Group Theory in Quantum Mechanics Lecture 24 (4.25.13)

Harmonic oscillator symmetry $U(1) \subset U(2) \subset U(3)$...

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 21-22) (PSDS - Ch. 8)

Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basics
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
<u>Anti</u>-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states Review : Creation-Destruction a[†]a algebra

$$\begin{bmatrix} \mathbf{a} = \frac{(\mathbf{X} + i\mathbf{P})}{\sqrt{\hbar\omega}} = \frac{(\sqrt{M\omega} \mathbf{x} + i\mathbf{p}/\sqrt{M\omega})}{\sqrt{2\hbar}} \\ \text{Define} & \text{Destruction operator} & \text{and} & \text{Creation Operator} \\ \text{Creation Operator} & \text{and} & \text{Creation Operator} \\ \text{Commutation relations between } \mathbf{a} = (\mathbf{X} + i\mathbf{P})/2 \text{ and } \mathbf{a}^{\dagger} = (\mathbf{X} - i\mathbf{P})/2 \text{ with } \mathbf{X} \equiv \sqrt{M\omega}\mathbf{X}/\sqrt{2} \text{ and } \mathbf{P} \equiv \mathbf{p}/\sqrt{2M} : \\ \begin{bmatrix} \mathbf{a}, \mathbf{a}^{\dagger} \end{bmatrix} = \mathbf{a}\mathbf{a}^{\dagger} - \mathbf{a}^{\dagger}\mathbf{a} = \frac{1}{2\hbar} (\sqrt{M\omega} \mathbf{x} + i\mathbf{p}/\sqrt{M\omega}) (\sqrt{M\omega} \mathbf{x} - i\mathbf{p}/\sqrt{M\omega}) - \frac{1}{2\hbar} (\sqrt{M\omega} \mathbf{x} - i\mathbf{p}/\sqrt{M\omega}) (\sqrt{M\omega} \mathbf{x} + i\mathbf{p}/\sqrt{M\omega}) \\ \begin{bmatrix} \mathbf{a}, \mathbf{a}^{\dagger} \end{bmatrix} = \frac{2i}{2\hbar} (\mathbf{p}\mathbf{x} - \mathbf{x}\mathbf{p}) = \frac{-i}{\hbar} \begin{bmatrix} \mathbf{x}, \mathbf{p} \end{bmatrix} = \mathbf{1} & \begin{bmatrix} \mathbf{a}, \mathbf{a}^{\dagger} \end{bmatrix} = \mathbf{1} & \text{or} & \mathbf{a}\mathbf{a}^{\dagger} = \mathbf{a}^{\dagger}\mathbf{a} + \mathbf{1} & [\mathbf{x}, \mathbf{p}] \equiv \mathbf{x}\mathbf{p} - \mathbf{p}\mathbf{x} = \hbar \mathbf{i}\mathbf{1} \end{bmatrix}$$

Review : *Wavefunction creationism (1st Excited state)*

Expanding the creation operator

$$\left\langle x \left| \mathbf{a}^{\dagger} \right| 0 \right\rangle = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{M\omega} \left\langle x \left| \mathbf{x} \right| 0 \right\rangle - i \left\langle x \left| \mathbf{p} \right| 0 \right\rangle / \sqrt{M\omega} \right) = \left\langle x \left| 1 \right\rangle = \psi_1(x)$$

The operator coordinate representations generate the first excited state wavefunction.

1st Transition

energy $E_1 - E_0$

 $=\hbar\omega$

 $\Psi_1(x)$

Classical turning points

15.9

9.55

X

Review: Matrix
$$\langle \mathbf{a}^{n} \mathbf{a}^{\dagger n} \rangle$$
 calculation
Derive normalization for n^{th} state obtained by $(\mathbf{a}^{\dagger})^{n}$ operator: Usc: $\mathbf{a}^{n} \mathbf{a}^{\dagger n} = n! \left(1 + n\mathbf{a}^{\dagger} \mathbf{a} + \frac{n(n-1)}{2! 2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2} + \dots\right)$
 $|n\rangle = \frac{\mathbf{a}^{\dagger n} |0\rangle}{const.}$, where: $1 = \langle n|n\rangle = \frac{\langle 0|\mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(const.)^{2}} = n! \frac{\langle 0|1 + n\mathbf{a}^{\dagger} \mathbf{a} + ..|0\rangle}{(const.)^{2}} = \frac{n!}{(const.)^{2}}$
 $\left(n\rangle = \frac{\mathbf{a}^{\dagger n} |0\rangle}{\sqrt{n!}}$ Root-factorial normalization
Apply creation \mathbf{a}^{\dagger} :
 $\mathbf{a}^{\dagger} |n\rangle = \frac{\mathbf{a}^{\dagger n+1} |0\rangle}{\sqrt{n!}}$ Root-factorial normalization
 $\mathbf{a}^{\dagger} |n\rangle = \frac{\mathbf{a}^{\dagger n+1} |0\rangle}{\sqrt{n!}} = \sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1} |0\rangle}{\sqrt{(n+1)!}}$
 $\mathbf{a}^{\dagger} |n\rangle = \sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1} |0\rangle}{\sqrt{(n+1)!}}$
 $\mathbf{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$
 $\mathbf{a}^{\dagger} |n\rangle = \sqrt{n} |n-1\rangle$
Feynman's mnemonic rule: Larger of two quanta goes in radical factor
 $\langle \mathbf{a}^{\dagger} \rangle = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & \sqrt{3} \\ \sqrt{4} & \sqrt{2} \end{pmatrix}$
 $\langle \mathbf{a}^{\dagger} = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} \\ \sqrt{4} & \sqrt{2} \end{pmatrix}$
 $(\mathbf{a}^{\dagger} = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} \\ \sqrt{4} \\ \sqrt{2} \end{pmatrix}$
 $(\mathbf{a}^{\dagger} = \frac{\mathbf{a}^{\dagger} \mathbf{a} |n\rangle = \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n} |0\rangle}{\sqrt{n!}} = n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1} |0\rangle}{\sqrt{n!}} = n \frac{\mathbf{a}^{\dagger n} |0\rangle}{\sqrt{n!}} = n |n\rangle$
Hamiltonian operator
 $\mathbf{H} |n\rangle = \hbar \omega \mathbf{a}^{\dagger} \mathbf{a} |n\rangle + \hbar \omega \langle 21 |n\rangle = \hbar \omega (n+1/2)|n\rangle$
 $(\mathbf{a}^{\dagger} = \frac{1}{2} \sqrt{n!}$
 $\mathbf{a}^{\dagger} |0\rangle = \frac{1}{2}$
 $\mathbf{a}^{\dagger} |0\rangle = \frac{1}{2}$

Review : *Expectation values of position, momentum, and uncertainty for eigenstate* $|n\rangle$

Operator for position
$$\mathbf{x}: \sqrt{\frac{M\omega}{2\hbar}} \mathbf{x} = \frac{\mathbf{a} + \mathbf{a}^{\dagger}}{2}$$

expectation for position $\langle \mathbf{x} \rangle$:
 $\overline{\mathbf{x}} |_{n} = \langle n | \mathbf{x} | n \rangle = \sqrt{\frac{\hbar}{2M\omega}} \langle n | (\mathbf{a} + \mathbf{a}^{\dagger}) | n \rangle = 0$
expectation for (position)² $\langle \mathbf{x}^{2} \rangle$:
 $\overline{\mathbf{x}^{2}} |_{n} = \langle n | \mathbf{x}^{2} | n \rangle = \frac{\hbar}{2M\omega} \langle n | (\mathbf{a} + \mathbf{a}^{\dagger})^{2} | n \rangle$
 $= \frac{\hbar}{2M\omega} \langle n | (\mathbf{a}^{2} + \mathbf{a}^{\dagger}\mathbf{a} + \mathbf{a}\mathbf{a}^{\dagger} + \mathbf{a}^{\dagger 2}) | n \rangle$ $\mathbf{a}\mathbf{a}^{\dagger} = \mathbf{1} + \mathbf{a}^{\dagger}\mathbf{a}$
 $= \frac{\hbar}{2M\omega}$ (2n+1)

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2\hbar M\omega}} \mathbf{p} = \frac{\mathbf{a} - \mathbf{a}^{\dagger}}{2i}$ expectation for momentum $\langle \mathbf{p} \rangle$: $\mathbf{\bar{p}}|_n = \langle n|\mathbf{p}|n \rangle = i\sqrt{\frac{\hbar M\omega}{2}} \langle n|(\mathbf{a}^{\dagger} - \mathbf{a})|n \rangle = 0$ expectation for (momentum)² $\langle \mathbf{p}^2 \rangle$: $\mathbf{\bar{p}}^2|_n = \langle n|\mathbf{p}^2|n \rangle = i^2 \frac{\hbar M\omega}{2} \langle n|(\mathbf{a}^{\dagger} - \mathbf{a})^2|n \rangle$ $= -\frac{\hbar M\omega}{2} \langle n|(\mathbf{a}^{\dagger 2} - \mathbf{a}^{\dagger}\mathbf{a} - \mathbf{a}\mathbf{a}^{\dagger} + \mathbf{a}^2)|n \rangle$ $= \frac{\hbar M\omega}{2}$ (2n+1)

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$\Delta x|_{n} = \sqrt{\mathbf{x}^{2}} = \sqrt{\frac{\hbar(2n+1)}{2M\omega}} \qquad (\Delta q)^{2} = (q-\overline{q})^{2} \quad \text{or:} \quad \Delta q = \sqrt{(q-\overline{q})^{2}} \\ \Delta p|_{n} = \sqrt{\mathbf{p}^{2}} = \sqrt{\frac{\hbar M\omega(2n+1)}{2}}$$

Heisenberg uncertainty product for the *n*-quantum eigenstate $|n\rangle$

$$(\Delta x \cdot \Delta p) \Big|_{n} = \sqrt{\mathbf{x}^{2}} \sqrt{\mathbf{p}^{2}} = \sqrt{\frac{\hbar(2n+1)}{2M\omega}} \sqrt{\frac{\hbar M\omega(2n+1)}{2}}$$
$$(\Delta x \cdot \Delta p) \Big|_{n} = \hbar \left(n + \frac{1}{2} \right)$$

Heisenberg minimum uncertainty product occurs for the 0-quantum (ground) eigenstate.

$$(\Delta x \cdot \Delta p) \big|_0 = \frac{\hbar}{2}$$

Review : *Harmonic oscillator beat dynamics of mixed states*

$$|\Psi\rangle = |0\rangle\langle 0|\Psi\rangle + |1\rangle\langle 1|\Psi\rangle = |0\rangle\Psi_0 + |1\rangle\Psi_1$$

$$\Psi(x) = \langle x | \Psi \rangle = \langle x | 0 \rangle \langle 0 | \Psi \rangle + \langle x | 1 \rangle \langle 1 | \Psi \rangle = \psi_0(x) \Psi 0 + \psi_1(x) \Psi 1$$

The time dependence $\Psi(x,t)$ of the mixed wave is then

$$\Psi(x,t) = \psi_0(x) e^{-i\omega_0 t} \Psi_0 + \psi_1(x) e^{-i\omega_1 t} \Psi_1 = (\psi_0(x) e^{-i\omega_0 t} + \psi_1(x) e^{-i\omega_1 t})/\sqrt{2}$$

$$\Psi(x,t) = \sqrt{\Psi^*\Psi} = \sqrt{\left(e^{-i\omega_0 t}\psi_0(x) + e^{-i\omega_1 t}\psi_1(x)\right)^* \left(e^{-i\omega_0 t}\psi_0(x) + e^{-i\omega_1 t}\psi_1(x)\right)/2}$$
Need some overlap
somewhere
to get some wiggle

$$= \sqrt{\left(|\psi_0(x)|^2 + |\psi_1(x)|^2 + \psi_0(x)\psi_1(x)\cos(\omega_1 - \omega_0)t\right)/2}$$

$$t = 0$$

$$t = \tau/4$$

Thursday, April 25, 2013

Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states Oscillator coherent states ("Shoved" and "kicked" states) Translation operators and generators: (A "shove") Translation operator T(a) shoves x-wavefunctions $T(a) \cdot \psi(x) = \psi(x-a) = \langle x | T(a) | \psi \rangle = \langle x-a | \psi \rangle$ Oscillator coherent states ("Shoved" and "kicked" states) Translation operators and generators: (A "shove") Translation operator T(a) shoves x-wavefunctions $T(a) \cdot \psi(x) = \psi(x-a) = \langle x | T(a) | \psi \rangle = \langle x-a | \psi \rangle$

Boost operators and generators: (A "kick") Boost operator **B**(b) boosts p-wavefunctions **B**(b)· $\psi(p) = \psi(p-b) = \langle x | \mathbf{B}(b) | \psi \rangle = \langle p-b | \psi \rangle$

$$\mathbf{T}(a) \cdot \mathbf{\psi}(x) = \mathbf{\psi}(x - a) = \langle x | \mathbf{T}(a) | \mathbf{\psi} \rangle = \langle x - a | \mathbf{\psi} \rangle$$

Shoves ψa -units to right or *x*-space *a*-units left $\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$

Boost operators and generators: (A "kick") Boost operator **B**(b) boosts p-wavefunctions **B**(b)· $\psi(p) = \psi(p-b) = \langle x | \mathbf{B}(b) | \psi \rangle = \langle p-b | \psi \rangle$

$$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x) = \boldsymbol{\psi}(x - a) = \langle x | \mathbf{T}(a) | \boldsymbol{\psi} \rangle = \langle x - a | \boldsymbol{\psi} \rangle$$

Shoves ψa -units to right or *x*-space *a*-units left $\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$

Boost operators and generators: (A "kick") Boost operator **B**(b) boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p) = \psi(p-b) = \langle x | \mathbf{B}(b) | \psi \rangle = \langle p-b | \psi \rangle$ Increases momentum of ket-state by b units $\langle p | \mathbf{B}(b) = \langle p-b |$, or: $\mathbf{B}^{\dagger}(b) | p \rangle = | p-b \rangle$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$ Harmonic oscillator beat dynamics of mixed states Oscillator coherent states ("Shoved" and "kicked" states) Translation operators vs. boost operators Applying boost-translation combinations *Time evolution of coherent state* Properties of coherent state and "squeezed" states

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators

$$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x) = \boldsymbol{\psi}(x - a) = \langle x | \mathbf{T}(a) | \boldsymbol{\psi} \rangle = \langle x - a | \boldsymbol{\psi} \rangle$$

Shoves ψ *a*-units to right or *x*-space *a*-units left

 $\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$

Tiny translation $a \rightarrow da$ is identity 1 plus $\mathbf{G} \cdot da$ $\mathbf{T}(da) = \mathbf{1} + \mathbf{G} \cdot da$ where: $\mathbf{G} = \frac{\partial \mathbf{T}}{\partial a}\Big|_{a=0}$ is generator **G** of translations Boost operators and generators: (A "kick") Boost operator **B**(b) boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p) = \psi(p-b) = \langle x | \mathbf{B}(b) | \psi \rangle = \langle p-b | \psi \rangle$ Increases momentum of ket-state by b units $\langle p | \mathbf{B}(b) = \langle p-b |$, or: $\mathbf{B}^{\dagger}(b) | p \rangle = | p-b \rangle$ Tiny boost $b \rightarrow db$ is identity 1 plus $\mathbf{K} \cdot db$ $\mathbf{B}(db) = \mathbf{1} + \mathbf{K} \cdot db$ where: $\mathbf{K} = \frac{\partial \mathbf{B}}{\partial b} \Big|_{b=0}$ is generator **K** of boosts

$$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x) = \boldsymbol{\psi}(x - a) = \langle x | \mathbf{T}(a) | \boldsymbol{\psi} \rangle = \langle x - a | \boldsymbol{\psi} \rangle$$

Shoves ψ *a*-units to right or *x*-space *a*-units left

$$\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$$

Tiny translation $a \rightarrow da$ is identity 1 plus $\mathbf{G} \cdot da$ $\mathbf{T}(da) = \mathbf{1} + \mathbf{G} \cdot da$ where: $\mathbf{G} = \frac{\partial \mathbf{T}}{\partial a}\Big|_{a=0}$ is generator **G** of translations

$$\mathbf{T}(a) = \left(\mathbf{T}(\frac{a}{N})\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{a}{N}\mathbf{G}\right)^{N} = e^{a\mathbf{G}}$$

Boost operators and generators: (A "kick") Boost operator **B**(b) boosts p-wavefunctions **B**(b)· $\psi(p) = \psi(p-b) = \langle x | \mathbf{B}(b) | \psi \rangle = \langle p-b | \psi \rangle$ Increases momentum of ket-state by b units $\langle p | \mathbf{B}(b) = \langle p-b |$, or: $\mathbf{B}^{\dagger}(b) | p \rangle = | p-b \rangle$ Tiny boost $b \rightarrow db$ is identity **1** plus **K**·db **B**(db) = **1**+**K**·db where: $\mathbf{K} = \frac{\partial \mathbf{B}}{\partial b} \Big|_{b=0}$ is generator **K** of boosts **B**(b)= $\left(\mathbf{B}(\frac{b}{N})\right)^{N} = \lim_{N \rightarrow \infty} \left(1 + \frac{b}{N}\mathbf{K}\right)^{N} = e^{b\mathbf{K}}$

$$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x) = \boldsymbol{\psi}(x - a) = \langle x | \mathbf{T}(a) | \boldsymbol{\psi} \rangle = \langle x - a | \boldsymbol{\psi} \rangle$$

Shoves ψ *a*-units to right or *x*-space *a*-units left

$$\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$$

Tiny translation $a \rightarrow da$ is identity 1 plus $\mathbf{G} \cdot da$ $\mathbf{T}(da) = \mathbf{1} + \mathbf{G} \cdot da$ where: $\mathbf{G} = \frac{\partial \mathbf{T}}{\partial a}\Big|_{a=0}$

is generator **G** of translations

$$\mathbf{T}(a) = \left(\mathbf{T}(\frac{a}{N})\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{a}{N}\mathbf{G}\right)^{N} = e^{a\mathbf{G}}$$
$$\mathbf{T}(a) \cdot \psi(x) = e^{a\mathbf{G}} \cdot \psi(x) = e^{-a\frac{\partial}{\partial x}} \cdot \psi(x)$$
$$= \psi(x) - a\frac{\partial\psi(x)}{\partial x} + \frac{a^{2}}{2!}\frac{\partial^{2}\psi(x)}{\partial x^{2}} - \frac{a^{3}}{2!}\frac{\partial^{3}\psi(x)}{\partial x^{3}} + \dots$$

Boost operators and generators: (A "kick") Boost operator **B**(*b*) boosts *p*-wavefunctions $\mathbf{B}(b) \cdot \Psi(p) = \Psi(p-b) = \langle x | \mathbf{B}(b) | \Psi \rangle = \langle p-b | \Psi \rangle$ Increases momentum of ket-state by *b* units $\langle p | \mathbf{B}(b) = \langle p - b |$, or: $\mathbf{B}^{\dagger}(b) | p \rangle = | p - b \rangle$ Tiny boost $b \rightarrow db$ is identity **1** plus $\mathbf{K} \cdot db$ $\mathbf{B}(db) = \mathbf{1} + \mathbf{K} \cdot db \quad \text{where: } \mathbf{K} = \frac{\partial \mathbf{B}}{\partial b} \Big|_{b=0}$ is generator **K** of boosts $\mathbf{B}(b) = \left(\mathbf{B}(\frac{b}{N})\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{b}{N}\mathbf{K}\right)^{N} = e^{b\mathbf{K}}$ $\mathbf{B}(b) \cdot \psi(p) = e^{b\mathbf{K}} \cdot \psi(p) = e^{-b\frac{\partial}{\partial p}} \cdot \psi(p)$ $=\psi(p)-b\frac{\partial\psi(p)}{\partial p}+\frac{b^2}{2!}\frac{\partial^2\psi(p)}{\partial p^2}-\frac{b^3}{2!}\frac{\partial^3\psi(p)}{\partial p^3}+\dots$

$$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x) = \boldsymbol{\psi}(x - a) = \langle x | \mathbf{T}(a) | \boldsymbol{\psi} \rangle = \langle x - a | \boldsymbol{\psi} \rangle$$

Shoves ψ *a*-units to right or *x*-space *a*-units left

$$\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$$

Tiny translation $a \rightarrow da$ is identity 1 plus $\mathbf{G} \cdot da$ $\mathbf{T}(da) = \mathbf{1} + \mathbf{G} \cdot da$ where: $\mathbf{G} = \frac{\partial \mathbf{T}}{\partial a}\Big|_{a=0}$

is generator **G** of translations

$$\mathbf{T}(a) = \left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{a}{N}\mathbf{G}\right)^{N} = e^{a\mathbf{G}}$$
$$\mathbf{T}(a) \cdot \psi(x) = e^{a\mathbf{G}} \cdot \psi(x) = e^{-a\frac{\partial}{\partial x}} \cdot \psi(x)$$
$$= \psi(x) - a\frac{\partial\psi(x)}{\partial x} + \frac{a^{2}}{2!}\frac{\partial^{2}\psi(x)}{\partial x^{2}} - \frac{a^{3}}{2!}\frac{\partial^{3}\psi(x)}{\partial x^{3}} + \dots$$

G relates to momentum $\mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x} = -i\hbar \frac{\partial}{\partial x}$ $\mathbf{G} = -\frac{i}{\hbar} \mathbf{p} \rightarrow -\frac{\partial}{\partial x}$

Boost operators and generators: (A "kick") Boost operator **B**(*b*) boosts *p*-wavefunctions $\mathbf{B}(b) \cdot \Psi(p) = \Psi(p-b) = \langle x | \mathbf{B}(b) | \Psi \rangle = \langle p-b | \Psi \rangle$ Increases momentum of ket-state by *b* units $\langle p | \mathbf{B}(b) = \langle p - b |$, or: $\mathbf{B}^{\dagger}(b) | p \rangle = | p - b \rangle$ Tiny boost $b \rightarrow db$ is identity **1** plus $\mathbf{K} \cdot db$ $\mathbf{B}(db) = \mathbf{1} + \mathbf{K} \cdot db \quad \text{where: } \mathbf{K} = \frac{\partial \mathbf{B}}{\partial b}\Big|_{b=0}$ is generator **K** of boosts $\mathbf{B}(b) = \left(\mathbf{B}(\frac{b}{N})\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{b}{N}\mathbf{K}\right)^{N} = e^{b\mathbf{K}}$ $\mathbf{B}(b) \cdot \psi(p) = e^{b\mathbf{K}} \cdot \psi(p) = e^{-b\frac{\partial}{\partial p}} \cdot \psi(p)$ $=\psi(p)-b\frac{\partial\psi(p)}{\partial p}+\frac{b^2}{2!}\frac{\partial^2\psi(p)}{\partial p^2}-\frac{b^3}{2!}\frac{\partial^3\psi(p)}{\partial p^3}+\dots$ **K** relates to position $\mathbf{X} \rightarrow \hbar i \frac{\partial}{\partial p} = i \frac{\partial}{\partial k}$ **K** = $\frac{i}{\hbar} \mathbf{X} \rightarrow -\frac{\partial}{\partial p} = \frac{-1}{\hbar} \frac{\partial}{\partial k}$

$$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x) = \boldsymbol{\psi}(x - a) = \langle x | \mathbf{T}(a) | \boldsymbol{\psi} \rangle = \langle x - a | \boldsymbol{\psi} \rangle$$

Shoves ψ *a*-units to right or *x*-space *a*-units left

$$\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$$

Tiny translation $a \rightarrow da$ is identity 1 plus $\mathbf{G} \cdot da$ $\mathbf{T}(da) = \mathbf{1} + \mathbf{G} \cdot da$ where: $\mathbf{G} = \frac{\partial \mathbf{T}}{\partial a}\Big|_{a=0}$

is generator **G** of translations

$$\mathbf{T}(a) = \left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{a}{N}\mathbf{G}\right)^{N} = e^{a\mathbf{G}}$$
$$\mathbf{T}(a) \cdot \psi(x) = e^{a\mathbf{G}} \cdot \psi(x) = e^{-a\frac{\partial}{\partial x}} \cdot \psi(x)$$
$$= \psi(x) - a\frac{\partial\psi(x)}{\partial x} + \frac{a^{2}}{2!}\frac{\partial^{2}\psi(x)}{\partial x^{2}} - \frac{a^{3}}{2!}\frac{\partial^{3}\psi(x)}{\partial x^{3}} + .$$

G relates to momentum
$$\mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x} = -i\hbar \frac{\partial}{\partial x}$$

 $\mathbf{G} = -\frac{i}{\hbar} \mathbf{p} \rightarrow -\frac{\partial}{\partial x}$
 $\mathbf{T}(a) = e^{-a\frac{i}{\hbar}\mathbf{p}} = e^{a(\mathbf{a}^{\dagger} - \mathbf{a})\sqrt{M\omega/2\hbar}}$

Boost operators and generators: (A "kick") Boost operator **B**(*b*) boosts *p*-wavefunctions $\mathbf{B}(b) \cdot \Psi(p) = \Psi(p-b) = \langle x | \mathbf{B}(b) | \Psi \rangle = \langle p-b | \Psi \rangle$ Increases momentum of ket-state by *b* units $\langle p | \mathbf{B}(b) = \langle p - b |$, or: $\mathbf{B}^{\dagger}(b) | p \rangle = | p - b \rangle$ Tiny boost $b \rightarrow db$ is identity **1** plus $\mathbf{K} \cdot db$ $\mathbf{B}(db) = \mathbf{1} + \mathbf{K} \cdot db \quad \text{where: } \mathbf{K} = \frac{\partial \mathbf{B}}{\partial b} \Big|_{b=0}$ is generator **K** of boosts $\mathbf{B}(b) = \left(\mathbf{B}(\frac{b}{N})\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{b}{N}\mathbf{K}\right)^{N} = e^{b\mathbf{K}}$ $\mathbf{B}(b) \cdot \psi(p) = e^{b\mathbf{K}} \cdot \psi(p) = e^{-b\frac{\partial}{\partial p}} \cdot \psi(p)$ $=\psi(p)-b\frac{\partial\psi(p)}{\partial p}+\frac{b^2}{2!}\frac{\partial^2\psi(p)}{\partial p^2}-\frac{b^3}{2!}\frac{\partial^3\psi(p)}{\partial p^3}+\dots$ **K** relates to position $\mathbf{X} \rightarrow \hbar i \frac{\partial}{\partial p} = i \frac{\partial}{\partial k}$ **K** = $\frac{i}{\hbar} \mathbf{X} \rightarrow -\frac{\partial}{\partial p} = \frac{-1}{\hbar} \frac{\partial}{\partial k}$ $\mathbf{B}(b) = e^{b\frac{i}{\hbar}} \mathbf{x} = e^{ib(\mathbf{a}^{\dagger} + \mathbf{a})/\sqrt{2\hbar M\omega}}$

$$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x) = \boldsymbol{\psi}(x - a) = \langle x | \mathbf{T}(a) | \boldsymbol{\psi} \rangle = \langle x - a | \boldsymbol{\psi} \rangle$$

Shoves ψ *a*-units to right or *x*-space *a*-units left

$$\langle x | \mathbf{T}(a) = \langle x - a | \text{ or: } \mathbf{T}^{\dagger}(a) | x \rangle = | x - a \rangle$$

Tiny translation $a \rightarrow da$ is identity 1 plus $\mathbf{G} \cdot da$ $\mathbf{T}(da) = \mathbf{1} + \mathbf{G} \cdot da$ where: $\mathbf{G} = \frac{\partial \mathbf{T}}{\partial a}\Big|_{a=0}$

is generator **G** of translations

$$\mathbf{T}(a) = \left(\mathbf{T}(\frac{a}{N})\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{a}{N}\mathbf{G}\right)^{N} = e^{a\mathbf{G}}$$
$$\mathbf{T}(a) \cdot \psi(x) = e^{a\mathbf{G}} \cdot \psi(x) = e^{-a\frac{\partial}{\partial x}} \cdot \psi(x)$$
$$= \psi(x) - a\frac{\partial\psi(x)}{\partial x} + \frac{a^{2}}{2!}\frac{\partial^{2}\psi(x)}{\partial x^{2}} - \frac{a^{3}}{2!}\frac{\partial^{3}\psi(x)}{\partial x^{3}} + .$$

 $\begin{array}{ccc} & & & & & & & & \\ \mathbf{G} \text{ relates to momentum } \mathbf{p} \rightarrow & & & & \\ \mathbf{G} = -\frac{i}{\hbar} \mathbf{p} \rightarrow -\frac{\partial}{\partial x} \\ & & & & \\ \end{array}$

$$\mathbf{T}(a) = e^{-a\frac{i}{\hbar}\mathbf{p}} = e^{a\left(\mathbf{a}^{\dagger} - \mathbf{a}\right)\sqrt{M\omega/2\hbar}}$$

Check $\mathbf{T}(a)$ on plane-wave with $p = \hbar k$
 $\mathbf{T}(a)e^{ikx} = e^{-ia\mathbf{p}/\hbar}e^{ikx} = e^{-iak}e^{ikx} = e^{ik(x-a)}$

Bottom Line

Boost operators and generators: (A "kick") Boost operator **B**(*b*) boosts *p*-wavefunctions $\mathbf{B}(b) \cdot \mathbf{\psi}(p) = \mathbf{\psi}(p - b) = \langle x | \mathbf{B}(b) | \mathbf{\psi} \rangle = \langle p - b | \mathbf{\psi} \rangle$ Increases momentum of ket-state by *b* units $\langle p | \mathbf{B}(b) = \langle p - b |$, or: $\mathbf{B}^{\dagger}(b) | p \rangle = | p - b \rangle$ Tiny boost $b \rightarrow db$ is identity **1** plus **K**·db $\mathbf{B}(db) = \mathbf{1} + \mathbf{K} \cdot db \quad \text{where:} \ \mathbf{K} = \frac{\partial \mathbf{B}}{\partial b}\Big|_{b=0}$ is generator **K** of boosts $\mathbf{B}(b) = \left(\mathbf{B}(\frac{b}{N})\right)^{N} = \lim_{N \to \infty} \left(1 + \frac{b}{N}\mathbf{K}\right)^{N} = e^{b\mathbf{K}}$ $\mathbf{B}(b) \cdot \boldsymbol{\psi}(p) = e^{b\mathbf{K}} \cdot \boldsymbol{\psi}(p) = e^{-b\frac{\partial}{\partial p}} \cdot \boldsymbol{\psi}(p)$ $=\psi(p)-b\frac{\partial\psi(p)}{\partial p}+\frac{b^2}{2!}\frac{\partial^2\psi(p)}{\partial p^2}-\frac{b^3}{2!}\frac{\partial^3\psi(p)}{\partial p^3}+\dots$ **K** relates to position $\mathbf{X} \rightarrow \hbar i \frac{\partial}{\partial p} = i \frac{\partial}{\partial k}$ $\mathbf{K} = \frac{i}{\hbar} \mathbf{X} \rightarrow -\frac{\partial}{\partial p} = \frac{-1}{\hbar} \frac{\partial}{\partial k}$ $\mathbf{B}(b) = e^{b\frac{i}{\hbar}\mathbf{x}} = e^{ib(\mathbf{a}^{\dagger} + \mathbf{a})/\sqrt{2\hbar M\omega}}$ Check **B**(*b*) on plane-wave with $p=\hbar k$ $\mathbf{B}(b)e^{ikx} = e^{ib\mathbf{X}/\hbar}e^{ikx} = e^{ibx/\hbar}e^{ikx} = e^{i(k+b/\hbar)x}$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$ Harmonic oscillator beat dynamics of mixed states Oscillator coherent states ("Shoved" and "kicked" states) Translation operators vs. boost operators Applying boost-translation combinations *Time evolution of coherent state* Properties of coherent state and "squeezed" states

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators

T(a) and B(b) operations do not commute. Q. Which should come first?

??

 $\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a) = e^{-ia\mathbf{p}/\hbar}$ or $\mathbf{B}(b) = e^{ib\mathbf{x}/\hbar}$??

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both.

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{\gamma}/\hbar}$)

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: **C**(*a*,*b*) = $e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_{z}\mathbf{Q}/\hbar}e^{-i\mathbf{J}_{z}\mathbf{Y}/\hbar}$) May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$.

 $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise)

T(a) and B(b) operations do not commute. Q. Which should come first? $T(a) = e^{-ia\mathbf{p}/\hbar}$ or $B(b) = e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $C(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta\cdot J/\hbar}$ than Euler rotation with three factors $e^{-iJ_2\alpha/\hbar}e^{-iJ_2\gamma/\hbar}e^{-iJ_2\gamma/\hbar}$) May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise) $C(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$ $=\mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$

Thursday, April 25, 2013

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{\gamma}/\hbar}$)

May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2}=e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise)

$$\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$$
$$= \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$$

Reordering only affects the overall phase.

$$\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib(\mathbf{a}^{\dagger}+\mathbf{a})/\sqrt{2\hbar M\omega} + a(\mathbf{a}^{\dagger}-\mathbf{a})\sqrt{M\omega/2\hbar}}$$
$$= e^{\alpha \mathbf{a}^{\dagger}-\alpha *\mathbf{a}} = e^{-|\alpha|^2/2}e^{\alpha \mathbf{a}^{\dagger}}e^{-\alpha *\mathbf{a}} = e^{|\alpha|^2/2}e^{-\alpha *\mathbf{a}}e^{\alpha \mathbf{a}^{\dagger}}$$

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{0}/\hbar}$

May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise) $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$ $= \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{y}/\hbar}$)

May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise) $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$ $= \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{y}/\hbar}$)

May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise) $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$ $= \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{y}/\hbar}$)

May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise) $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$ $= \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{y}/\hbar}$)

May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise) $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$ $= \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$

T(*a*) and **B**(*b*) operations do not commute. Q. Which should come first? **T**(*a*) = $e^{-ia\mathbf{p}/\hbar}$ or **B**(*b*) = $e^{ib\mathbf{x}/\hbar}$?? A. Neither and Both. Define a *combined boost-translation operation*: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$ (More like Darboux rotation $e^{-i\Theta \cdot \mathbf{J}/\hbar}$ than Euler rotation with three factors $e^{-i\mathbf{J}_z \mathbf{0}/\hbar} e^{-i\mathbf{J}_z \mathbf{y}/\hbar}$)

May evaluate with *Baker-Campbell-Hausdorf identity* since $[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$ and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=\mathbf{0}$. $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$ (left as an exercise) $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$ $= \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$ Harmonic oscillator beat dynamics of mixed states Oscillator coherent states ("Shoved" and "kicked" states) Translation operators vs. boost operators Applying boost-translation combinations *Time evolution of coherent state* Properties of coherent state and "squeezed" states

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators

Time evolution of coherent state: $|\alpha_0(x_0, p_0)\rangle = e^{-|\alpha_0|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha_0)^n}{\sqrt{n!}} |n\rangle$ Time evolution operator for constant **H** has general form : $\mathbf{U}(t, 0) = e^{-i\mathbf{H}t/\hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

Coherent state evolution results.

$$\begin{aligned} \mathbf{U}(t,0) \Big| \boldsymbol{\alpha}_{0}(x_{0},p_{0}) \Big\rangle &= e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{U}(t,0) |n\rangle \\ &= e^{-i\omega t/2} e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0}e^{-i\omega t})^{n}}{\sqrt{n!}} |n\rangle \end{aligned}$$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

Coherent state evolution results.

$$\begin{aligned} \mathbf{U}(t,0) \Big| \boldsymbol{\alpha}_{0}(x_{0},p_{0}) \Big\rangle &= e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{U}(t,0) \Big| n \Big\rangle = e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} e^{-i(n+1/2)\omega t} \Big| n \Big\rangle \\ &= e^{-i\omega t/2} e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0}e^{-i\omega t})^{n}}{\sqrt{n!}} \Big| n \Big\rangle \end{aligned}$$

Evolution simplifies to a variable- α_0 coherent state with a *time dependent phasor coordinate* α_t :

$$\mathbf{U}(t,0) \Big| \boldsymbol{\alpha}_{0}(x_{0},p_{0}) \Big\rangle = e^{-i\omega t/2} \Big| \boldsymbol{\alpha}_{t}(x_{t},p_{t}) \Big\rangle \quad \text{where:} \quad \boldsymbol{\alpha}_{t}(x_{t},p_{t}) = e^{-i\omega t} \quad \boldsymbol{\alpha}_{0}(x_{0},p_{0}) \\ \left[x_{t} + i\frac{p_{t}}{M\omega} \right] = e^{-i\omega t} \left[x_{0} + i\frac{p_{0}}{M\omega} \right]$$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

Coherent state evolution results.

$$\begin{aligned} \mathbf{U}(t,0) \Big| \boldsymbol{\alpha}_{0}(x_{0},p_{0}) \Big\rangle &= e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{U}(t,0) |n\rangle \\ &= e^{-i\omega t/2} e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0}e^{-i\omega t})^{n}}{\sqrt{n!}} |n\rangle \end{aligned}$$

Evolution simplifies to a variable- α_0 coherent state with a *time dependent phasor coordinate* α_t :

$$\mathbf{U}(t,0) \Big| \boldsymbol{\alpha}_{0}(x_{0},p_{0}) \Big\rangle = e^{-i\omega t/2} \Big| \boldsymbol{\alpha}_{t}(x_{t},p_{t}) \Big\rangle \quad \text{where:} \quad \boldsymbol{\alpha}_{t}(x_{t},p_{t}) = e^{-i\omega t} \quad \boldsymbol{\alpha}_{0}(x_{0},p_{0}) \\ \left[x_{t} + i\frac{p_{t}}{M\omega} \right] = e^{-i\omega t} \left[x_{0} + i\frac{p_{0}}{M\omega} \right]$$

 (x_t, p_t) mimics classical oscillator

$$x_t = x_0 \cos \omega t + \frac{p_0}{M\omega} \sin \omega t$$
$$\frac{p_t}{M\omega} = -x_0 \sin \omega t + \frac{p_0}{M\omega} \cos \omega t$$

Real and imaginary parts (x_t and $p_t/M\omega$) of α_t go clockwise on phasor circle

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$ Harmonic oscillator beat dynamics of mixed states Oscillator coherent states ("Shoved" and "kicked" states) Translation operators vs. boost operators Applying boost-translation combinations *Time evolution of coherent state* Properties of coherent state and "squeezed" states

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators

$$\mathbf{a} | \boldsymbol{\alpha}_{0}(x_{0}, p_{0}) \rangle = e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{a} | n \rangle$$

$$\mathbf{a} |\boldsymbol{\alpha}_{0}(x_{0}, p_{0})\rangle = e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{a} |n\rangle$$
$$= e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \sqrt{n} |n-1\rangle$$

$$\mathbf{a} | \boldsymbol{\alpha}_{0} (x_{0}, p_{0}) \rangle = e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{a} | n \rangle$$
$$= e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \sqrt{n} | n - 1 \rangle$$
$$= \boldsymbol{\alpha}_{0} | \boldsymbol{\alpha}_{0} (x_{0}, p_{0}) \rangle$$

$$\mathbf{a} | \boldsymbol{\alpha}_{0} (x_{0}, p_{0}) \rangle = e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{a} | n \rangle$$
$$= e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \sqrt{n} | n - 1 \rangle$$
$$= \boldsymbol{\alpha}_{0} | \boldsymbol{\alpha}_{0} (x_{0}, p_{0}) \rangle \quad \text{with eigenvalue } \boldsymbol{\alpha}_{0}$$

Coherent ket $|\alpha(x_0, p_0)\rangle$ is eigenvector of destruct-op. **a**.

$$\mathbf{a} | \boldsymbol{\alpha}_{0} (x_{0}, p_{0}) \rangle = e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \mathbf{a} | n \rangle$$
$$= e^{-|\boldsymbol{\alpha}_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\boldsymbol{\alpha}_{0})^{n}}{\sqrt{n!}} \sqrt{n} | n - 1 \rangle$$
$$= \boldsymbol{\alpha}_{0} | \boldsymbol{\alpha}_{0} (x_{0}, p_{0}) \rangle \quad \text{with eigenvalue } \boldsymbol{\alpha}_{0}$$

 $\langle 1 | \alpha_t \rangle$ Coherent bra $\langle \alpha(x_0, p_0) |$ is eigenvector of create-op. **a**[†].

$$\langle \boldsymbol{\alpha}_{0}(x_{0},p_{0}) | \mathbf{a}^{\dagger} = \langle \boldsymbol{\alpha}_{0}(x_{0},p_{0}) | \boldsymbol{\alpha}_{0}^{*}$$

Yeah! Cosine trajectory!

what happens if you apply operators with non-linear "tensor" exponents $exp(s\mathbf{x}^2)$, $exp(f\mathbf{p}^2)$, etc.

Review : 1-D a[†]a algebra of U(1) representations

2-D at a algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \mathbf{B} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{A}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{B}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{D}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

a₁ = (**x**₁ + i **p**₁)/
$$\sqrt{2}$$
 a[†]₁ = (**x**₁ - i **p**₁)/ $\sqrt{2}$ **a**₂ = (**x**₂ + i **p**₂)/ $\sqrt{2}$ **a**[†]₂ = (**x**₂ - i **p**₂)/ $\sqrt{2}$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$a_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $a^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$
 $a_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$
 $a^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$
 $\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$
 $\mathbf{p}_1 = i \, (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$
 $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$
 $\mathbf{p}_2 = i \, (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}_1^{\dagger} = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}_2^{\dagger} = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{x}_1 = (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)/\sqrt{2}$ $\mathbf{p}_1 = i \, (\mathbf{a}_1^{\dagger} - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i \, (\mathbf{a}_2^{\dagger} - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other.

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}_1^{\dagger} = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}_2^{\dagger} = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{x}_1 = (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)/\sqrt{2}$ $\mathbf{p}_1 = i \, (\mathbf{a}_1^{\dagger} - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i \, (\mathbf{a}_2^{\dagger} - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_1, \mathbf{p}_2] = \mathbf{0} = [\mathbf{x}_2, \mathbf{p}_1], [\mathbf{a}_1, \mathbf{a}_2^{\dagger}] = \mathbf{0} = [\mathbf{a}_2, \mathbf{a}_1^{\dagger}]$$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{A}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{B}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{D}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$a_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $a^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$
 $a_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$
 $a^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$
 $\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$
 $\mathbf{p}_1 = i \, (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$
 $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$
 $\mathbf{p}_2 = i \, (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_1, \mathbf{p}_2] = \mathbf{0} = [\mathbf{x}_2, \mathbf{p}_1], [\mathbf{a}_1, \mathbf{a}^{\dagger}_2] = \mathbf{0} = [\mathbf{a}_2, \mathbf{a}^{\dagger}_1]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, \ [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}_1^{\dagger} = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}_2^{\dagger} = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{x}_1 = (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)/\sqrt{2}$ $\mathbf{p}_1 = i \, (\mathbf{a}_1^{\dagger} - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i \, (\mathbf{a}_2^{\dagger} - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_1, \mathbf{p}_2] = \mathbf{0} = [\mathbf{x}_2, \mathbf{p}_1], [\mathbf{a}_1, \mathbf{a}^{\dagger}_2] = \mathbf{0} = [\mathbf{a}_2, \mathbf{a}^{\dagger}_1]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

 $[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, \ [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$

This applies in general to *N*-dimensional oscillator problems.

$$\mathbf{a}_{m}, \mathbf{a}_{n}] = \mathbf{a}_{m}\mathbf{a}_{n} - \mathbf{a}_{n}\mathbf{a}_{m} = \mathbf{0} \qquad ([\mathbf{a}_{m}, \mathbf{a}^{\dagger}_{n}] = \mathbf{a}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}_{m} = \delta_{mn}\mathbf{1} \qquad ([\mathbf{a}^{\dagger}_{m}, \mathbf{a}^{\dagger}_{n}] = \mathbf{a}^{\dagger}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}^{\dagger}_{m} = \mathbf{0})$$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}_1^{\dagger} = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}_2^{\dagger} = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{x}_1 = (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)/\sqrt{2}$ $\mathbf{p}_1 = i \, (\mathbf{a}_1^{\dagger} - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i \, (\mathbf{a}_2^{\dagger} - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_1, \mathbf{p}_2] = \mathbf{0} = [\mathbf{x}_2, \mathbf{p}_1], [\mathbf{a}_1, \mathbf{a}^{\dagger}_2] = \mathbf{0} = [\mathbf{a}_2, \mathbf{a}^{\dagger}_1]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, \ [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to *N*-dimensional oscillator problems.

$$[\mathbf{a}_m, \mathbf{a}_n] = \mathbf{a}_m \mathbf{a}_n - \mathbf{a}_n \mathbf{a}_m = \mathbf{0} \qquad ([\mathbf{a}_m, \mathbf{a}_n^{\dagger}] = \mathbf{a}_m \mathbf{a}_n^{\dagger} - \mathbf{a}_n^{\dagger} \mathbf{a}_m = \delta_{mn} \mathbf{1} \qquad ([\mathbf{a}_m^{\dagger}, \mathbf{a}_n^{\dagger}] = \mathbf{a}_m^{\dagger} \mathbf{a}_n^{\dagger} - \mathbf{a}_n^{\dagger} \mathbf{a}_m^{\dagger} = \mathbf{0})$$

New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical **H** matrix.

$$\mathbf{H} = \left(\begin{array}{cc} H_{11} & H_{12} \\ H_{21} & H_{22} \end{array} \right)$$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}_1^{\dagger} = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}_2^{\dagger} = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{x}_1 = (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)/\sqrt{2}$ $\mathbf{p}_1 = i (\mathbf{a}_1^{\dagger} - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}_2^{\dagger} - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_1, \mathbf{p}_2] = \mathbf{0} = [\mathbf{x}_2, \mathbf{p}_1], [\mathbf{a}_1, \mathbf{a}^{\dagger}_2] = \mathbf{0} = [\mathbf{a}_2, \mathbf{a}^{\dagger}_1]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{l}, \mathbf{a}^{\dagger}_{l}] = \mathbf{1}, \ [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to *N*-dimensional oscillator problems.

$$\begin{bmatrix} \mathbf{a}_{m}, \mathbf{a}_{n} \end{bmatrix} = \mathbf{a}_{m}\mathbf{a}_{n} - \mathbf{a}_{n}\mathbf{a}_{m} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{a}_{m}, \mathbf{a}^{\dagger}_{n} \end{bmatrix} = \mathbf{a}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}_{m} = \delta_{mn}\mathbf{1}$$

$$\begin{bmatrix} \mathbf{a}^{\dagger}_{m}, \mathbf{a}^{\dagger}_{n} \end{bmatrix} = \mathbf{a}^{\dagger}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}^{\dagger}_{m} = \mathbf{0}$$
New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical H matrix.

$$\mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}$$

$$+ H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

$$\mathbf{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}_1^{\dagger} = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}_2^{\dagger} = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{x}_1 = (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)/\sqrt{2}$ $\mathbf{p}_1 = i (\mathbf{a}_1^{\dagger} - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}_2^{\dagger} - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{l}, \mathbf{a}^{\dagger}_{l}] = \mathbf{1}, \ [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to *N*-dimensional oscillator problems.

$$\begin{bmatrix} \mathbf{a}_{m}, \mathbf{a}_{n} \end{bmatrix} = \mathbf{a}_{m}\mathbf{a}_{n} - \mathbf{a}_{n}\mathbf{a}_{m} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{a}_{m}, \mathbf{a}^{\dagger}_{n} \end{bmatrix} = \mathbf{a}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}_{m} = \delta_{mn}\mathbf{1}$$

$$\begin{bmatrix} \mathbf{a}^{\dagger}_{m}, \mathbf{a}^{\dagger}_{n} \end{bmatrix} = \mathbf{a}^{\dagger}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}^{\dagger}_{m} = \mathbf{0}$$
New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical H matrix.

$$\mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} = A\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + (B - iC)\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}$$

$$+ H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right) + (B + iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

$$\mathbf{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix}$$

First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} \left(\mathbf{p}_1^2 + \mathbf{x}_1^2 \right) + \frac{\mathbf{B}}{2} \left(\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2 \right) + C \left(\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1 \right) + \frac{\mathbf{D}}{2} \left(\mathbf{p}_2^2 + \mathbf{x}_2^2 \right)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define a and a[†] operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}_1^{\dagger} = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}_2^{\dagger} = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{x}_1 = (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)/\sqrt{2}$ $\mathbf{p}_1 = i (\mathbf{a}_1^{\dagger} - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}_2^{\dagger} - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_1, \mathbf{p}_2] = \mathbf{0} = [\mathbf{x}_2, \mathbf{p}_1], [\mathbf{a}_1, \mathbf{a}^{\dagger}_2] = \mathbf{0} = [\mathbf{a}_2, \mathbf{a}^{\dagger}_1]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{l}, \mathbf{a}^{\dagger}_{l}] = \mathbf{1}, \ [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to *N*-dimensional oscillator problems.

$$\begin{bmatrix} \mathbf{a}_{m}, \mathbf{a}_{n} \end{bmatrix} = \mathbf{a}_{m}\mathbf{a}_{n} - \mathbf{a}_{n}\mathbf{a}_{m} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{a}_{m}, \mathbf{a}^{\dagger}_{n} \end{bmatrix} = \mathbf{a}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}_{m} = \delta_{mn}\mathbf{1}$$

$$\begin{bmatrix} \mathbf{a}^{\dagger}_{m}, \mathbf{a}^{\dagger}_{n} \end{bmatrix} = \mathbf{a}^{\dagger}_{m}\mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n}\mathbf{a}^{\dagger}_{m} = \mathbf{0}$$
New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical H matrix.

$$\mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} = A\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + (B - iC)\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}$$

$$+ H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right) + (B + iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

$$\mathbf{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix}$$
Both are elementary "place-bolders" for parameters H_{m} or $A_{m} B + iC$ and D

place-molders for parameters Π_{mn} of A, $D \pm l C$, and D.

$$|m\rangle\langle n| \rightarrow \left(\mathbf{a}_{m}^{\dagger}\mathbf{a}_{n} + \mathbf{a}_{n}\mathbf{a}_{m}^{\dagger}\right)/2 = \mathbf{a}_{m}^{\dagger}\mathbf{a}_{n} + \delta_{m,n}\mathbf{1}/2$$

Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

If \mathbf{a}_{m}^{\dagger} raises electromagnetic mode quantum number *m* to m+1 it is said to create a *photon*.

- If \mathbf{a}^{\dagger}_{m} raises crystal vibration mode quantum number *m* to m+1 it is said to create a *phonon*.
- If \mathbf{a}^{\dagger}_{m} raises liquid ⁴He rotational quantum number *m* to *m*+1 it is said to create a *roton*.

Anti-commutivity is named *Fermi-Dirac symmetry* or *anti-symmetry*. It is found in electron waves. *Fermi operators* (C_m , C_n) are defined to create *Fermions* and use <u>anti-commutators</u> {A,B} = AB+BA.

$$\{\mathbf{C}_{m},\mathbf{C}_{n}\}=\mathbf{C}_{m}\mathbf{C}_{n}+\mathbf{C}_{n}\mathbf{C}_{m}=\mathbf{0} \qquad \{\mathbf{C}_{m},\mathbf{C}^{\dagger}_{n}\}=\mathbf{C}_{m}\mathbf{C}^{\dagger}_{n}+\mathbf{C}^{\dagger}_{n}\mathbf{C}_{m}=\delta_{mn}\mathbf{1} \qquad \{\mathbf{C}^{\dagger}_{m},\mathbf{C}^{\dagger}_{n}\}=\mathbf{C}^{\dagger}_{m}\mathbf{C}^{\dagger}_{n}+\mathbf{C}^{\dagger}_{n}\mathbf{C}^{\dagger}_{m}=\mathbf{0}$$

Fermi \mathbf{c}^{\dagger}_{n} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all. Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0. $\mathbf{c}^{\dagger}_{m}\mathbf{c}^{\dagger}_{m}|0\rangle = -\mathbf{c}^{\dagger}_{m}\mathbf{c}^{\dagger}_{m}|0\rangle = \mathbf{0}$

That no two indistinguishable Fermions can be in the same state, is called the *Pauli exclusion principle*. Quantum numbers of n=0 and n=1 are the only allowed eigenvalues of the number operator $\mathbf{c}^{\dagger}_{m}\mathbf{c}_{m}$.

$$\mathbf{C}^{\dagger}_{m}\mathbf{C}_{m}|0\rangle = \mathbf{0}$$
, $\mathbf{C}^{\dagger}_{m}\mathbf{C}_{m}|1\rangle = |1\rangle$, $\mathbf{C}^{\dagger}_{m}\mathbf{C}_{m}|n\rangle = \mathbf{0}$ for: $n > 1$

Review : 1-D a[†]a algebra of U(1) representations

2-D at a algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basics
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
<u>Anti</u>-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1| = (|n_1\rangle|n_2\rangle)^{\dagger}$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1| = (|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1| = (|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1| = (|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between <u>all</u> (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|\Psi_2\rangle|^2$

 $= |\langle x_1 | \Psi_1 \rangle|^2 |\langle x_2 | \Psi_2 \rangle|^2$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1| = (|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between <u>all</u> (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|\Psi_2\rangle|^2$ $= |\langle x_1|\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$

Product of individual probabilities $|\langle x_1 | \Psi_1 \rangle|^2$ and $|\langle x_2 | \Psi_2 \rangle|^2$ respects standard Bayesian probability theory.

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1| = (|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between <u>all</u> (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|\Psi_2\rangle|^2$ $= |\langle x_1|\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$

Product of individual probabilities $|\langle x_1 | \Psi_1 \rangle|^2$ and $|\langle x_2 | \Psi_2 \rangle|^2$ respects standard Bayesian probability theory.

Note common shorthand *big-bra-big-ket* notation $\langle x_1, x_2 | \Psi_1, \Psi_2 \rangle = \langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1| = (|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between <u>all</u> (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|\Psi_2\rangle|^2$ $= |\langle x_1|\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$

Product of individual probabilities $|\langle x_1 | \Psi_1 \rangle|^2$ and $|\langle x_2 | \Psi_2 \rangle|^2$ respects standard Bayesian probability theory.

Note common shorthand *big-bra-big-ket* notation $\langle x_1, x_2 | \Psi_1, \Psi_2 \rangle = \langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle$

Must ask a perennial modern question: "How are these structures stored in a computer program?" The usual answer is in outer product or tensor arrays. Next pages show sketches of these objects.
Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$\begin{split} Type-1 & Type-2 & \cdots \\ & \left| 0_{1} \right\rangle = \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ \vdots \end{array} \right), \left| 1_{1} \right\rangle = \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ \vdots \end{array} \right), \left| 2_{1} \right\rangle = \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ \vdots \end{array} \right), \cdots & \left| 0_{2} \right\rangle = \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ \vdots \end{array} \right), \left| 1_{2} \right\rangle = \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ \vdots \end{array} \right), \left| 2_{2} \right\rangle = \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ \vdots \end{array} \right), \cdots \end{split}$$

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$Type-1 \qquad Type-2 \qquad \cdots$$

$$|0_1\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_1\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_1\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots \quad |0_2\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_2\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_2\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$Type-1 \qquad Type-2 \qquad \cdots$$

$$|0_1\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_1\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_1\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots \qquad |0_2\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_2\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_2\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞ -D analysis and finite computers

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$Type-1 \qquad Type-2 \qquad \cdots$$

$$|0_1\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_1\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_1\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots \qquad |0_2\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_2\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_2\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞ -D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞ -D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$Type-1 \qquad Type-2 \qquad \cdots$$

$$|0_1\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_1\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_1\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots \quad |0_2\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_2\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_2\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$Type-1 \qquad Type-2 \qquad \cdots$$

$$|0_1\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_1\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_1\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots \quad |0_2\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_2\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_2\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} \langle 0|\Psi_{1}\rangle\\\langle 1|\Psi_{1}\rangle\\\langle 2|\Psi_{1}\rangle\\\vdots \end{pmatrix} \otimes \begin{pmatrix} \langle 0|\Psi_{2}\rangle\\\langle 0|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle\\\langle 0|\Psi_{1}\rangle\langle 2|\Psi_{2}\rangle\\\vdots\\\langle 1|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle\\\langle 0|\Psi_{1}\rangle\langle 2|\Psi_{2}\rangle\\\vdots\\\langle 1|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle\\\langle 1|\Psi_{2}\rangle\langle 0|\Psi_{2}\rangle\langle 0|\Psi_{2}\rangle\\\langle 1|\Psi_{2}\rangle\langle 0|\Psi_{2}\rangle\langle 0|\Psi_{2}\rangle\langle$$

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞ -D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} \langle 0|\Psi_{1}\rangle\\ \langle 0|\Psi_{1}\rangle\\ \langle 0|\Psi_{2}\rangle\\ \langle 0|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle\\ \langle 0|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle\\ \langle 0|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle\\ \vdots\\ \hline \langle 1|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle\\ \langle 2|\Psi_{2}\rangle\\ \vdots\\ \hline \langle 2|\Psi_{1}\rangle\\ \langle 2|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle\\ \langle 2|\Psi_{1}\Psi_{2}\rangle\\ \langle 2|\Psi_{1}\Psi_{2}\rangle$$

Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_1\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_1\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_1\rangle|\Psi_1\rangle$.)

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_1\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_1\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_1\rangle|\Psi_1\rangle$.)

A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^{n} \sum_{k=1}^{n} M_{j,k} |j\rangle \langle k|$

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_1\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_1\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_1\rangle|\Psi_1\rangle$.)

A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^n \sum_{k=1}^n M_{j,k} |j\rangle \langle k|$...that *might* be diagonalized to a combination of *n* projectors: $\mathbf{M} = \sum_{e=1}^n \mu_e |e\rangle \langle e|$

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_1\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_1\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_1\rangle|\Psi_1\rangle$.)

A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^{n} \sum_{k=1}^{n} M_{j,k} |j\rangle \langle k|$...that *might* be diagonalized to a combination of *n* projectors: $\mathbf{M} = \sum_{e=1}^{n} \mu_e |e\rangle \langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of *entangled* products: $|\Psi\rangle = \sum_{j k} \psi_{j,k} |\Psi_j\rangle |\Psi_k\rangle$

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_1\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_1\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_1\rangle|\Psi_1\rangle$.)

A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^n \sum_{k=1}^n M_{j,k} |j\rangle \langle k|$...that *might* be diagonalized to a combination of *n* projectors: $\mathbf{M} = \sum_{e=1}^n \mu_e |e\rangle \langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of *entangled* products: $|\Psi\rangle = \sum_{j k} |\Psi_{j,k}\rangle |\Psi_{j,k}\rangle |\Psi_{k,k}\rangle$

...that *might* be *de-entangled* to a combination of *n* terms: $|\Psi\rangle = \sum_{e} \phi_{e} |\varphi_{e}\rangle |\varphi_{e}\rangle$

Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others. $\mathbf{a}_1^{\dagger} | n_1 n_2 \rangle = \mathbf{a}_1^{\dagger} | n_1 \rangle | n_2 \rangle = \sqrt{n_1 + 1} | n_1 + 1 n_2 \rangle$ $\mathbf{a}_2^{\dagger} | n_1 n_2 \rangle = | n_1 \rangle \mathbf{a}_2^{\dagger} | n_2 \rangle = \sqrt{n_2 + 1} | n_1 n_2 + 1 \rangle$ $\mathbf{a}_1 | n_1 n_2 \rangle = \mathbf{a}_1 | n_1 \rangle | n_2 \rangle = \sqrt{n_1} | n_1 - 1 n_2 \rangle$ $\mathbf{a}_2 | n_1 n_2 \rangle = | n_1 \rangle \mathbf{a}_2 | n_2 \rangle = \sqrt{n_2} | n_1 n_2 - 1 \rangle$ $\mathbf{a}_1^{\text{"finds" its type-1}}$ $\mathbf{a}_2^{\text{"finds" its type-2}}$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others. $\mathbf{a}_1^{\dagger} |n_1 n_2 \rangle = \mathbf{a}_1^{\dagger} |n_1 \rangle |n_2 \rangle = \sqrt{n_1 + 1} |n_1 + 1 n_2 \rangle$ $\mathbf{a}_2^{\dagger} |n_1 n_2 \rangle = |n_1 \rangle \mathbf{a}_2^{\dagger} |n_2 \rangle = \sqrt{n_2 + 1} |n_1 n_2 + 1 \rangle$ $\mathbf{a}_1 |n_1 n_2 \rangle = \mathbf{a}_1 |n_1 \rangle |n_2 \rangle = \sqrt{n_1} |n_1 - 1 n_2 \rangle$ $\mathbf{a}_2 |n_1 n_2 \rangle = |n_1 \rangle \mathbf{a}_2 |n_2 \rangle = \sqrt{n_2} |n_1 n_2 - 1 \rangle$ $\mathbf{a}_1^{"finds"}$ its type-1 $\mathbf{a}_2^{"finds"}$ its type-2

General definition of the 2D oscillator base state.

$$|n_1 n_2\rangle = \frac{\left(\mathbf{a}_1^{\dagger}\right)^{n_1} \left(\mathbf{a}_2^{\dagger}\right)^{n_2}}{\sqrt{n_1! n_2!}} |0 0\rangle$$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others. $\mathbf{a}_1^{\dagger}|n_1n_2\rangle = \mathbf{a}_1^{\dagger}|n_1\rangle|n_2\rangle = \sqrt{n_1+1}|n_1+1n_2\rangle$ $\mathbf{a}_2^{\dagger}|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2^{\dagger}|n_2\rangle = \sqrt{n_2+1}|n_1n_2+1\rangle$ $\mathbf{a}_1|n_1n_2\rangle = \mathbf{a}_1|n_1\rangle|n_2\rangle = \sqrt{n_1}|n_1-1n_2\rangle$ $\mathbf{a}_2|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2|n_2\rangle = \sqrt{n_2}|n_1n_2-1\rangle$ \mathbf{a}_2 "finds" its type-1 \mathbf{a}_2 "finds" its type-2

General definition of the 2D oscillator base state.

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle \qquad \qquad \mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

The $\mathbf{a}_m^{\dagger} \mathbf{a}_n$ combinations in the *ABCD* Hamiltonian **H** have fairly simple matrix elements.

$$\mathbf{H} = \mathbf{A} \left(\mathbf{a}_1^{\dagger} \mathbf{a}_1 + \mathbf{1}/2 \right) + \left(\mathbf{B} - iC \right) \mathbf{a}_1^{\dagger} \mathbf{a}_2$$
$$+ \left(\mathbf{B} + iC \right) \mathbf{a}_2^{\dagger} \mathbf{a}_1 + \mathbf{D} \left(\mathbf{a}_2^{\dagger} \mathbf{a}_2 + \mathbf{1}/2 \right)$$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others. $\mathbf{a}_1^{\dagger}|n_1n_2\rangle = \mathbf{a}_1^{\dagger}|n_1\rangle|n_2\rangle = \sqrt{n_1+1}|n_1+1n_2\rangle$ $\mathbf{a}_2^{\dagger}|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2^{\dagger}|n_2\rangle = \sqrt{n_2+1}|n_1n_2+1\rangle$ $\mathbf{a}_1|n_1n_2\rangle = \mathbf{a}_1|n_1\rangle|n_2\rangle = \sqrt{n_1}|n_1-1n_2\rangle$ $\mathbf{a}_2|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2|n_2\rangle = \sqrt{n_2}|n_1n_2-1\rangle$ \mathbf{a}_1 "finds" its type-1 \mathbf{a}_2 "finds" its type-2

General definition of the 2D oscillator base state.

$$n_{1}n_{2} \rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! n_{2}!}} |0 0\rangle \qquad \qquad \mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{12}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{12}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

The $\mathbf{a}_m^{\dagger} \mathbf{a}_n$ combinations in the *ABCD* Hamiltonian **H** have fairly simple matrix elements.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} | n_{1}n_{2} \rangle = n_{1} | n_{1} n_{2} \rangle \qquad \mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} | n_{1}n_{2} \rangle = \sqrt{n_{1} + 1} \sqrt{n_{2}} | n_{1} + 1 n_{2} - 1 \rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} | n_{1}n_{2} \rangle = \sqrt{n_{1}} \sqrt{n_{2} + 1} | n_{1} - 1 n_{2} + 1 \rangle \qquad \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} | n_{1}n_{2} \rangle = n_{2} | n_{1} n_{2} \rangle$$

 $\mathbf{H} = \mathbf{A} \left(\mathbf{a}_1^{\dagger} \mathbf{a}_1 + \mathbf{1}/2 \right) + \left(\mathbf{B} - iC \right) \mathbf{a}_1^{\dagger} \mathbf{a}_2$

+ $(\mathbf{B}+iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}+\mathbf{D}(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2)$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others. $\mathbf{a}_1^{\dagger}|n_1n_2\rangle = \mathbf{a}_1^{\dagger}|n_1\rangle|n_2\rangle = \sqrt{n_1+1}|n_1+1n_2\rangle$ $\mathbf{a}_2^{\dagger}|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2^{\dagger}|n_2\rangle = \sqrt{n_2+1}|n_1n_2+1\rangle$ $\mathbf{a}_1|n_1n_2\rangle = \mathbf{a}_1|n_1\rangle|n_2\rangle = \sqrt{n_1}|n_1-1n_2\rangle$ $\mathbf{a}_2|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2|n_2\rangle = \sqrt{n_2}|n_1n_2-1\rangle$ \mathbf{a}_2 "finds" its type-1 \mathbf{a}_2 "finds" its type-2

General definition of the 2D oscillator base state.

The $\mathbf{a}_m^{\dagger} \mathbf{a}_n$ combinations in the *ABCD* Hamiltonian **H** have fairly simple matrix elements.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle \qquad \mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1n_{2}-1\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1n_{2}+1\rangle \qquad \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{H} = \mathbf{A} \left(\mathbf{a}_1^{\dagger} \mathbf{a}_1 + \mathbf{1}/2 \right) + \left(\mathbf{B} - iC \right) \mathbf{a}_1^{\dagger} \mathbf{a}_2$$
$$+ \left(\mathbf{B} + iC \right) \mathbf{a}_2^{\dagger} \mathbf{a}_1 + \mathbf{D} \left(\mathbf{a}_2^{\dagger} \mathbf{a}_2 + \mathbf{1}/2 \right)$$

		00 angle	$ 01\rangle$	02 angle		$ 10\rangle$	$ 11\rangle$	$ 12\rangle$		$ 20\rangle$	$ 21\rangle$	$ 22\rangle$	
	$\langle 00 $	0				0							
	$\langle 01 $		D										
	$\langle 02 $			2 D			$\sqrt{2}(B+iC)$	٠					
	:		:		·.	•	•	0 0 0	•				0 0 0
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(10	•								0			
	(11)			$\sqrt{2}(B-iC)$						$\sqrt{2}(B+iC)$			
	(12)							A+2D			$\sqrt{4}(B+iC)$		0 0 0
	:	•	0 0	•	•	0 0 0	•	0 0 0	•	0 0 0	0 0 0	•	•
	$\langle 20 $						$\sqrt{2}(B-iC)$			2 A			
	$\langle 21 $							$\sqrt{4}(B-iC)$			2A + D		
	(22)											2A + 2D	
	÷					0 0		0 0	· .	0 0	0 0	0 0 0	0 0 0

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others. $\mathbf{a}_1^{\dagger}|n_1n_2\rangle = \mathbf{a}_1^{\dagger}|n_1\rangle|n_2\rangle = \sqrt{n_1+1}|n_1+1n_2\rangle$ $\mathbf{a}_2^{\dagger}|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2^{\dagger}|n_2\rangle = \sqrt{n_2+1}|n_1n_2+1\rangle$ $\mathbf{a}_1|n_1n_2\rangle = \mathbf{a}_1|n_1\rangle|n_2\rangle = \sqrt{n_1}|n_1-1n_2\rangle$ $\mathbf{a}_2|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2|n_2\rangle = \sqrt{n_2}|n_1n_2-1\rangle$ \mathbf{a}_2 "finds" its type-1 \mathbf{a}_2 "finds" its type-2

General definition of the 2D oscillator base state.

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle \qquad \qquad \mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

The $\mathbf{a}_m^{\dagger} \mathbf{a}_n$ combinations in the *ABCD* Hamiltonian **H** have fairly simple matrix elements.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1n_{2}-1\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1n_{2}+1\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{H} = A\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}+\mathbf{1}/2\right) + (B-iC)\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + (B+iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2\right) + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + (B+iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2\right) + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2\right) + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2\right) + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + (B-iC)\mathbf{a}_{2}$$

		00 angle	$ 01\rangle$	02 angle		$ 10\rangle$	$ 11\rangle$	$ 12\rangle$		$ 20\rangle$	$ 21\rangle$	$ 22\rangle$	•••
	$\langle 00 $	0				•							
	$\langle 01 $		D		•••	B+iC	•						0 0 0
	$\langle 02 $			2 D			$\sqrt{2}(B+iC)$						0 0 0
	:	•••	:	•	·.	•	:	:	·.				
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(10)	•	B-iC		•••	A			•••				0 0 0
	(11)			$\sqrt{2}(B-iC)$			A + D			$\sqrt{2}(B+iC)$			
	(12)							A +2 D			$\sqrt{4}(B+iC)$		0 0 0
	:	•	:	•	·.	•	•	:	·.	0 0 0	6 6 6	0 0 0	•
	$\langle 20 $						$\sqrt{2}(B-iC)$			2 A			0 0 0
	(21)							$\sqrt{4}(B-iC)$			2A + D		
	(22)											2 <i>A</i> +2 <i>D</i>	
	÷					0 0	0 0 0		•	0 0 0	0 0 0	•	•

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others. $\mathbf{a}_1^{\dagger}|n_1n_2\rangle = \mathbf{a}_1^{\dagger}|n_1\rangle|n_2\rangle = \sqrt{n_1+1}|n_1+1n_2\rangle$ $\mathbf{a}_2^{\dagger}|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2^{\dagger}|n_2\rangle = \sqrt{n_2+1}|n_1n_2+1\rangle$ $\mathbf{a}_1|n_1n_2\rangle = \mathbf{a}_1|n_1\rangle|n_2\rangle = \sqrt{n_1}|n_1-1n_2\rangle$ $\mathbf{a}_2|n_1n_2\rangle = |n_1\rangle \mathbf{a}_2|n_2\rangle = \sqrt{n_2}|n_1n_2-1\rangle$ \mathbf{a}_2 "finds" its type-1 \mathbf{a}_2 "finds" its type-2

General definition of the 2D oscillator base state.

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle \qquad \qquad \mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

The $\mathbf{a}_m^{\dagger} \mathbf{a}_n$ combinations in the *ABCD* Hamiltonian **H** have fairly simple matrix elements.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1n_{2}-1\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1n_{2}+1\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{H} = A(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}+\mathbf{1}/2) + (B-iC)\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + (B+iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2) + (B-iC)\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2) + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + D(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}+\mathbf{1}/2) + (B-iC)\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} +$$

		00 angle	$ 01\rangle$	02 angle	•••	$ 10\rangle$	$ 11\rangle$	$ 12\rangle$		$ 20\rangle$	$ 21\rangle$	$ 22\rangle$	
	$\langle 00 $	0											
	$\langle 01 $		D		•••	B+iC	•						•••
	$\langle 02 $			2 D	•••		$\sqrt{2}(B+iC)$		•••				
	:	•	•	•	·.	•	•	•	·.				•••
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(10	•	B-iC		•••	A			•••	•			••••
	(11)			$\sqrt{2}(B-iC)$	•••		A + D			$\sqrt{2}(B+iC)$			
	(12)				•••			A +2 D			$\sqrt{4}\left(\frac{B}{B}+iC\right)$		••••
	:	•	•	•	·.	•	:	•	·.	•	•	:	·
	$\langle 20 $					•	$\sqrt{2}(B-iC)$		•••	2 A			
	(21)							$\sqrt{4}\left(\frac{B}{B}-iC\right)$	•••		2 A + D		
	(22)								•••			2 A +2 D	••••
	÷						÷	:	·.	•	:	÷	·.

Review : 1-D a[†]a algebra of U(1) representations

2-D ata algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

Rearrangement of rows and columns brings the matrix to a block-diagonal form.

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

Rearrangement of rows and columns brings the matrix to a block-diagonal form. Base states $|n_1\rangle|n_2\rangle$ with the same *total quantum number* $v = n_1 + n_2$ define each block.

Rearrangement of rows and columns brings the matrix to a block-diagonal form. Base states $|n_1\rangle|n_2\rangle$ with the same *total quantum number* $\upsilon = n_1 + n_2$ define each block.

Review : 1-D a[†]a algebra of U(1) representations

2-D at a algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basics Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays Entangled 2-particle states Two-particle (or 2-dimensional) matrix operators U(2) Hamiltonian and irreducible representations 2D-Oscillator eigensolutions

U(1) Oscillator coherent states ("Shoved" and "kicked" states) Left from 4.23.13 Translation operators vs. boost operators Applying boost-translation combinations Time evolution of coherent state Properties of coherent state and "squeezed" states

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix . $\langle H \rangle$

	n_1, n_2	$ 1,0\rangle$	$\left 0,1 ight angle$	
$\left \right\rangle_{\upsilon=1}^{Fundamental} =$	(1,0)	Α	B-iC	$+\frac{A+D}{2}$ 1
	(0,1	B+iC	D	2

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

 $|1,0\rangle$

A

B+iC

 n_1, n_2

(1,0

 $\langle 0,1|$

 $\langle \mathbf{H} \rangle_{\upsilon=1}^{Fundamental} =$

|0,1
angle

B - iC

D

 $+\frac{A+D}{2}\mathbf{1}$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of H

$$\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} + \frac{A+D}{2}\mathbf{1} = (A+D)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\frac{1}{2} + 2C\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\frac{1}{2} + (A-D)\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\frac{1}{2}$$

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

 $|0,1\rangle$

D

 $\frac{|0,1\rangle}{B-iC} + \frac{A+D}{2}\mathbf{1}$

1,0

A

B+iC

 n_1, n_2

(1,0

 $\langle 0,1|$

Fundamental eigenstates

 $\left\langle \mathbf{H} \right\rangle_{\upsilon=1}^{Fundamental} =$ The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of H

$$\begin{array}{c} A & B-iC \\ B+iC & D \end{array} \right) + \frac{A+D}{2} \mathbf{1} = (A+D) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} + 2C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{2} + (A-D) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

 $\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{\vec{S}} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$ = $\Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z$ (XYZ Electron spin notation)

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix . $\langle H \rangle_{i}$

Recall decomposition of H

$$\begin{array}{c} A & B-iC \\ B+iC & D \end{array} \right) + \frac{A+D}{2} \mathbf{1} = \left(A+D \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) + 2B \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \frac{1}{2} + 2C \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array} \right) \frac{1}{2} + \left(A-D \right) \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

$$\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{\vec{S}} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$$
$$= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z \quad (XYZ \ Electron \ spin \ notation)$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1**/2 and *fundamental transition frequency* $\Omega = \omega_+ - \omega_-$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

$$P_{\nu=1}^{Fundamental} = \frac{\begin{vmatrix} n_1, n_2 \\ \langle 1, 0 \end{vmatrix}}{\begin{vmatrix} n_1, n_2 \\ \langle 1, 0 \end{vmatrix}} \frac{\begin{vmatrix} 1, 0 \\ A \\ B - iC \\ \langle 0, 1 \end{vmatrix}}{\begin{vmatrix} n_1, n_2 \\ B - iC \\ B + iC \\ D \end{vmatrix}} + \frac{A + D}{2} \mathbf{1}$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix . $\langle H \rangle_{v=1}^{Fundamental} =$

Recall decomposition of H

$$\begin{array}{c} A & B-iC \\ B+iC & D \end{array} \right) + \frac{A+D}{2} \mathbf{1} = \left(A+D \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) + 2B \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \frac{1}{2} + 2C \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array} \right) \frac{1}{2} + \left(A-D \right) \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

$$\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{\tilde{S}} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$$
$$= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z \quad (XYZ \ Electron \ spin \ notation)$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1**/2 and *fundamental transition frequency* $\Omega = \omega_+ - \omega_-$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

Polar angles (ϕ, ϑ) of $+\Omega$ -vector (or polar angles $(\phi, \vartheta \pm \pi)$ of $-\Omega$ -vector) gives **H** eigenvectors.

$$|\omega_{+}\rangle = \begin{pmatrix} e^{-i\varphi/2}\cos\frac{\vartheta}{2} \\ e^{i\varphi/2}\sin\frac{\vartheta}{2} \end{pmatrix}, \quad |\omega_{-}\rangle = \begin{pmatrix} -e^{-i\varphi/2}\sin\frac{\vartheta}{2} \\ e^{i\varphi/2}\cos\frac{\vartheta}{2} \end{pmatrix} \quad \text{where:} \begin{cases} \cos\vartheta = \frac{A-D}{\Omega} \\ \tan\varphi = \frac{C}{B} \end{cases}$$

 $|1,0\rangle$

B+iC

 n_1, n_2

(1,0

 $\langle 0,1|$

 $|0,1\rangle$

B-iC

 $+\frac{A+D}{2}$ 1

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of H

$$\begin{array}{c} A & B-iC \\ B+iC & D \end{array} \right) + \frac{A+D}{2} \mathbf{1} = \left(A+D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + 2B \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \frac{1}{2} + 2C \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \frac{1}{2} + \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(A-D$$

in terms of Jordan-Pauli spin operators.

$$\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{\vec{S}} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$$
$$= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z \quad (XYZ \ Electron \ spin \ notation)$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1**/2 and *fundamental transition frequency* $\Omega = \omega_{\pm} - \omega_{-}$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

Polar angles (ϕ, ϑ) of $+\Omega$ -vector (or polar angles $(\phi, \vartheta \pm \pi)$ of $-\Omega$ -vector) gives **H** eigenvectors.

$$|\omega_{+}\rangle = \begin{pmatrix} e^{-i\varphi/2}\cos\frac{\vartheta}{2} \\ e^{i\varphi/2}\sin\frac{\vartheta}{2} \end{pmatrix}, \quad |\omega_{-}\rangle = \begin{pmatrix} -e^{-i\varphi/2}\sin\frac{\vartheta}{2} \\ e^{i\varphi/2}\cos\frac{\vartheta}{2} \end{pmatrix} \quad \text{where:} \begin{cases} \cos\vartheta = \frac{A-D}{\Omega} \\ \tan\varphi = \frac{C}{B} \end{cases}$$

More important for the general solution, are the *eigen-creation operators* $\mathbf{a}^{\dagger} + and \mathbf{a}^{\dagger}$ - defined by

$$\mathbf{a}_{+}^{\dagger} = e^{-i\varphi/2} \left(\cos\frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \sin\frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right), \quad \mathbf{a}_{-}^{\dagger} = e^{-i\varphi/2} \left(-\sin\frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \cos\frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right)$$

 n_1, n_2 $\frac{A+D}{A}$ B-iC $+\frac{A+D}{2}$ $\left\langle \mathbf{H} \right\rangle_{\upsilon=1}^{Fundamental} =$ (1,0)

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of H

$$\begin{array}{c} A & B-iC \\ B+iC & D \end{array} \right) + \frac{A+D}{2} \mathbf{1} = \left(A+D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + 2B \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \frac{1}{2} + 2C \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \frac{1}{2} + \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} + \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left(A-D\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2} \left(A-D\right) \left($$

in terms of Jordan-Pauli spin operators.

$$\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{\tilde{S}} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$$
$$= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z \quad (XYZ \ Electron \ spin \ notation)$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1**/2 and *fundamental transition frequency* $\Omega = \omega_{\pm} - \omega_{-}$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

Polar angles (ϕ, ϑ) of $+\Omega$ -vector (or polar angles $(\phi, \vartheta \pm \pi)$ of $-\Omega$ -vector) gives **H** eigenvectors.

$$|\omega_{+}\rangle = \begin{pmatrix} e^{-i\varphi/2}\cos\frac{\vartheta}{2} \\ e^{i\varphi/2}\sin\frac{\vartheta}{2} \end{pmatrix}, \quad |\omega_{-}\rangle = \begin{pmatrix} -e^{-i\varphi/2}\sin\frac{\vartheta}{2} \\ e^{i\varphi/2}\cos\frac{\vartheta}{2} \end{pmatrix} \quad \text{where:} \begin{cases} \cos\vartheta = \frac{A-D}{\Omega} \\ \tan\varphi = \frac{C}{B} \end{cases}$$

More important for the general solution, are the *eigen-creation operators* $\mathbf{a}^{\dagger} + and \mathbf{a}^{\dagger}$ - defined by

$$\mathbf{a}_{+}^{\dagger} = e^{-i\varphi/2} \left(\cos\frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \sin\frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right), \quad \mathbf{a}_{-}^{\dagger} = e^{-i\varphi/2} \left(-\sin\frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \cos\frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right)$$

 $\mathbf{a}_{\perp}^{\dagger}$ create **H** eigenstates directly from the ground state.

$$\mathbf{a}_{+}^{\dagger}|0\rangle = |\omega_{+}\rangle$$
, $\mathbf{a}_{-}^{\dagger}|0\rangle = |\omega_{-}\rangle$

 $\begin{array}{c|c|c} n_1, n_2 & |1, 0\rangle & |0, 1\rangle \\ \hline \langle 1, 0| & A & B - iC \\ \end{array} + \frac{A + D}{2} \mathbf{1}$ $\langle \mathbf{H} \rangle_{\upsilon=1}^{Fundamental} =$
Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

$$\mathbf{H}^{\mathbf{A}} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$$

Setting (B = 0 = C) and ($A = \omega_+$) and ($D = \omega_-$) gives diagonal block matrices.

 $\mathbf{H}^{\mathbf{A}} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$

$$\varepsilon_{n_1n_2}^{\mathbf{A}} = \mathbf{A}\left(n_1 + \frac{1}{2}\right) + \mathbf{D}\left(n_2 + \frac{1}{2}\right) = \frac{\mathbf{A} + \mathbf{D}}{2}\left(n_1 + n_2 + 1\right) + \frac{\mathbf{A} - \mathbf{D}}{2}\left(n_1 - n_2\right)$$

Setting (B=0=C) and ($A=\omega_+$) and ($D=\omega_-$) gives diagonal block matrices.

Setting (B=0=C) and ($A=\omega_+$) and ($D=\omega_-$) gives diagonal block matrices.

Define *total quantum number* v=2j and half-difference or *asymmetry quantum number m* $v = n_1 + n_2 = 2j$ $j = \frac{n_1 + n_2}{2} = \frac{v}{2}$ $m = \frac{n_1 - n_2}{2}$

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Define *total quantum number* v=2j and half-difference or *asymmetry quantum number m*

$$v = n_1 + n_2 = 2j$$

$$j = \frac{n_1 + n_2}{2} = \frac{v}{2}$$

$$m = \frac{n_1 - n_2}{2}$$

$$m = \frac{n_1 - n_2}{2}$$

$$\omega = \Omega_0$$

$$\omega = 1$$

$$\omega = \Omega_0 + \Omega(-\frac{1}{2})$$

$$\omega = \Omega_0 + \Omega(-\frac{1}{2})$$

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

 $=\sqrt{(2B)^{2}+(2C)^{2}+(A-D)^{2}}$

SU(2) Multiplets

Structure of U(2)

Introducing U(N)

Introducing U(3)

$$\Psi(x_{1},x_{2},t) = \frac{1}{2} |\psi_{10}(x_{1},x_{2})e^{-i\omega_{10}t} + \psi_{01}(x_{1},x_{2})e^{-i\omega_{01}t}|^{2} e^{-(x_{1}^{2}+x_{2}^{2})} = \frac{e^{-(x_{1}^{2}+x_{2}^{2})}}{2\pi} |\sqrt{2}x_{1}e^{-i\omega_{10}t} + \sqrt{2}x_{1}e^{-i\omega_{01}t}|^{2}$$
$$= \frac{e^{-(x_{1}^{2}+x_{2}^{2})}}{\pi} \left(x_{1}^{2}+x_{2}^{2}+2x_{1}x_{2}\cos(\omega_{10}-\omega_{01})t\right) = \frac{e^{-(x_{1}^{2}+x_{2}^{2})}}{\pi} \begin{cases} |x_{1}+x_{2}|^{2} & for: t=0\\ x_{1}^{2}+x_{2}^{2} & for: t=\tau_{beat}/4 \end{cases}$$
(21.1.30)
$$|x_{1}-x_{2}|^{2} & for: t=\tau_{beat}/2 \end{cases}$$