar angles (¢,%) of +€2-vector (or polar angles (¢,9%m) of —2-vector) gives H eigenvectors.

_ —i : A-D
¢ 92 cosg —e P2 smg cosz‘/‘:?
|a)+>= p |a)_>= p where: <
ade sinE e cos— tang = —

More important for the general solution, are the eigen-creation operators aT+ and at- defined by
al =e 02 (cosgaf +e'® singag) . a =92 (—singair +e'® cosgag)

a]k_F create H eigenstates directly from the ground state.
al|0)=lo,) . a|0)=[o)
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Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.

(H)=A1/2)+ D(1/2)+

00)

01) |10)

02)

1)

20)

03)

12)

21)

B@ .

0

20

()]

+ 0

20

RI0N

o, +20_

20, +o_

3w

H” = A(afa1 +1/2)+D(a§a2 +1/2)

@, —0_=Q

(28 +(20) +(A-D)
—A-D

Thursday, April 25, 2013
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Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.

100) [ [01) |10)|[02)  |11)  |20) []0O3)  |12) 121y  |30) | -+
(00| o
01| ® W, —0_ =L

{
(10 w, (28 +(20) +(A-D)
(02| 20 A D

11| O, +0

(H)=A1/2)+ D(1/2)+ <
20| 20
03| 3m_

{
{
(12| o, +20_
{
{

21| 20, +@_
30| 30

H" :A(afa1+1/2)+D(a§a2 +1/2) el =A(n1+%)+D(n2+%): A;D(n1+n2+1)+A;D(nl—n2)

nn,
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Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.

00)

|01) [10)][02) |11)  |20)

03)

|12) 121) 130) | -

(00| 0

@, —0_=Q

(28 +(20) +(A-D)

(H)=A1/2)+ D(1/2)+ <

20
W, +w

20

=A-D

3w

o, +20_
20, +o_

3w

H” = A(afa1 +1/2)+D(a§a2 +1/2)

nn,

1 1 A+D A-D
=A(n1+5)+D(n2+§): 5 (ny+ny+1)+ 5 (n,—n,)
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Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.

|00) | |01) [10)|]02)  |11)  |20) | |03) |12) 121) 130) | -
(o[ | 0

{
(10 w, (28 +(20) +(A-D)
(02| 20 .

(11] 0
(20| 20
(03] 30_

(12| o, +20_
{

{

(H)= A(1/2)+ D(1/2)+ o

21| 20, +@_
30| 30

HA :A(afal+1/2)+[)(a;az+1/2) e,flnz =A(n1+%)+D(n2 +%): A-Iz—D(nl+n2+1)+A;D(nl—n2)

Define fotal quantum number v=2j and half-difference or asymmetry quantum number m
n —n
1 2

. ._n1+n2_v m =
V=ny+ny,=2]j Y 2
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Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.
|00) | |01) [10)|]02)  |11)  |20) | |03) |12) 121)  [30) | -

(00| | 0
(01] W W, —0_ =L

(10 w, (28 +(20) +(A-D)
(02] 20 o

11| O, +0

(H)=A1/2)+ D(1/2)+ <
20| 20
03| 300_

{
{
(12| o, +20_
{
{

21| 20, +@_
30| 30

A—-D
H* = A(afa, +1/2)+ D(aja, +1/2) el =A(n1+l)+D(n2+l)=A+D(n1+n2+1)+ (1, —11,)
172 2 2 2 2

Define fotal quantum number v=2j and half-difference or asymmetry quantum number m

. omtn, v m:nl_nZ
m=+1/2

v+1=2j+1 multiplies base frequency w=, v=1

m multiplies beat frequency ()

UL):QO _ W—= QO —I_Q(_Z)
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Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.

|00) | |01) [10)|]02)  |11)  |20) | |03) |12) 121)  [30) | -
(00| o
(01] 0
(10 o,
(02| 20
H)= A1/2)+ DA+ DT O
(20| 20,
(03] 30
(12| o, +20
(21] 20, +0_
(30] 30,
SU(2) Multiplets R(3) Multzplet’% .
j22< 0
- m=+3/2 _]
j=3/2 +1/2 "tensor" )
:gg Zji<<::::::%ji+]
0
J=1/2 m=+1/2 "vector" -1
"spinor" 172 :
P J=0" scalar” 4 =0

@, —0_=Q

= (28 +(20) +(A- D)
=A-D
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w_ ) gives diagonal block matrices.

C) and (A=w; ) and (D=

0:

Setting (

%
i
- W :
S // {7*zy..\““é\k\..i{ &\é\ \
i s
5e S\l it
S N\ .
S KS ,,..g?..%\ ,.w..‘\ ..w.‘ il
SNGOVVVY | |.
> s e
~ g 2 PTTSTY T o %
) E s . s
m de W HW HW HW
- : ok
~ w_ R ™~ ™~ ™
=B um 2 4
mmmmmmmmmm m
: S o ols
= A

(H)=

115
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Structure of U(2)

Jj=0 | 8> =|00) "scalar" A }
(a) N-particle 2-level states (vacuum) =100y ...or spin-1/2 states
._1 Hg>=|10>=|1\> . ) _ |1 0> —q -f-|0 0> e ! 172 L +|] +I3/2 +I2 15/2 Mg=({J,)
]_5 |1/2> |01> |\L> Sp1nor l’f‘ 1| N=1k,, [2 Spin z-component
i = = 2| = — .
" 0°1)=a;1 10 0) - |T> :|Jm=—11-/]2/2
1Y =|20) 1= |20y=a,Ta,T 00y [1]11] v=2 [1]2] =&  [2]2 = [\y=7=12)
AR, 1021= |1 Iy=a,Ta,T |0 0)
': — n _ t n
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Introducing U(N)

(a) N-D Oscillator Degeneracy ( of quamtum levelv (b) Stacking numbers
Principal Quantum Number Dimension of oscillator
V=0 N=] PY triangular
=] \ ‘ N=> Py ° ’/ numbers
V=2 1 N=3 ‘ o0 3 @ ‘etrahedral
3 N=4 )/O numbers
D= —
: Sy N P
V=5 1 3 3 1 _
4 1 4 6 4 1
o7 1 510105 1 Neg

1 6 1520 15 6 1
1 7213535217 1
1 828 56 70 56 28 8 1

(c) Binomial coefficients ( 3\, & (3\, I/ (3\"\5/ /3\
(N-1+v)! — -1+v +0 (4\ \Uvs \ L7 (NI 4\ (d/ /4\
(N-1)!v! \() (\I/ (\2) (d/
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Introducing U(3)
(b) N—partzcle 3 level states ...or spin-1 states | = |Ty=|'~!

20 =) =1170)
3= {)y=1=1")
\\ /;33 . a;;\
U RN VAN
\ \ | (VTguOuZ;)
'\ 233 \
RN I i
\ N 20,
3 2 3\2 203 \
N
2x\
N
212 2212
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—lx; +x
2,.2 ( 1 2)

J2x,e7 00" 4 2 x e 00

1
\P(xl’xbt)zi‘l//lo (x1.72 ) e +Wor (x,%;) e

21

2
=0
(2 +2) (2 +2) 1+ gor
_¢ 2 2 _ _
= (xl + X9 + 2X1X2 COS(G)IO 6001)t) =
T

e

IXf+x5 forit=Ty, /4 (21.1.30)
‘2

T

‘xl —Xy|  Jor:t=Tpe, /2
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