Group Theory in Quantum Mechanics

Octahedral-tetrahedral $O \sim T_{d}$ representations and spectra

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)
(PSDS - Ch. 4)
Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure
Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting ($n \mathrm{Ormal} D_{2}$ vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting
Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression
\rightarrow Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting ($\mathrm{O} \mathrm{Ormal} D_{2}$ vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting
Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} O=6$ hexahedron squares $\cdot 4$ pts $=24$
$=8$ octahedron triangles $\cdot 3$ pts $=24$ $=12$ lines $\cdot 2$ pts $=24$ positions

Octahedral group O operations

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Octahedral group O operations

Tetrahedral symmetry becomes Icosahedral

Order ${ }^{\circ} \mathrm{O}=6$ hexahedron squares $\cdot 4$ pts $=24$
$=8$ octahedron triangles $\cdot 3$ pts $=24$
$=12$ lines $\cdot 2 \mathrm{pts}=24$ positions

Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral groups $O_{h} \supset O \sim T_{d}$ and $O_{h} \supset T_{h} \supset T$

Figure 4.1.5 The full octahedral group $\left(O_{h}\right)$ and four non-Abelian subgroups T, T_{h}, T_{d}, and O. The Abelian D_{2} subgroup of T is indicated also.

Fig. 4.1.5 from $P_{\text {rinciples of }} S_{y m m e t r y,} D_{\text {ynamics and }} S_{\text {pectroscopy }}$

1	r_{1}	r_{2}	r_{3}	r_{4}	r_{1}^{2}	r_{2}^{2}	r_{3}^{2}	r_{4}^{2}	R_{1}^{2}	R_{2}^{2}	R_{3}^{2}	R_{1}	R_{2}	R_{3}	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}	i_{6}
r_{1}	r_{1}^{2}	$-r_{4}^{2}$	$-r_{2}^{2}$	$-r_{3}^{2}$	-1	$-R_{2}^{2}$	$-R_{3}^{2}$	$-R_{1}^{2}$	-r	$-r_{3}$	$-r_{4}$	i_{3}	i_{6}	i_{1}	$-R_{3}$	$-R_{1}$	$-R_{2}$	R_{1}^{3}	i_{5}	R_{2}^{3}	i_{2}	$-i_{4}$	R_{3}^{3}
r_{2}	$-r_{3}^{2}$	r_{2}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	R_{2}^{2}	-1	R_{1}^{2}	$-R_{3}^{2}$	r_{1}	r_{4}	r_{3}	R_{3}	$-R_{1}^{3}$	i_{2}	i_{3}	$-i_{5}$	R_{2}^{3}	i_{6}	$-R_{1}$	R_{2}	$-i_{1}$	R_{3}^{3}	i_{4}
r_{3}	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{3}^{2}	$-r_{2}^{2}$	R_{3}^{2}	$-R_{1}^{2}$	-1	R_{2}^{2}	$-r_{4}$	r_{1}	r_{2}	$-i_{4}$	R_{1}	$-R_{2}^{3}$	R_{3}^{3}	i_{6}	i_{2}	i_{5}	$-R_{1}^{3}$	i_{1}	R_{2}	$-i_{3}$	R_{3}
r_{4}	$-r_{2}^{2}$	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	R_{1}^{2}	R_{3}^{2}	$-R_{2}^{2}$	-1	r_{3}	r_{2}	r_{1}	$-R_{3}^{3}$	$-i_{5}$	R_{2}	$-i_{4}$	R_{1}^{3}	i_{1}	R_{1}	i_{6}	$-i_{2}$	R_{2}^{3}	R_{3}	i_{3}
r_{1}^{2}	-1	R_{1}^{2}	R_{2}^{2}	R_{3}^{2}	$-r_{1}$	r_{3}	r_{4}	r_{2}		r_{2}^{2}	r_{3}^{2}	R_{2}^{3}	R_{3}^{3}	R_{1}^{3}	$-i_{1}$	$-i_{3}$	$-i_{6}$	$-R_{3}$	$-i_{4}$	$-R_{1}$	i_{5}	i_{2}	$-R_{2}$
r_{2}^{2}	$-R_{1}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	r_{4}	r_{2}	r_{1}	r_{3}	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	i_{2}	$-i_{3}$	$-R_{1}$	R_{2}	$-R_{3}^{3}$	$-i_{5}$	i_{4}	$-R_{3}$	$-R_{1}^{3}$	$-i_{6}$	R_{2}^{3}	$-i_{1}$
r_{3}^{2}	$-R_{2}^{2}$	$-R_{3}^{2}$	-1	R_{1}^{2}	r_{2}	r_{4}	r_{3}	r_{1}	r_{2}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	$-R_{2}$	$-i_{4}$	$-i_{6}$	i_{2}	R_{3}	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	i_{5}	R_{1}	$-i_{1}$	$-R_{2}^{3}$
r_{4}^{2}	$-R_{3}^{2}$	R_{2}^{2}	$-R_{1}^{2}$	-1	r_{3}	r_{1}	r_{2}	$-r_{4}$	$-r_{1}^{2}$	r_{3}^{2}	$-r_{2}^{2}$	$-i_{1}$	$-R_{3}$	$-i_{5}$	$-R_{2}^{3}$	$-i_{4}$	R_{1}	$-R_{3}^{3}$	i_{3}	$-i_{6}$	R_{1}^{3}	R_{2}	$-i_{2}$
R_{1}^{2}	$-r_{4}$	r_{3}	$-r_{2}$	r_{1}	r_{2}^{2}	$-r_{1}^{2}$	r_{4}^{2}	$-r_{3}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	R_{1}^{3}	i_{1}	$-i_{4}$	$-R_{1}$	i_{2}	$-i_{3}$	$-R_{2}$	$-R_{2}^{3}$	R_{3}^{3}	R_{3}	$-i_{6}$	i_{5}
R_{2}^{2}	$-r_{2}$	r_{1}	r_{4}	r_{3}	r_{3}^{2}	r_{4}^{2}	$-r_{1}^{2}$	r_{2}^{2}	$-R_{3}^{2}$	-1	R_{1}^{2}	$-i_{5}$	R_{2}^{3}	,	$-i_{6}$	$-R_{2}$	$-i_{4}$	-	i_{1}	$-R_{3}$	R_{3}^{3}	R_{1}	R_{1}^{3}
R_{3}^{2}	$-r_{3}$	r_{4}	r_{1}	r_{2}	r_{4}^{2}	r_{3}^{2}	$-r_{2}^{2}$	$-r_{1}^{2}$	R_{2}^{2}	$-R_{1}^{2}$	-1	i_{6}	i_{2}	R_{3}^{3}	$-i_{5}$	$-i_{1}$	$-R_{3}$	R_{2}^{3}	$-R_{2}$	i_{4}	$-i_{3}$	R_{1}^{3}	$-R_{1}$
R_{1}	i_{1}	$-R_{2}^{3}$	$-i_{2}$	R_{2}	R_{3}^{3}	$-i_{3}$	$-R_{3}$	i_{4}	R_{1}^{3}	i_{6}	i_{5}	R_{1}^{2}	r_{1}	$-r_{4}^{2}$	-1	$-r_{3}$	r_{2}^{2}	$-r_{4}$		r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_{3}^{2}
R_{2}	i_{3}	R_{3}	$-R_{3}^{3}$	i_{4}	R_{1}^{3}	i_{5}	$-i_{6}$	$-R_{1}$	$-i_{2}$	R_{2}^{3}	i_{1}	$-r_{2}^{2}$	R_{2}^{2}	r_{1}	r_{3}^{2}	-1	$-r_{4}$	R_{1}^{2}	R_{3}^{2}	- r_{2}	$-r_{3}$	$-r_{4}^{2}$	r_{1}^{2}
R_{3}	i_{6}	i_{5}	R_{1}	$-R_{1}^{3}$	R_{2}^{3}	$-R_{2}$	$-i_{2}$	$-i_{1}$	i_{3}	i_{4}	R_{3}^{3}	r_{1}	$-r_{3}^{2}$	R_{3}^{2}	-r	r_{4}^{2}	-1	r_{1}^{2}	r_{2}^{2}	R_{2}^{2}	$-R_{1}^{2}$	$-r_{4}$	r_{3}
R_{1}^{3}	$-R_{2}$	$-i_{2}$	R_{2}^{3}	i_{1}	$-i_{3}$	$-R_{3}^{3}$	i_{4}	R_{3}	$-R_{1}$	i_{5}	$-i_{6}$	-1	$-r_{4}$	r_{3}^{2}	- R_{1}^{2}	r_{2}	$-r_{1}^{2}$	$-r_{1}$	r_{3}	r_{2}^{2}	$-r_{4}^{2}$	$-R_{3}^{2}$	$-R_{2}^{2}$
R_{2}^{3}	$-R_{3}$	i_{3}	i_{4}	R_{3}^{3}	$-i_{6}$	R_{1}	$-R_{1}^{3}$	i_{5}	$-i_{1}$	$-R_{2}$	- i_{2}	r_{4}^{2}	-1	$-r_{2}$	$-r_{1}^{2}$	$-R_{2}^{2}$	r_{3}	$-R_{3}^{2}$	R_{1}^{2}	$-r_{1}$	$-r_{4}$	$-r_{2}^{2}$	r_{3}^{2}
R_{3}^{3}	$-R_{1}$	R_{1}^{3}	i_{6}	i_{5}	$-i_{1}$	$-i_{2}$	R_{2}	$-R_{2}^{3}$	i_{4}	$-i_{3}$	$-R_{3}$	$-r_{3}$	r_{2}^{2}	-1	r_{4}	$-r_{1}^{2}$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}$	
i_{1}	R_{3}^{3}	$-i_{4}$	i_{3}	R_{3}	$-R_{1}$	$-i_{6}$	$-i_{5}$	$-R_{1}^{3}$	R_{2}^{3}	i_{2}	$-R_{2}$	r_{1}^{2}	R_{3}^{2}	$-r_{4}$	r_{4}^{2}	$-R_{1}^{2}$	$-r_{1}$	-1	$-R_{2}^{2}$	$-r_{3}$	r_{2}	r_{3}^{2}	r_{2}^{2}
i_{2}	i_{4}	R_{3}^{3}	R_{3}	$-i_{3}$	$-i_{5}$	R_{1}^{3}	R_{1}	$-i_{6}$	R_{2}	$-i_{1}$	R_{2}^{3}	$-r_{3}^{2}$	$-R_{1}^{2}$	r_{3}	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_{2}^{2}	-1	r_{4}	r_{1}	r_{1}^{2}	r_{4}^{2}
i_{3}	R_{1}^{3}	R_{1}	$-i_{5}$	i_{6}	$-R_{2}$	$-R_{2}^{3}$	$-i_{1}$	i_{2}	$-R_{3}$	R_{3}^{3}	$-i_{4}$	$-r_{2}$	r_{1}^{2}	R_{1}^{2}	$-r_{1}$	r_{2}^{2}	$-R_{2}^{2}$	r_{3}^{2}	$-r_{4}^{2}$	-1	R_{3}^{2}	r_{3}	r_{4}
i_{4}	$-i_{5}$	i_{6}	$-R_{1}^{3}$	$-R_{1}$	$-i_{2}$	i_{1}	$-R_{2}^{3}$	$-R_{2}$	$-R_{3}^{3}$	$-R_{3}$	i_{3}	r_{4}	r_{4}^{2}	R_{2}^{2}	,	r_{3}^{2}	R_{1}^{2}	$-r_{2}^{2}$	r_{1}^{2}	$-R_{3}^{3}$	-1	r_{1}	- r_{2}
i_{5}	i_{2}	$-R_{2}$	i_{1}	$-R_{2}^{3}$	i_{4}	$-R_{3}$	i_{3}	$-R_{3}^{3}$	i_{6}	$-R_{1}^{3}$	$-R_{1}$	R_{3}^{2}	r_{2}	r_{2}^{2}	R_{2}^{2}	r_{4}	r_{4}^{2}	$-r_{3}$	$-r_{1}$	r_{3}	$-r_{1}^{2}$	-1	$-R_{1}^{2}$
i_{6}	R_{2}^{3}	i_{1}.	R_{2}	i_{2}	$-R_{3}$	$-i_{4}$	$-R_{3}^{3}$	$-i_{3}$	$-i_{5}$	$-R_{1}$	R_{1}^{3}	R_{2}^{2}	$-r_{3}$	r_{1}^{2}	$-R_{3}^{2}$	$-r_{1}$	r_{3}^{2}	$-r_{2}$	$-r_{4}$	r_{4}^{2}	r_{2}^{2}	R_{1}^{2}	-1

Octahedral O and spin- $O \subset U(2)$ rotation product Table F.2.1 from $P_{\text {rinciples of }} S_{\text {ymmetry }} D_{\text {ynamics and }} S_{\text {pectroscopy }}$

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure
\square Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations
Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting ($n \mathrm{Ormal} D_{2}$ vs. un $\mathrm{Ormal} D_{2}$)
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting
Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression

Octahedral $O \supset D_{4} \supset C_{4}$ subgroup correlations
$O \downarrow D_{4}$ subduction

Octahedral $O \supset D_{4} \supset C_{4}$ subgroup correlations
$O \downarrow D_{4}$ subduction

Octahedral $O \supset D_{4} \supset C_{4}$ subgroup correlations

$O \downarrow D_{4}$ subduction

Octahedral $O \supset D_{4} \supset C_{4}$ subgroup correlations

$O \downarrow D_{4}$ subduction
 1, $\mathbf{R}_{\mathbf{z}+90^{\circ}}, \boldsymbol{\rho}_{\mathrm{z} 180^{\circ}}, \mathbf{R}_{\mathrm{z}-90^{\circ}}$

$$
\begin{array}{lllll}
A_{1}\left(D_{4}\right) \downarrow C_{4}=1, & 1, & 1, & 1 . & =(0)_{4} \\
B_{1}\left(D_{4}\right) \downarrow C_{4}=1, & -1, & 1, & -1 . & =(2)_{4} \\
A_{2}\left(D_{4}\right) \downarrow C_{4}=1, & 1, & 1, & 1 . & =(0)_{4} \\
B_{2}\left(D_{4}\right) \downarrow C_{4}=1, & -1, & 1, & -1 . & =(2)_{4}
\end{array}
$$

$$
\left.\begin{aligned}
& \text { O } \begin{array}{l}
\text { C4 subduction } \\
O \downarrow C_{4}
\end{array} 0_{4} \\
& 1_{4}
\end{aligned} 2_{4} 3_{4}=\overline{1}_{4} \right\rvert\, . . .
$$

$D_{4} \downarrow C_{4}$	0_{4}	1_{4}	2_{4}	$3_{4}=\overline{1}_{4}$
$\ldots \cdots \cdot A_{1}$	1	\cdot	\cdot	\cdot
$\ldots \cdots \cdot B_{1}$	\cdot	$\cdot \rightarrow 1$	\cdot	
A_{2}	1	\cdot	\cdot	\cdot
B_{2}	\cdot	\cdot	1	\cdot
E	\cdot	1	\cdot	1

Order of Symmetry Grow

Octahedral $O \supset D_{4} \supset C_{4}$ subgroup correlations

1, $\mathbf{R}_{z+90^{\circ}}, \boldsymbol{\rho}_{z 180^{\circ}}, \mathbf{R}_{z-90^{\circ}}$
$A_{1}\left(D_{4}\right) \downarrow C_{4}=1, \quad 1, \quad 1, \quad 1 . \quad=(0)_{4}$ $B_{1}\left(D_{4}\right) \downarrow C_{4}=1, \quad-1, \quad 1, \quad-1 . \quad=(2)_{4}$ $A_{2}\left(D_{4}\right) \downarrow C_{4}=1, \quad 1, \quad 1, \quad 1 .=(0)_{4}$ $B_{2}\left(D_{4}\right) \downarrow C_{4}=1, \quad-1, \quad 1, \quad-1 . \quad=(2)_{4}$ $E\left(D_{4}\right) \downarrow C_{4}=2, \quad 0, \quad-2, \quad 0 . \quad=(1)_{4} \oplus(3)_{4}$

Order of Symmetry Grow

$\chi_{g}^{\mu}\left(C_{4}\right)$	$\mathbf{g}=\mathbf{1}$	$\mathbf{R}_{z+90^{\circ}}$	$\mathbf{R}_{z+180^{\circ}}$	$\mathbf{R}_{z-90^{\circ}}$
$(0)_{4}$	1	1	1	1
$(1)_{4}$	1	i	-1	$-i$
$(2)_{4}$	1	-1	1	-1
$(3)_{4}$	1	$-i$	-1	i

$$
\begin{aligned}
& \text { } \\
& \text {. } \\
& \text {. }
\end{aligned}
$$

$$
\begin{gathered}
C \\
\hline
\end{gathered}
$$

$O \downarrow C_{4}$ subduction

$O \downarrow D_{4}$ subduction

$D_{4}: \mathbf{1}, \boldsymbol{\rho}_{\mathrm{z} 180^{\circ}}, \mathbf{R}_{\mathrm{z} \pm 90^{\circ}}, \boldsymbol{\rho}_{\mathrm{z} 180^{\circ}}, \mathbf{i}_{3,4}$

Octahedral $O \supset D_{4} \supset C_{4}$ subgroup correlations

 $O \downarrow D_{4}$ subduction

Octahedral $O \supset D_{4} \supset C_{4}$ subgroup correlations

 $O \downarrow D_{4}$ subduction

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations
\downarrow Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting ($n \mathrm{Ormal} D_{2}$ vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting
Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression
$\mathrm{O} \supset D_{4} \supset C_{4}$ level splitting

Tetragonal Moving Wave Chain			$\begin{array}{r} C_{4}\left\{\mathbf{1}, \mathbf{R}_{z}^{1}, \mathbf{R}_{z}^{2}, \mathbf{R}_{z}^{3}\right\} \\ \\ \left\{\mathbf{1}, \mathbf{R}_{3}^{2}, \mathbf{R}_{3}^{2}, \mathbf{R}_{3}^{3}\right\} \end{array}$					
Octahedral	Tetragonal	Cyclic-4	0_{4}					
		C4	2_{4}					
A1	A 1	04	3_{4}		1			

A_{2}	$\mathrm{~B}_{1}$	24

$D_{4} \downarrow C_{4}$	0_{4}	1_{4}	2_{4}	3_{4}
A_{1}	1	\cdot	\cdot	\cdot
B_{1}	\cdot	\cdot	1	\cdot
A_{2}	1	\cdot	\cdot	\cdot
B_{2}	\cdot	\cdot	1	\cdot
E	\cdot	1	\cdot	1

$\mathbf{r}, \tilde{\mathbf{r}}_{i}$	$\rho_{x y z}$	$\mathbf{R}, \tilde{\mathbf{R}}_{x y z}$			
O	$\mathbf{1}$	\mathbf{r}	\mathbf{R}^{2}	\mathbf{R}^{3}	\mathbf{i}_{k}
$\mathrm{~A}_{1}$	1	1	1	1	1
$\mathrm{~A}_{2}$	1	1	1	-1	-1
E	2	-1	2	0	0
$\mathrm{~T}_{1}$	3	0	-1	1	-1
$\mathrm{~T}_{2}$	3	0	-1	-1	1

$\mathrm{O} \downarrow D_{4}$	A_{1}	B_{1}	A_{2}	B_{2}	E
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	\cdot	1	\cdot	\cdot	\cdot
E	1	1	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	\cdot	1	\cdot	1
$\mathrm{~T}_{2}$	\cdot	\cdot	\cdot	1	1

$\mathrm{O} \downarrow C_{4}$	0_{4}	1_{4}	2_{4}	3_{4}
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	\cdot	\cdot	1	\cdot
E	1	\cdot	1	\cdot
$\mathrm{~T}_{1}$	1	1	\cdot	1
$\mathrm{~T}_{2}$	\cdot	1	1	1

$\mathrm{O} \supset D_{4} \supset D_{2}$ level splitting

NOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{R}_{1}^{2}, \mathbf{R}_{2}^{2}\right\}$

$\mathrm{O} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	1	\cdot	\cdot	\cdot
E	2	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	1	1	1
$\mathrm{~T}_{2}$	\cdot	1	1	1

$D_{4} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
A_{1}	1	\cdot	\cdot	\cdot
B_{1}	1	\cdot	\cdot	\cdot
A_{2}	\cdot	\cdot	1	\cdot
B_{2}	\cdot	\cdot	1	\cdot
E	\cdot	1	\cdot	1

$$
\mathrm{A}_{2} \quad \mathrm{~B}_{1}-\quad 24
$$

$\mathrm{O} \downarrow D_{4}$	A_{1}	B_{1}	A_{2}	B_{2}	E
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	\cdot	1	\cdot	\cdot	\cdot
E	1	1	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	\cdot	1	\cdot	1
$\mathrm{~T}_{2}$	\cdot	\cdot	\cdot	1	1

$D_{2}^{N m}\{1$,	$\mathbf{R}_{z}^{2}, \mathbf{R}_{x}^{2}$,	$\left.\mathbf{R}_{y}^{2}\right\}$		
A_{1}	1	1	1	1
B_{1}	1	-1	1	-1
A_{2}	1	1	-1	-1
B_{2}	1	-1	-1	1

$-1_{4}=$

$$
\mathbf{r}, \tilde{\mathbf{r}}_{i} \rho_{x y z} \mathbf{R}, \tilde{\mathbf{R}}_{x y z}
$$

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting ($n \mathrm{Ormal} D_{2}$ vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset D_{2}$ subgroup splitting Tetragonal Standing Wave Chain

Octahedral O Tetragonal D_{4} NOrmal Dihedral D_{2} A 1	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$

NOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{R}_{1}^{2}, \mathbf{R}_{2}^{2}\right\}$

$\mathrm{O} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	1	\cdot	\cdot	\cdot
E	2	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	1	1	1
$\mathrm{~T}_{2}$	\cdot	1	1	1

$\mathrm{O} \downarrow D_{4}$	A_{1}	B_{1}	A_{2}	B_{2}	E
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	\cdot	1	\cdot	\cdot	\cdot
E	1	1	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	\cdot	1	\cdot	1
$\mathrm{~T}_{2}$	\cdot	\cdot	\cdot	1	1

\(\left.\left.$$
\begin{array}{l}\begin{array}{l}D_{2}^{N m}\{ \end{array}
$$ \mathbf{1}, \mathbf{R}_{z}^{2}, \mathbf{R}_{x}^{2},

\left.\mathbf{R}_{y}^{2}\right\}

D_{2}^{U n}\{ \end{array} \mathbf{1}, \mathbf{R}_{z}^{2}, \mathbf{i}_{3}, \quad \mathbf{i}_{4}\right\}\right\}\), | A_{1} | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| B_{1} | 1 | -1 | 1 | -1 |
| A_{2} | 1 | 1 | -1 | -1 |
| B_{2} | 1 | -1 | -1 | 1 |

NOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{R}_{1}^{2}, \mathbf{R}_{2}^{2}\right\}$

$D_{4} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
A_{1}	1	\cdot	\cdot	\cdot
B_{1}	1	\cdot	\cdot	\cdot
A_{2}	\cdot	\cdot	1	\cdot
B_{2}	\cdot	\cdot	1	\cdot
E	\cdot	1	\cdot	1

$$
\operatorname{Un\mathbf {O}mal} D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{i}_{3}, \mathbf{i}_{4}\right\}
$$

$$
\begin{array}{c|cccc}
D_{4} \downarrow D_{2} & A_{1} & B_{1} & A_{2} & B_{2} \\
\hline A_{1} & 1 & \cdot & \cdot & \cdot \\
B_{1} & \cdot & \cdot & 1 & \cdot \\
A_{2} & \cdot & \cdot & 1 & \cdot \\
B_{2} & 1 & \cdot & \cdot & \cdot \\
E & \cdot & 1 & \cdot & 1 \\
\hline
\end{array}
$$

Tetragonal Moving Wave Chain							
Octahedral	Tetragonal	Cyclic-4	A_{1} B_{1}			1	1
O	D4		A_{2}		1	-1	
A1	A1	04	B_{2}		-1	-1	

$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset D_{2}$ subgroup splitting Tetragonal Standing Wave Chain

Octahedral O	Tetragonal D_{4}	NOrmal Dihedral D_{2}
		$\mathrm{~A}_{1}$
		$\mathrm{~A}_{1}$

NOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{R}_{1}^{2}, \mathbf{R}_{2}^{2}\right\}$

$D_{4} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
A_{1}	1	\cdot	\cdot	\cdot
B_{1}	1	\cdot	\cdot	\cdot
A_{2}	\cdot	\cdot	1	\cdot
B_{2}	\cdot	\cdot	1	\cdot
E	\cdot	1	\cdot	1

$$
\operatorname{UnOrmal} D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{i}_{3}, \mathbf{i}_{4}\right\}
$$

$$
\begin{array}{c|cccc|}
D_{4} \downarrow D_{2} & A_{1} & B_{1} & A_{2} & B_{2} \\
\hline A_{1} & 1 & \cdot & \cdot & \cdot \\
B_{1} & \cdot & \cdot & 1 & \cdot \\
A_{2} & \cdot & \cdot & 1 & \cdot \\
B_{2} & 1 & \cdot & \cdot & \cdot \\
E & \cdot & 1 & \cdot & 1 \\
\hline
\end{array}
$$ UnOrmal

NOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{R}_{1}^{2}, \mathbf{R}_{2}^{2}\right\}$

$\mathrm{O} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	1	\cdot	\cdot	\cdot
E	2	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	1	1	1
$\mathrm{~T}_{2}$	\cdot	1	1	1

$\mathrm{O} \downarrow D_{4}$	A_{1}	B_{1}	A_{2}	B_{2}	E
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	\cdot	1	\cdot	\cdot	\cdot
E	1	1	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	\cdot	1	\cdot	1
$\mathrm{~T}_{2}$	\cdot	\cdot	\cdot	1	1

\section*{$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup splitting
 Tetragonal Standing Wave Chain
 | Octahedral
 O | Tetragonal
 D_{4} | NOrmal
 Dihedral
 D_{2} |
| :---: | :---: | :---: |
| | | $\mathrm{~A}_{1}$ |
| $\mathbf{A 1}$ | | $\mathrm{~A}_{1}$ |}

NOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{R}_{1}^{2}, \mathbf{R}_{2}^{2}\right\}$

$D_{4} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
A_{1}	1	\cdot	\cdot	\cdot
B_{1}	1	\cdot	\cdot	\cdot
A_{2}	\cdot	\cdot	1	\cdot
B_{2}	\cdot	\cdot	1	\cdot
E	\cdot	1	\cdot	1

$$
U n \mathbf{O r m a l} D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{i}_{3}, \mathbf{i}_{4}\right\}
$$

$D_{4} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
A_{1}	1	\cdot	\cdot	\cdot
B_{1}	\cdot	\cdot	1	\cdot
A_{2}	\cdot	\cdot	1	\cdot
B_{2}	1	\cdot	\cdot	\cdot
E	\cdot	1	\cdot	1

NOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{R}_{1}^{2}, \mathbf{R}_{2}^{2}\right\}$ UnOrmal $D_{2}=\left\{1, \mathbf{R}_{3}^{2}, \mathbf{i}_{3}, \mathbf{i}_{4}\right\}$

$\mathrm{O} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	1	\cdot	\cdot	\cdot
E	2	\cdot	\cdot	\cdot
$\mathrm{~T}_{1}$	\cdot	1	1	1
$\mathrm{~T}_{2}$	\cdot	1	1	1

$\mathrm{O} \downarrow D_{2}$	A_{1}	B_{1}	A_{2}	B_{2}
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	\cdot	\cdot	1	\cdot
E	1	\cdot	1	\cdot
$\mathrm{~T}_{1}$	\cdot	1	1	1
$\mathrm{~T}_{2}$	1	1	\cdot	1

$-1_{4}=$ | $D_{4} \downarrow C_{4}$ | 0_{4} | 1_{4} | 2_{4} | 3_{4} |
| :---: | :---: | :---: | :---: | :---: |
| A_{1} | 1 | \cdot | \cdot | \cdot |
| B_{1} | \cdot | \cdot | 1 | \cdot |
| A_{2} | 1 | \cdot | \cdot | \cdot |
| B_{2} | \cdot | \cdot | 1 | \cdot |
| E | \cdot | 1 | \cdot | 1 |
| $\mathbf{r}, \tilde{\mathbf{r}}_{i}$ | $\rho_{x y z}$ | $\mathbf{R}, \tilde{\mathbf{R}}_{x y z}$ | | |

$-1_{4}=$

$\mathrm{O} \downarrow C_{4}$	0_{4}	1_{4}	2_{4}	3_{4}
$\mathrm{~A}_{1}$	1	\cdot	\cdot	\cdot
$\mathrm{~A}_{2}$	\cdot	\cdot	1	\cdot
E	1	\cdot	1	\cdot
$\mathrm{~T}_{1}$	1	1	\cdot	1
$\mathrm{~T}_{2}$	\cdot	1	1	1

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting ($n \mathrm{Ormal} D_{2}$ vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting
Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset \mathrm{D}_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $\mathrm{O}_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ subgroup splitting

$\downarrow C_{4 v} \quad A^{\prime} \quad B^{\prime} \quad A^{\prime \prime} \quad B^{\prime \prime} \quad E$

$\mathscr{D}^{A_{1 g}}$	1	\cdot	\cdot	\cdot	\cdot
$\mathscr{D}^{A_{2 g}}$	\cdot	1	\cdot	\cdot	\cdot
$\mathscr{D}^{E_{g}}$	1	1	\cdot	\cdot	\cdot
$\mathscr{D}^{T_{1 g}}$	\cdot	\cdot	1	\cdot	1
$\mathscr{D}^{T_{2 g}}$	\cdot	\cdot	\cdot	1	1
$\mathscr{D}^{A_{1 u}}$	\cdot	\cdot	1	\cdot	\cdot
$\mathscr{D}^{A_{2 u}}$	\cdot	\cdot	\cdot	1	\cdot
$\mathscr{D}^{E_{u}}$	\cdot	\cdot	1	1	\cdot
$\mathscr{D}^{T_{1 u}}$	1	\cdot	\cdot	\cdot	1
$\mathscr{D}^{T_{2 u}}$	\cdot	1	\cdot	\cdot	1

$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting

$\downarrow C_{4 v} \quad A^{\prime} \quad B^{\prime} \quad A^{\prime \prime} \quad B^{\prime \prime} \quad E$

	$\mathscr{D}^{A_{1 g}}$	1	\cdot	\cdot	\cdot
$\mathscr{D}^{A_{2 g}}$	\cdot	1	\cdot	\cdot	\cdot
$\mathscr{D}^{E_{g}}$	1	1	\cdot	\cdot	\cdot
$\mathscr{D}^{T_{1 g}}$	\cdot	\cdot	1	\cdot	1
$\mathscr{D}^{T_{2 g}}$	\cdot	\cdot	\cdot	1	1
$\mathscr{D}^{A_{1 u}}$	\cdot	\cdot	1	\cdot	\cdot
$\mathscr{D}^{A_{2 u}}$	\cdot	\cdot	\cdot	1	\cdot
$\mathscr{D}^{E_{u}}$	\cdot	\cdot	1	1	\cdot
$\mathscr{D}^{T_{1 u}}$	1	\cdot	\cdot	\cdot	1
$\mathscr{D}^{T_{2 u}}$	\cdot	1	\cdot	\cdot	1

$\downarrow C_{2 v}$	A^{\prime}	B^{\prime}	$A^{\prime \prime}$	$B^{\prime \prime}$
	1	\cdot	\cdot	\cdot
$\mathscr{D}^{A_{1 g}}$	1	\cdot		
$\mathscr{D}^{A_{2 g}}$	\cdot	1	\cdot	\cdot
$\mathscr{D}^{E_{g}}$	1	1	\cdot	\cdot
$\mathscr{D}^{T_{1 g}}$	\cdot	1	1	1
$\mathscr{D}^{T_{2 g}}$	1	\cdot	1	1
$\mathscr{D}^{A_{1 u}}$	\cdot	\cdot	1	\cdot
$\mathscr{D}^{A_{2 u}}$	\cdot	\cdot	\cdot	1
$\mathscr{D}^{E_{u}}$	\cdot	\cdot	1	1
$\mathscr{D}^{T_{1 u}}$	1	1	\cdot	1
$\mathscr{D}^{T_{2 u}}$	1	1	1	\cdot

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure
Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting (n Ormal D_{2} vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting
7
Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems

Solve $X Y_{6}$ radial vibration $\mathbf{K}=\mathbf{a}$-matrix

$$
-\left(\begin{array}{cccc}
\langle 1| \mathbf{a}|1\rangle & \langle 1| \mathbf{a}|2\rangle & \cdots & \langle 1| \mathbf{a}|6\rangle \\
\langle 2| \mathbf{a}|1\rangle & \langle 2| \mathbf{a}|2\rangle & \cdots & \langle 2| \mathbf{a}|6\rangle \\
\cdot & h=2 k+t, & \\
\cdot & s=k / 2 & \\
\cdot & & \\
\langle 6| \mathbf{a}|1\rangle & \langle 6| \mathbf{a}|2\rangle & \cdots & \langle y| \mathbf{a}|6\rangle
\end{array}\right)=\left(\begin{array}{cccccc}
h & t & s & s & s & s \\
t & h & s & s & s & s \\
s & s & h & t & s & s \\
s & s & t & h & s & s \\
s & s & s & s & h & t \\
s & s & s & s & t & h
\end{array}\right),
$$

Solve SF σ_{6} J-tunneling Hamiltonian \mathbf{H}
$\left(\begin{array}{cccc}\langle 1| \mathbf{H}|1\rangle & \langle 1| \mathbf{H}|2\rangle & \cdots & \langle 1| \mathbf{H}|6\rangle \\ \langle 2| \mathbf{H}|1\rangle & \langle 2| \mathbf{H}|2\rangle & \cdots & \langle 2| \mathbf{H}|6\rangle \\ \cdot & & & \cdot \\ \cdot & & & \cdot \\ \cdot & & \cdot \\ \langle 6| \mathbf{H}|1\rangle & \langle 6| \mathbf{H}|2\rangle & \cdots & \langle 6| \mathbf{H}|6\rangle\end{array}\right)=\left(\begin{array}{cccccc}H & T & S & S & S & S \\ T & H & S & S & S & S \\ S & S & H & T & S & S \\ S & S & T & H & S & S \\ S & S & S & S & H & T \\ S & S & S & S & T & H\end{array}\right)$

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems

Assuming C_{4}-local symmetry conditions for $|\mathbf{1}\rangle$ state

$$
|1\rangle=1|1\rangle=R_{3}|1\rangle=R_{3}^{2}|1\rangle=R_{3}^{3}|1\rangle
$$

O operators (Two notations)

| $\mathbf{1}$ | \mathbf{r}_{1} | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{r}_{4} | \mathbf{r}_{1}^{2} | \mathbf{r}_{2}^{2} | \mathbf{r}_{3}^{2} | \mathbf{r}_{4}^{2} | \mathbf{R}_{1}^{2} | \mathbf{R}_{2}^{2} | \mathbf{R}_{3}^{2} | \mathbf{R}_{1} | \mathbf{R}_{2} | \mathbf{R}_{3} | \mathbf{R}_{1}^{3} | \mathbf{R}_{2}^{3} | \mathbf{R}_{3}^{3} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{4} | \mathbf{i}_{5} | \mathbf{i}_{6} |
| :---: |
| $\mathbf{1}$ | \mathbf{r}_{1} | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{r}_{4} | $\tilde{\mathbf{r}}_{1}$ | $\tilde{\mathbf{r}}_{2}$ | $\tilde{\mathbf{r}}_{3}$ | $\tilde{\mathbf{r}}_{4}$ | $\boldsymbol{\rho}_{x}$ | $\boldsymbol{\rho}_{y}$ | $\boldsymbol{\rho}_{z}$ | \mathbf{R}_{x} | \mathbf{R}_{y} | \mathbf{R}_{z} | $\tilde{\mathbf{R}}_{x}$ | $\tilde{\mathbf{R}}_{y}$ | $\tilde{\mathbf{R}}_{z}$ | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{4} | \mathbf{i}_{5} | \mathbf{i}_{6} |$|$

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems

Assuming C_{4}-local symmetry conditions for $|\mathbf{1}\rangle$ state

$$
|1\rangle=1|1\rangle=R_{3}|1\rangle=R_{3}^{2}|1\rangle=R_{3}^{3}|1\rangle
$$

Using C_{4}-local symmetry projector equations $\quad P^{A} \equiv P^{0_{4}}=\left(1+R_{3}+R_{3}^{2}+R_{3}^{3}\right) / 4$

$$
|1\rangle=P^{0_{4}}|1\rangle=\left(1+R_{3}+R_{3}^{2}+R_{3}^{3}\right)|1\rangle / 4 .
$$

O operators (Two notations)

| $\mathbf{1}$ | \mathbf{r}_{1} | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{r}_{4} | \mathbf{r}_{1}^{2} | \mathbf{r}_{2}^{2} | \mathbf{r}_{3}^{2} | \mathbf{r}_{4}^{2} | \mathbf{R}_{1}^{2} | \mathbf{R}_{2}^{2} | \mathbf{R}_{3}^{2} | \mathbf{R}_{1} | \mathbf{R}_{2} | \mathbf{R}_{3} | \mathbf{R}_{1}^{3} | \mathbf{R}_{2}^{3} | \mathbf{R}_{3}^{3} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{4} | \mathbf{i}_{5} | \mathbf{i}_{6} |
| :--- | :---: |
| $\mathbf{1}$ | \mathbf{r}_{1} | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{r}_{4} | $\tilde{\mathbf{r}}_{1}$ | $\tilde{\mathbf{r}}_{2}$ | $\tilde{\mathbf{r}}_{3}$ | $\tilde{\mathbf{r}}_{4}$ | $\boldsymbol{\rho}_{x}$ | $\boldsymbol{\rho}_{y}$ | $\boldsymbol{\rho}_{z}$ | \mathbf{R}_{x} | \mathbf{R}_{y} | \mathbf{R}_{z} | $\tilde{\mathbf{R}}_{x}$ | $\tilde{\mathbf{R}}_{y}$ | $\tilde{\mathbf{R}}_{z}$ | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{4} | \mathbf{i}_{5} | \mathbf{i}_{6} |

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems

Assuming C_{4}-local symmetry conditions for $|\mathbf{1}\rangle$ state

$$
|1\rangle=1|1\rangle=R_{3}|1\rangle=R_{3}^{2}|1\rangle=R_{3}^{3}|1\rangle
$$

Using C4-local symmetry projector equations $\quad P^{A} \equiv P^{0_{4}}=\left(1+R_{3}+R_{3}^{2}+R_{3}^{3}\right) / 4$.

$$
|1\rangle=P^{0_{4}}|1\rangle=\left(1+R_{3}+R_{3}^{2}+R_{3}^{3}\right)|1\rangle / 4
$$

These apply to all six $|\mathbf{g}\rangle=\mathbf{g}|\mathbf{1}\rangle$-base states. $|g\rangle=\left|g R_{3}\right\rangle=\left|g R_{3}^{2}\right\rangle=\left|g R_{3}^{3}\right\rangle$

$$
|g\rangle=g|1\rangle=g R_{3}|1\rangle=g R_{3}^{2}|1\rangle=g R_{3}^{3}|1\rangle
$$

O operators (Two notations)

| $\mathbf{1}$ | \mathbf{r}_{1} | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{r}_{4} | \mathbf{r}_{1}^{2} | \mathbf{r}_{2}^{2} | \mathbf{r}_{3}^{2} | \mathbf{r}_{4}^{2} | \mathbf{R}_{1}^{2} | \mathbf{R}_{2}^{2} | \mathbf{R}_{3}^{2} | \mathbf{R}_{1} | \mathbf{R}_{2} | \mathbf{R}_{3} | \mathbf{R}_{1}^{3} | \mathbf{R}_{2}^{3} | \mathbf{R}_{3}^{3} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{4} | \mathbf{i}_{5} | \mathbf{i}_{6} |
| :---: |
| $\mathbf{1}$ | \mathbf{r}_{1} | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{r}_{4} | $\tilde{\mathbf{r}}_{1}$ | $\tilde{\mathbf{r}}_{2}$ | $\tilde{\mathbf{r}}_{3}$ | $\tilde{\mathbf{r}}_{4}$ | $\boldsymbol{\rho}_{x}$ | $\boldsymbol{\rho}_{y}$ | $\boldsymbol{\rho}_{z}$ | \mathbf{R}_{x} | \mathbf{R}_{y} | \mathbf{R}_{z} | $\tilde{\mathbf{R}}_{x}$ | $\tilde{\mathbf{R}}_{y}$ | $\tilde{\mathbf{R}}_{z}$ | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{4} | \mathbf{i}_{5} | \mathbf{i}_{6} |

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems

Assuming C_{4}-local symmetry conditions for $|\mathbf{1}\rangle$ state

$$
|1\rangle=1|1\rangle=R_{3}|1\rangle=R_{3}^{2}|1\rangle=R_{3}^{3}|1\rangle
$$

Using C_{4}-local symmetry projector equations $\quad P^{A} \equiv P^{0_{4}}=\left(1+R_{3}+R_{3}^{2}+R_{3}^{3}\right) / 4$

$$
|1\rangle=P^{0_{4}}|1\rangle=\left(1+R_{3}+R_{3}^{2}+R_{3}^{3}\right)|1\rangle / 4 .
$$

These apply to all six $|\mathbf{g}\rangle=\mathbf{g}|\mathbf{1}\rangle$-base states. $|g\rangle=\left|g R_{3}\right\rangle=\left|g R_{3}^{2}\right\rangle=\left|g R_{3}^{3}\right\rangle$

$$
|g\rangle=g|1\rangle=g R_{3}|1\rangle=g R_{3}^{2}|1\rangle=g R_{3}^{3}|1\rangle
$$

O operators (Two notations)

$$
\begin{array}{|c|cccc|cccc|cccc|ccc|cccccccccccc|}
\mathbf{1} & \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{r}_{4} & \mathbf{r}_{1}^{2} & \mathbf{r}_{2}^{2} & \mathbf{r}_{3}^{2} & \mathbf{r}_{4}^{2} & \mathbf{R}_{1}^{2} & \mathbf{R}_{2}^{2} & \mathbf{R}_{3}^{2} & \mathbf{R}_{1} & \mathbf{R}_{2} & \mathbf{R}_{3} & \mathbf{R}_{1}^{3} & \mathbf{R}_{2}^{3} & \mathbf{R}_{3}^{3} & \mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{4} & \mathbf{i}_{5} & \mathbf{i}_{6} \\
\mathbf{1} & \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{r}_{4} & \tilde{\mathbf{r}}_{1} & \tilde{\mathbf{r}}_{2} & \tilde{\mathbf{r}}_{3} & \tilde{\mathbf{r}}_{4} & \boldsymbol{\rho}_{x} & \boldsymbol{\rho}_{y} & \boldsymbol{\rho}_{z} & \mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z} & \tilde{\mathbf{R}}_{x} & \tilde{\mathbf{R}}_{y} & \tilde{\mathbf{R}}_{z} & \mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{4} & \mathbf{i}_{5} & \mathbf{i}_{6} \\
\hline
\end{array}
$$

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure
Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting (n Ormal D_{2} vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting
Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression

Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$

This "coset-basis" spans a scalar $0_{4}\left(\mathrm{C}_{4}\right)$ induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$

$$
\begin{aligned}
& i_{4}|1\rangle=i_{4}|1\rangle \text {, } \\
& i_{4}|2\rangle=i_{4} R_{1}^{2}|1\rangle, \quad i_{4}|3\rangle=i_{4} r_{1}|1\rangle, \\
& =i_{5}|1\rangle, \\
& =i_{6}|1\rangle, \\
& =i_{2}|1\rangle, \\
& =i_{1}|1\rangle, \\
& =|2\rangle \text {, } \\
& =|1\rangle \text {, } \\
& =|6\rangle, \quad=|5\rangle, \\
& =|4\rangle \text {, } \\
& =|3\rangle \text {, }
\end{aligned}
$$

Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$

This "coset-basis" spans a scalar $0_{4}\left(\mathrm{C}_{4}\right)$ induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$

$$
\begin{aligned}
& i_{4}|1\rangle=i_{4}|1\rangle, \quad i_{4}|2\rangle=i_{4} R_{1}^{2}|1\rangle, \quad i_{4}|3\rangle=i_{4} r_{1}|1\rangle, \quad i_{4}|4\rangle=i_{4} r_{2}|1\rangle, \quad i_{4}|5\rangle=i_{4} r_{1}^{2}|1\rangle, \quad i_{4}|6\rangle=i_{4} r_{2}^{2}| \rangle, \\
& =R_{1}^{2}|1\rangle, \quad=R_{3}^{3}|1\rangle, \quad=i_{5}|1\rangle, \quad=i_{6}|1\rangle, \quad=i_{2}|1\rangle, \quad=i_{1}|1\rangle, \\
& =|2\rangle, \quad=|1\rangle, \quad=|6\rangle, \quad=|5\rangle, \quad=|4\rangle, \quad=|3\rangle,
\end{aligned}
$$

For example here is $0_{4}\left(\mathrm{C}_{4}\right)$ induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}\left(\mathbf{i}_{4}\right)$

$$
\mathscr{F}^{0_{4} \uparrow 0}\left(i_{4}\right)=\left(\begin{array}{cccc}
\langle 1| i_{4}|1\rangle & \langle 1| i_{4}|2\rangle & \cdots & \langle 1| i_{4}|6\rangle \\
\langle 2| i_{4}|1\rangle & \langle 2| i_{4}|2\rangle & & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\cdot & & \cdot \\
\langle 6| i_{4}|1\rangle & \langle 6| i_{4}|2\rangle & \cdots & \langle 6| i_{4}|6\rangle
\end{array}\right)=\left(\begin{array}{cccccc}
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot
\end{array}\right)
$$

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure
Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting (n Ormal D_{2} vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Introduction to ortho-complete eigenvalue expression

Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Scalar A_{1} eigenket

$$
\begin{aligned}
\left|e_{0_{4}}^{A_{1}}\right\rangle & =P_{0_{4}}^{A_{1}}|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =\frac{1}{24} \sum_{g} \mathscr{P}^{A_{1}^{*}}(g) g|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =(|1\rangle+|2\rangle+|3\rangle+|4\rangle+|5\rangle+|6\rangle) /(6)^{1 / 2} .
\end{aligned}
$$

FREQUENCY OR ENERGY SPECTRUM

Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Scalar Al eigenket $0_{4} 0_{4}$

$$
\begin{aligned}
\mid e_{0_{4} A_{1}}^{A_{4}} & =P_{0_{4}}^{A_{1}}|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =\frac{1}{24} \sum_{g} \mathscr{D}_{1}^{A_{1}^{*}}(g) g|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =(|1\rangle+|2\rangle+|3\rangle+|4\rangle+|5\rangle+|6\rangle) /(6)^{1 / 2} .
\end{aligned}
$$

Tensor E-eigenket $0_{4} 0_{4}$

$$
\begin{aligned}
\left|e_{0_{4}}^{E}\right\rangle= & P_{0_{0} 0_{4}}^{E}|1\rangle /\left(N^{E}\right)^{1 / 2} \\
= & \frac{2}{24} \sum_{g} \mathscr{D}_{0_{0}, 4}^{E_{0}^{*}}(g) g|1\rangle /\left(N^{E}\right)^{1 / 2} \\
= & \frac{2}{24}\left[\left(1+R_{3}+R_{3}^{2}+R_{3}^{3}\right)+\left(R_{1}^{2}+i_{4}+R_{2}^{2}+i_{3}\right)\right. \\
& -\frac{1}{2}\left(r_{1}+i_{1}+r_{4}+R_{2}\right)-\frac{1}{2}\left(r_{2}+i_{2}+r_{3}+R_{2}^{3}\right) \\
& \left.\left.-\frac{1}{2}\left(r_{1}^{2}+R_{1}^{3}+r_{3}^{2}+i_{6}\right)-\frac{1}{2}\left(r_{2}^{2}+R_{1}+r_{4}^{2}+i_{5}\right)\right] 1\right\rangle /\left(N^{E}\right)^{1 / 2}, \\
\left|e_{0_{1},}^{E}\right\rangle= & (2|1\rangle+2|2\rangle-|3\rangle-|4\rangle-|5\rangle-|6\rangle) /(2 \sqrt{3}) .
\end{aligned}
$$

Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$

Scalar Al eigenket $0_{4} 0_{4}$

$$
\begin{aligned}
\left|e_{0_{4}}^{A_{1}}\right\rangle & =P_{0_{4}}^{A_{4}}|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =\frac{1}{24} \sum_{g} \mathscr{P}_{1}^{A_{1}^{*}}(g) g|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =(|1\rangle+|2\rangle+|3\rangle+|4\rangle+|5\rangle+|6\rangle) /(6)^{1 / 2} .
\end{aligned}
$$

Tensor E-eigenket $2_{4} 0_{4}$

$$
\begin{aligned}
\left|e_{2_{4}}^{E}\right\rangle= & P_{2_{4} 0_{4}}^{E}|1\rangle /\left(N^{E}\right)^{1 / 2} \\
= & \frac{2}{24} \sum_{g} \mathscr{D}_{2_{4} 0_{4}}^{E^{*}}(g) g|1\rangle /\left(N^{E}\right)^{1 / 2} \\
= & \frac{2}{24}\left[\frac{\sqrt{3}}{2}\left(r_{1}+i_{1}+r_{4}+R_{2}\right)+\frac{\sqrt{3}}{2}\left(r_{2}+i_{2}+r_{3}+R_{2}^{3}\right)\right. \\
& \left.-\frac{\sqrt{3}}{2}\left(r_{1}^{2}+R_{1}^{3}+r_{3}^{2}+i_{6}\right)-\frac{\sqrt{3}}{2}\left(r_{2}^{2}+R_{1}+r_{4}^{2}+i_{5}\right)\right]|1\rangle /\left(N^{E}\right)^{1 / 2} \\
\left|e_{2_{4}}^{E}\right\rangle= & (|3\rangle++|4\rangle-|5\rangle-|6\rangle) / 2
\end{aligned}
$$

Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Scalar A_{1} eigenket $0_{4} 0_{4}$

$$
\begin{aligned}
\left|e_{0_{4}}^{A_{1}}\right\rangle & =P_{0_{4}}^{A_{1}}|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =\frac{1}{24} \sum_{g} \mathscr{D}^{A_{1}^{*}}(g) g|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =(|1\rangle+|2\rangle+|3\rangle+|4\rangle+|5\rangle+|6\rangle) /(6)^{1 / 2}
\end{aligned}
$$

Vector T_{1}-eigenket $3_{4} 0_{4}=-1_{4} 0_{4}$ and $0_{4} 0_{4}$

$$
\begin{aligned}
& \left|e_{3_{4}}^{T_{1}}\right\rangle=(|3\rangle-|4\rangle-i|5\rangle+i|6\rangle) / 2, \\
& \left|e_{0_{4}}^{T_{1}}\right\rangle=(|1\rangle-|2\rangle) / \sqrt{2} .
\end{aligned}
$$

FREQUENCY OR ENERGY SPECTRUM

Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
Scalar Al eigenket $0_{4} 0_{4}$

$$
\begin{aligned}
\left|e_{0_{4}}^{A_{1}}\right\rangle & =P_{0_{4}}^{A_{1}}|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =\frac{1}{24} \sum_{g} \mathscr{D}^{A_{1}^{*}}(g) g|1\rangle /\left(N^{A_{1}}\right)^{1 / 2} \\
& =(|1\rangle+|2\rangle+|3\rangle+|4\rangle+|5\rangle+|6\rangle) /(6)^{1 / 2} .
\end{aligned}
$$

Vector T_{1}-eigenket $\pm 1_{4} 0_{4}$ and $0_{4} 0_{4}$

$$
\begin{aligned}
\left|e_{1_{4}}^{T_{1}}\right\rangle= & P_{1_{4} 0_{4}}^{T_{1}}|1\rangle /\left(N^{T_{1}}\right)^{1 / 2} \\
= & \frac{3}{24} \sum_{g} \mathscr{D}_{1_{4} 0_{4}}^{T_{*}^{*}}(g) g|1\rangle /\left(N^{T_{1}}\right)^{1 / 2} \\
= & \frac{3}{24}\left[-\frac{1}{\sqrt{2}}\left(r_{1}+i_{1}+r_{4}+R_{2}\right)+\frac{1}{\sqrt{2}}\left(r_{2}+i_{2}+r_{3}+R_{2}^{3}\right)\right. \\
& \left.-\frac{i}{\sqrt{2}}\left(r_{1}^{2}+R_{1}^{3}+r_{3}^{2}+i_{6}\right)+\frac{i}{\sqrt{2}}\left(r_{2}^{2}+R_{1}+r_{4}^{2}+i_{5}\right)\right]|1\rangle /\left(N^{T_{1}}\right)^{1 / 2}
\end{aligned}
$$

$\left|e_{x}^{T_{1}}\right\rangle=\left(-\left|e_{1_{4}}^{T_{1}}\right\rangle+\left|e_{3_{4}}^{T_{1}}\right\rangle\right) / \sqrt{2}=(|3\rangle-|4\rangle) / \sqrt{2} \quad\left|\begin{array}{l}T_{1} \\ 0_{4} 0_{4}\end{array}\right\rangle$
$\begin{array}{ll}\left|e_{y}^{T_{1}}\right\rangle=i\left(\left|e_{4}^{T_{1}}\right\rangle+\left|e_{3_{4}}^{T_{1}}\right\rangle\right) / \sqrt{2} & =(|5\rangle-|6\rangle) / \sqrt{2} \\ \left|e_{2}^{T_{1}}\right\rangle=\left|e_{4}^{T_{1}}\right\rangle & =(|1\rangle-|2\rangle) / \sqrt{2}\end{array}$
$\xlongequal{\underline{T_{1}}} \mathrm{H}$
$\left|\begin{array}{c}\left.l_{1_{4} 0_{4}}^{T_{1}}\right\rangle\end{array}\right\rangle=\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 1 \\ -i \\ i\end{array}\right) \frac{1}{2}$
$\frac{1}{\sqrt{2}}$

FREQUENCY OR ENERGY
SPECTRUM

$\left(\begin{array}{cccc}\langle 1| \mathbf{H}|1\rangle & \langle 1| \mathbf{H}|2\rangle & \cdots & \langle 1| \mathbf{H}|6\rangle \\ \langle 2| \mathbf{H}|1\rangle & \langle 2| \mathbf{H}|2\rangle & \cdots & \langle 2| \mathbf{H}|6\rangle \\ \cdot & & & \cdot \\ \cdot & & & \cdot \\ \cdot & & \cdot \\ \langle 6| \mathbf{H}|1\rangle & \langle 6| \mathbf{H}|2\rangle & \cdots & \langle 6| \mathbf{H}|6\rangle\end{array}\right)=\left(\begin{array}{cccccc}H & T & S & S & S & S \\ T & H & S & S & S & S \\ S & S & H & T & S & S \\ S & S & T & H & S & S \\ S & S & S & S & H & T \\ S & S & S & S & T & H\end{array}\right)$
Figure 4.3.3 Evidence of an ($A_{1} T_{1} E$) spectral cluster in methane laser spectra
(Courtesy of Dr. Allan Pine, MIT Lincoln Laboratories, from Journal of Optical
Society of America 66,97(1976)). The ordering and approximate spacing of the $A_{1} T_{1}$ Society of America 66, $97(1976)$). The ordering and
and E lines is consistent with that of Figure 4.3.2.

$$
\left|\begin{array}{c}
E \\
0_{4} 0_{4}
\end{array}\right\rangle=\left(\begin{array}{c}
2 \\
2 \\
-1 \\
-1 \\
-1 \\
T_{1 U} \\
1
\end{array}\right.
$$

$=H-2 S$

FREQUENCY OR ENERGY SPECTRUM
A_{1}
$H+4 S$

Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O}$ group operator structure
Review Octahedral $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain correlations

Comparison of $\mathrm{O} \supset D_{4} \supset C_{4}$ and $\mathrm{O} \supset D_{4} \supset D_{2}$ correlations and level/projector splitting
$\mathrm{O} \supset D_{4} \supset C_{4}$ subgroup chain splitting
$\mathrm{O} \supset D_{4} \supset D_{2}$ subgroup chain splitting (n Ormal D_{2} vs. unOrmal D_{2})
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v}$ and $\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup splitting

Simplest $\mathrm{O}_{\mathrm{h}} \supset \mathrm{O} \supset D_{4} \supset C_{4}$ spectral analysis problems
Elementary induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$
7
Projection reduction of induced representation $0_{4}\left(\mathrm{C}_{4}\right) \uparrow \mathrm{O}$ Introduction to ortho-complete eigenvalue expression

Introduction to ortho-complete eigenvalue calculations
Right and Left cosets of C_{4} extracted from group table

| $\overline{\mathbf{1}}$ | ρ_{z} | \mathbf{R}_{z} | $\overline{\mathbf{R}_{z}}$ | $\overline{\mathbf{1}}$ | $\overline{\rho_{z}}$ | $\overline{\mathbf{R}_{z}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $\overline{\mathbf{R}_{z}}$ |
| :---: |
| \mathbf{r}_{1} |
| \mathbf{r}_{4} | $\mathbf{i}_{1} \quad \mathbf{R}_{y} \quad \frac{\mathbf{r}_{1}}{\mathbf{r}_{4}} \quad \frac{\mathbf{i}_{1}}{\mathbf{R}_{y}}$

| Examples | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{i}_{2} | $\tilde{\mathbf{R}}_{y}$ | \mathbf{r}_{2} | \mathbf{r}_{3} | \mathbf{i}_{2} | $\tilde{\mathbf{R}}_{y}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | of multiple Left cosets of C_{4} from group table

Will be used later to derive
eigensolutions and simplified formulae.
C_{4} subgroup correlation to 0

$$
\boldsymbol{O} \supset \boldsymbol{C}_{4}{ }^{\left.\left.(0)_{4}(1)_{4}{ }^{(2)}\right)_{4}(3)_{4}=(-1)_{4}\right)}
$$

C_{4} Projectors to split octahedral P^{α}

$$
\mathbf{p}_{m_{4}}=\sum_{p=0}^{3} \frac{e^{2 \pi i m \cdot p / 4}}{4} \mathbf{R}_{z}^{p}=\left\{\begin{array}{c}
\mathbf{p}_{0_{4}}=\left(\mathbf{1}+\mathbf{R}_{z}+\rho_{z}+\tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{1_{4}}=\left(\mathbf{1}+i \mathbf{R}_{z}-\rho_{z}-i \tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{2_{4}}=\left(\mathbf{1}-\mathbf{R}_{z}+\rho_{z}-\tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{3_{4}}=\left(\mathbf{1}-i \mathbf{R}_{z}-\rho_{z}+i \tilde{\mathbf{R}}_{z}\right) / 4
\end{array}\right.
$$

$\mathbf{1} \cdot \mathbf{P}^{\alpha}=$	$\left(\mathbf{p}_{0_{4}}\right.$	$+\mathbf{p}_{1_{4}}$	$+\mathbf{p}_{2_{4}}$	$\left.+\mathbf{p}_{3_{4}}\right) \cdot \mathbf{P}^{\alpha}$
$\mathbf{1} \cdot \mathbf{P}^{A_{1}}=$	$\mathbf{P}_{0_{4}}^{A_{1} 0_{4}}$	+0	+0	+0
$\mathbf{1} \cdot \mathbf{P}^{A_{2}}=$	0	+0	$+\mathbf{P}_{2_{4} 2_{4}}^{A_{2}}$	+0
$\mathbf{1} \cdot \mathbf{P}^{E}=$	$\mathbf{P}_{0_{4} 0_{4}}^{E}$	+0	$+\mathbf{P}_{2_{4} 2_{4}}^{E}$	+0
$\mathbf{1} \cdot \mathbf{P}^{T_{1}}=$	$\mathbf{P}_{0_{4}}^{T_{1} 0_{4}}$	$+\mathbf{P}_{1_{4} T_{4}}^{T_{1}}$	+0	$+\mathbf{P}_{3_{4} 3_{4}}^{T_{1}}$
$\mathbf{1} \cdot \mathbf{P}^{T_{2}}=$	0	$+\mathbf{P}_{1_{4} 1_{4}}^{T_{2}}$	$+\mathbf{P}_{2_{4} 2_{4}}^{T_{2}}$	$+\mathbf{P}_{3_{4} 3_{4}}^{T T_{3}}$

10 split $\mathrm{O}_{5} \mathrm{C}_{4}$ octahedral P^{α}

related to 10 split sub-classes

$\mathbf{P}_{n_{4} n_{4}}^{(\alpha)}\left(O \supset C_{4}\right)$	$\mathbf{1}$	$r_{1} r_{2} \tilde{r}_{3} \tilde{r}_{4}$	$\tilde{r}_{1} \tilde{r}_{2} r_{3} r_{4}$	$\rho_{x} \rho_{y}$	ρ_{z}	$R_{x} \tilde{R}_{x} R_{y} \tilde{R}_{y}$	R_{z}	\tilde{R}_{z}	$i_{1} i_{2} i_{5} i_{6}$	$i_{3} i_{4}$
$24 \cdot \mathbf{P}_{0_{4} 0_{4}}^{A_{1}}$	1	1	1	1	1	1	1	1	1	1
$24 \cdot \mathbf{P}_{2_{2} 2_{4}}^{A_{2}}$	1	1	1	1	1	-1	-1	-1	-1	-1
$12 \cdot \mathbf{P}_{0_{4} 0_{4}}^{E}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1
$12 \cdot \mathbf{P}_{2_{4} 2_{4}}^{E}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1
$8 \cdot \mathbf{P}_{1_{4} 1_{4}}^{T_{1}}$	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	$-i$	$+i$	$-\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{3_{4} 3_{4}}^{T_{1}}$	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	$+i$	$-i$	$-\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{0_{4} 0_{4}}^{T_{1}}$	1	0	0	-1	1	0	1	1	0	-1
$8 \cdot \mathbf{P}_{1_{4} 1_{4}}^{T_{2}}$	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	$-i$	$+i$	$+\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{3_{4} 3_{4}}^{T_{2}}$	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	$+i$	$-i$	$+\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{2_{4} 2_{4}}^{T_{2}}$	1	0	0	-1	1	0	-1	-1	0	1

$\ell^{A} I=1 \quad$ Example: $G=O$ Centrum: $\kappa(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{0}+1^{0}+2^{0}+3^{0}+3^{0}=5$ $\begin{array}{ll}\ell^{1_{2}}=1 & \text { Cubic-Octahedral } \quad \text { Rank: } \quad \rho(\boldsymbol{O})=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{l}=1^{l}+1^{l}+2^{l}+3^{l}+3^{l}=10 \\ \ell^{E}=2 & \text { Group } 0\end{array}$ $\ell^{T_{l}=3} \quad$ Order: $\quad{ }^{\circ}(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{2}+1^{2}+2^{2}+3^{2}+3^{2}=24$

$O \supset C_{4}$

$\left.{ }^{(0)} 4_{4}(1)_{4}{ }^{(2)}\right)_{4}(3)_{4}=(-1)_{4} \boldsymbol{C l}_{3}(0)_{3}(1)_{3}(2)_{3}=(-1)_{3}{ }^{\text {R }}$

A_{1}	1	\bullet	\bullet
$\mathrm{~A}_{2}$	1	\bullet	\cdot
E^{\prime}	\cdot	1	1
$\mathrm{~T}_{1}$	1	1	1
$\mathrm{~T}_{2}$	1	1	1

Eigenvalues of $\mathbf{H}=B \mathbf{J}^{2}+\cos \phi \mathbf{T}^{[4]}+\sin \phi \mathbf{T}^{[6]}$ vs. mix angle $\phi: 0<\phi<\pi$

$$
\begin{aligned}
& \overline{\overline{\mathbf{1}}} \begin{array}{llll}
\overline{\mathbf{r}_{1}} & \overline{\rho_{z}} & \overline{\mathbf{R}_{z}} & \overline{\mathbf{r}_{4}} \\
\overline{\mathbf{i}_{1}} & \frac{\tilde{\mathbf{R}}_{z}}{\mathbf{R}_{y}}
\end{array} \\
& \begin{array}{llll}
\mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{i}_{2} & \tilde{\mathbf{R}}_{y}
\end{array} \\
& \begin{array}{llll}
\mathbf{r}_{3} & \mathbf{r}_{2} & \tilde{\mathbf{R}}_{y} & \mathbf{i}_{2}
\end{array} \\
& \begin{array}{cccc}
\mathbf{r}_{4} \\
\hdashline \tilde{\mathbf{r}}_{1} & \mathbf{r}_{1} & \frac{\mathbf{R}_{y}}{\tilde{\mathbf{r}}_{3}} & \\
\tilde{\mathbf{R}}_{x} & \mathbf{i}_{1} \\
\mathbf{i}_{6}
\end{array} \\
& \begin{array}{llll}
\tilde{\mathbf{r}}_{2} & \tilde{\mathbf{r}}_{4} & \mathbf{R}_{x} & \mathbf{i}_{5}
\end{array} \\
& \begin{array}{llll}
\tilde{\mathbf{r}}_{3} & \tilde{\mathbf{r}}_{1} & \mathbf{i}_{6} & \tilde{\mathbf{R}}_{x}
\end{array} \\
& \begin{array}{llll}
\frac{\tilde{\mathbf{r}}_{4}}{\rho_{x}} & \frac{\tilde{\mathbf{r}}_{2}}{\rho_{y}} \quad \frac{\mathbf{i}_{5}}{\mathbf{i}_{4}} \quad \frac{\mathbf{R}_{x}}{\mathbf{i}_{3}}
\end{array} \\
& \begin{array}{llll}
\rho_{y} & \rho_{x} & \mathbf{i}_{3} & \mathbf{i}_{4}
\end{array} \\
& \frac{\rho_{z}}{\mathbf{R}_{x}} \quad \frac{\mathbf{1}}{\mathbf{i}_{5}} \quad \frac{\tilde{\mathbf{R}}_{z}}{\tilde{\mathbf{r}}_{4}} \quad \frac{\mathbf{R}_{z}}{\tilde{\mathbf{r}}_{2}} \\
& \begin{array}{llll}
\mathbf{R}_{y} & \mathbf{i}_{1} & \mathbf{r}_{1} & \mathbf{r}_{4}
\end{array} \\
& \begin{array}{cccc}
\mathbf{R}_{z} & \tilde{\mathbf{R}}_{z} & & \rho_{z} \\
\cline { 1 - 2 } & \tilde{\mathbf{R}}_{x} & & \begin{array}{c}
\mathbf{1} \\
\tilde{\mathbf{r}}_{3}
\end{array} \\
\tilde{\mathbf{r}}_{1}
\end{array} \\
& \begin{array}{llll}
\tilde{\mathbf{R}}_{y} & \mathbf{i}_{2} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array} \\
& \frac{\tilde{\mathbf{R}}_{z}}{\mathbf{i}_{1}} \quad \frac{\mathbf{R}_{z}}{\mathbf{R}_{y}} \quad \frac{\mathbf{1}}{\mathbf{r}_{4}} \quad \frac{\rho_{z}}{\mathbf{r}_{1}} \\
& \begin{array}{llll}
\mathbf{i}_{2} & \tilde{\mathbf{R}}_{z} & \mathbf{r}_{3} & \mathbf{r}_{2}
\end{array} \\
& \mathbf{i}_{3} \quad \mathbf{i}_{4} \quad \rho_{x} \quad \rho_{y} \\
& \mathbf{i}_{4} \quad \mathbf{i}_{3} \quad \rho_{y} \quad \rho_{x} \\
& \begin{array}{llll}
\mathbf{i}_{5} & \mathbf{R}_{x} & \tilde{\mathbf{r}}_{2} & \tilde{\mathbf{r}}_{4}
\end{array} \\
& \begin{array}{llll}
\mathbf{i}_{6} & \underline{\tilde{\mathbf{R}}_{x}} \quad \underline{\tilde{\mathbf{r}}_{1}} \quad \underline{\tilde{\mathbf{r}}_{3}} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|c|cccc|cccc|ccc|ccc|ccc|cccccc|}
\mathbf{1} & \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{r}_{4} & \tilde{\mathbf{r}}_{1} & \tilde{\mathbf{r}}_{2} & \tilde{\mathbf{r}}_{3} & \tilde{\mathbf{r}}_{4} & \boldsymbol{\rho}_{x} & \boldsymbol{\rho}_{y} & \boldsymbol{\rho}_{z} & \mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z} & \tilde{\mathbf{R}}_{x} & \tilde{\mathbf{R}}_{y} & \tilde{\mathbf{R}}_{z} & \mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{4} & \mathbf{i}_{5} & \mathbf{i}_{6} \\
\boldsymbol{\rho}_{z} & \mathbf{r}_{3} & \mathbf{r}_{4} & \mathbf{r}_{1} & \mathbf{r}_{2} & \tilde{\mathbf{r}}_{4} & \tilde{\mathbf{r}}_{3} & \tilde{\mathbf{r}}_{2} & \tilde{\mathbf{r}}_{1} & \boldsymbol{\rho}_{y} & \boldsymbol{\rho}_{x} & \mathbf{1} & \mathbf{i}_{6} & \mathbf{i}_{2} & \tilde{\mathbf{R}}_{z} & \mathbf{i}_{5} & \mathbf{i}_{1} & \mathbf{R}_{z} & \tilde{\mathbf{R}}_{y} & \mathbf{R}_{y} & \mathbf{i}_{4} & \mathbf{i}_{3} & \tilde{\mathbf{R}}_{x} & \mathbf{R}_{x}
\end{array} \\
& \begin{array}{l|lllllllll|lll|llllllll|lllllll}
\mathbf{R}_{z} & \mathbf{i}_{6} & \mathbf{i}_{5} & \mathbf{R}_{x} & \tilde{\mathbf{R}}_{x} & \tilde{\mathbf{R}}_{y} & \mathbf{R}_{y} & \mathbf{i}_{2} & \mathbf{i}_{1} & \mathbf{i}_{3} & \mathbf{i}_{4} & \tilde{\mathbf{R}}_{z} & \mathbf{r}_{1} & \tilde{\mathbf{r}}_{3} & \boldsymbol{\rho}_{z} & \mathbf{r}_{2} & \tilde{\mathbf{r}}_{4} & \mathbf{1} & \tilde{\mathbf{r}}_{1} & \tilde{\mathbf{r}}_{2} & \boldsymbol{\rho}_{y} & \boldsymbol{\rho}_{x} & \mathbf{r}_{4} & \mathbf{r}_{3}
\end{array} \\
& \left.\begin{array}{|l|llllllll|lll|lllllll|lllllll}
\tilde{\mathbf{R}}_{z} & \mathbf{R}_{x} & \tilde{\mathbf{R}}_{x} & \mathbf{i}_{6} & \mathbf{i}_{5} & \mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{R}_{y} & \tilde{\mathbf{R}}_{y} & \mathbf{i}_{4} & \mathbf{i}_{3} & \mathbf{R}_{z} & \mathbf{r}_{3} & \tilde{\mathbf{r}}_{2} & \mathbf{1} & \mathbf{r}_{4} & \tilde{\mathbf{r}}_{1} & \boldsymbol{\rho}_{z} & \tilde{\mathbf{r}}_{4} & \tilde{\mathbf{r}}_{3} & \boldsymbol{\rho}_{x} & \boldsymbol{\rho}_{y} & \mathbf{r}_{2} & \mathbf{r}_{1}
\end{array} \right\rvert\, \\
& \begin{array}{|c|cccc|cccc|ccc|ccc|ccc|ccccccc|}
\mathbf{1} & \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{r}_{4} & \tilde{\mathbf{r}}_{1} & \tilde{\mathbf{r}}_{2} & \tilde{\mathbf{r}}_{3} & \tilde{\mathbf{r}}_{4} & \boldsymbol{\rho}_{x} & \boldsymbol{\rho}_{y} & \boldsymbol{\rho}_{z} & \mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z} & \tilde{\mathbf{R}}_{x} & \tilde{\mathbf{R}}_{y} & \tilde{\mathbf{R}}_{z} & \mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{4} & \mathbf{i}_{5} & \mathbf{i}_{6} \\
\boldsymbol{\rho}_{z} & \mathbf{r}_{3} & \mathbf{r}_{4} & \mathbf{r}_{1} & \mathbf{r}_{2} & \tilde{\mathbf{r}}_{4} & \tilde{\mathbf{r}}_{3} & \tilde{\mathbf{r}}_{2} & \tilde{\mathbf{r}}_{1} & \boldsymbol{\rho}_{y} & \boldsymbol{\rho}_{x} & \mathbf{1} & \mathbf{i}_{6} & \mathbf{i}_{2} & \tilde{\mathbf{R}}_{z} & \dot{\mathbf{i}}_{5} & \mathbf{i}_{1} & \mathbf{R}_{z} & \tilde{\mathbf{R}}_{y} & \mathbf{R}_{y} & \mathbf{i}_{4} & \mathbf{i}_{3} & \tilde{\mathbf{R}}_{x} & \mathbf{R}_{x}
\end{array} \\
& \left.\begin{array}{|l|llllllll|lll|lll|lll|lllllll}
\mathbf{R}_{z} & \mathbf{i}_{6} & \mathbf{i}_{5} & \mathbf{R}_{x} & \tilde{\mathbf{R}}_{x} & \tilde{\mathbf{R}}_{y} & \mathbf{R}_{y} & \mathbf{i}_{2} & \mathbf{i}_{1} & \mathbf{i}_{3} & \mathbf{i}_{4} & \tilde{\mathbf{R}}_{z} & \mathbf{r}_{1} & \tilde{\mathbf{r}}_{3} & \boldsymbol{\rho}_{z} & \mathbf{r}_{2} & \tilde{\mathbf{r}}_{4} & \mathbf{1} & \tilde{\mathbf{r}}_{1} & \tilde{\mathbf{r}}_{2} & \boldsymbol{\rho}_{y} & \boldsymbol{\rho}_{x} & \mathbf{r}_{4} & \mathbf{r}_{3}
\end{array} \right\rvert\, \\
& \left.\begin{array}{|l|lllllllllllllllllll|lllllll}
\tilde{\mathbf{R}}_{z} & \mathbf{R}_{x} & \tilde{\mathbf{R}}_{x} & \mathbf{i}_{6} & \mathbf{i}_{5} & \mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{R}_{y} & \tilde{\mathbf{R}}_{y} & \mathbf{i}_{4} & \mathbf{i}_{3} & \mathbf{R}_{z} & \mathbf{r}_{3} & \tilde{\mathbf{r}}_{2} & \mathbf{1} & \mathbf{r}_{4} & \tilde{\mathbf{r}}_{1} & \boldsymbol{\rho}_{z} & \tilde{\mathbf{r}}_{4} & \tilde{\mathbf{r}}_{3} & \boldsymbol{\rho}_{x} & \boldsymbol{\rho}_{y} & \mathbf{r}_{2} & \mathbf{r}_{1}
\end{array} \right\rvert\,
\end{aligned}
$$

