Group Theory in Quantum Mechanics Lecture 20 (4.11.13)

Octahedral-tetrahedral $O \sim T_d$ representations and spectra

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS - Ch. 4)

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $0_4(C_4) \uparrow O$ Projection reduction of induced representation $0_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue expression

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $O_4(C_4) \uparrow O$ Projection reduction of induced representation $O_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue expression Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral-cubic O symmetry

Order °O=6 hexahedron squares · 4 pts =24 =8 octahedron triangles · 3 pts =24 =12 lines · 2 pts =24 positions

Octahedral group O operations Class of 1: 1

Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral-cubic O symmetry *Order* $^{\circ}O=6$ *hexahedron squares* \cdot *4 pts* =24 =8 octahedron triangles \cdot 3 pts =24 =12 lines \cdot 2 pts =24 positions ĺş Octahedral group O operations Class of 1: **1** $\mathbf{r}_k = \mathbf{r}_k$ R.J R_2^2 By $\mathbf{R}_{x,y,z} = \mathbf{R}_{1,2,3}$ ß Class of 8: $\tilde{\mathbf{r}}_2 = \mathbf{r}_2^2$ Class of 6: $\pm 120^{\circ}$ rotations $\pm 90^{\circ}$ rotations on [111] axes CAR 20 on[100] axes ¹5Class of 6: RZ r2 R3 180° rotations Class of 3: 22 on [110] diagonals RT-8 6 180° rotations Ś $\mathbf{i}_k = \mathbf{i}_k$ on [100] axes i₁-R $\mathbf{\rho}_{x,y,z} = \mathbf{R}_{1,2,3}^2$ R₃ $\tilde{\mathbf{r}}_k = \mathbf{r}_k^2 = \mathbf{r}_k^{-1} \mathbf{r}_4^2$ Z $\widetilde{\mathbf{R}}_{x} =$ $\tilde{\mathbf{R}}_{x,y,z} = \mathbf{R}_{1,2,3}^{\overline{3}} = \mathbf{R}_{1,2,3}^{-1}$ R.,4 Tetrahedral symmetry becomes Icosahedral β T symmetry T_h symmetry I_b symmetry ŀ (If rectangles have Golden Ratio $\underline{1\pm\sqrt{5}}$

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral groups $O_h \supset O \sim T_d$ and $O_h \supset T_h \supset T$

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h , T_d , and O. The Abelian D_2 subgroup of T is indicated also.

Fig. 4.1.5 from Principles of Symmetry, Dynamics and Spectroscopy

1/12+			Y=>		curi	IE 18 ¹ 2 ¹ 3 ¹ 4	0°CLASS ¹⁵¹⁶			-6	222		R ² Y			R-3				*15	Y=x			
Z	=x3	+1				- <u>12</u>	0°		$\pm \frac{18}{100}$	2 0° X 10 1 0	Z = x	+9	R ² 0° <u>X</u> Y	R2 R2 R2 R2	-9 [100]	2 -R ³ 0° XY	$X = x_1$		=x3	±180			[011]	9
1	r_1	r ₂	r ₃	r ₄	r_1^2	r_2^2	r_3^2	r_4^2	R_1^2	R_2^2	R_3^2	R_1	R_2	R_3	R_1^3	R_2^3	R_3^3	<i>i</i> ₁	<i>i</i> ₂	i ₃	<i>i</i> ₄	<i>i</i> ₅	<i>i</i> ₆	
r_1	r_1^2	$-r_{4}^{2}$	$-r_{2}^{2}$	$-r_{3}^{2}$	-1	$-R_{2}^{2}$	$-R_{3}^{2}$	$-R_{1}^{2}$	$-r_{2}$	$-r_{3}$	$-r_{4}$	i ₃	i ₆	i_1	$-R_3$	$-R_1$	$-R_2$	R_{1}^{3}	<i>i</i> ₅	R_{2}^{3}	i_2	$-i_4$	R_{3}^{3}	
r ₂	$-r_{3}^{2}$	r_{2}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	R_{2}^{2}	-1	R_{1}^{2}	$-R_{3}^{2}$	<i>r</i> ₁	r_4	$-r_{3}$	R_3	$-R_{1}^{3}$	i_2	i ₃	$-i_5$	R_{2}^{3}	i ₆	$-R_1$	R_2	$-i_1$	R_{3}^{3}	<i>i</i> ₄	
r ₃	$-r_4^2$	$-r_{1}^{2}$	r_{3}^{2}	$-r_{2}^{2}$	R_{3}^{2}	$-R_{1}^{2}$	-1	R_{2}^{2}	$-r_4$	r_1	r_2	$-i_4$	R_1	$-R_{2}^{3}$	R_{3}^{3}	i ₆	<i>i</i> ₂	i ₅	$-R_{1}^{3}$	i ₁	R_2	- <i>i</i> ₃	R_3	
r ₄	$-r_{2}^{2}$	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	R_{1}^{2}	R_{3}^{2}	$-R_{2}^{2}$	-1	<i>r</i> ₃	$-r_{2}$	r_1	$-R_{3}^{3}$	$-i_{5}$	R_2	$-i_4$	R_{1}^{3}	i_1	R_1	i ₆	$-i_{2}$	R_{2}^{3}	R_3	<i>i</i> ₃	
r_1^2	-1	R_{1}^{2}	R_{2}^{2}	R_{3}^{2}	$-r_1$	r_3	r_4	r_2	r_{4}^{2}	r_{2}^{2}	r_{3}^{2}	R_2^3	R_{3}^{3}	R_{1}^{3}	$-i_1$	$-i_3$	$-i_6$	$-R_3$	$-i_4$	$-R_1$	<i>i</i> ₅	$-i_{2}$	$-R_2$	
r_{2}^{2}	$-R_1^2$	-1	R_{3}^{2}	$-R_{2}^{2}$	r_4	$-r_{2}$	r_1	<i>r</i> ₃	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	<i>i</i> ₂	$-i_3$	$-R_1$	R_2	$-R_{3}^{3}$	$-i_{5}$	<i>i</i> ₄	$-R_3$	$-R_{1}^{3}$	$-i_6$	R_{2}^{3}	$-i_{1}$	
r_{3}^{2}	$ -R_{2}^{2} $	$-R_{3}^{2}$	-1	R_{1}^{2}	r_2	r_4	$-r_{3}$	r_1	r_{2}^{2}	$-r_{4}^{2}$	$-r_1^2$	$-R_2$	$-i_4$	$-i_{6}$	<i>i</i> ₂	R_3	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	i ₅	R_1	$-i_1$	$-R_{2}^{3}$	
r_4^2	$-R_{3}^{2}$	R_2^2	$-R_{1}^{2}$	-1	<i>r</i> ₃	<i>r</i> ₁	<i>r</i> ₂	$-r_{4}$	$-r_1^2$	r_3^2	$-r_{2}^{2}$	$-i_{1}$	$-R_3$	$-i_{5}$	$-R_{2}^{3}$	$-i_4$	R_1	$-R_{3}^{3}$	<i>i</i> ₃	$-i_6$	R_1^3	R_2	$-i_{2}$	
R_{1}^{2}	$-r_4$	r_3	$-r_{2}$	r_1	r_{2}^{2}	$-r_{1}^{2}$	r_{4}^{2}	$-r_{3}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	R_{1}^{3}	i_1	$-i_4$	$-R_1$	i_2	$-i_{3}$	$-R_2$	$-R_{2}^{3}$	R_{3}^{3}	R_3	$-i_{6}$	i 5	
R_{2}^{2}	$-r_{2}$	r_1	<i>r</i> ₄	$-r_{3}$	r_{3}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{2}^{2}	$-R_{3}^{2}$	-1	R_{1}^{2}	- <i>i</i> ₅	R_{2}^{3}	i ₃	$-i_6$	$-R_2$	$-i_4$	$-i_{2}$	i ₁	$-R_3$	R_{3}^{3}	R_1	R_{1}^{3}	
R_3^2	$-r_{3}$	$-r_{4}$.	<i>r</i> ₁	r_2	r_{4}^{2}	r_{3}^{2}	$-r_{2}^{2}$	$-r_{1}^{2}$	R_2^2	$-R_{1}^{2}$	-1	i ₆	<i>i</i> ₂	R_{3}^{3}	$-i_{5}$	$-i_1$	$-R_3$	R_2^3	$-R_2$	<i>i</i> ₄	$-i_3$	R_{1}^{3}	$-R_1$	
R_1	<i>i</i> 1	$-R_{2}^{3}$	$-i_{2}$	R_2	R_{3}^{3}	$-i_3$	$-R_3$	<i>i</i> ₄	R_1^3	<i>i</i> ₆	i ₅	R_{1}^{2}	r_1	$-r_{4}^{2}$	-1	$-r_{3}$	r_{2}^{2}	$-r_{4}$	<i>r</i> ₂	r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_{3}^{2}	
R_2	i ₃	R_3	$-R_{3}^{3}$	<i>i</i> ₄	R_{1}^{3}	i5	$-i_6$	$-R_1$	$-i_{2}$	R_{2}^{3}	i_1	$-r_{2}^{2}$	R_{2}^{2}	r_1	r_{3}^{2}	-1	$-r_{4}$	R_{1}^{2}	R_{3}^{2}	$-r_2$	$-r_{3}$	$-r_{4}^{2}$	r_{1}^{2}	8
R_3	i ₆	i5	R_1	$-R_{1}^{3}$	R_{2}^{3}	$-R_2$	$-i_2$	$-i_1$	· i3	i_4	R_{3}^{3}	r_1	$-r_{3}^{2}$	R_{3}^{2}	$-r_{2}$	r_{4}^{2}	-1	r_{1}^{2}	r_{2}^{2}	R_{2}^{2}	$-R_{1}^{2}$	$-r_{4}$	$-r_{3}$	
R_{1}^{3}	$-R_2$	$-i_{2}$	R_{2}^{3}	i_1	$-i_3$	$-R_{3}^{3}$	<i>i</i> ₄	R_3	$-R_1$	i_5	$-i_6$	-1	$-r_{4}$	r_{3}^{2}	$-R_{1}^{2}$	r_2	$-r_{1}^{2}$	$-r_{1}$	r_3	r_{2}^{2}	$-r_{4}^{2}$	$-R_{3}^{2}$	$-R_{2}^{2}$	
R_2^3	$-R_3$	i3	i_4	R_3^3	$-i_6$	R_1	$-R_{1}^{3}$	i_5	$-i_1$	$-R_2$	$-i_2$	r_{4}^{2}	-1	$-r_{2}$	$-r_{1}^{2}$	$-R_{2}^{2}$	<i>r</i> ₃	$-R_{3}^{2}$	R_{1}^{2}	$-r_1$	$-r_{4}$	$-r_{2}^{2}$	r_{3}^{2}	
R_{3}^{3}	$-R_1$	R_{1}^{3}	i ₆	i5	$-i_1$	$-i_{2}$	R_2	$-R_{2}^{3}$	<i>i</i> ₄	$-i_{3}$	$-R_3$	$-r_{3}$	r_{2}^{2}	-1	r_4	$-r_{1}^{2}$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}$	$-r_{1}$	
<i>i</i> ₁	R_3^3	$-i_{4}$	<i>i</i> ₃	R_3	$-R_1$	$-i_{6}$	- <i>i</i> ₅	$-R_{1}^{3}$	R_2^3	<i>i</i> ₂	$-R_2$	r_1^2	R_{3}^{2}	$-r_{4}$	r_{4}^{2}	$-R_{1}^{2}$	$-r_1$	-1	$-R_{2}^{2}$	$-r_{3}$	r_2	r_{3}^{2}	r_{2}^{2}	
i2	<i>i</i> ₄	R_{3}^{3}	R_3	$-i_{3}$	$-i_{5}$	R_{1}^{3}	R_1	$-i_{6}$	R_2	$-i_1$	R_{2}^{3}	$-r_{3}^{2}$	$-R_{1}^{2}$	$-r_{3}$	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_{2}^{2}	-1	r_4	$-r_{1}$	r_{1}^{2}	r_{4}^{2}	
i3	R_1^3	R_1	$-i_{5}$	i_6	$-R_2$	$-R_{2}^{3}$	$-i_1$	i_2	$-R_3$	R_{3}^{3}	$-i_4$	$-r_{2}$	r_{1}^{2}	R_{1}^{2}	$-r_{1}$	r_{2}^{2}	$-R_{2}^{2}$	r_{3}^{2}	$-r_{4}^{2}$	-1	R_{3}^{2}	r_3	$-r_{4}$	
<i>i</i> ₄	-i5	i ₆	$-R_{1}^{3}$	$-R_1$	$-i_{2}$	i_1	$-R_{2}^{3}$	$-R_2$	$-R_{3}^{3}$	$-R_3$	i ₃	<i>r</i> ₄	r_{4}^{2}	R_{2}^{2}	r_3	r_{3}^{2}	R_{1}^{2}	$-r_{2}^{2}$	r_{1}^{2}	$-R_{3}^{3}$	-1	r_1	$-r_{2}$	
i5	<i>i</i> ₂	$-R_2$	i_1	$-R_{2}^{3}$	i_4	$-R_3$	i ₃	$-R_3^3$	<i>i</i> ₆	$-R_{1}^{3}$	$-R_1$	R_3^2	r_2	r_{2}^{2}	R_{2}^{2}	r_4	r_{4}^{2}	$-r_{3}$	$-r_{1}$	$-r_{3}^{2}$	$-r_{1}^{2}$	-1	$-R_{1}^{2}$	
16	R_2^3	i1 *	R_2	i2	$-R_3$	$-i_4$	$-R_{3}^{3}$	$-i_3$	$-i_{5}$	$-R_1$	R_{1}^{3}	R_2^2	$-r_{3}$	r_{1}^{2}	$-R_{3}^{2}$	$-r_1$	r_{3}^{2}	$-r_{2}$	$-r_{4}$	r_4^2	r_2^2	R_1^2	-1	

Octahedral O and spin- $O \subset U(2)$ rotation product Table F.2.1 from Principles of Symmetry, Dynamics and Spectroscopy

Octahedral O and spin- $O \subset U(2)$ rotation nomogram from Fig. 4.1.3-4 Principles of Symmetry, Dynamics and Spectroscopy

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $O_4(C_4) \uparrow O$ Projection reduction of induced representation $O_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue expression

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $0_4(C_4) \uparrow O$ Projection reduction of induced representation $0_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue expression

$O \supset D_4 \supset C_4$ level splitting

D_4	1	ρ	\mathbf{R}_{z}	$\mathbf{\rho}_{x,y}$	i _{3,4}	
A_1	1	1	1	1	1	
B_1	1	1	-1	1	-1	
A_2	1	1	1	-1	-1	
B_2	1	1	-1	-1	1	
E	2	-2	0	0	0	

							($C_4 \{ 1, 1$	$, \mathbf{R}_{z}^{1},$	\mathbf{R}_{z}^{2}	$, \mathbf{R}_{z}^{3} \}$	·)	
Т	etrage	onal N	Movin	g Wa	ve Cł	nain		{ 1	\mathbf{R}_{3}^{2}	, R ₃ ²	$, \mathbf{R}_{3}^{3}$	}	
Octal	hedral O		Tetra E	gonal)4	С	yclic-4 C4	-	$ \begin{array}{c cc} 0_4 & 1 \\ 1_4 & 1 \\ 2 & 1 \end{array} $	1 <i>i</i>	1 -1	1 -i		
_	A 1			A 1		04		$\begin{array}{c c} 2_4 & 1 \\ 3_4 & 1 \end{array}$	-1 -i	-1	-1 i		
								I		1		۔ ر	$I_4 =$
			•					$D_4 \downarrow$	C_4	04	14	24	34
	A ₂		1	B1		24		A	1	1	•	•	•
						 .		В	1	.	•	1	•
			ba	۸.		0.		A	2	1	•	•	•
	E	TIVE .		41				B	2	•	•	1	•
		-<		B1		24		E	, ,	•	1	•	1
			-	510 B		ioqee r	(i	$\mathbf{r}, \mathbf{\tilde{r}}_i$	$ ho_{xyz}$	R,Ã	xyz.
1.810	T1			E		14		0	1	r	\mathbf{R}^2	\mathbf{R}^3	i
	* 1	===	==			34		<u> </u>	1	1	1	1	- <u>k</u>
				A2		04		A ₂	1	1	1	-1	-1
	Ta		19	E		14		E	2	-1	2	0	0
	12	===	==			34		T_1	3	0	-1	1	-1
		-	<u> </u>	32		24		T_2	3	0	-1	-1	1
												-	1 ₄ =
$O\downarrow D_4$	A_1	B_1	A_2	B_2	E			$O\downarrow C_4$	0	4	14	24	34
A ₁	1	•	•	•	•			A_1]	1	•	•	•
A_2	•	1	•	•	•			A_2		•	•	1	•
E	1	1	•	•	•			E]	1	•	1	•
T ₁	•	•	1	•	1			T_1]	1	1	•	1
1					4			т			1	1	1

$O \supset D_4 \supset D_2$ level splitting

D_4	1	ρ	\mathbf{R}_{z}	$\mathbf{\rho}_{x,y}$	i _{3,4}	\square
A_1	1	1	1	1	1	
B_1	1	1	-1	1	-1	
A_2	1	1	1	-1	-1	
B_2	1	1	-1	-1	1	
E	2	-2	0	0	0	
NOr	ma	$l D_2$	={1	$, \mathbf{R}_{3}^{2}$	$, \mathbf{R}_{1}^{2},$	\mathbf{R}_2^2
D_4	$\downarrow D_2$	ł	A ₁	B_1	A_2	B ₂
I	4 ₁		1	•	•	
1	B ₁		1	•	•	
A	A_2		•		1	
l	B ₂		•	•	1	
j	E		•	1		1

Tetragona	al Moving Wave	e Chain
Octahedral O	Tetragonal D4	Cyclic-4 C4
A 1	A1	04
	nios maio	
A2	B1	24
Е	<u>A1</u>	04
<	<u>B1</u>	24
gaiwollol T i	E	14
11 	===	34
	A2	04
To	Е	14
12	=====	34
	B2	24

D_2^{Nm} {	[1,	\mathbf{R}_z^2	, \mathbf{R}_x^2	, \mathbf{R}_y^2	}	
A_1	1	1	1	1		
B_1	1	-1	1	-1		
A_2	1	1	-1	-1		
B_2	1	-1	-1	1		
) -1	1 ₄ =
1	$D_4 \downarrow$	C_4	04	14	24	34
	$A_{\rm I}$	t	1	•	•	•
	B_{1}	l	•	•	1	•
	A	2	1	•	•	•
	B_{2}	2	•	•	1	•
	E		•	1	•	1
			n ~	•	DĎ	
		l I	Γ,Γ _i	P_{xyz}	\mathbf{N}, \mathbf{N}_x	zyz.
(0	1	r	\mathbf{R}^2	\mathbf{R}^3	\mathbf{i}_k
ŀ	A ₁	1	1	1	1	1
ŀ	\mathbf{A}_2	1	1	1	-1	-1
	E	2	-1	2	0	0
· ·	Γ_1	3	0	-1	1	-1
	Γ_2	3	0	-1	-1	1
					-1	4 =

NOrmal	$D_{2} =$	= {1,	$\mathbf{R}_3^2, \mathbf{R}$	R_1^2, R_2^2	}
$O \downarrow D_2$	A_{1}	B_1	A_2	B_2	
A_1	1	•	•	•	
A_2	1	•	•	•	
Е	2	•	•	•	

1

1

1

1

1

$O\downarrow D_4$	A_1	B_1	A_2	B_2	E
A_1	1	•	•	•	•
A_2		1			•
E	1	1	•	•	•
T_1		•	1	•	1
T_2		•	•	1	1

			-	$-1_4 =$
$O\downarrow C_4$	04	14	24	34
A_1	1	•	•	•
A_2	•	•	1	•
Ε	1	•	1	•
T_1	1	1	•	1
T_2		1	1	1

 T_1

 T_2

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $0_4(C_4) \uparrow O$ Projection reduction of induced representation $0_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue expression

$O_h \supset O_h$	$D \supset D_4 \supset D_2$	subgroup	o splitting	D_4 1 f	$\mathbf{R}_z = \mathbf{R}_z$	$\mathbf{\rho}_{x,y}$	i _{3,4}							$D_2^{Nm}\{ 1,$	$\mathbf{R}_{z}^{2}, \mathbf{F}$	\mathbf{R}_x^2 , R	$\left\{ {}^{2}_{y} \right\}$	
	Tetragonal S	Standing Way	ve Chain	$A_1 = 1$	1 1	1	1	1	Fetrag	onal N	Moving	Wave (Chain	$\frac{D_2^{Un}\{1,$	\mathbf{R}_z^2 , i	i_3, i_4	} 	
	Octahedral O	Tetragonal D4	NOrmal Dihedral D2	$ \begin{array}{c cc} B_1 & 1 \\ A_2 & 1 \\ B_2 & 1 \end{array} $	1 -1 1 1 1 -1	1 -1 -1	-1 -1 1	Octa	hedral O	ол () (), к	Tetrago D4	nal	Cyclic-4 C4	$\begin{array}{c c} A_1 & 1 \\ \hline B_1 & 1 \\ \hline A_2 & 1 \end{array}$	1 -1 1 -	l 1 l -1 1 -1		
	A 1	A1	A1	E 2	2 0	0 \mathbf{D}^2 \mathbf{I}	$\frac{0}{2}$		A 1		A1		04	$\begin{vmatrix} B_2 \\ B_2 \end{vmatrix} = 1$	-1 -	1 1		1 –
					$J_2 = \{1$	$\mathbf{K}_3, \mathbf{K}_3$	$\mathbf{X}_1, \mathbf{K}_2$	2073								1		-1 ₄ —
	entrie entrie			$\frac{D_4 \downarrow D_2}{A}$	A_1 1	$B_1 A_1$	2 B ₂	29 99 75 - R			ture s e uorte s			$\frac{D_4 \downarrow c}{4}$	·4 0	4 ¹ 4	<u> </u>	3 ₄
	A2	B1	A1	B_1	1		•		A2		B1		24	A ₁ B.			1	•
				$A_2^{^1}$	•	· 1		6.5						A_1	1	[•	
		A1	A1	B_2	•	· 1		121-1	P		Aı	210101	04	B_2	.	•	1	•
		B1	Δ.	E	•	1 .	1		E	-<	Bı		24	E		1	<u> </u>	1
	$O \supset D_{ij}$ split			Un Orm al	$D = \{$	1 \mathbf{R}^{2}	i i }			inəl		र कुल्ल			r,ĩ	ρ	R,Ã	10117
	T	Е	<u>B1</u>	מן מ	$\boldsymbol{\nu}_2 = \boldsymbol{\tau}$	\mathbf{P}	P 3, P	1 34	T1		E	3 (9.5.	14		1 r	\mathbf{P}^2	P ³	3 1
	Ę=	=====;	<u>B2</u>	$\frac{D_4 \Psi D_2}{A_1}$	$\frac{A_1}{1}$	$b_1 A_2$	· D ₂	_	1 1	===	====		34		<u> </u>	1	1	
		A2	A2	B_1	•	· 1					A2		04	A_2	1 1	1	-1	-1
	Ta	Е	B1	A_2	•	· 1	•		T 2		Е	-	14	E	2 -1	2	0	0
	======	=====	<u>B2</u>	B_2	1				1.6	===	=====	~	34	T ₁	3 0	-1	1	-1
	ooddel rana	<u>B2</u>	A2	E	•	1 .	1	Q			B2		24	<u> </u>	3 0	-1	-1	1
NOr	mal $D_2 = \{1, \mathbf{R}\}$	${}^{2}_{3}, \mathbf{R}^{2}_{1}, \mathbf{R}^{2}_{2}$															-	-1 ₄ =
O↓	$D_2 \mid A_1 \mid B_1 \mid A_1$	$A_2 B_2$						$O\downarrow D_4$	A_1	B_1	A_2	B_2 E	,	$O\downarrow C_4$	04	1_{4}	24	34
A	1 1 ·						_	A_1	1	•	•			A_1	1	•	•	•
A	2 1 ·							A_2		1	•			A_2	•	•	1	•
E	2 ·							E	1	1	•			E	1	•	1	•
Τ	$\frac{1}{1}$ \cdot 1	1 1						T_1	.	•	1	· 1		T ₁	1	1	•	1
Ţ	· 1	1 1						T_2	.	•	•	1 1		T_2	•	1	1	1

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $0_4(C_4) \uparrow O$ Projection reduction of induced representation $0_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue expression

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $0_4(C_4) \uparrow O$ Projection reduction of induced representation $0_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue expression

*Solve XY*⁶ *radial vibration* **K**=**a***-matrix*

	$\langle \langle 1 \mathbf{a} 1 \rangle$	$\langle 1 \mathbf{a} 2\rangle$	•••	$\langle 1 \mathbf{a} 6\rangle$		(h	t	S	S	S	S	
	$\langle 2 \mathbf{a} 1\rangle$	$\langle 2 \mathbf{a} 2\rangle$		$\langle 2 \mathbf{a} 6\rangle$	≓ (î	t	h	S	S	S	S	
	and in the	1 01	11.124	Sec.		S	S	h	t	S	S	
-	the direct	h = 2k	t + t,	to la l qu		S	S	t	h	S	S	,
	•	$s = \kappa /$	2			s	S	S	S	h	t	
	$\langle 6 \mathbf{a} 1 \rangle$	$\langle 6 \mathbf{a} 2\rangle$		$\langle y \mathbf{a} 6\rangle$		(5	S	S	S	t	h	

Solve SF₆ J-tunneling Hamiltonian H

$\langle 1 \mathbf{H} 1\rangle$	$\langle 1 \mathbf{H} 2\rangle$	 $\langle 1 \mathbf{H} 6\rangle$		H	Т	S	S	S	S
$\langle 2 \mathbf{H} 1\rangle$	$\langle 2 \mathbf{H} 2\rangle$	 $\langle 2 \mathbf{H} 6\rangle$	12 3	T	H	S	S	S	S
·19803	from each	n one elem	a <u>o</u> di	S	S	H	Т	S	S
				S	S	Т	H	S	S
		$(38) \cdot (8)$	1.29	S	S	S	S	Η	T
$\langle 6 \mathbf{H} 1\rangle$	$\langle 6 \mathbf{H} 2\rangle$	 $\langle 6 \mathbf{H} 6 \rangle$	50	S	S	S	S	Т	H

 $|1\rangle = \mathbf{1}|1\rangle = R_3|1\rangle = R_3^2|1\rangle = R_3^3|1\rangle$

O operators (Two notations)

$$\begin{vmatrix} 1 & \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{r}_4 & \mathbf{r}_1^2 & \mathbf{r}_2^2 & \mathbf{r}_3^2 & \mathbf{r}_4^2 & \mathbf{R}_1^2 & \mathbf{R}_2^2 & \mathbf{R}_3^2 & \mathbf{R}_1 & \mathbf{R}_2 & \mathbf{R}_3 & \mathbf{R}_1^3 & \mathbf{R}_2^3 & \mathbf{R}_3^3 & \mathbf{i}_1 & \mathbf{i}_2 & \mathbf{i}_3 & \mathbf{i}_4 & \mathbf{i}_5 & \mathbf{i}_6 \\ \mathbf{1} & \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{r}_4 & \mathbf{\tilde{r}}_1 & \mathbf{\tilde{r}}_2 & \mathbf{\tilde{r}}_3 & \mathbf{\tilde{r}}_4 & \mathbf{\rho}_x & \mathbf{\rho}_y & \mathbf{\rho}_z & \mathbf{R}_x & \mathbf{R}_y & \mathbf{R}_z & \mathbf{\tilde{R}}_x & \mathbf{\tilde{R}}_y & \mathbf{\tilde{R}}_z & \mathbf{i}_1 & \mathbf{i}_2 & \mathbf{i}_3 & \mathbf{i}_4 & \mathbf{i}_5 & \mathbf{i}_6 \\ \end{vmatrix}$$

Assuming *C*₄-local symmetry conditions for $|1\rangle$ state

 $|1\rangle = \mathbf{1}|1\rangle = R_3|1\rangle = R_3^2|1\rangle = R_3^3|1\rangle$

Using C₄-local symmetry projector equations $P^A \equiv P^{0_4} = (1 + R_3 + R_3^2 + R_3^3)/4$

 $|1\rangle = P^{0_4}|1\rangle = (1 + R_3 + R_3^2 + R_3^3)|1\rangle/4.$

O operators (Two notations)

$$\begin{vmatrix} 1 & \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{r}_4 & \mathbf{r}_1^2 & \mathbf{r}_2^2 & \mathbf{r}_3^2 & \mathbf{r}_4^2 & \mathbf{R}_1^2 & \mathbf{R}_2^2 & \mathbf{R}_3^2 & \mathbf{R}_1 & \mathbf{R}_2 & \mathbf{R}_3 & \mathbf{R}_1^3 & \mathbf{R}_2^3 & \mathbf{R}_3^3 & \mathbf{i}_1 & \mathbf{i}_2 & \mathbf{i}_3 & \mathbf{i}_4 & \mathbf{i}_5 & \mathbf{i}_6 \\ \mathbf{1} & \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{r}_4 & \mathbf{\tilde{r}}_1 & \mathbf{\tilde{r}}_2 & \mathbf{\tilde{r}}_3 & \mathbf{\tilde{r}}_4 & \mathbf{\rho}_x & \mathbf{\rho}_y & \mathbf{\rho}_z & \mathbf{R}_x & \mathbf{R}_y & \mathbf{R}_z & \mathbf{\tilde{R}}_x & \mathbf{\tilde{R}}_y & \mathbf{\tilde{R}}_z & \mathbf{i}_1 & \mathbf{i}_2 & \mathbf{i}_3 & \mathbf{i}_4 & \mathbf{i}_5 & \mathbf{i}_6 \\ \end{vmatrix}$$

Assuming *C*₄-local symmetry conditions for $|1\rangle$ state

 $|1\rangle = \mathbf{1}|1\rangle = R_3|1\rangle = R_3^2|1\rangle = R_3^3|1\rangle$

Using C₄-local symmetry projector equations $P^A \equiv P^{0_4} = (1 + R_3 + R_3^2 + R_3^3)/4$

 $|1\rangle = P^{0_4}|1\rangle = (1 + R_3 + R_3^2 + R_3^3)|1\rangle/4.$

These apply to all six $|\mathbf{g}\rangle = \mathbf{g}|\mathbf{1}\rangle$ -base states. $|g\rangle = |gR_3\rangle = |gR_3^2\rangle = |gR_3^2\rangle$ $|g\rangle = g|1\rangle = gR_3|1\rangle = gR_3^2|1\rangle = gR_3^3|1\rangle$

O operators (Two notations)

 $|1\rangle = P^{0_4}|1\rangle = (1 + R_3 + R_3^2 + R_3^3)|1\rangle/4.$ These apply to all six $|\mathbf{g}\rangle = \mathbf{g}|1\rangle$ -base states. $|g\rangle = |gR_3\rangle = |gR_3^2\rangle = |gR_3^2\rangle$ $|g\rangle = g|1\rangle = gR_3|1\rangle = gR_3^2|1\rangle = gR_3^3|1\rangle$

O operators (Two notations)

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Sir

Simplest O_h⊃O⊃D₄⊃C₄ spectral analysis problems
 Elementary induced representation 0₄(C₄)↑O
 Projection reduction of induced representation 0₄(C₄)↑O
 Introduction to ortho-complete eigenvalue expression

Elementary induced representation $0_4(C_4)\uparrow O$

$i_4 1\rangle = i_4 1\rangle,$	$i_4 2\rangle = i_4 R_1^2 1\rangle,$	$i_4 3\rangle = i_4 r_1 1\rangle,$	$i_4 4\rangle = i_4 r_2 1\rangle,$	$i_4 5\rangle = i_4 r_1^2 1\rangle,$	$i_4 6\rangle = i_4 r_2^2 \rangle,$
$=R_{1}^{2} 1\rangle ,$	$=R_{3}^{3} 1\rangle,$	$=i_{5} 1\rangle$,	$=i_{6} 1\rangle$,	$=i_{2} 1\rangle$,	$=i_{1} 1 angle,$
$= 2\rangle$,	$= 1\rangle$,	$= 6\rangle$,	$= 5\rangle$,	$= 4\rangle$,	$= 3\rangle$,

Elementary induced representation 0₄(C₄)↑O

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest $O_h \supset O \supset D_4 \supset C_4$ spectral analysis problems Elementary induced representation $0_4(C_4)\uparrow O$ Projection reduction of induced representation $0_4(C_4)\uparrow O$ Introduction to ortho-complete eigenvalue expression

$$|e_{0_4}^{A_1}\rangle = P_{0_4}^{A_1}|1\rangle / (N^{A_1})^{1/2}$$

= $\frac{1}{24} \sum_g \mathscr{D}^{A_1^*}(g) g|1\rangle / (N^{A_1})^{1/2}$
= $(|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / (6)^{1/2}.$

$$|e_{0_4}^{A_1}\rangle = P_{0_4}^{A_1}|1\rangle / (N^{A_1})^{1/2}$$

= $\frac{1}{24} \sum_g \mathscr{D}^{A_1^*}(g) g|1\rangle / (N^{A_1})^{1/2}$
= $(|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / (6)^{1/2}.$

$$\begin{aligned} & \text{Tensor E-eigenket 0404} \\ |e_{0_4}^E\rangle &= P_{0_40_4}^E |1\rangle / (N^E)^{1/2} \\ &= \frac{2}{24} \sum_{g} \mathscr{D}_{0_40_4}^{F*}(g) g |1\rangle / (N^E)^{1/2} \\ &= \frac{2}{24} \Big[(1+R_3+R_3^2+R_3^3) + (R_1^2+i_4+R_2^2+i_3) \\ &\quad -\frac{1}{2}(r_1+i_1+r_4+R_2) - \frac{1}{2}(r_2+i_2+r_3+R_2^3) \\ &\quad -\frac{1}{2}(r_1^2+R_1^3+r_3^2+i_6) - \frac{1}{2}(r_2^2+R_1+r_4^2+i_5) \Big] |1\rangle / (N^E)^{1/2}, \\ |e_{0_4}^E\rangle &= (2|1\rangle + 2|2\rangle - |3\rangle - |4\rangle - |5\rangle - |6\rangle) / (2\sqrt{3}). \end{aligned}$$

$$|e_{0_4}^{A_1}\rangle = P_{0_4}^{A_1}|1\rangle / (N^{A_1})^{1/2}$$

= $\frac{1}{24} \sum_g \mathscr{D}^{A_1^*}(g) g|1\rangle / (N^{A_1})^{1/2}$
= $(|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / (6)^{1/2}.$

Tensor E-eigenket 2₄0₄

$$\begin{aligned} |e_{2_4}^E\rangle &= P_{2_{40_4}}^E|1\rangle/(N^E)^{1/2} \\ &= \frac{2}{24} \sum_g \mathscr{D}_{2_{40_4}}^{E^*}(g) g|1\rangle/(N^E)^{1/2} \\ &= \frac{2}{24} \left[\frac{\sqrt{3}}{2} (r_1 + i_1 + r_4 + R_2) + \frac{\sqrt{3}}{2} (r_2 + i_2 + r_3 + R_2^3) \right. \\ &\left. - \frac{\sqrt{3}}{2} (r_1^2 + R_1^3 + r_3^2 + i_6) - \frac{\sqrt{3}}{2} (r_2^2 + R_1 + r_4^2 + i_5) \right] |1\rangle/(N^E)^{1/2}, \\ |e_{2_4}^E\rangle &= (|3\rangle_* + |4\rangle - |5\rangle - |6\rangle)/2. \end{aligned}$$

$$\begin{aligned} |e_{0_4}^{A_1}\rangle &= P_{0_4}^{A_1}|1\rangle / (N^{A_1})^{1/2} \\ &= \frac{1}{24} \sum_g \mathscr{D}^{A_1^*}(g) g|1\rangle / (N^{A_1})^{1/2} \\ &= (|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / (6)^{1/2}. \end{aligned}$$

Vector T_1 *-eigenket* 3_40_4 =- 1_40_4 *and* 0_40_4

 $|e_{3_4}^{T_1}\rangle = (|3\rangle - |4\rangle - i|5\rangle + i|6\rangle)/2,$ $|e_{0_4}^{T_1}\rangle = (|1\rangle - |2\rangle)/\sqrt{2}.$

$$\begin{aligned} |e_{0_4}^{A_1}\rangle &= P_{0_4}^{A_1}|1\rangle / (N^{A_1})^{1/2} \\ &= \frac{1}{24} \sum_g \mathscr{D}^{A_1^*}(g) g |1\rangle / (N^{A_1})^{1/2} \\ &= (|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / (6)^{1/2}. \end{aligned}$$

Vector T_1 *-eigenket* $\pm 1_40_4$ *and* 0_40_4

$$\begin{split} |e_{1_4}^{T_1}\rangle &= P_{1_40_4}^{T_1}|1\rangle/(N^{T_1})^{1/2} \\ &= \frac{3}{24} \sum_g \mathscr{D}_{1_40_4}^{T_1^*}(g) g|1\rangle/(N^{T_1})^{1/2} \\ &= \frac{3}{24} \left[-\frac{1}{\sqrt{2}} \left(r_1 + i_1 + r_4 + R_2\right) + \frac{1}{\sqrt{2}} \left(r_2 + i_2 + r_3 + R_2^3\right) \right. \\ &\left. -\frac{i}{\sqrt{2}} \left(r_1^2 + R_1^3 + r_3^2 + i_6\right) + \frac{i}{\sqrt{2}} \left(r_2^2 + R_1 + r_4^2 + i_5\right) \right] |1\rangle/(N^{T_1})^{1/2} \end{split}$$

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Simplest O_h⊃O⊃D₄⊃C₄ spectral analysis problems
 Elementary induced representation 0₄(C₄)↑O
 Projection reduction of induced representation 0₄(C₄)↑O
 Introduction to ortho-complete eigenvalue expression

*Introduction to ortho-complete eigenvalue calculations Right and Left cosets of C*⁴ *extracted from group table*

	1	\mathbf{r}_1	\mathbf{r}_2	r	$_{3}$ \mathbf{r}_{2}	1	$\tilde{\mathbf{r}}_1 \tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\mathbf{\tilde{r}}_4$	ρ_x	$\mathbf{\rho}_{y}$	ρ	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	\mathbf{i}_5	i ₆
	ρ_{z}	r ₃	\mathbf{r}_4	r	r	, í	$\tilde{\mathbf{r}}_4$ $\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_{1}$	ρ	ρ	1	i ₆	\mathbf{i}_2	Ĩ,	i ₅	\mathbf{i}_1	R _z	$\tilde{\mathbf{R}}_{v}$	\mathbf{R}_{v}	\mathbf{i}_4	i ₃	$\tilde{\mathbf{R}}_{x}$	\mathbf{R}_{x}
	- ~	5			~			, <u> </u>	1	1 - 7	•	~	l °	2	*		Ĩ	~	y	y	·	5		7
	\mathbf{R}_{z}	\mathbf{i}_6	\mathbf{i}_5	R	\mathbf{R}_{x} $\mathbf{\tilde{R}}$		$\mathbf{\hat{R}}_{y}$ R	$_{y}$ \mathbf{i}_{2}	\mathbf{i}_1	i ₃	\mathbf{i}_4	$\tilde{\mathbf{R}}_{z}$	r ₁	$\tilde{\mathbf{r}}_3$	ρ_z	\mathbf{r}_2	$\tilde{\mathbf{r}}_4$	1	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\mathbf{\rho}_{y}$	$\mathbf{\rho}_x$	\mathbf{r}_4	r ₃
	ñ	D	ñ	:	:		: :	D	$\tilde{\mathbf{D}}$:	:	р		ĩ	1		ĩ		ĩ	ĩ	•	•	-	
TA		F.2.1	0.	Grou	p Tab	le	L ₁ L ₂	^ ,	, N _y	∎4	1 ₃	N _z	F ₃	r ₂		1 4	T _L	P_z	F ₄	Γ ₃	\mathbf{P}_x	\mathbf{P}_y	F ₂	L ₁
\int				 	<u> </u>	$\tilde{r}_{1,2}$	\tilde{r}_{2}	\tilde{r}_{3}	$\tilde{r}_{4,2}$	ρ_x	ρ _y				$\left(\right)$	<i>Ř</i> _{m3}	$\tilde{R}_{v_{D3}}$	\tilde{R}]
	r_1	2	2	r ₃	r ₄	r ₁	$r_{\tilde{2}}$	r ₃	r_4^2	Rĩ	R ₂	R ₃	<i>R</i> ₁	<i>R</i> ₂	<i>R</i> ₃	R ₁	⁷ R ₂ ²	R ₃	<i>l</i> ₁	12	<i>l</i> ₃	<i>l</i> ₄	15	<i>l</i> ₆
		ī —	r4 2	$-r_{2}^{2}$	$-r_{3}^{2}$	-1 R ²	$-R_{2}^{-1}$	$-R_{\overline{3}}$ R^{2}	$-R_{1}^{2}$	$-r_2$	-r ₃	$-r_4$	Radia	$-R^{3}$	i_1	$-R_3$	$-\kappa_1$	$-R_2$ R^3	R_1	-R	R ₂	- <i>i</i> .	$-l_4$ R^3	<i>R</i> ₃
		3	r ²	r ²	$-r_{2}^{2}$	R	$-R_{1}^{2}$	-1	R_2^2	$-r_{4}$	r 4	13 12	-i	R_1	$-R_{2}^{3}$	R^3	15 ic	in in in	16 15	$-R_{1}^{3}$	<i>i</i> ,	R_2	$-i_2$	R_2
		2 -	r_{2}^{2}	$-r_{1}^{2}$	r_{Λ}^2	R	R_2^2	$-R_{2}^{2}$	-1	r ₂	$-r_2$	r1	$-R_{2}^{3}$	$-i_5$	R_2	$-i_{A}$	R_1^3	<i>i</i> 1	R_1	i.	$-i_2$	R_2^3	R ₂	i ₂
r	2 _	1	R_1^2	R_2^2	R_3^2	$-r_{1}$	r3	r	ra	r_A^2	r_{2}^{2}	r_{3}^{2}	R_2^3	R_3^3	R_1^3	$-i_{1}$	$-i_3$	$-i_{6}$	$-R_3$	$-i_A$	$-R_1$	i5	$-i_2$	$-R_2$
r	2 -	$R_1^2 -$	1	R_3^2	$-R_{2}^{2}$	r_4	$-r_{2}$	r_1	r3	$-r_{3}^{2}$	$-r_{1}^{2}$	r_4^2	i2	$-i_3$	$-R_1$	R_2	$-R_{3}^{3}$	$-i_{5}$	<i>i</i> ₄	$-R_3$	$-R_{1}^{3}$	$-i_{6}$	R_2^3	$-i_1^{-1}$
r	2 -	$R_2^2 -$	R_{3}^{2}	-1	R_1^2	r ₂	r ₄	$-r_{3}$	<i>r</i> ₁	r_2^2	$-r_{4}^{2}$	$-r_{1}^{2}$	$-R_2$	$-i_4$	$-i_{6}$	<i>i</i> ₂	R_3	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	i5	R_1	$-i_1$	$-R_{2}^{3}$
r	2 -	R_3^2	R_2^2	$-R_{1}^{2}$	-1	<i>r</i> ₃	r_1	<i>r</i> ₂	$-r_{4}$	$-r_1^2$	r_{3}^{2}	$-r_{2}^{2}$	$-i_1$	$-R_3$	- <i>i</i> ₅	$-R_{2}^{3}$	$-i_4$	R_1	$-R_{3}^{3}$	i3	$-i_{6}$	R_1^3	R_2	$-i_2$
R	2 -1	°4	r3	$-r_{2}$	<i>r</i> ₁	r_{2}^{2}	$-r_{1}^{2}$	r_4^2	$-r_{3}^{2}$	-1	R_3^2	$-R_{2}^{2}$	R_1^3	<i>i</i> ₁	$-i_4$	$-R_1$	<i>i</i> ₂	- <i>i</i> ₃	$-R_2$	$-R_{2}^{3}$	R_3^3	R_3	$-i_6$	<i>i</i> ₅
R	$\frac{2}{2}$ -1	2	r_1	r ₄	$-r_{3}$	r_3^2	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{2}^{2}	$-R_{3}^{2}$	-1	R_1^2	$-i_5$	R_2^3	i3	$-i_6$	$-R_2$	$-i_{4}$	$-i_{2}^{-1}$	<i>i</i> ₁	$-R_3$	R_3^3	R_1	R_1^3
R	23 -1	°3 –	r4	<i>r</i> ₁	r_2	r_{4}^{2}	r_{3}^{2}	$-r_{2}^{2}$	$-r_{1}^{2}$	R_2^2	$-R_{1}^{2}$	-1	i_6	i_2	R_{3}^{3}	$-i_5$	$-i_1$	$-R_3$	R_{2}^{3}	$-R_2$	<i>i</i> ₄	$-i_{3}$	R_{1}^{3}	$-R_1$
R	1 1	1 -	R_2^3	-i2	R_2	R	$-i_3$	$-R_{3}$	i,	R_1^3	i,	i.,	R_1^2	r1	$-r_{A}^{2}$	-1	$-r_3$	r_2^2	$-r_A$	<i>r</i> ₂	r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_3^2
R	2 1	3	R_3	$-R_{3}^{3}$	i4	R	i5	$-i_6$	$-R_1$	$-i_{2}$	R_2^3	<i>i</i> ₁	$-r_{2}^{2}$	R_2^2	r_1	r_{3}^{2}	-1	$-r_{4}^{2}$	R_1^2	R_3^2	$-r_{2}$	$-r_{3}$	$-r_{4}^{2}$	r_{1}^{2}
R	3 1	6	i 5	R_1	$-R_{1}^{3}$	R	$-R_2$	$-i_2$	$-i_{1}$	i3	i4	R_3^3	r_1	$-r_{3}^{2}$	R_3^2	$-r_{2}$	r_{4}^{2}	-1	r_{1}^{2}	r_{2}^{2}	R_{2}^{2}	$-R_{1}^{2}$	$-r_{4}$	$-r_{3}$
R	3 -	$R_2 -$	i2	R_2^3	i_1	$-i_{3}$	$-R_{3}^{3}$	<i>i</i> ₄	R_3	$-R_1$	i5	- <i>i</i> ₆	-1	$-r_{4}$	r_{3}^{2}	$-R_{1}^{2}$	r ₂	$-r_{1}^{2}$	$-r_{1}$	r_3	r_{2}^{2}	$-r_{4}^{2}$	$-R_{3}^{2}$	$-R_{2}^{2}$
R	32 -	R ₃	i 3	<i>i</i> ₄	R_{3}^{3}	$-i_6$	R_1	$-R_{1}^{3}$	i_5	$-i_1$	$-R_2$	- <i>i</i> ₂	r_{4}^{2}	-1	$-r_{2}$	$-r_{1}^{2}$	$-R_{2}^{2}$	<i>r</i> ₃	$-R_{3}^{2}$	R_1^2	$-r_{1}$	$-r_{4}$	$-r_{2}^{2}$	r_{3}^{2}
R	3 -1	R_1	R_{1}^{3}	i ₆	i5	$-i_1$	$-i_{2}$	R_2	$-R_{2}^{3}$	<i>i</i> ₄	$-i_{3}$	$-R_3$	$-r_3$	r_{2}^{2}	-1	r_4	$-r_{1}^{2}$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}$	$-r_1$
i		$R_3^3 -$	i4	<i>i</i> ₃	R_3	$-R_1$	$-i_{6}$	- <i>i</i> ₅	$-R_{1}^{3}$	R_2^3	<i>i</i> ₂	$-R_2$	r_{1}^{2}	R_3^2	$-r_{4}$	r_{4}^{2}	$-R_{1}^{2}$	$-r_1$	-1	$-R_{2}^{2}$	$-r_{3}$	r_2	r_{3}^{2}	r_{2}^{2}
i	2 1	4	R_{3}^{3}	R_3	$-i_{3}$	$-i_{5}$	R_{1}^{3}	R_1	$-i_{6}$	R_2	$-i_1$	R_2^3	$-r_{3}^{2}$	$-R_{1}^{2}$	$-r_{3}$	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_{2}^{2}	-1	r_4	$-r_{1}$	r_{1}^{2}	r_{4}^{2}
i	3	R_1^3	R_1	$-i_{5}$	i_6	$-R_2$	$-R_{2}^{3}$	$-i_1$	<i>i</i> ₂	$-R_3$	R_{3}^{3}	$-i_4$	$-r_{2}$	r_{1}^{2}	R_1^2	$-r_{1}$	r_{2}^{2}	$-R_{2}^{2}$	r_{3}^{2}	$-r_{4}^{2}$	-1	R_{3}^{2}	r_3	$-r_{4}$
i,	4 -1	5	i ₆	$-R_{1}^{3}$	$-R_1$	$-i_{2}$	<i>i</i> ₁	$-R_{2}^{3}$	$-R_2$	$-R_{3}^{3}$	$-R_3$	<i>i</i> ₃	<i>r</i> ₄	r_{4}^{2}	R_2^2	<i>r</i> ₃	r_3^2	R_{1}^{2}	$-r_{2}^{2}$	r_{1}^{2}	$-R_3$	-1	r_1	$-r_{2}$
i	5	2 -	R_2	<i>i</i> ₁	$-R_{2}^{3}$	<i>i</i> ₄	$-R_3$	<i>i</i> ₃	$-R_3^3$	<i>i</i> ₆	$-R_{1}^{3}$	$-R_1$	R_3^2	r_2	r_{2}^{2}	R_2^2	r_4	r_4^2	$-r_{3}$	$-r_{1}$	$-r_{3}^{2}$	$-r_{1}^{2}$	-1	$-R_{1}^{2}$
i,	5	R_2^3	<i>i</i> ₁ *	R_2	<i>i</i> ₂	$-R_{3}$	$-i_4$	$-R_{3}^{3}$	$-i_{3}$	$-i_{5}$	$-R_1$	R_1^3	R_{2}^{2}	$-r_{3}$	$\left r_1^2 \right $	$-R_{3}^{2}$	$-r_{1}$	r_3^2	$-r_{2}$	$-r_{4}$	r_4^2	r_2^2	R_1^2	-1
1	1											V			\cup			\cup						

<		$ ho_z$	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{z}$	>	1	$ ho_z$	\mathbf{R}_{z}	$\mathbf{\tilde{R}}_{z}$		1	ρ_z	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{z}$	
	\mathbf{r}_1	\mathbf{r}_4	\mathbf{i}_1	\mathbf{R}_{y}		\mathbf{r}_1	\mathbf{r}_4	\mathbf{i}_1	\mathbf{R}_{y}		\mathbf{r}_{1}	\mathbf{r}_4	i ₁	R _y	
Examples	\mathbf{r}_2	\mathbf{r}_3	\mathbf{i}_2	$\mathbf{\tilde{R}}_{y}$		\mathbf{r}_2	\mathbf{r}_3	\mathbf{i}_2	$\mathbf{\tilde{R}}_{y}$		\mathbf{r}_2	\mathbf{r}_3	\mathbf{i}_2	$\tilde{\mathbf{R}}_{y}$)
of multiple	r ₃	\mathbf{r}_2	$\tilde{\mathbf{R}}_{y}$	\mathbf{i}_2		r ₃	\mathbf{r}_2	$\tilde{\mathbf{R}}_{y}$	\mathbf{i}_2		\mathbf{r}_3	\mathbf{r}_2	$\tilde{\mathbf{R}}_{y}$	i ₂	
Left cosets	r ₄	\mathbf{r}_1	\mathbf{R}_{y}	\mathbf{i}_1		r ₄	\mathbf{r}_1	\mathbf{R}_{y}	\mathbf{i}_1		r ₄	\mathbf{r}_1	\mathbf{R}_{y}	\mathbf{i}_1	
of C ₄ from	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{R}}_{x}$	i ₆		$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{R}}_{x}$	i ₆		$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{R}}_{x}$	i ₆	
group table	$\tilde{\mathbf{r}}_2$	$ ilde{\mathbf{r}}_4$	\mathbf{R}_{x}	\mathbf{i}_5		$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_4$	\mathbf{R}_{x}	\mathbf{i}_5		$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_{4}$		i ₅	
Will be used	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_1$	\mathbf{i}_6	$\mathbf{\tilde{R}}_{x}$		$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_{1}$	\mathbf{i}_6	Ñ ,		r ₃	$\tilde{\mathbf{r}}_{1}$	i ₆	Ĩ.	
later to	$\tilde{\mathbf{r}}_4$	$\tilde{\mathbf{r}}_2$	i ₅	\mathbf{R}_{x}		$\tilde{\mathbf{r}}_4$	$\tilde{\mathbf{r}}_2$	\mathbf{i}_5	\mathbf{R}_{r}		$\tilde{\mathbf{r}}_4$	$\tilde{\mathbf{r}}_2$	i ₅	\mathbf{R}_{r}	
derive	ρ_x	ρ_y	i ₄	i ₃		ρ_x	ρ_{v}	i ₄	i ₃	>	ρ_x	ρ_{v}		i ₃	
eigensolutions	${oldsymbol{ ho}_y}$	ρ_x	\mathbf{i}_3	\mathbf{i}_4		$ ho_y$	ρ_r	i ₃	i ₄		$ ho_y$	ρ_r	i ₂	i,	
and simplified	$ ho_z$	1	Ñ,	R,		$ ho_z$	1	Ñ.	R_		$ ho_z$	1	Ŕ	R_	
formulae.	\mathbf{R}_{x}	<u>i</u> ,	$\tilde{\mathbf{r}}_{4}$	$\tilde{\mathbf{r}}_{2}$]	\mathbf{R}_{x}	 i,	$\frac{1}{\tilde{\mathbf{r}}_{4}}$	$\tilde{\mathbf{r}}_{2}$		\mathbf{R}_{x}	<u> </u>	$\frac{-z}{\tilde{r}_{i}}$	$\frac{z}{\tilde{\mathbf{r}}_{2}}$	
	\mathbf{R}_{y}	i ₁	\mathbf{r}_{1}	r,]	R _y	i.	4 r 1	r,		\mathbf{R}_{y}	j i,	-4 r .	-2 r.	
	\mathbf{R}_{z}	Ŕ	ρ_	⁺ 1]	\mathbf{R}_{z}	R	0	-4 1		\mathbf{R}_{z}	R	0	-4 1	
	$\tilde{\mathbf{R}}_{x}$	z	$\tilde{\mathbf{r}}_{2}$		[Ř _r	i.	<i>ν_z</i> ř .	 ř.		Ĩ,	i.	$\frac{P_z}{\tilde{r}}$	 ~	
	Ã	° i	r ₂	r _a	ļ	Ŕ	-6 i	-3 r.	-1 r		Ŕ	-6 i	13 r	r	
	R	R	- <u>2</u> 1	-3	-	Ď	R	12 1	1 ₃		Ω _y Õ	R	1 ²	1 ₃	
	$\frac{\mathbf{n}_z}{\mathbf{i}}$	$\frac{\mathbf{R}}{\mathbf{R}}$		<i>P</i> _z		$\frac{\mathbf{n}_z}{\mathbf{z}}$	$\frac{\mathbf{R}_z}{\mathbf{R}}$	 	$\frac{P_z}{r}$		K _z	$\frac{\mathbf{R}}{\mathbf{R}}$	1 	P_z	
	∎ ₁ ;	Ω	•4 r	•1 r		1 ₁	м _у õ	1 ₄	1 ₁		∎ ₁ •	м _у õ	L ₄	1 ₁	
	1 ₂	ry i	1 ₃	1 ₂		1 ₂	к _у	r ₃	1 ₂		1 ₂	ĸ _y ∶	r ₃	r ₂	
	• •	•	ρ_x	P_y		1 ₃	1 ₄	$ ho_x$	ρ_y		I ₃	l ₄ •	ρ_x	${oldsymbol{ ho}_{y}}$	
	∎ ₄ •	l ₃	$ ho_y$ ~	ρ_x		1 ₄	1 ₃	$ ho_y$	$ ho_x$		1 ₄	1 ₃	$\boldsymbol{\rho}_{y}$	$ ho_x$	
	1 ₅	K _x ~	r ₂	r ₄		1 ₅	\mathbf{R}_{x}	$\tilde{\mathbf{r}}_2$	\mathbf{r}_4		İ ₅	\mathbf{R}_{x}	$\tilde{\mathbf{r}}_2$	$ ilde{\mathbf{r}}_4$	
	I ₆	\mathbf{R}_{x}	$\tilde{\mathbf{r}}_1$	r ₃		1 ₆	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_3$		i ₆	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_3$	

C ₄ subg	group	o corr	elatio	n to	0
$\supset C_4$	$(0)_{4}$	$(1)_{4}$	(2) ₄	(3) ₄	=(-1)
A ₁	1	•	•	•	
A ₂	•	٠	1	٠	
E	1	٠	1	٠	
T ₁	1	1	•	1	
T ₂	•	1	1	1	
_					

C_4 Projectors to split octahedral P^{α}

$$\mathbf{p}_{m_4} = \sum_{p=0}^{3} \frac{e^{2\pi i m \cdot p/4}}{4} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \mathbf{R}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

$1 \cdot \mathbf{P}^{lpha} =$	$(\mathbf{p}_{0_4}$	$+\mathbf{p}_{1_4}$	$+\mathbf{p}_{2_4}$	$+ \mathbf{p}_{3_4}) \cdot \mathbf{P}^{lpha}$
$1 \cdot \mathbf{P}^{A_1} =$	$\mathbf{P}^{A_{1}}_{0_{4}0_{4}}$	+0	+0	+0
$1 \cdot \mathbf{P}^{A_2} =$	0	+0	$+\mathbf{P}^{A_{2}}_{2_{4}2_{4}}$	+0
$1 \cdot \mathbf{P}^E =$	$\mathbf{P}^E_{0_40_4}$	+0	$+ \mathbf{P}_{2_4 2_4}^{\vec{E}-1}$	+0
$1 \cdot \mathbf{P}^{T_1} =$	$\mathbf{P}_{0_40_4}^{T_1}$	$+\mathbf{P}_{1_{4}1_{4}}^{T_{1}}$	$+0^{-1}$	$+ \mathbf{P}_{3_4 3_4}^{T_1}$
$1\cdot\mathbf{P}^{T_2} =$	0	$+\mathbf{P}_{1_{4}1_{4}}^{T_{2}}$	$+\mathbf{P}_{2_{4}2_{4}}^{T_{2}}$	$+ \mathbf{P}_{3_4 3_4}^{T_2}$

10 split $O \supset C_4$ octahedral P^{α} related to 10 split sub-classes

$\mathbf{P}_{n_4n_4}^{(\alpha)}(O\supset C_4)$	1	$r_1r_2 ilde{r}_3 ilde{r}_4$	$\tilde{r}_1 \tilde{r}_2 r_3 r_4$	$ ho_x ho_y$	$ ho_{z}$	$R_x ilde{R}_x R_y ilde{R}_y$	R_{z}	$ ilde{R}_{m{z}}$	$i_1 i_2 i_5 i_6$	i_3i_4
$24\cdot \mathbf{P}^{A_1}_{0_40_4}$	1	1	1	1	1	1	1	1	1	1
$24\cdot\mathbf{P}_{2_{4}2_{4}}^{A_{2}}$	1	1	1	1	1	-1	-1	-1	-1	-1
$12 \cdot \mathbf{P}^{E}_{0_40_4}$	1	$-rac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1
$12\cdot \mathbf{P}^{E^{-1}}_{2_{4}2_{4}}$	1	$-\overline{\frac{1}{2}}$	$-\overline{\overline{2}}^1$	1	1	$+\frac{1}{2}$	-1	-1	$+\overline{\frac{1}{2}}$	-1
$8\cdot \mathbf{P}_{1_41_4}^{T_1}$	1	$-rac{i}{2}$	$+rac{i}{2}$	0	-1	$+\frac{1}{2}$	-i	+i	$-\frac{1}{2}$	0
$8\cdot \mathbf{P}_{3_43_4}^{T_1}$	1	$+\overline{\overline{\underline{i}}}$	$-\overline{rac{i}{2}}$	0	-1	$+\overline{\frac{1}{2}}$	+i	-i	$-\overline{\overline{2}}$	0
$8\cdot \mathbf{P}_{0_40_4}^{T_1}$	1	0	0	-1	1	0	1	1	0	-1
$8\cdot {f P}_{1_41_4}^{T_2}$	1	$+rac{i}{2}$	$-rac{i}{2}$	0	-1	$-\frac{1}{2}$	-i	+i	$+\frac{1}{2}$	0
$8\cdot \mathbf{P}_{3_43_4}^{T_2}$	1	$-rac{i}{2}$	$+rac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	-i	$+\overline{\overline{2}}$	0
$8\cdot \mathbf{P}_{2_42_4}^{T_2}$	1	0	0	-1	1	0	-1	-1	0	1

	$\ell^{A_{I:}}$ $\ell^{A_{2:}}$ $\ell^{E} =$ $\ell^{T_{I:}}$	= 1 = 1 = 2 = <i>3</i>	Ex Cu Gr	cample bic-Octai oup O	2: G= hedral	= <mark>O</mark> Cen Ran Ord	trum: k: er:	$\kappa(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1^{\boldsymbol{\theta}}$ $\rho(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{I}} = 1^{\boldsymbol{I}}$ $\circ(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1^{\boldsymbol{I}}$	$2+1^{0}+2^{0}+3^{0}+3^{0}=5$ $+1^{1}+2^{1}+3^{1}+3^{1}=10$ $2+1^{2}+2^{2}+3^{2}+3^{2}=24$
s-orbital r ² d-orbitals	$\ell^{T_{22}}$ $O \ gro$ $\chi^{\alpha}_{\kappa_g}$ $\alpha = A$ A_2	= 3 up 1_1	g = 1 1 1	$egin{array}{c} r_{1-4} \ ilde{r}_{1-4} \ ilde{r}_{1-4} \ ilde{1} \ ilde{1} \ ilde{1} \end{array}$	$ ho_{xyz}$ 1 1	R_{xyz} \tilde{R}_{xyz} 1 -1	i_{1-6} 1 -1	Pr lg Pr Pr Id	\mathbf{R}_{y} $\mathbf{\tilde{r}}_{2}=\mathbf{r}_{2}^{2}$
$\{x^{2}+y^{2}-2z^{2},x^{2}$ $p-orbitals\{x, x, yz, xy\}$ $d-orbitals$	$\begin{array}{c} -y^2 \\ y, z \\ T_1 \\ T_2 \end{array}$		2 3 3	-1 0 0	$2 \\ -1 \\ -1$	0 1 -1	0 -1 1	$i_1 = \begin{cases} i_1 \\ i_2 \\ i_3 \\ i_4 \\ i_6 \\ i_$	R ₈ 1 i ₁
$\begin{array}{c c} A_{1} \\ A_{2} \\ E \\ \end{array} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	4 (1) ₄ ((2) ₄ • 1	(3)4=($\begin{array}{c} (-1)_{4} \\ (-1)$	$\begin{pmatrix} 0 \end{pmatrix}_3 \begin{pmatrix} 1 \\ 1 \\ \bullet \end{pmatrix}$	$(2)_{3}$	3=(-1)	$3^{\mathbf{R}_{1}} \xrightarrow{i_{1}}_{r_{1}} \xrightarrow{i_{1}}_{r_{2}} \xrightarrow{i_{2}}_{i_{3}} \xrightarrow{i_{2}}_{r_{2}} \xrightarrow{i_{2}}_{i_{3}} \xrightarrow{i_{3}}_{i_{3}} \xrightarrow{i_{3}}$	Par Rg re-re ² Rg Rz
$\begin{array}{c} \mathbf{L} \\ \mathbf{T}_{1} \\ \mathbf{T}_{2} \end{array}$	1 1	• 1	1 1	T ₁ T ₂	1 1	1 1 1 1		and a second sec	AD THE AD

			~	
<u> </u>	ρ_z	\mathbf{K}_{z}	\mathbf{R}_{z}	$\frac{1}{2} \frac{\mathbf{R}_{z}}{2} \frac{\mathbf{R}_{z}}$
\mathbf{r}_1	\mathbf{r}_4	\mathbf{i}_1	\mathbf{R}_{y}	$\mathbf{r}_1 \qquad \frac{\boldsymbol{\rho}_z}{\boldsymbol{r}} \mathbf{i}_1 \qquad \mathbf{R}_y \qquad \frac{\boldsymbol{\rho}_z}{\boldsymbol{r}}$
\mathbf{r}_2	r ₃	\mathbf{i}_2	$\mathbf{\tilde{R}}_{y}$	\mathbf{r}_2 \mathbf{r}_4 \mathbf{r}_2 $\mathbf{\tilde{R}}_y$ \mathbf{r}_4
\mathbf{r}_3	\mathbf{r}_2	$\tilde{\mathbf{R}}_{v}$	i,	\mathbf{r}_3 $\mathbf{\tilde{R}}_{y}$ \mathbf{i}_2 \mathbf{r}_3
\mathbf{r}_4	r,	R	i.	\mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{3}
$\tilde{\mathbf{r}}_{1}$	i	 Ď		$\stackrel{4}{=} \mathbf{r}_1 \stackrel{y = 1}{=} \mathbf{r}_1$
ř	L ₃		L ₆	\mathbf{r}_1 $\mathbf{\tilde{r}}_3$ \mathbf{k}_x \mathbf{r}_6 $\mathbf{\tilde{r}}_3$
∎ ₂ ~	$ ilde{\mathbf{r}}_4$	\mathbf{R}_{x}	i ₅	$\tilde{\mathbf{r}}_2$ $\tilde{\mathbf{r}}_4$ \mathbf{R}_x \mathbf{i}_5 $\tilde{\mathbf{r}}_4$
r ₃	$\tilde{\mathbf{r}}_1$	\mathbf{i}_6	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{r}}_3 \qquad \tilde{\mathbf{r}}_1 \qquad \tilde{\mathbf{l}}_6 \qquad \tilde{\mathbf{R}}_x \qquad \tilde{\mathbf{r}}_1$
\mathbf{r}_4	$\tilde{\mathbf{r}}_2$	i ₅	\mathbf{R}_{x}	$\tilde{\mathbf{r}}_4$ $\tilde{\mathbf{r}}_2$ $\tilde{\mathbf{l}}_5$ \mathbf{R}_x $\tilde{\mathbf{r}}_2$
$ ho_x$	${oldsymbol{ ho}_y}$	\mathbf{i}_4	i ₃	ρ_x ρ_y \mathbf{i}_4 \mathbf{i}_3 ρ_y
$ ho_y$	ρ_x	i ₃	\mathbf{i}_4	$ ho_y$ $ ho_x$ \mathbf{i}_3 \mathbf{i}_4 $ ho_x$
ρ_z	1	$\tilde{\mathbf{R}}_{z}$	\mathbf{R}_{z}	ρ_z 1 $\tilde{\mathbf{R}}_z$ \mathbf{R}_z 1
\mathbf{R}_{x}	i ₅	$\tilde{\mathbf{r}}_4$	$\tilde{\mathbf{r}}_2$	\mathbf{R}_{x} \mathbf{i}_{5} $\mathbf{\tilde{r}}_{4}$ $\mathbf{\tilde{r}}_{2}$ \mathbf{i}_{5}
\mathbf{R}_{y}	\mathbf{i}_1	\mathbf{r}_1	\mathbf{r}_{4}	\mathbf{R}_{v} \mathbf{i}_{1} \mathbf{r}_{1} \mathbf{r}_{4} \mathbf{i}_{1}
\mathbf{R}_{z}	Ã,	$ ho_z$	1	\mathbf{R}_{z} $\tilde{\mathbf{R}}_{z}$ ρ_{z} 1 $\tilde{\mathbf{R}}_{z}$
$\tilde{\mathbf{R}}_{x}$	••••••••••••••••••••••••••••••••••••••	 ~~ _3	$\tilde{\mathbf{r}}_{1}$	$\tilde{\mathbf{R}}_{\mathbf{r}}$ \mathbf{i}_{6} $\tilde{\mathbf{r}}_{3}$ $\tilde{\mathbf{r}}_{1}$ \mathbf{i}_{6}
$\tilde{\mathbf{R}}_{v}$	i ₂	r ₂	r ₃	$\tilde{\mathbf{R}}_{\mathbf{v}}$ \mathbf{i}_2 \mathbf{r}_2 \mathbf{r}_3 \mathbf{i}_2 —
Ĩ.	R _z	1	ρ_{z}	$\tilde{\mathbf{R}}_{z} = \frac{\mathbf{R}_{z}}{1} \rho_{z} = \frac{\mathbf{R}_{z}}{1}$
<u> </u>	$\overline{\mathbf{R}}_{v}$	\mathbf{r}_{A}	r ₁	$\frac{\mathbf{r}}{\mathbf{i}_1}$ $\mathbf{R}_y \frac{\mathbf{r}}{\mathbf{r}_4} \frac{\mathbf{r}}{\mathbf{r}_1}$ \mathbf{R}_y
-1 La	Ŕ	r ₂	\mathbf{r}_{2}	$\tilde{\mathbf{R}}_{z}$ $\tilde{\mathbf{R}}_{z}$ \mathbf{r}_{2} $\tilde{\mathbf{R}}_{z}$
-2 i.	i.	。 0	ρ	\mathbf{i}_{4} \mathbf{i}_{4} \mathbf{i}_{4} \mathbf{i}_{4} \mathbf{i}_{4} \mathbf{i}_{4}
-3 i	-4 i	P_x	1 y	$\mathbf{i}_3 \qquad \mathbf{i}_3 \qquad \mathbf{i}_3 \qquad \mathbf{i}_3$
▲ 4 •	•3 ••	P_y	P_x	$\mathbf{R}_{x} \mathbf{R}_{x} \mathbf{R}_{x} \mathbf{R}_{x}$
1 ₅	\mathbf{R}_{x}	$\tilde{\mathbf{r}}_2$	\mathbf{r}_4	$\tilde{\mathbf{R}}_{5}$ $\tilde{\mathbf{R}}_{2}$ $\tilde{\mathbf{R}}_{4}$ $\tilde{\mathbf{R}}_{4}$
\mathbf{i}_6	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_3$	$\mathbf{i}_6 \underline{\tilde{\mathbf{r}}_1} \underline{\tilde{\mathbf{r}}_3} \underline{\tilde{\mathbf{r}}_3}$

1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	$\mathbf{\rho}_x$	$\mathbf{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	i ₁	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
ρ	r ₃	r ₄	\mathbf{r}_1	\mathbf{r}_2	$\tilde{\mathbf{r}}_4$	$\mathbf{\tilde{r}}_3$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_1$	$\mathbf{\rho}_{y}$	$\mathbf{\rho}_x$	1	i ₆	\mathbf{i}_2	$\tilde{\mathbf{R}}_{z}$	i ₅	\mathbf{i}_1	\mathbf{R}_{z}	$\mathbf{\tilde{R}}_{y}$	\mathbf{R}_{y}	i ₄	\mathbf{i}_3	$\tilde{\mathbf{R}}_{x}$	\mathbf{R}_{x}
\mathbf{R}_{z}	i ₆	i ₅	\mathbf{R}_{x}	$\tilde{\mathbf{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	\mathbf{R}_{y}	\mathbf{i}_2	\mathbf{i}_1	i ₃	\mathbf{i}_4	$\tilde{\mathbf{R}}_{z}$	r ₁	$\mathbf{\tilde{r}}_3$	ρ _z	\mathbf{r}_2	$\mathbf{\tilde{r}}_4$	1	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\mathbf{\rho}_{y}$	$\mathbf{\rho}_x$	\mathbf{r}_4	\mathbf{r}_3
$\tilde{\mathbf{R}}_{z}$	\mathbf{R}_{x}	$\tilde{\mathbf{R}}_{x}$	\mathbf{i}_6	i ₅	\mathbf{i}_1	\mathbf{i}_2	\mathbf{R}_{y}	$\tilde{\mathbf{R}}_{y}$	\mathbf{i}_4	\mathbf{i}_3	\mathbf{R}_{z}	r ₃	$\tilde{\mathbf{r}}_2$	1	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	ρ _z	$\tilde{\mathbf{r}}_4$	$\tilde{\mathbf{r}}_3$	$\mathbf{\rho}_x$	$\mathbf{\rho}_{y}$	\mathbf{r}_2	\mathbf{r}_1
1	\mathbf{r}_1	r ₂	r ₃	r ₄	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	$\mathbf{\rho}_x$	ρ	ρ _z	\mathbf{R}_{x}	\mathbf{R}_{y}	R _z	$\tilde{\mathbf{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	$\mathbf{\tilde{R}}_{z}$	i ₁	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	i ₆
1 ρ _z	\mathbf{r}_1 \mathbf{r}_3	\mathbf{r}_2 \mathbf{r}_4	\mathbf{r}_3 \mathbf{r}_1	r ₄ r ₂	$ ilde{\mathbf{r}}_1$ $ ilde{\mathbf{r}}_4$	$\tilde{\mathbf{r}}_2$ $\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_3$ $\tilde{\mathbf{r}}_2$	$oldsymbol{ ilde{r}}_4 \ oldsymbol{ ilde{r}}_1$	$\mathbf{\rho}_x$ $\mathbf{\rho}_y$	$\mathbf{\rho}_{y}$ $\mathbf{\rho}_{x}$	ρ _z 1	\mathbf{R}_{x} \mathbf{i}_{6}	\mathbf{R}_{y} \mathbf{i}_{2}	\mathbf{R}_{z} $\mathbf{\tilde{R}}_{z}$	$\tilde{\mathbf{R}}_x$ \mathbf{i}_5	$\tilde{\mathbf{R}}_{y}$ \mathbf{i}_{1}	$ ilde{\mathbf{R}}_{z}$ \mathbf{R}_{z}	$\begin{vmatrix} \mathbf{i}_1 \\ \mathbf{\tilde{R}}_y \end{vmatrix}$	\mathbf{i}_2 \mathbf{R}_y	i ₃ i ₄	i ₄ i ₃	\mathbf{i}_5 $\mathbf{\tilde{R}}_x$	\mathbf{i}_6 \mathbf{R}_x
$\begin{vmatrix} 1 \\ \rho_z \\ R_z \end{vmatrix}$	$\begin{vmatrix} \mathbf{r}_1 \\ \mathbf{r}_3 \\ \mathbf{i}_6 \end{vmatrix}$	\mathbf{r}_2 \mathbf{r}_4 \mathbf{i}_5	\mathbf{r}_3 \mathbf{r}_1 \mathbf{R}_x	\mathbf{r}_4 \mathbf{r}_2 $\mathbf{\tilde{R}}_x$	$ ilde{\mathbf{r}}_1$ $ ilde{\mathbf{r}}_4$ $ ilde{\mathbf{R}}_y$	$\tilde{\mathbf{r}}_2$ $\tilde{\mathbf{r}}_3$ \mathbf{R}_y	$\tilde{\mathbf{r}}_3$ $\tilde{\mathbf{r}}_2$ \mathbf{i}_2	$egin{array}{c} {f ilde r}_4 & & \ {f ilde r}_1 & & \ {f ilde l}_1 & & \ {f ilde l}_1 & & \ \end{array}$	$\mathbf{\rho}_x$ $\mathbf{\rho}_y$ \mathbf{i}_3	$\mathbf{\rho}_{y}$ $\mathbf{\rho}_{x}$ \mathbf{i}_{4}	$ ho_z$ 1 $ m \tilde{R}_z$	$\begin{vmatrix} \mathbf{R}_{x} \\ \mathbf{i}_{6} \end{vmatrix}$ $ \mathbf{r}_{1}$	\mathbf{R}_{y} \mathbf{i}_{2} $\mathbf{\tilde{r}}_{3}$	\mathbf{R}_{z} $\mathbf{\tilde{R}}_{z}$ $\mathbf{\rho}_{z}$	$ \begin{bmatrix} \mathbf{\tilde{R}}_{x} \\ \mathbf{i}_{5} \\ \mathbf{r}_{2} \end{bmatrix} $	$ ilde{\mathbf{R}}_{y}$ $ extbf{i}_{1}$ $ ilde{\mathbf{r}}_{4}$	$\tilde{\mathbf{R}}_{z}$ \mathbf{R}_{z} 1	$\begin{vmatrix} \mathbf{i}_1 \\ \mathbf{\tilde{R}}_y \\ \mathbf{\tilde{r}}_1 \end{vmatrix}$	\mathbf{i}_2 \mathbf{R}_y $\mathbf{\tilde{r}}_2$	\mathbf{i}_3 \mathbf{i}_4 $\mathbf{\rho}_y$	\mathbf{i}_4 \mathbf{i}_3 $\mathbf{\rho}_x$	\mathbf{i}_5 $\mathbf{\tilde{R}}_x$ \mathbf{r}_4	\mathbf{i}_6 \mathbf{R}_x \mathbf{r}_3