Group Theory in Quantum Mechanics

Lecture $23_{\text {(4.23.13) }}$

Harmonic oscillator symmetry $U(1) \subset U(2) \subset U(3) \ldots$

```
(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 20-22)
                                    (PSDS-Ch.8)
```

1-D a'a algebra of $U(1)$ representations
Creation-Destruction àa algebra
Eigenstate creationism (and destruction)
Vacuum state
$1^{\text {st }}$ excited state
Normal ordering for matrix calculation
Commutator derivative identities
Binomial expansion identities
Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and "squeezed" states
2-D a*a algebra of $U(2)$ representations and $R(3)$ angular momentum operators

1-D àa algebra of $U(1)$ representations

Creation-Destruction àa algebra
Eigenstate creationism (and destruction)
Vacuum state
$1{ }^{\text {st }}$ excited state
Normal ordering for matrix calculation
Commutator derivative identities
Binomial expansion identities
Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate |n|
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and "squeezed" states

2-D a`a algebra of $U(2)$ representations and $R(3)$ angular momentum operators

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { (with: } \mathbf{p}=\hbar \mathbf{k} \text {) }
$$

1-D a*a algebra of $U(1)$ representations
Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2
$$

$$
\text { with: } \mathbf{p}=\hbar \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

1-D a*a algebra of $U(1)$ representations
Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

1-D àa algebra of $U(1)$ representations
Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$!
(Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P})
$$

(Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don’t ${ }_{\text {quite }}$ commute \ldots (Use $\mathbf{X} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don't quite commute... (Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots \text { so make symmetric factors. }
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don't quite commute... (Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.
Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$
Proof:

$$
\langle x| \mathbf{x p}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)
$$

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don't quite commute... (Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.
Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$
Proof:

$$
\langle x| \mathbf{x p}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-x \frac{\partial}{\partial x} \psi(x)-\frac{\partial x}{\partial x} \psi(x)\right)
$$

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don't quite commute... (Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.
Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$
Proof:

$$
\langle x| \mathbf{x p}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-x \frac{\partial}{\partial x} \psi(x)-\frac{\partial x}{\partial x} \psi(x)\right)=-\frac{\hbar}{i} \psi(x)
$$

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X} \equiv \sqrt{ } M \omega \mathbf{x} / \sqrt{ } 2 \text { and } \mathbf{P} \equiv \mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don't quite commute... (Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.
Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

$$
\begin{aligned}
& \text { Proof: } \\
& \qquad\langle x| \mathbf{x p}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-x \frac{\partial}{\partial x} \psi(x)-\frac{\partial x}{\partial x} \psi(x)\right)=-\frac{\hbar}{i} \boldsymbol{i} \psi(x)=\hbar i \psi(x)=\langle x[\mathbf{x}, \mathbf{p}] \mid \psi\rangle
\end{aligned}
$$

1-D àa algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\hbar \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?
A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X} \equiv \sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P} \equiv \mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don't ${ }_{\text {quite }}$ commute... (Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.
Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$ (They only miss commuting by 0.0000000000 am
Proof:

$$
\langle x| \underset{\sim}{\mathbf{x}}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \boldsymbol{\psi}(x)-\frac{\partial}{\partial x} x \psi(x)\right)=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-x \frac{\partial}{\partial x} \psi(x)-\frac{\partial x}{\partial x} \psi(x)\right)=-\frac{\hbar}{i} \psi(x)=\hbar i \psi(x)=\langle x[\mathbf{x}, \mathbf{p}] \mid \psi\rangle
$$

1-D ata algebra of $U(1)$ representations Creation-Destruction àa algebra

Vacuum state
$1{ }^{\text {st }}$ excited state
Normal ordering for matrix calculation
Commutator derivative identities
Binomial expansion identities
Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate |n〉
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and "squeezed" states
2-D a๋a algebra of $U(2)$ representations and $R(3)$ angular momentum operators

Creation-Destruction a`a algebra
Define $\begin{aligned} & \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\ & \text { Destruction operator }\end{aligned} \quad \begin{aligned} & \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\ & \text { and } \\ & \text { Creation Operator }\end{aligned}$
Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{2}$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})
$$

Creation-Destruction a`a algebra
Define $\begin{aligned} & \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\ & \text { Destruction operator }\end{aligned} \quad \begin{aligned} & \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\ & \text { and } \\ & \text { Creation Operator }\end{aligned}$
Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{2}$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\begin{aligned}
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})} \\
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]}
\end{aligned}
$$

Creation-Destruction àa algebra

$$
\begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Define } \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\begin{aligned}
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})} \\
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1}}
\end{aligned}
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction a`a algebra

$$
\begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Define } \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\begin{aligned}
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})} \\
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1} \quad\left(\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1} \quad \text { or } \quad \mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right.}
\end{aligned}
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction a`a algebra
Define $\begin{aligned} & \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\ & \text { Destruction operator }\end{aligned}$

$$
\begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\begin{aligned}
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})} \\
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1} \quad\left(\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1} \quad \text { or } \quad \mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right.}
\end{aligned}
$$

1D-HO Hamiltonian in terms of $\mathbf{a}^{\dagger} \mathbf{a}$ operator
Recall: $\quad \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) / 2$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction a`a algebra

$$
\text { Define } \begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})$
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1}$

$$
\left[a, a^{\dagger}\right]=1
$$

$$
\text { or } \mathbf{a} \mathbf{a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}
$$

1D-HO Hamiltonian in terms of $\mathbf{a}^{\dagger} \mathbf{a}$ operator

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) / 2=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right) / 2
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction a`a algebra

$$
\text { Define } \begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})$
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1}$

$$
\left.a, a^{\dagger}\right]=1
$$

$$
\text { or } \mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}
$$

1D-HO Hamiltonian in terms of $\mathbf{a}^{\dagger} \mathbf{a}$ operator

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) / 2=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right) / 2=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1} \hbar \omega / 2
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

1-D a*a algebra of $U(1)$ representations

Creation-Destruction a*a algebra

Eigenstate creationism (and destruction)
Vacuum state
$1{ }^{\text {st }}$ excited state
Normal ordering for matrix calculation
Commutator derivative identities
Binomial expansion identities
Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate |n〉
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and "squeezed" states
2-D a*a algebra of $U(2)$ representations and $R(3)$ angular momentum operators

Eigenstate creationism (and destruction)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

Eigenstate creationism (and destruction)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Eigenstate creationism (and destruction)

Given 1 D-HO Hamiltonian: $\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \mathbf{\omega} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1} \hbar \mathbf{\omega} / 2$ and commutation: $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1}$ or $\mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}$

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle\left(\right.$ or \mathbf{a}^{\dagger} on ground bra $\left.\langle 0|\right)$ gives nothing (zero vectors $\left.\boldsymbol{0}\right)$.

$$
\mathbf{a}|0\rangle=\mathbf{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

Eigenstate creationism (and destruction)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\mathbf{0} \quad\langle 0| \mathbf{a}^{\dagger}=\boldsymbol{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0}$. $\quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$
Proof:

$$
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{-} \mathbf{a}^{\dagger}|0\rangle \quad+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle
$$

Eigenstate creationism (and destruction)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\mathbf{0} \quad\langle 0| \mathbf{a}^{\dagger}=\boldsymbol{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$
Proof:

$$
\begin{aligned}
& \mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle \quad+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& \mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle=\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle
\end{aligned}
$$

Eigenstate creationism (and destruction)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\boldsymbol{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{P}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\mathbf{0} \quad+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle
\end{array}
$$

Eigenstate creationism (and destruction)

Given1D-HO Hamiltonian: $\mathbf{H (\mathbf { x } , \mathbf { p }) = \hbar \omega \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } \hbar \omega / 2 \text { and commutation: } { \mathbf { a } , \mathbf { a } ^ { \dagger }] = \mathbf { 1 } } ^ { \text { or } } \mathbf { a n } ^ { \dagger } = \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 }}$
Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\boldsymbol{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\mathbf{0} & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & Q E D: \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & & +\hbar \omega / 2)|1\rangle=E_{l}|1\rangle \text { where: } E_{1}=\hbar \omega+E_{0}
\end{array}
$$

Eigenstate creationism (and destruction)

Given1D-HO Hamiltonian: $\mathbf{H (\mathbf { x } , \mathbf { p }) = \hbar \omega \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } \hbar \omega / 2 \text { and commutation: } { \mathbf { a } , \mathbf { a } ^ { \dagger }] = \mathbf { 1 } } ^ { \text { or } } \mathbf { a } ^ { \dagger } { } ^ { \dagger } = \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 }}$
Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\boldsymbol{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\mathbf{0} & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & Q E D: \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & +\hbar \omega / 2)|1\rangle=E_{l}|1\rangle \text { where: } E_{l}=\hbar \omega+E_{0}
\end{array}
$$

One-quantum or 1 st excited eigenket $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$

Eigenstate creationism (and destruction)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\boldsymbol{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\mathbf{0} & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & Q E D \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & +\hbar \omega / 2)|1\rangle=E_{l}|1\rangle \text { where: } E_{l}=\hbar \omega+E_{0}
\end{array}
$$

One-quantum or 1 st excited eigenket $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$
For kets, \mathbf{a}^{\dagger} is creation operator while \mathbf{a} is destruction operator.

$$
\mathbf{a}|1\rangle=\mathbf{a a}^{\dagger}|0\rangle=\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle=|0\rangle
$$

Eigenstate creationism (and destruction)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\boldsymbol{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle\right. \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\mathbf{0} & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & Q E D: \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & & +\hbar \omega / 2)|1\rangle=E_{l}|1\rangle \text { where: } E_{l}=\hbar \omega+E_{0}
\end{array}
$$

One-quantum or 1 st excited eigenket $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$
For kets, \mathbf{a}^{\dagger} is creation operator while \mathbf{a} is destruction operator.

$$
\mathbf{a}|1\rangle=\mathbf{a a}^{\dagger}|0\rangle=\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle=|0\rangle
$$

For bras, \mathbf{a}^{\dagger} is destruction operator while \mathbf{a} is creation operator.

$$
\langle 1| \mathbf{a}^{\dagger}=\langle 0| \mathbf{a} \mathbf{a}^{\dagger}=\langle 0|\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)=\langle 0|
$$

1-D ata algebra of $U(1)$ representations Creation-Destruction àa algebra
Eigenstate creationism (and destruction)
$2 \begin{aligned} & \text { Vacuum state } \\ & 1^{\text {st }} \text { excited state }\end{aligned}$ 4 Normal ordering for matrix calculation

Commutator derivative identities
Binomial expansion identities
Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate |n〉
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and "squeezed" states
2-D a`a algebra of $U(2)$ representations and $R(3)$ angular momentum operators

Wavefunction creationism (Vacuum state)
Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$

$$
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=0
$$

Wavefunction creationism (Vacuum state)
Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$

$$
\begin{array}{r}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}=0
\end{array}
$$

Wavefunction creationism (Vacuum state)
Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega}) & =0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega} & =0 \\
\psi_{0}^{\prime}(x) & =\frac{M \omega}{\hbar} x \psi_{0}(x)
\end{aligned}
$$

Wavefunction creationism (Vacuum state)

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega}) & =0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega} & =0 \\
\psi_{0}^{\prime}(x) & =\frac{M \omega}{\hbar} x \psi_{0}(x) \\
\int \frac{d \psi}{\psi}=\int \frac{M \omega}{\hbar} x d x, \quad \ln \psi+\ln \text { const. }=\frac{-M \omega}{\hbar} \frac{x^{2}}{2}, \quad \psi & =\frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}
\end{aligned}
$$

Wavefunction creationism (Vacuum state)

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega}) & =0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega} & =0 \\
\psi_{0}^{\prime}(x) & =\frac{M \omega}{\hbar} x \psi_{0}(x) \\
\int \frac{d \psi}{\psi}=\int \frac{M \omega}{\hbar} x d x, \quad \ln \psi+\ln \text { const. }=\frac{-M \omega}{\hbar} \frac{x^{2}}{2}, \quad \psi & =\frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}
\end{aligned}
$$

Wavefunction creationism (Vacuum state)

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$

$$
\begin{gathered}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}=0 \\
\psi_{0}^{\prime}(x)=\frac{M \omega}{\hbar} x \psi_{0}(x) \\
\int \frac{d \psi}{\psi}=\int \frac{M \omega}{\hbar} x d x, \quad \ln \psi+\ln \text { const. }=\frac{-M \omega}{\hbar} \frac{x^{2}}{2}, \quad \psi=\frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}=\frac{e^{-M \omega x^{2} / 2 \hbar}}{\left(\frac{\pi \hbar}{M \omega}\right)^{1 / 4}}
\end{gathered}
$$

The normalization const. is evaluated using a standard Gaussian integral: $\int_{-\infty}^{\infty} d x e^{-\alpha x^{2}}=\sqrt{\frac{\pi}{\alpha}}$

$$
\left\langle\psi_{0} \mid \psi_{0}\right\rangle=1=\int_{-\infty}^{\infty} d x \frac{e^{-M \omega x^{2} 2 / 2 \hbar}}{\text { const }^{2}}=\sqrt{\frac{\pi \hbar}{M \omega}} / \text { const. }^{2} \Rightarrow \text { const. }=\left(\frac{\pi \hbar}{M \omega}\right)^{1 / 4},
$$

1-D ata algebra of $U(1)$ representations Creation-Destruction àa algebra Eigenstate creationism (and destruction)

Vacuum state
\rightarrow
$1^{\text {st }}$ excited state
Commutator derivative identities
Binomial expansion identities
Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate |n〉
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators
Applying boost-translation combinations
Time evolution of coherent state
Properties of coherent state and "squeezed" states
2-D ata algebra of $U(2)$ representations and $R(3)$ angular momentum operators

Wavefunction creationism (1 ${ }^{\text {st }}$ Excited state)
1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Wavefunction creationism (1st Excited state)
1 st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator
$\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)$

Wavefunction creationism (1st Excited state)
1 st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representations generate the first excited state

$$
\langle x \mid 1\rangle=\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} \underset{\psi_{0}}{ }(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right)
$$

Wavefunction creationism (1st Excited state)
1 st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representations generate the first excited state

$$
\begin{aligned}
\langle x \mid 1\rangle & =\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} \underset{x}{\psi_{0}}(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}-i \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }} / \sqrt{M \omega}\right)
\end{aligned}
$$

Zero-point energy E_{0}
$=\hbar \omega / 2$
????

Wavefunction creationism (1st Excited state)
1 st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representations generate the first excited state
wavefunction.

$$
\begin{aligned}
\langle x \mid 1\rangle & =\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x^{2} \psi_{0}(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}-i \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}\left(\sqrt{M \omega} x+i \frac{\hbar}{i} \frac{M \omega x}{\hbar} / \sqrt{M \omega}\right)
\end{aligned}
$$

Zero-point energy E_{0}
$=\hbar \omega / 2$
????

Wavefunction creationism (1st Excited state)
1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representatiqns generate the first excited state

$$
\begin{aligned}
\langle x \mid 1\rangle & =\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} \psi_{0}(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}-i \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}\left(\sqrt{M \omega} x+i \frac{\hbar}{i} \frac{M \omega x}{\hbar} / \sqrt{M \omega}\right) \\
& =\frac{\sqrt{M \omega}}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}(2 x)=\left(\frac{M \omega}{\pi \hbar}\right)^{3 / 4} \sqrt{2 \pi}\left(x e^{-M \omega x^{2} / 2 \hbar}\right)
\end{aligned}
$$

Zero-point

$$
=\hbar \omega / 2
$$

Classical tüning points

$$
\text { energy } E_{0}
$$

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
\
    Commutator derivative identities
    Binomial expansion identities
    Matrix \langleana }\mp@subsup{|}{}{\daggern}\rangle\mathrm{ calculations
        Number operator and Hamiltonian operator
        Expectation values of position, momentum, and uncertainty for eigenstate \n)
        Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
2-D a+a algebra of U(2) representations and R(3) angular momentum operators
```

Normal ordering for matrix calculation
Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Normal ordering for matrix calculation
Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.

Normal ordering for matrix calculation
Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
    Normal ordering for matrix calculation
    N
        Commutator derivative identities
        Binomial expansion identities
    Matrix \langleana }\mp@subsup{\textrm{a}}{}{\mathrm{ n}}\rangle\mathrm{ calculations
        Number operator and Hamiltonian operator
        Expectation values of position, momentum, and uncertainty for eigenstate \ n)
        Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
2-D a*a algebra of U(2) representations and R(3) angular momentum operators
```


Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B A C}-\mathbf{B C A}$ $=[A, B] C+B[A, C]$
$[A B, C]=-[C, A B]=-[C, A] B-A[C, B]$
$=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=A B C-B C A=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

$[A B, C]=-[C, A B]=-[C, A] B-A[C, B]$
$=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]$

Normal ordering for matrix calculation

Normal ordering: move destructive \mathbf{a} operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=A B C-B C A=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\begin{aligned}
\mathbf{a a}^{\dagger n}= & n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \longleftarrow \\
\mathbf{a}^{2} \mathbf{a}^{\dagger n}= & n \mathbf{a} \mathbf{a}^{\dagger n-1} \\
& =n(n-1) \mathbf{a}^{\dagger n-2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a a}^{\dagger n} \mathbf{a} \\
& =n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& +\mathbf{a}^{\dagger n} \mathbf{a}^{2}
\end{aligned}
$$

Normal ordering for matrix calculation

Normal ordering: move destructive \mathbf{a} operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

$[A B, C]=-[C, A B]=-[C, A] B-A[C, B]$
$=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]$

Binomial power expansion identities:

$$
\begin{aligned}
& \mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \\
& \mathbf{a}^{2} \mathbf{a}^{\dagger n}=n \mathbf{a} \mathbf{a}^{\dagger n-1}+\mathbf{a} \mathbf{a}^{\dagger n} \mathbf{a} \\
& =n(n-1) \mathbf{a}^{\dagger n-2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& =n(n-1) \mathbf{a}^{\dagger n-2}+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& \mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a} \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a} \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a} \mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& =n(n-1)(n-2) \mathbf{a}^{\dagger n-3}+n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+\mathbf{a}^{\dagger n} \mathbf{a}^{3} \\
& =n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{3}
\end{aligned}
$$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B A C}-\mathbf{B C A}$

$$
[\mathbf{A B}, \mathbf{C}]=-[\mathbf{C}, \mathbf{A B}]=-[\mathbf{C}, \mathbf{A}] \mathbf{B}-\mathbf{A}[\mathbf{C}, \mathbf{B}]
$$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

$$
=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\begin{aligned}
\mathbf{a a}^{\dagger n}= & n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \longleftarrow \\
\mathbf{a}^{2} \mathbf{a}^{\dagger n} & =n \mathbf{a} \mathbf{a}^{\dagger n-1} \\
& =n(n-1) \mathbf{a}^{\dagger n-2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a a}^{\dagger n} \mathbf{a} \\
& =n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a}^{\dagger n-1} \mathbf{a} \quad \mathbf{a}^{2} \\
& +\mathbf{a}^{\dagger n} \mathbf{a}^{2}
\end{aligned}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a} \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a} \mathbf{a}^{\dagger n-1} \mathbf{a}
$$

$$
\begin{aligned}
& \qquad=n(n-1)(n-2) \mathbf{a}^{\dagger n-3}+n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+\mathbf{a}^{\dagger n} \mathbf{a}^{3} \\
& \quad=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}
\end{aligned}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3}+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{n!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
    Normal ordering for matrix calculation
            Commutator derivative identities
            Binomial expansion identities
    Matrix \langlea"a }\mp@subsup{}{}{\daggern}\rangle\mathrm{ calculations
    Number operator and Hamiltonian operator
            Expectation values of position, momentum, and uncertainty for eigenstate \ n)
            Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
2-D a+a algebra of U(2) representations and R(3) angular momentum operators
```


Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B A C}-\mathbf{B C A}$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\begin{aligned}
& \mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \\
& \mathbf{a}^{2} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& \mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} \\
& +3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \\
& +\mathbf{a}^{\dagger n} \mathbf{a}^{3}
\end{aligned}
$$

Use binomial coefficients $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ in expansion for power $m=. .3,4 .$.
$\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3} \quad+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{n!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots,,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1}
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\begin{aligned}
& \mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \\
& \mathbf{a}^{2} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& \mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} \\
& +3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \\
& +\mathbf{a}^{\dagger n} \mathbf{a}^{3}
\end{aligned}
$$

Use binomial coefficients $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ in expansion for power $m=. .3,4$. .

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3}+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{n!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

Normal order $\mathbf{a}^{\mathrm{m}} \mathbf{a}^{\dagger \mathrm{n}}$ to $\mathbf{a}^{\dagger \mathrm{a}} \mathbf{a}^{\mathrm{b}}$ power formula

$$
\mathbf{a}^{m} \mathbf{a}^{\dagger n}=\sum_{r=0}^{m}\binom{m}{r} \frac{n!}{(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}=\sum_{r=0}^{m} \frac{m!}{r!(m-r)!} \frac{n!}{(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}
$$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots,,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1}
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B A C}-\mathbf{B C A}$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:
$\mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
$\mathbf{a}^{2} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2}$
$\mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{3}$
Use binomial coefficients $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ in expansion for power $m=. .3,4$..

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3} \quad+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{n!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

Normal order $\mathbf{a}^{\mathrm{m}} \mathbf{a}^{\dagger \mathrm{n}}$ to $\mathbf{a}^{\dagger \mathrm{a}} \mathbf{a}^{\mathrm{b}}$ power formula

$$
\mathbf{a}^{m} \mathbf{a}^{\dagger n}=\sum_{r=0}^{m}\binom{m}{r} \frac{n!}{(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}=\sum_{r=0}^{m} \frac{m!}{r!(m-r)!} \frac{n!}{(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}
$$

$\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}$ to $\mathbf{a}^{\dagger \mathrm{r}} \mathbf{a}^{\mathrm{r}}$ case

$$
\mathbf{a}^{n} \mathbf{a}^{\dagger n}=\sum_{r=0}^{n}\binom{n}{r} \frac{n!}{r!} \mathbf{a}^{\dagger r} \mathbf{a}^{r}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\frac{n(n-1)(n-3)}{3!3!} \mathbf{a}^{\dagger 3} \mathbf{a}^{3}+\ldots\right)
$$

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
    Normal ordering for matrix calculation
            Commutator derivative identities
            Binomial expansion identities
        Matrix }\langle\mp@subsup{\mathbf{a}}{}{\textrm{n}}\mp@subsup{\mathbf{a}}{}{\daggern}\rangle\mathrm{ calculations
        Number operator and Hamiltonian operator
        Expectation values of position, momentum, and uncertainty for eigenstate |n\rangle
        Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
2-D a*a algebra of U(2) representations and R(3) angular momentum operators
```

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator:

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!\cdot 2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a} \mathbf{a} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Apply creation \mathbf{a}^{\dagger} :
Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Apply creation \mathbf{a}^{\dagger} :
Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :
Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$

Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: $\underline{\text { Larger of two quanta goes in radical factor }}$

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{cccccc}
\cdot & 1 & & & & \\
& \cdot & \sqrt{2} & & & \\
& & \cdot & \sqrt{3} & & \\
& & & \cdot & \sqrt{4} & \\
& & & & \ddots \\
& & & & & \ddots
\end{array}\right)
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a} \mathbf{a} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor
$\left\langle\mathbf{a}^{+}\right\rangle=\left(\begin{array}{cccccc} & & & & & \\ 1 & \cdot & & & & \\ & \sqrt{2} & \cdot & & & \\ & & \sqrt{3} & . & & \\ & & & \sqrt{4} & . & \\ & & & & \ddots & .\end{array}\right)$

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{cccccc}
\cdot & 1 & & & & \\
& \cdot & \sqrt{2} & & & \\
& & \cdot & \sqrt{3} & & \\
& & & \cdot & \sqrt{4} & \\
& & & & \cdot & \ddots
\end{array}\right)
$$

(Here is a case where $\mathbf{a}^{\dagger} \mathbf{a}$ does not quite equal $\mathbf{a}^{\mathbf{a}^{\dagger}}$)

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

(Here is a case where $\mathbf{a}^{\dagger} \mathbf{a}$ does not quite equal $\mathbf{a}^{\mathbf{a}^{\dagger}}$)
(Welcome to ∞-dimensional... quantum space!)

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
                    Vacuum state
            1st excited state
    Normal ordering for matrix calculation
            Commutator derivative identities
            Binomial expansion identities
    Matrix }\langle\mp@subsup{\mathbf{a}}{}{\textrm{n}}\mp@subsup{\mathbf{a}}{}{\daggern}\rangle\mathrm{ calculations
| Number operator and Hamiltonian operator
```



```
    Expectation values of position, momentum, and uncertainty for eigenstate |n\rangle
    Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
2-D a*a algebra of U(2) representations and R(3) angular momentum operators
```

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$

Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{cccccc}
\cdot & 1 & & & & \\
& \cdot & \sqrt{2} & & & \\
& & \cdot & \sqrt{3} & & \\
& & & \cdot & \sqrt{4} & \\
& & & & \ddots \\
& & & & \ddots
\end{array}\right)
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!\cdot 2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor
$\left\langle\mathbf{a}^{*}\right\rangle=\left(\begin{array}{ccccc}\dot{1} & & & & \\ & j & & & \\ & \sqrt{2} & . & & \\ & & \sqrt{3} & & \\ & & & \sqrt{4} & \ddots \\ & & & & \ddots\end{array}\right)$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor
$\left\langle\mathbf{a}^{*}\right\rangle=\left(\begin{array}{ccccc}i & & & & \\ 1 & j & & & \\ & \sqrt{2} & - & & \\ & & \sqrt{3} & & \\ & & & \sqrt{4} & \vdots \\ & & & & \ddots\end{array}\right)$

$$
\text { Use: } \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor
$\left\langle\mathbf{a}^{*}\right\rangle=\left(\begin{array}{ccccc}\dot{1} & & & & \\ & j & & & \\ & \sqrt{2} & . & & \\ & & \sqrt{3} & & \\ & & & \sqrt{4} & \ddots \\ & & & & \ddots\end{array}\right)$

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{lllll}
& 1 & & & \\
& & \sqrt{2} & & \\
& & & & \\
& & \sqrt{3} & & \\
& & & \sqrt{4} & \\
& & & & \ddots \\
& & & & \ddots
\end{array}\right)
$$

$$
\text { Use: } \mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor
$\left\langle\mathbf{a}^{*}\right\rangle=\left(\begin{array}{ccccc}\dot{1} & & & & \\ & j & & & \\ & \sqrt{2} & . & & \\ & & \sqrt{3} & & \\ & & & \sqrt{4} & \ddots \\ & & & & \ddots\end{array}\right)$

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{lllll}
& 1 & & & \\
& & \sqrt{2} & & \\
& & & & \\
& & \sqrt{3} & & \\
& & & \sqrt{4} & \\
& & & & \ddots \\
& & & & \ddots
\end{array}\right)
$$

$$
\text { Use: } \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n|n\rangle
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor
$\left\langle\mathbf{a}^{*}\right\rangle=\left(\begin{array}{ccccc}i & & & & \\ 1 & j & & & \\ & \sqrt{2} & - & & \\ & & \sqrt{3} & & \\ & & & \sqrt{4} & \vdots \\ & & & & \ddots\end{array}\right)$

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{ccccc}
& \left.\begin{array}{llll}
1 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \ddots
\end{array}\right) \quad \text { Use: } \mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} . \\
& & & \\
\end{array}\right.
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n|n\rangle
$$

Hamiltonian operator
$\mathbf{H}|n\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}|n\rangle+\hbar \omega / 2 \mathbf{1}|n\rangle=\hbar \omega(n+1 / 2)|n\rangle$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$ $|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad$ where: $\quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{ccccc}
\cdot 1 & & & & \\
& \cdot & \sqrt{2} & & \\
& \cdot & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \ddots
\end{array}\right) \quad \text { Use: } \mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n|n\rangle
$$

Hamiltonian operator
$\mathbf{H}|n\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}|n\rangle+\hbar \omega / 2 \mathbf{1}|n\rangle=\hbar \omega(n+1 / 2)|n\rangle$
$\langle\mathbf{H}\rangle=\hbar \omega\left\langle\mathbf{a}^{\prime} \mathbf{a}+\frac{⿺^{2}}{2}\right\rangle=\hbar \omega\left(\begin{array}{lllll}0 & & & & \\ & 1 & & & \\ & & 2 & & \\ & & & 3 & \\ & & & & \ddots\end{array}\right)+\hbar \omega$
$1 / 2$

Hamiltonian operator is $\hbar \omega \mathbf{N}$ plus zero-point energy $\mathbf{1} \hbar \omega / 2$.

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
                    Vacuum state
            1st excited state
        Normal ordering for matrix calculation
            Commutator derivative identities
            Binomial expansion identities
        Matrix }\langle\mp@subsup{\mathbf{a}}{}{\textrm{n}}\mp@subsup{\mathbf{a}}{}{\daggern}\rangle\mathrm{ calculations
            Number operator and Hamiltonian operator
```

```
        Expectation values of position, momentum, and uncertainty for eigenstate |n\rangle
        Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
```

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2} \quad$ Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\overline{\mathbf{x}}_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\overline{\mathbf{x}}_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\left.\overline{\mathbf{x}^{2}}\right|_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle
$$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{\hbar} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\begin{gathered}
{\overline{\mathbf{x}^{2}}}_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle
\end{gathered}
$$

Operator for momentum $\mathrm{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle
$$

$$
=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{X}^{2}\right\rangle$:

$$
\begin{aligned}
& {\overline{\mathbf{x}^{2}}}_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
& =\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \\
& =\frac{\hbar}{2 M \omega}(2 n+1)
\end{aligned}
$$

Operator for momentum $\mathrm{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\begin{aligned}
&\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle \\
&=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle \\
&=\frac{\hbar M \omega}{2}(2 n+1)
\end{aligned}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\begin{aligned}
& {\overline{\mathbf{x}^{2}}}_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
& =\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \\
& =\frac{\hbar}{2 M \omega}(2 n+1)
\end{aligned}
$$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle
$$

$$
=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle
$$

$$
=\frac{\hbar M \omega}{2} \quad(2 n+1)
$$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
(\Delta q)^{2}=\sqrt{(q-\bar{q})^{2}} \quad \text { or: } \Delta q=\sqrt{(q-\bar{q})^{2}}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\begin{aligned}
& {\overline{\mathbf{x}^{2}}}_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
& =\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \\
& =\frac{\hbar}{2 M \omega}(2 n+1)
\end{aligned}
$$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a - a}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle
$$

$$
=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle
$$

$$
=\frac{\hbar M \omega}{2} \quad(2 n+1)
$$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \text { or: } \Delta q=\left.\sqrt{\overline{(q-\bar{q})^{2}}} \quad \Delta p\right|_{n}=\sqrt{\left.\overline{\mathbf{p}^{2}}\right|_{n}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$
expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:
$\overline{\mathbf{x}^{2}} \mathrm{I}_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle$
$=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \quad \quad \mathbf{a a}^{\dagger}=\mathbf{U s e}: \mathbf{a}^{\dagger} \mathbf{a}$
$=\frac{\hbar}{2 M \omega}(2 n+1)$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:
$\overline{\mathbf{p}^{2}} \mathrm{I}_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle$
$=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle$
$=\frac{\hbar M \omega}{2}(2 n+1)$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
\begin{aligned}
&(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \quad \text { or: } \Delta q=\sqrt{\overline{(q-\bar{q})^{2}}} \\
&\left.\Delta p\right|_{n}=\sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
\end{aligned}
$$

Heisenberg uncertainty product for the n-quantum eigenstate $|n\rangle$

$$
\left.(\Delta x \cdot \Delta p)\right|_{n}=\sqrt{\overline{\mathbf{x}^{2}}} \sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar(2 n+1)}{2 M \omega}} \sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$
expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:
$\overline{\mathbf{x}^{2}} I_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle$
$=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \quad \quad \mathbf{a a}^{\dagger}=\mathbf{U s e} \cdot \mathbf{a}^{\dagger} \mathbf{a}$
$=\frac{\hbar}{2 M \omega}(2 n+1)$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:
$\overline{\mathbf{p}^{2}} \mathrm{I}_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle$
$=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle$
$=\frac{\hbar M \omega}{2}(2 n+1)$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
\begin{aligned}
&(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \quad \text { or: } \Delta q=\sqrt{\overline{(q-\bar{q})^{2}}} \\
&\left.\Delta p\right|_{n}=\sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
\end{aligned}
$$

Heisenberg uncertainty product for the n-quantum eigenstate $|n\rangle$

$$
\begin{aligned}
\left.(\Delta x \cdot \Delta p)\right|_{n}= & \sqrt{\overline{\mathbf{x}^{2}}} \sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar(2 n+1)}{2 M \omega}} \sqrt{\frac{\hbar M \omega(2 n+1)}{2}} \\
& \left(\left.(\Delta x \cdot \Delta p)\right|_{n}=\hbar\left(n+\frac{1}{2}\right)\right)
\end{aligned}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$
expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:
$\overline{\mathbf{x}^{2}} \mathrm{I}_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle$
$=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \quad \quad \begin{gathered}\text { Us }\end{gathered}{ }^{\dagger}=\mathbf{1}+\mathbf{a}^{\dagger} \mathbf{a}$
$=\frac{\hbar}{2 M \omega}(2 n+1)$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a -} \mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:
$\overline{\mathbf{p}^{2}} I_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle$
$=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle$
$=\frac{\hbar M \omega}{2} \quad(2 n+1)$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
\begin{aligned}
&(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \quad \text { or: } \Delta q=\sqrt{\overline{(q-\bar{q})^{2}}} \\
&\left.\Delta p\right|_{n}=\sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
\end{aligned}
$$

Heisenberg uncertainty product for the n-quantum eigenstate $|n\rangle$

$$
\begin{aligned}
&\left.(\Delta x \cdot \Delta p)\right|_{n}= \sqrt{\overline{\mathbf{x}^{2}}} \sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar(2 n+1)}{2 M \omega}} \sqrt{\frac{\hbar M \omega(2 n+1)}{2}} \\
&\left(\left.(\Delta x \cdot \Delta p)\right|_{n}=\hbar\left(n+\frac{1}{2}\right)\right.
\end{aligned}
$$

Heisenberg minimum uncertainty product occurs for the 0 -quantum (ground) eigenstate.

$$
\left.(\Delta x \cdot \Delta p)\right|_{0}=\frac{\hbar}{2}
$$

We pause for sobering considerations of the quantum world $v s$. the classical one. Consider a "high"-quantum ($n=20$) eigenstate wavefunction:

We pause for sobering considerations of the quantum world vs. the classical one. Consider a "high"-quantum ($n=20$) eigenstate wavefunction:

We pause for sobering considerations of the quantum world $v s$. the classical one. Consider a "high"-quantum ($n=20$) eigenstate wavefunction:

$n=20$ wave is still a long way from a classical energy value of 1 Joule.
For a 1 Hz oscillator, 1 Joule would take a quantum number of roughly
$n=100,000,000,000,000,000,000,000,000,000,000,000=10^{35}$

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
    Normal ordering for matrix calculation
            Commutator derivative identities
            Binomial expansion identities
    Matrix }\langle\mp@subsup{\mathbf{a}}{}{\textrm{n}}\mp@subsup{\mathbf{a}}{}{\daggern}\rangle\mathrm{ calculations
            Number operator and Hamiltonian operator
            Expectation values of position, momentum, and uncertainty for eigenstate |n\rangle
            Harmonic oscillator beat dynamics of mixed states
            Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
```

$$
\begin{gathered}
|\Psi\rangle=|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle=\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi 0+\psi_{1}(x) \Psi 1
\end{gathered}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

$$
|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}
$$

$$
=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right) / 2}
$$

$$
=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
$$

$$
\begin{gathered}
|\Psi\rangle=|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle=\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi 0+\psi_{1}(x) \Psi 1
\end{gathered}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

$$
|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}
$$

$$
\begin{aligned}
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\right.}\right.\right.} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
\end{aligned}
$$

Need some overlap somewhere to get some wiggle

$$
\begin{gathered}
|\Psi\rangle=|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle=\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi 0+\psi_{1}(x) \Psi 1
\end{gathered}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

$$
|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}
$$

$$
=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right)^{2}}
$$

$$
=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2} \psi^{2}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
$$

$$
t=0 \quad t=\tau / 4 \quad \omega_{\text {ex }} \quad \omega_{1}
$$

$$
|\Psi\rangle=|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1}
$$

$$
\Psi(x)=\langle x \mid \Psi\rangle=\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi_{1}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

$$
\begin{aligned}
|\Psi(x, t)|= & \sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right)} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
\end{aligned}
$$

$$
t=0 \quad t=\tau / 4
$$

$$
\text { Beat frequency } \omega=\text { Transition frequency } \omega
$$

$$
|\Psi\rangle=|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1}
$$

$$
\Psi(x)=\langle x \mid \Psi\rangle=\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi 0+\psi_{1}(x) \Psi_{1}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

$$
\begin{aligned}
|\Psi(x, t)|= & \sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right)} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
\end{aligned}
$$

$$
t=0
$$

Beat frequency is eigenfrequency difference Beat frequency $\omega=$ Transition frequency ω Transition frequency is transition energy $/ \hbar$

$$
t=\tau / 2 / t=3 \tau / 4
$$ $\Delta E=E_{1 \leftarrow 0}$ transition $=E_{1}-E_{0}=\hbar \omega$

$$
|\Psi\rangle=|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1}
$$

$$
\Psi(x)=\langle x \mid \Psi\rangle=\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi_{1}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

$|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}$
$=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right)^{2}}$
$=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2} \operatorname{L\psi }_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}$

Beat frequency is eigenfrequency difference Beat frequency $\omega=$ Transition frequency ω Transition frequency is transition energy/ \hbar $\Delta E=E_{1 \leftarrow 0}$ transition $=E_{1}-E_{0}=\hbar \omega$ ω is frequency of radiating antenna of a transmitter or of a receiver, ie., of an emitter or an absorber
(Usually of a dipole symmetry)

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
        1st excited state
    Normal ordering for matrix calculation
        Commutator derivative identities
        Binomial expansion identities
    Matrix \langlea 'a}\mp@subsup{\mathbf{a}}{}{\daggern}\rangle\mathrm{ calculations
        Number operator and Hamiltonian operator
        Expectation values of position, momentum, and uncertainty for eigenstate |n\rangle
            Harmonic oscillator beat dynamics of mixed states
        Oscillator coherent states ("Shoved" and "kicked" states)
            Translation operators vs. boost operators
            Applying boost-translation combinations
            Time evolution of coherent state
            Properties of coherent state and "squeezed" states
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
```

Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators and generators: (A "shove")
Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions
$\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle$

Oscillator coherent states ("Shoved" and "kicked" states) Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions
$\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle$

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$

Oscillator coherent states ("Shoved" and "kicked" states) Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$

Shoves ψa-units to right or x-space a-units left $\langle x| \mathbf{T}(a)=\langle x-a|$ or: $\mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle$

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$
Increases momentum of ket-state by b units $\langle p| \mathbf{B}(b)=\langle p-b|$, or: $\mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle$

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
        Normal ordering for matrix calculation
            Commutator derivative identities
            Binomial expansion identities
    Matrix \langleana \# \ calculations
            Number operator and Hamiltonian operator
            Expectation values of position, momentum, and uncertainty for eigenstate | n\rangle
            Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked"states)
```

```
            Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
        Properties of coherent state and "squeezed" states
```

2-D a*a algebra of $U(2)$ representations and $R(3)$ angular momentum operators

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$ $\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$ is generator of translations

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$
Increases momentum of ket-state by b units $\langle p| \mathbf{B}(b)=\langle p-b|$, or: $\mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle$
Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$ $\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator of boosts

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$ $\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$ is generator \mathbf{G} of translations

$$
\mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}}
$$

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$
Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$
$\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$
is generator \mathbf{K} of boosts
$\mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}}$

Oscillator coherent states ("Shoved" and "kicked" states) Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$ $\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$ is generator \mathbf{G} of translations

$$
\begin{aligned}
& \mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}} \\
& \mathbf{T}(a) \cdot \boldsymbol{\psi}(x)=e^{a \mathbf{G}} \cdot \psi(x)=e^{-a \frac{\partial}{\partial x}} \cdot \psi(x) \\
& =\psi(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots
\end{aligned}
$$

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$ $\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator \mathbf{K} of boosts

$$
\begin{aligned}
& \mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}} \\
& \mathbf{B}(b) \cdot \psi(p)=e^{b \mathbf{K}} \cdot \boldsymbol{\psi}(p)=e^{-b} \frac{\partial}{\partial p} \cdot \boldsymbol{\psi}(p) \\
& =\psi(p)-b \frac{\partial \psi(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \boldsymbol{\psi}(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \psi(p)}{\partial p^{3}}+\ldots
\end{aligned}
$$

Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$ $\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$ is generator \mathbf{G} of translations

$$
\begin{aligned}
& \mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}} \\
& \mathbf{T}(a) \cdot \boldsymbol{\psi}(x)=e^{a \mathbf{G}} \cdot \boldsymbol{\psi}(x)=e^{-a \frac{\partial}{\partial x}} \cdot \boldsymbol{\psi}(x) \\
& =\boldsymbol{\psi}(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots
\end{aligned}
$$

\mathbf{G} relates to $\underset{i}{\text { momentum }} \mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x}$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$
$\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator \mathbf{K} of boosts
$\mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}}$
$\mathbf{B}(b) \cdot \boldsymbol{\psi}(p)=e^{b \mathbf{K}} \cdot \boldsymbol{\psi}(p)=e^{-b \frac{\partial}{\partial p}} \cdot \boldsymbol{\psi}(p)$
$=\boldsymbol{\psi}(p)-b \frac{\partial \boldsymbol{\psi}(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \boldsymbol{\psi}(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \boldsymbol{\psi}(p)}{\partial p^{3}}+\ldots$
\mathbf{K} relates to position $\mathbf{x} \rightarrow \hbar i \frac{\partial}{\partial p}=i \frac{\partial}{\partial k}$
$\mathbf{K}=\frac{i}{\hbar} \mathbf{x} \rightarrow-\frac{\partial}{\partial p}=\frac{-1}{\hbar} \frac{\partial}{\partial k}$

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$ $\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$ is generator \mathbf{G} of translations

$$
\begin{aligned}
& \mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}} \\
& \mathbf{T}(a) \cdot \boldsymbol{\psi}(x)=e^{a \mathbf{G}} \cdot \psi(x)=e^{-a \frac{\partial}{\partial x}} \cdot \psi(x) \\
& =\psi(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots
\end{aligned}
$$

\mathbf{G} relates to $\underset{i}{\text { momentum }} \mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x}$
$\mathbf{G}=-\frac{i}{\hbar} \mathbf{p} \rightarrow-\frac{\partial}{\partial x}$
$\mathbf{T}(a)=e^{-a \frac{i}{\hbar} \mathbf{p}}=e^{a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}}$

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$
$\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator \mathbf{K} of boosts
$\mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}}$
$\mathbf{B}(b) \cdot \boldsymbol{\psi}(p)=e^{b \mathbf{K}} \cdot \boldsymbol{\psi}(p)=e^{-b \frac{\partial}{\partial p}} \cdot \boldsymbol{\psi}(p)$
$=\boldsymbol{\psi}(p)-b \frac{\partial \boldsymbol{\psi}(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \boldsymbol{\psi}(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \boldsymbol{\psi}(p)}{\partial p^{3}}+\ldots$
\mathbf{K} relates to $\underset{i}{\operatorname{position} \mathbf{x}} \rightarrow \hbar i \frac{\partial}{\partial p}=i \frac{\partial}{\partial k}$
$\mathbf{K}=\frac{i}{\hbar} \mathbf{x} \rightarrow-\frac{\partial}{\partial p}=\frac{-1}{\hbar} \frac{\partial}{\partial k}$
$\mathbf{B}(b)=e^{b \frac{i}{\hbar} \mathbf{x}}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}}$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$ $\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$
is generator \mathbf{G} of translations
$\mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}}$
$\mathbf{T}(a) \cdot \boldsymbol{\psi}(x)=e^{a \mathbf{G}} \cdot \boldsymbol{\psi}(x)=e^{-a \frac{\partial}{\partial x}} \cdot \boldsymbol{\psi}(x)$
$=\boldsymbol{\psi}(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots$
\mathbf{G} relates to momentum $\mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x}$
$\mathbf{G}=-\frac{i}{\hbar} \mathbf{p} \rightarrow-\frac{\partial}{\partial x}$
$\mathbf{T}(a)=e^{-a \frac{i}{\hbar} \mathbf{p}}=e^{a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}}$
Check $\mathbf{T}(a)$ on plane-wave with $p=\hbar k \quad$ Bottom Line
$\mathbf{T}(a) e^{i k x}=e^{-i a \mathbf{p} / \hbar} e^{i k x}=e^{-i a k} e^{i k x}=e^{i k(x-a)}$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$ $\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator \mathbf{K} of boosts
$\mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}}$
$\mathbf{B}(b) \cdot \boldsymbol{\psi}(p)=e^{b \mathbf{K}} \cdot \boldsymbol{\psi}(p)=e^{-b} \frac{\partial}{\partial p} \cdot \psi(p)$
$=\boldsymbol{\psi}(p)-b \frac{\partial \boldsymbol{\psi}(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \boldsymbol{\psi}(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \boldsymbol{\psi}(p)}{\partial p^{3}}+\ldots$
\mathbf{K} relates to position $\underset{\partial}{\mathbf{x}} \rightarrow \hbar i \frac{\partial}{\partial p}=i \frac{\partial}{\partial k}$
$\mathbf{K}=\frac{i}{\hbar} \mathbf{x} \rightarrow-\frac{\partial}{\partial p}=\frac{-1}{\hbar} \frac{\partial}{\partial k}$
$\mathbf{B}(b)=e^{b \frac{i}{\hbar} \mathbf{x}}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}}$
Check $\mathbf{B}(b)$ on plane-wave with $p=\hbar k$

$$
1-D
$$

 Creation-Destruction algebra
 Creation-Destruction àa algebra
 Eigenstate creationism (and destruction)
 Vacuum state
 \(1{ }^{\text {st }}\) excited state
 Normal ordering for matrix calculation
 Commutator derivative identities
 Binomial expansion identities
 Matrix \(\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle\) calculations
 Number operator and Hamiltonian operator
 Expectation values of position, momentum, and uncertainty for eigenstate \(|n\rangle\)
 Harmonic oscillator beat dynamics of mixed states
 Oscillator coherent states ("Shoved" and "kicked" states)
 Translation operators vs. boost operatorsApplying boost-translation combinationsTime evolution of coherent state
 Properties of coherent state and "squeezed" states
 2-D a*a algebra of $U(2)$ representations and $R(3)$ angular momentum operators

Applying boost-translation combinations
$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first?

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??

Applying boost-translation combinations
$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both.

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{-i J_{z} \gamma / \hbar}$)

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{-i \mathbf{J}_{z} \gamma / \hbar}$)

May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{-i \mathrm{~J}^{2} \gamma / \hbar}$)

May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.

$$
\begin{aligned}
\mathbf{C}(a, b) & =e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} \\
& =e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}}
\end{aligned}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \boldsymbol{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{-i \mathbf{J}_{z} \gamma / \hbar}$)

May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase. Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \boldsymbol{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{-i \mathbf{J}_{z} \gamma / \hbar}$) May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase. Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha * \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{\left.-i \mathbf{J}_{\mathbf{J}} \gamma\right\rangle \hbar}$) May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.
Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & & \alpha(a, b) \\
& =e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & \\
=\left[a+i \frac{b}{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega}\right. \\
\sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
=e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0}{ }^{*} \mathbf{a}}|0\rangle
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{\left.-i \mathbf{J}_{\mathbf{J}} \gamma\right\rangle \hbar}$) May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.
Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & & \alpha(a, b) \\
& =e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & \\
=\left[a+i \frac{b}{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega}\right. \\
\sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0,}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
\begin{aligned}
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0} * \mathbf{a}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}}|0\rangle
\end{aligned}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{-i \mathrm{~J}^{2} \gamma / \hbar}$) May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.
Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & & \alpha(a, b) \\
& =e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & \\
=\left[a+i \frac{b}{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega}\right. \\
\sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
\begin{aligned}
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0}^{*} \mathbf{a}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty}\left(\alpha_{0} \mathbf{a}^{\dagger}\right)^{n}|0\rangle / n!
\end{aligned}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{z} \alpha / \hbar} e^{-i \mathbf{J}_{y} \beta / \hbar} e^{-i \mathrm{~J}^{2} \gamma / \hbar}$) May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.
Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & & \alpha(a, b) \\
& =e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & \\
=a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
\begin{aligned}
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0}{ }^{*} \mathbf{a}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty}\left(\alpha_{0} \mathbf{a}^{\dagger}\right)^{n}|0\rangle / n! \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle, \quad \text { where: }|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}
\end{aligned}
$$

```
1-D a*a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
        Normal ordering for matrix calculation
            Commutator derivative identities
            Binomial expansion identities
    Matrix \langleana \# \ calculations
            Number operator and Hamiltonian operator
            Expectation values of position, momentum, and uncertainty for eigenstate | n\rangle
            Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
            Translation operators vs. boost operators
    \ Applying boost-translation combinations
2-D a*a algebra of U(2) representations and R(3) angular momentum operators
```

Time evolution of coherent state: $\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle$
Time evolution operator for constant \mathbf{H} has general form: $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$

Time evolution of coherent state: $\quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle$
Time evolution operator for constant \mathbf{H} has general form: $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Time evolution of coherent state: $\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{\left.-\mid \alpha_{0}\right)^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle$
Time evolution operator for constant \mathbf{H} has general form: $\quad \mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Time evolution of coherent state: $\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle$
Time evolution operator for constant \mathbf{H} has general form: $\quad \mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Evolution simplifies to a variable- α_{0} coherent state with a time dependent phasor coordinate α_{t} :

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-i \omega t / 2}\left|\alpha_{t}\left(x_{t}, p_{t}\right)\right\rangle \text { where: } \begin{array}{c}
\alpha_{t}\left(x_{t}, p_{t}\right)
\end{array}=e^{-i \omega t} \alpha_{0}\left(x_{0}, p_{0}\right) \\
{\left[x_{t}+i \frac{p_{t}}{M \omega}\right]=e^{-i \omega t}\left[x_{0}+i \frac{p_{0}}{M \omega}\right] }
\end{aligned}
$$

Time evolution of coherent state: $\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle$
Time evolution operator for constant \mathbf{H} has general form: $\quad \mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Evolution simplifies to a variable- α_{0} coherent state with a time dependent phasor coordinate α_{t} :

$$
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-i \omega t / 2}\left|\alpha_{t}\left(x_{t}, p_{t}\right)\right\rangle \quad \text { where: } \quad \alpha_{t}\left(x_{t}, p_{t}\right)=e^{-i \omega t} \alpha_{0}\left(x_{0}, p_{0}\right)
$$

$$
\left[x_{t}+i \frac{p_{t}}{M \omega}\right]=e^{-i \omega t}\left[x_{0}+i \frac{p_{0}}{M \omega}\right]
$$

$\left(x_{t}, p_{t}\right)$ mimics classical oscillator

$$
\begin{aligned}
x_{t} & =x_{0} \cos \omega t+\frac{p_{0}}{M \omega} \sin \omega t \\
\frac{p_{t}}{M \omega} & =-x_{0} \sin \omega t+\frac{p_{0}}{M \omega} \cos \omega t
\end{aligned}
$$

Real and imaginary parts (x_{t} and $p_{t} / M \omega$) of α_{t} go clockwise on phasor circle

```
1-D a`a algebra of U(1) representations
    Creation-Destruction a`a algebra
    Eigenstate creationism (and destruction)
            Vacuum state
            1st excited state
    Normal ordering for matrix calculation
        Commutator derivative identities
        Binomial expansion identities
    Matrix \langleana}\mp@subsup{\mathbf{a}}{}{\daggern}\rangle\mathrm{ calculations
        Number operator and Hamiltonian operator
        Expectation values of position, momentum, and uncertainty for eigenstate | n\rangle
        Harmonic oscillator beat dynamics of mixed states
    Oscillator coherent states ("Shoved" and "kicked" states)
        Translation operators vs. boost operators
        Applying boost-translation combinations
        Time evolution of coherent state
\PProperties of coherent state and "squeezed" states <
2-D a*a algebra of U(2) representations and R(3) angular momentum operators
```


Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle
$$

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{array}{r}
\mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle
\end{array}
$$

$$
t=0.3 \tau
$$

.

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{gathered}
\mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
=\alpha_{0}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle
\end{gathered}
$$

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{aligned}
& \mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left\langle\left.\alpha_{0}\right|^{2} / 2\right.} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
& =\alpha_{0}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \quad \text { with eigenvalue } \alpha_{0}
\end{aligned}
$$

$$
\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \mathbf{a}^{\dagger}=\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \alpha_{0}^{*}
$$

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{aligned}
& \mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
& =\alpha_{0}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \quad \text { with eigenvalue } \alpha_{0}
\end{aligned}
$$

Expected quantum energy has simple time independent form

$$
\begin{aligned}
& \left.\langle E\rangle\right|_{\alpha_{0}}=\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \mathbf{H}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \\
& =\left\langle\alpha _ { 0 } (x _ { 0 } , p _ { 0 }) \left(\left(\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\frac{\hbar \omega}{2} \mathbf{1}\right)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle\right.\right. \\
& =\hbar \omega \alpha_{0}^{*} \alpha_{0}+\frac{\hbar \omega}{2}
\end{aligned}
$$

Properties of "squeezed" coherent states

Yeah! Cosine trajectory!

Properties of "squeezed" coherent states

Yeah! Cosine trajectory!

> what happens if you apply operators with non-linear "tensor" exponents $\exp \left(s \mathbf{x}^{2}\right), \exp \left(f \mathbf{p}^{2}\right)$, etc.

Properties of "squeezed" coherent states

