Group Theory in Quantum Mechanics Lecture $15_{(3.26 .13)}$

Projector algebra and Hamiltonian local-symmetry eigensolution

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS-Ch. 4)
Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
General formulae for spectral decomposition (D_{3} examples)
Weyl g-expansion in irep $D^{\mu}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D^{\mu_{j k}}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of κ_{g} and κ_{g} in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D ${ }_{3}$ group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in g-operators
$D^{\mu_{j k}}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of κ_{g} and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local |g)-basis and Global vs Local |P $\left.{ }^{(1)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

See Lect. 14 p. 2-23

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

See Lect. 14 p. 2-23

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$ $\mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad$ (Class completeness)
$\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbb{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$

See Lect. 14 p. 2-23

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

$\mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathrm{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Class projectors:
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$

See Lect. 14 p. 2-23

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

$\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathrm{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Class projectors:
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$
Class characters:

χ_{k}^{α}	χ_{1}^{α}	χ_{r}^{α}	χ_{i}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

See Lect. 14 p. 2-23

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and tis subgroup splitting
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in g-operators
$D^{\mu_{j k}}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local |gो-basis and Global vs Local |P $\left.{ }^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

Class characters:

χ_{k}^{α}	χ_{1}^{α}	χ_{r}^{α}	χ_{i}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

Subgroup $C_{2}=\{\mathbf{1}, \mathbf{i}\}$ relabels irreducible class projectors:
$\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathrm{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Class projectors:
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \rightarrow \mathbf{P}^{A_{l}}=\mathbf{P}_{0202}^{A_{l}}$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \rightarrow \mathbb{P}^{A_{2}}=\mathbb{P}_{122}^{A_{2}}$

Class characters:

$$
\begin{array}{c|ccc|}
\chi_{k}^{\alpha} & \chi_{1}^{\alpha} & \chi_{r}^{\alpha} & \chi_{i}^{\alpha} \\
\hline \alpha=A_{1} & 1 & 1 & 1 \\
\alpha=A_{2} & 1 & 1 & -1 \\
\alpha=E & 2 & -1 & 0 \\
\hline
\end{array}
$$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

Review: Spectral resolution of \mathbf{D}_{3} Center (Class algebra) and its subgroup splitting

\rightarrow
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D^{\mu_{j k}}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
& \text { sub-indices xx or yy are optional }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} \sum_{n n}^{\mu} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
& \text { where: } \text { sub-indices xx or yy are optional }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$\mathrm{P}_{212}^{4}=\mathrm{P}_{v 2}^{A_{2}}$
$\mathbf{P}_{12 k}^{E_{j}}=\mathbf{P}_{v x}^{E_{1}} \quad \mathbf{P}_{12 / 2}^{E_{l}=} \mathbf{P}_{v k}^{E_{l}}$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}},
$$

For split idempotents
sub-indices $x x$ or yy are essential

$$
\mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
& \text { where: } \text { sub-indices xx or yy are optional }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}} .
$$

$\left\{\begin{array}{l} \text { Previous notation: } \\ \mathbf{P}_{020}^{A_{1}=} \mathbf{P}_{x x}^{A_{1}} \end{array}\right.$
$\mathbb{P}_{212}^{4}=\mathrm{P}_{v p}^{A_{2}}$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}},
$$

For split idempotents
sub-indices $x x$ or $y v$ are essential

$$
\mathbf{P}_{y y}^{E_{1}} \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducible Class idempotents } \\
& \text { where: } \begin{array}{l}
\text { sub-indices xx or yy are optional }
\end{array} \\
&+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
\end{aligned}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{l}}=\mathbf{P}_{x x}^{E_{1}} \quad \mathbf{P}_{02 / 2}^{E_{1}=} \mathbf{P}_{x y}^{E_{1}}$
$\mathbf{P}_{12 z_{2}}^{E_{1}=} \boldsymbol{P}_{y x}^{E_{1}} \quad \mathbf{P}_{12 l 2}^{E_{2}=\mathbf{P}_{x y}}$

$$
\begin{aligned}
& \mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For split idempotents } \\
& \text { sub-indices } x x \text { or } y y \text { are essential } \quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{0}^{E_{1}}(g)^{\prime} \mathbf{P}_{y x}^{E_{1}}, \\
& \mathbf{P}_{y y}^{E_{1}} \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
\end{aligned}
$$

Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\mathbf{P}_{y x}^{E_{1}} \text {, and } \mathbf{P}_{x y}^{E_{1}}
$$

$$
\begin{array}{ll}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} \sum_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducible Class idempotents } \\
\text { where: } & \text { sub-indices xx or yy are optional }
\end{array}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}$
For split idempotents
sub-indices xx or yy are essential
$\mathbf{P}_{y y}^{E_{1}} \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$
Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\boldsymbol{P}_{y x}^{E_{1}} \text { and } \mathbf{P}_{x y}^{E_{1}}
$$

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes...

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{x y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducible class idempotents } \\
& \text { where: sub-indices xx or yy are optional }
\end{aligned}
$$

For split idempotents
sub-indices $x x$ or $y y$ are essential $\quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}$, $\mathbf{P}_{y y}^{E_{1}} \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$
Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\boldsymbol{P}_{y x}^{E_{1}}, \text { and } \mathbf{P}_{x y}^{E_{1}}
$$

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes to idempotent/nilpotent orthogonality
known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}$
For split idempotents
sub-indices $x x$ or $y y$ are essential $, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$
Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\mathbf{P}_{y x}^{E_{1}} \text { and } \mathbf{P}_{x y}^{E_{1}}
$$

Group product table boils down to simple projector matrix algebra

Idempotent projector orthogonality

$$
\mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}
$$

Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{y y}^{A_{2}}$	\cdot	$\mathbf{P}_{y y}^{A_{2}}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{x x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{y x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$
$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$

where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$$
\begin{array}{rllll}
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}= & D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad & \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad & \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For split idempotents } & \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, & \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
\end{array}
$$

Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$ there arise two nilpotent projectors $\mathbf{P}_{y x}^{E_{1}}$ and $\mathbf{P}_{x y}^{E_{1}}$

Idempotent projector orthogonality

$$
\mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}
$$

Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

$\underset{\mathbf{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (ireps) of \mathbf{g}

Group product table boils down to simple projector matrix algebra

	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	
$\mathbf{P}_{y y}^{A_{2}}$.	$\mathbf{P}_{y y}^{A_{2}}$
$\begin{aligned} & \mathbf{P}_{x x}^{E_{1}} \\ & \mathbf{P}_{y x}^{E_{1}} \end{aligned}$.		$\mathbf{P}_{x x}^{E_{1}}$ $\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$ $\mathbf{P}_{y y}^{E_{1}}$.	
$\begin{array}{r} \mathbf{P}_{x y}^{E_{1}} \\ \mathbf{i}_{3} \mathbf{P}_{y y}^{E_{1}} \end{array}$.	.		.	$\mathbf{P}_{x x}^{E_{1}}$ $\mathbf{P}_{y x}^{E_{1}}$	$\begin{aligned} & \mathbf{P}_{x y}^{E_{1}} \\ & \mathbf{P}_{y,}^{E_{1}} \end{aligned}$
$\left.\begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array}\right) 0 .$						

Review: Spectral resolution of D_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}^{\mu_{j k}}$
$\geqslant \mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D^{\mu_{j k}}(\mathrm{~g})$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m}^{\mathbf{P}_{m^{\prime} n}^{\mu}}{ }^{\mu}
\end{aligned}
$$

$\mathbf{P}_{j k} \mu_{\text {transforms right-and-left }}$
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m}^{\mathbf{P}_{m^{\prime} n}^{\mu}}{ }^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$\mathbf{P}_{j k} \mu_{\text {transforms right-and-left }}$
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n \ldots \ldots \ldots}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m_{m}^{\prime}}^{\mathbf{P}_{m^{\prime} n}^{\mu}} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathrm{g}\left|\left.\right|_{m n} ^{\mu}\right\rangle=\sum_{m^{\prime}}^{\mu^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu m^{\prime} n
\end{array}\right\rangle
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n \ldots \ldots \ldots}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} \mathbf{P}^{\prime}}^{\mathbf{P}_{m^{\prime} n}^{\mu} \ldots} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\left.\begin{array}{rl}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu} \ldots \ldots \ldots\right. \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \boldsymbol{\delta}^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} m}^{\mathbf{U}^{\prime} \mathbf{P}_{m^{\prime}}^{\mu}} \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array}\right)
$$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}, \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \text { norm*. }}{\text { norm }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \quad \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }{ }^{\mu} \text {. }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed \mathbf{g} acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \quad \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g} & =\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}}^{\ell^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\rho^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\prime}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m_{n}\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \text { Projector conjugation } \\
& (|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
& \left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$ spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \frac{\text { norm }}{} \text {. }}{\text { norm }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \begin{array}{c}
\text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\left.\begin{array}{rlrl}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} & \begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} & \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right.
\end{array}\right)
$$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle{ }_{m^{\prime} n}^{\mu}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A less-simple irep expression...

$$
\left\langle{ }_{m n}^{\mu}\right| g^{\dagger}\left|\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)
$$

...requires proper normalization: $\left\langle\begin{array}{c}\mu_{\prime^{\prime}}^{\prime} n^{\prime} \mid\end{array}{ }_{m n}^{\mu}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }}$.

$$
\begin{aligned}
= & \delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\left.\begin{array}{rlrl}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} & \begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} & \mathbf{P}_{m n}^{\mu} \mathrm{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right.
\end{array}\right)
$$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right| g\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu n \\
m n \\
{ }^{\mu} \\
\mathbf{g}^{\dagger}
\end{array}=\left\langle{ }_{m^{\prime} n}^{\mu}\right| \sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)\right.
$$

A less-simple irep expression...

$$
\left\langle{ }_{m n}^{\mu}\right| g^{\dagger}\left|\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime}, n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\geqslant \mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D^{\mu_{j k}}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of kg and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamiltonian local-symmetry eigensolution
$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ}{ }^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}
$$

$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}^{G}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathbf{g}=\mathbf{f}^{-1} \mathbf{h} \text {, }
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

Regular representation of $D_{3} \sim C_{3 v}$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}{ }^{G} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\vdots} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})
$$

Regular representation of $D_{3} \sim C_{3 v}$

$$
\begin{aligned}
& R^{G}(\mathbb{1})=\begin{array}{lll}
R^{G}(\mathbf{r})= & R^{G}\left(\mathbf{r}^{2}\right)= & R^{G}\left(\mathbf{i}_{1}\right)=
\end{array} R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})
$$

Regular representation of $D_{3} \sim C_{3 v}$

$$
\begin{aligned}
& R^{G}(\mathbb{1})=\quad \begin{array}{lll}
R^{G}(\mathbf{r})= & R^{G}\left(\mathbf{r}^{2}\right)= & R^{G}\left(\mathbf{i}_{1}\right)=
\end{array} R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}} D^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\vdots} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation of $D_{3} \sim C_{3 v}$

$$
\begin{aligned}
& R^{G}(\mathbb{1})=\quad \begin{array}{lll}
R^{G}(\mathbf{r})= & R^{G}\left(\mathbf{r}^{2}\right)= & R^{G}\left(\mathbf{i}_{1}\right)=
\end{array} R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}{ }^{G} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$\mathbf{P}^{\mu k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m^{\prime} n^{\prime}}} D^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right)$

$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }_{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$\mathbf{P}_{j k}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \text { Trace } R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right)
$$

 Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \text { Trace } R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right)
$$

$$
\text { Use: } \operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}} D^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$\mathbf{P}^{\mu k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \quad \text { Use: Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)} \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\mu} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}
$$

$\mathbf{P}_{j k}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or 0 for off-diagonal $\mathbf{P}_{m n}^{\mu}$

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{array}{rlr}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) & \text { Use: } \operatorname{Trace} R\left(\mathbf{P}_{m r}^{\mu}\right. \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right) \quad\left(=\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathbf{f})\right. & \text { for unitary } \left.D_{n m}^{\mu}\right) \\
\mathbf{P}_{m n}^{\mu}= & \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G}{ }_{\mathbf{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad\left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}\right. & \text { for unitary } D_{n m}^{\mu}
\end{array}
$$

Review: Spectral resolution of D_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
7
$D^{\mu_{j k}}(g)$ orthogonality relations

Class projector character formulae
\mathbb{P}^{μ} in terms of kg and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}

> Details of Mock-Mach relativity-duality for D_{3} groups and representations
> Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
> Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}^{\mu_{j}}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}^{\mu}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{m^{\prime} m} \boldsymbol{\delta}_{n^{\prime} n} \quad$ Useful identity for later

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}^{\mu}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}. Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in \mathbf{g}-expansion of $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}$
Then put in \mathbf{g}-expansion of $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}$
$\mathbf{P}_{m n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
\left(\text { for unitary } D_{n m}^{\mu}\right)
$$

$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later

$D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\widetilde{\ell^{(\mu)} \sum_{\mathbf{g}} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}}\right)$

$$
\left(\text { for unitary } D_{n m}^{\mu}\right)
$$

$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow \underbrace{\mu^{\prime}}_{\ell_{m^{\prime} n^{\prime}}^{(\mu) \circ}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad \text { Useful identity for later }}$
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$
$D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathrm{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)$
(for unitary $D_{n m}^{\mu}$)

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow \underbrace{}_{D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}}$
$D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\frac{\ell^{(\mu)}{ }^{\circ} \sum_{\mathrm{g}} \sum_{n m} D_{n}^{\mu}\left(g^{-1}\right) \mathrm{g}}{)}\right.$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n} D_{m}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathbf{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$
$D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({\widetilde{{ }^{\circ} G} \sum_{\mathrm{g}}^{(\mu)} D_{n m} D_{n}^{\mu}\left(g^{-1}\right) \mathrm{g}}^{{ }^{\circ}}\right)$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g}) \\
\text { Famous } D^{\mu} \text { orthogonality relation }
\end{gathered}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

D^{μ} completeness relation)
$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}$
$D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({\widetilde{{ }^{\circ} G} \sum_{\mathrm{g}}^{(\mu)} D_{n m} D_{n}^{\mu}\left(g^{-1}\right) \mathrm{g}}^{{ }^{\circ}}\right)$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g}) \\
\text { Famous } D^{\mu} \text { orthogonality relation }
\end{gathered}
$$

 (Begin search for much less famous D^{μ} completeness relation)

$\mathrm{D}^{\mu}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow \underbrace{D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}} \quad \text { Useful identity for later } \\
& \text { Then put in g-expansion of } \underbrace{\mathbf{P}_{m n}^{\mu}}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g} \\
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}
\end{aligned}
$$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }_{{ }^{\ell^{(\mu)} G} \sum_{\mathrm{g}}^{\circ} G} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

$$
\begin{gathered}
\text { (for unitary } \left.D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation

Put \boldsymbol{g}^{\prime}-expansion of \mathbf{P} into \mathbf{P}-expansion of $\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ (Begin search for much less famous
D^{μ} completeness relation)

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell_{n}^{\mu}} \sum_{n}^{\mu} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \\
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{\circ} \frac{\ell^{(\mu)} G}{} \sum_{m}^{\mu} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
\end{aligned}
$$

$\mathrm{D}^{\mu}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in \mathbf{g}-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)}{ }^{\circ} G}{}{ }_{\mathrm{g}}{ }_{\mathrm{o}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\mu_{m n}^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} \sum_{\mathrm{g}}^{\circ} G} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

$$
\begin{gathered}
\text { (for unitary } \left.D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
 (Begin search for much less famous
$\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }_{G}{ }^{\circ} \sum_{g^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathrm{g}^{\prime}}{}$

$$
\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}^{\prime}
$$

D^{μ} completeness relation)

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{{ }^{\circ} G} \sum_{m}^{(\mu)} \sum_{n}^{\mu} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)} G}{\ell^{\mu}} \sum_{m} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$\mathrm{D}^{\mu}{ }_{j k}$-orthogonality relations

$$
\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \text { is a valid expansion of any combination of } \mathbf{g} \text { including } \mathbf{P}
$$

Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow \underbrace{\mu_{m n}^{\prime}\left(\mathbf{P}_{m}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}}_{m^{\prime} n^{\prime}} \quad \text { Useful identity for later } \\
& \text { Then put in g-expansion of } \underbrace{\mathbf{P}_{m n}^{\mu}}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g} \\
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}
\end{aligned}
$$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{{ }^{\circ} G} \sum_{\mathrm{g}}^{(\mu)} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}{ }^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathbf{g}) \\
\text { Famous } D^{\mu} \text { orthogonality relation }
\end{gathered}
$$

Put \mathbf{g}^{\prime}-expansion of \mathbf{P} into \mathbf{P}-expansion of $\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\mu} D_{m n}^{\mu}(g) \underbrace{\frac{\widetilde{\ell^{(\mu)}}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{-1}\right)} \mathbf{g}^{\prime}
$$

D^{μ} completeness relation)

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{{ }^{\circ} G} \sum_{m}^{(\mu)} \sum_{n} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)} G}{\ell^{\mu}} \sum_{m} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)}}{{ }^{\circ} G} \chi^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$\mathrm{D}^{\mu}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu_{m n}^{\prime}\left(\mathbf{P}_{m}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}} \quad \text { Useful identity for later } \\
& \text { Then put in g-expansion of } \underbrace{\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right)} \mathrm{g} \\
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}
\end{aligned}
$$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\overbrace{{ }^{\ell^{(\mu)} G} \sum_{\mathrm{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}}^{\mathrm{s}})
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathbf{g}) \\
\text { Famous } D^{\mu} \text { orthogonality relation }
\end{gathered}
$$

Put $\overbrace{\mathbf{g}^{\prime} \text {-expansion of } \mathbf{P} \text { into } \mathbf{P} \text {-expansion of } \mathbf{g}=\sum_{\mu}^{\ell_{m}} \sum_{m}^{\ell_{n}^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}, ~}^{\mathbf{P}^{\mu}}$ (Begin search for much less famous
$\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathrm{g}^{\prime}$

$$
\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}}^{\prime} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

D^{μ} completeness relation)

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{\ell^{\circ} G} \sum_{m}^{(\mu)} \sum_{n}^{\mu} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{\circ} \frac{\ell^{(\mu)} G}{\ell^{\mu}} \sum_{m}^{\mu} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \begin{gathered}
\text { Interesting character } \\
\text { sum-rule }
\end{gathered}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)}}{{ }^{\circ} G} \chi^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \Rightarrow\left(\sum_{\mu}^{{ }^{\circ} G} \chi^{(\mu)}\left(g g^{\prime-1}\right)=\delta_{g^{\prime}}^{g^{-1}}\right.
$$

$\mathrm{D}^{\mu}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathrm{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} \sum_{\mathrm{g}}^{\circ} G} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\text { (for unitary } \left.D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
 (Begin search for much less famous

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\mu} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \begin{gathered}
D^{\mu} \text { completeness } \\
\text { relation })
\end{gathered}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{\circ} \frac{\ell^{(\mu)} G}{\ell^{\prime}} \sum_{m}^{\mu} \quad D_{m m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \begin{gathered}
\mu=E_{1} \mid \ell^{\ell^{2}}=2-1 \\
\begin{array}{c}
\text { Interesting character } \\
\text { sum-rule }
\end{array}
\end{gathered}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)}}{{ }^{\circ} G} \chi^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \Rightarrow \quad \sum_{\mu}^{{ }^{\circ} G} \chi^{(\mu)}\left(g g^{\prime-1}\right)=\delta_{g^{\prime}}^{g^{-1}}
$$

$\mathrm{D}^{\mu}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathrm{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\mu_{m n}{ }^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathrm{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation

$\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell_{n}^{\mu}} \sum_{n}^{\mu} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}$
$\mathbf{g}=\sum_{\mathbf{g}^{\prime}} \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{\circ}} \sum_{m}^{\mu} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}$
$\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{m}^{\mu} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}$
$\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{{ }^{\circ} G} \chi^{(\mu)}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \Rightarrow \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{\circ}} \chi^{\mu}\left(g g^{\prime-1}\right)=\delta_{g^{\prime}}^{g^{-1}}$

Character sum-rule becomes
Diophantine relation if $\mathbf{g}^{\prime}=\mathbf{g}^{-1}$

$$
\sum_{\mu} \frac{\left(\ell^{(\mu)}\right)^{2}}{{ }^{\circ} G}=1
$$

(Begin search for much less famous
D^{μ} completeness relation)

$\chi_{k}^{\mu}\left(D_{3}\right)$	χ_{i}^{μ}	χ_{r}^{μ}	χ_{i}^{μ}
$\mu=A_{1}$	$\ell^{A_{1}}=1$	1	1
$\mu=A_{2}$	$\ell^{A_{1}}=1$	1	-1
$\mu=E_{1}$	$\ell^{E_{1}}=2$	-1	0

$$
\begin{gathered}
\text { Interesting character } \\
\text { sum-rule } \\
\sum_{\mu}^{\ell^{\circ} G} \chi^{\mu}\left(g g^{\prime-1}\right)=\delta_{g^{\prime}}^{g^{-1}}
\end{gathered}
$$

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
$D^{\mu_{j k}}(\mathrm{~g})$ orthogonality relations
\rightarrow Class projector character formulae And review of all-commuting class sums
\mathbb{P}^{μ} in terms of κ_{g} and κ_{g} in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14)
Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G /{ }_{\kappa g}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathbf{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$.

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G /{ }_{\kappa g}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathbf{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \quad \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{G} G} \mathbb{C} \quad \text { (Trivial assumption) }
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G /{ }_{\kappa g}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathbf{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{gathered}
\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathbf{g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \longleftrightarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbb{C} \quad \text { (Trivial assumption) } \\
=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h}\left(\sum_{\mathbf{g}=1}^{\circ} C_{g} \mathbf{g}\right) \mathbf{h}^{-1}
\end{gathered}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G /{ }_{\kappa g}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathbf{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
& \mathbb{C}=\sum_{\mathbf{g}=1}^{\circ} C_{g} \mathbf{g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \longleftrightarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbb{C} \quad \text { (Trivial assumption) } \\
&=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h}\left(\sum_{\mathbf{g}=1}^{\circ} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
&=\sum_{\mathbf{g}=1}^{\circ} C_{g} \frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbf{g} \mathbf{h}^{-1}
\end{aligned}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G /{ }_{\kappa g}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathbf{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
& \mathbb{C}=\sum_{\mathbf{g}=1}^{\circ} C_{g} \mathbf{g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \longleftarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbb{C} \quad \text { (Trivial assumption) } \\
&=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h}\left({ }_{\mathbf{o}=1}^{\circ} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
&=\sum_{\mathbf{g}=1}^{{ }^{\circ} G} C_{g} \frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h g h}^{-1} \\
&=\sum_{\mathbf{g}=1}^{\circ} C_{g} \frac{{ }^{\circ} n_{g}}{{ }^{\circ} G} \mathbf{K}_{g}
\end{aligned}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G /{ }_{\kappa g}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathbf{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} g$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C} \mathbf{h}$ or $\mathbf{h} \mathbb{C} \mathbf{h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
& \mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbb{C h}^{-1} \longleftarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{G} G} \mathbb{C} \text { (Trivial assumption) } \\
& =\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h}\left(\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
& =\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \frac{1}{{ }^{\circ} G}{ }^{\circ} \sum_{\mathbf{h}=1} \mathbf{h g h}^{-1} \\
& =\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \frac{{ }^{\circ} n_{g}}{{ }^{\circ} G} \mathbf{K}_{g}
\end{aligned}
$$

Precise combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g}=\sum_{\mathrm{g}=1}^{\circ} C_{g} C_{g} \frac{\boldsymbol{\kappa}_{g}}{{ }_{\kappa_{g}}}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G / /_{\text {кg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathbf{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
& \mathbb{C}={ }^{\circ} \sum_{\mathbf{g}=1}^{\circ} C_{g} \mathbf{g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \longleftrightarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbb{C} \quad \text { (Trivial assumption) } \\
&=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h}\left(\sum_{\mathbf{g}=1}^{\circ} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
&=\sum_{\mathbf{g}=1}^{{ }^{\circ} G} C_{g} \frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h g h}^{-1} \\
&=\sum_{\mathbf{g}=1}^{{ }^{\circ} G} C_{g} \frac{{ }^{\circ} n_{g}}{{ }^{\circ} G} \mathbf{K}_{g}
\end{aligned}
$$

Precise combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g}=\sum_{\mathrm{g}=1}^{\circ} C_{g} C_{g} \frac{\boldsymbol{\kappa}_{g}}{{ }_{\kappa_{g}}}
$$

(Simple D_{3} example)

$$
\begin{aligned}
& \mathbb{C}=8 \mathbf{r}^{1}+8 \mathbf{r}^{2} \\
& =8\left(\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 2+8\left(\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 2 \\
& =8\left(\kappa_{\mathbf{r}}\right) / 2+8\left(\kappa_{\mathbf{r}}\right) / 2 \\
& =8 \kappa_{\mathbf{r}}
\end{aligned}
$$

Review: Spectral resolution of D_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k} \mu_{k}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D^{\mu_{j k}}(g)$ orthogonality relations
Class projector character formulae
$\geqslant \mathbb{P}^{\mu}$ in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
\mathbb{P}^{μ} in terms of κ_{g}
$\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$

Kg in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of $\xlongequal{\text { irep projectors vs. } \mathbf{g}} \begin{gathered}\text { ir } \\ \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}\end{gathered}$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}
$$

for unitary $D_{n m}^{\mu}$
$D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)$

Kg in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\mathrm{th}}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of $\begin{gathered}\text { irep projectors vs. } \mathbf{g} \\ \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}\end{gathered}$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{{ }_{\mathrm{G}}} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{{ }_{\mathrm{G}}} \sum_{\mathbf{g}}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\text { for unitary } D_{n m}^{\mu}
$$

$$
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
$$

Kg in terms of \mathbb{P}^{μ}

\mathbb{P}^{μ} in terms of κ_{g}

$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$

$$
\begin{gathered}
(\mu)^{\text {th }} \text { all-commuting class projector given by sum } \mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu} \text { of } \xlongequal{\text { irep projectors vs. } \mathbf{g}} \begin{array}{c}
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
\end{array}
\end{gathered}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}}{{ }^{\circ} G} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{g}} \frac{\ell^{\mu}}{{ }^{\circ}} \chi_{g}^{\mu^{*}} \kappa_{\mathrm{g}}, \text { where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h} \mathbf{g h}^{-1}\right)
$$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

Kg in terms of \mathbb{P}^{μ}

\mathbb{P}^{μ} in terms of κ_{g}

$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of prep projectors vs. $\mathrm{g}_{\ell^{(\mu)} \circ{ }^{*}}$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} \chi^{\mu^{*}}(g) \mathbf{g}
$$

$\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{\kappa}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}$, where: $\chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h} \mathbf{g h}^{-1}\right)$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

Kg in terms of \mathbb{P}^{μ}
Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$

\mathbb{P}^{μ} in terms of κ_{g}

$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. \mathbf{g}

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\circ} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathbf{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} \chi^{\mu^{*}}(g) \mathbf{g}
$$

$\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{g}} \frac{\ell^{\mu}}{{ }^{\prime} G} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}$, where: $\chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

Kg in terms of \mathbb{P}^{μ}
Find all-commuting class κ_{g} in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathbf{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :

\mathbb{P}^{μ} in terms of κ_{g}

$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. \mathbf{g}

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} \chi^{\mu^{*}}(g) \mathrm{g}
$$

$\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\prime}} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}$, where: $\chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

Kg in terms of \mathbb{P}^{μ}
Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given g vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\mathbf{\kappa}_{\mathbf{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\mathbf{\kappa}_{\mathbf{g}}\right)$

\mathbb{P}^{μ} in terms of κ_{g}

$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv$ Trace $D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. g

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}}^{\mu_{m n}^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathbf{g}
$$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

Kg in terms of \mathbb{P}^{μ}
Find all-commuting class $\boldsymbol{\kappa}_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)$
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\mathrm{\kappa}_{\mathrm{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\mathrm{\kappa}_{\mathrm{g}}\right)$

\mathbb{P}^{μ} in terms of κ_{g}

$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. g

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{{ }^{G} G}}{} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}{ }^{\mu}}{} \chi_{g}^{\mu^{*}} \mathbf{k}_{\mathrm{g}}$, where: $\chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

$\kappa \mathrm{k}$ in terms of \mathbb{P}^{μ}

Find all-commuting class $\boldsymbol{\kappa}_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)$
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\mathrm{\kappa}_{\mathrm{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\mathrm{\kappa}_{\mathrm{g}}\right)$
$D_{a p}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad \delta_{c r}=\delta_{a p} \quad D_{r c}^{\mu}\left(\kappa_{\mathrm{g}}\right)$

\mathbb{P}^{μ} in terms of kg

$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. g

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }_{G}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}, \text { where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)
$$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

$\kappa \mathrm{k}$ in terms of \mathbb{P}^{μ}

Find all-commuting class $\boldsymbol{\kappa}_{\mathrm{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :

$$
\sum_{b=1}^{\ell_{j}^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)
$$

$$
\sum_{b=1}^{\mu^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathrm{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\kappa_{\mathrm{g}}\right)
$$

$D_{a p}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad \delta_{c r}=\delta_{a p} \quad D_{r c}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ So: $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ is multiple of ℓ^{μ}-by- ℓ^{μ} unit matrix:

$$
D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)=\delta_{m n} \frac{\chi^{\mu}\left(\kappa_{\mathrm{g}}\right)}{\ell^{\mu}}=\delta_{m n} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}
$$

\mathbb{P}^{μ} in terms of kg

$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. g

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{{ }_{\text {classes } \mathbf{k}_{\mathrm{g}}}} \frac{\ell^{\mu}{ }^{\mu}}{} \chi_{g}^{\mu^{*}} \mathbf{k}_{\mathrm{g}} \text {, where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)
$$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

$\kappa \mathrm{k}$ in terms of \mathbb{P}^{μ}

Find all-commuting class $\boldsymbol{\kappa}_{\mathrm{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :

$$
\sum_{\substack{\ell^{\mu}=1 \\ \ell^{\mu}}}^{D_{a b}^{\mu}\left(\kappa_{\mathrm{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathrm{g}}\right), ~()^{\mu}}
$$

$$
\sum_{b=1}^{\mu^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathrm{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\kappa_{\mathrm{g}}\right)
$$

$D_{a p}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad \delta_{c r}=\delta_{a p} \quad D_{r c}^{\mu}\left(\kappa_{\mathrm{g}}\right)$
So: $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ is multiple of ℓ^{μ}-by- ℓ^{μ} unit matrix:

$$
\kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

$$
D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)=\delta_{m n} \frac{\chi^{\mu}\left(\kappa_{\mathrm{g}}\right)}{\ell^{\mu}}=\delta_{m n} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}
$$

Review: Spectral resolution of \mathbf{D}_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}{ }_{j k}$-expansion in g-operators
$D_{j k}^{\mu}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
7
Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamiltonian local-symmetry eigensolution
> "Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...vanvleck, Casimiri... Mach, Newton, Archimedes..)

Body Based Operations

...for one state |1) only!
...But how do you actually make the \mathbb{R} and $\overline{\mathbf{R}}$ operations?

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Lab-fixed (Extrinsic-Global) operations\&axes fixed

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
$\mathbf{r i}_{1}$	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$$
\mathbf{i}_{1} \mathbf{i}_{2}=\mathbf{r}
$$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$\mathrm{i}_{1} \mathrm{i}_{2}=\mathbf{r}$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

1	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
$\overline{\mathbf{i}_{1}}$	\mathbf{i}_{3}	\mathbf{i}_{2}	1	$\mathbf{1}$	\mathbf{r}
\mathbf{r}^{2}					
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	1	$\mathbf{1}$
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	1

$\mathrm{i}_{1} \mathbf{i}_{2}=\mathbf{r}$
Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

1	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	1	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	1	\mathbf{r}	\mathbf{r}
\mathbf{r}^{2}					
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	1	$\mathbf{1}$
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	1

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

... and Mock-Mach principle $\overline{\mathbf{g}}|\mathbf{1}\rangle=\mathbf{g}^{-1}|\mathbf{1}\rangle \quad \overline{\mathrm{i}}_{1} \overline{\mathrm{i}}_{2}=\overline{\mathrm{r}}$

...but, THEY OBEY THE SAME GROUP TABLE. $\quad \mathrm{i}_{1} \mathrm{i}_{2}=\mathrm{r}$
implies:

$$
\overline{\mathbf{i}}_{1} \bar{i}_{2}|\mathbf{1}\rangle=\bar{i}_{1}\left|\dot{i}_{2}\right\rangle=\tilde{\hat{\mathbf{r}}}|\mathbf{1}\rangle=\mathbf{r}^{2}|\mathbf{1}\rangle
$$

$\xrightarrow[\text { while lab axes move }]{\text { wave packe fixed }}$

Review: Spectral resolution of \mathbf{D}_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}{ }_{j k}$-expansion in g-operators
$D_{j k}^{\mu}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
 Hamiltonian local-symmetry eigensolution

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} global	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
group	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
product	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	
table	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{13}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{13}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

Change Global to Local by switching
...column-g with column-g ${ }^{\dagger}$
....and row-g with row-g ${ }^{\dagger}$

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} global	1	$\mathbf{r}^{2} \mathrm{r}$	$\mathbf{i}_{1} \quad \mathbf{i}_{2} \quad\left(\mathbf{i}_{3}\right.$
group	r	$1 \mathrm{r}^{2}$	
product	\mathbf{r}^{2}	r 1	$\mathrm{i}_{2}\left(\mathrm{i}_{3} \mathrm{i}_{1} \mathbf{i}_{1}\right.$
	1 \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{13}	$\begin{array}{\|ll} \hline\left(\mathbf{i}_{3}\right) & \mathbf{i}_{2} \\ \mathbf{i}_{1} & \mathbf{i}_{13} \\ \mathbf{i}_{2} & \mathbf{i}_{1} \\ \hline \end{array}$	$\begin{array}{ccc}1 & r & r^{2} \\ \mathbf{r}^{2} & 1 & r \\ r & r^{2} & 1\end{array}$

D_{3} global		${ }^{4}$		
projector	\mathbb{P}^{4}	\mathbb{P}_{4}^{4}		
product	$\mathbf{P}_{x}^{E x}$		$\mathbb{P}_{x x}^{E} \mathbf{P}_{\mathbf{P}_{y}^{E}}^{E}$	
	$\mathrm{P}^{\text {E }}$		$\mathbf{p}_{y x}^{E} \mathbf{P}_{v y}^{E}$	
table	$\mathbf{R}^{\text {E }}$			$\mathbf{P}_{x x}^{E} \mathbb{P}_{x}^{E}$
	$\mathbf{P}_{\text {E }}^{\text {E }}$			$\mathbf{P}_{y}^{E} \mathbf{P}_{y}^{E}$

$\mathbf{P}_{a b}^{(n)} \mathbf{P}_{c d}^{(n)}=\delta^{n n} \delta_{b c} \mathbf{P}_{a d}^{(m)}$

...column-P with column-P ${ }^{\dagger}$

and row-P with row-P ${ }^{\dagger}$

Compare Global vs Local |gो-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{r} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{13} |
| \mathbf{r} | $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{i}_{3} | \mathbf{i}_{1} | \mathbf{i}_{2} |
| \mathbf{r}^{2} | \mathbf{r} | $\mathbf{1}$ | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{1} |
| \mathbf{i}_{1} | \mathbf{i}_{13} | \mathbf{i}_{2} | $\mathbf{1}$ | \mathbf{r} | \mathbf{r}^{2} |
| \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{i}_{3} | \mathbf{r}^{2} | $\mathbf{1}$ | \mathbf{r} |
| \mathbf{i}_{13} | \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{r} | \mathbf{r}^{2} | $\mathbf{1}$ |

D_{3} global
gg ${ }^{\dagger}$-table

Compare Global vs Local |gो-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$ \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table
$\frac{\text { RESULT T: }}{\operatorname{Any} R(\mathrm{~T})}$
commute (Even if T and U do not...)
with any $R(\mathbb{U})$..

$\left.R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}(\mathbf{i})_{2}\right) \quad R^{G}\left(\mathbf{i} \mathbf{i}_{3}=\right.$

D_{3} global mg ${ }^{\dagger}$-table

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \leftrightarrows \mathbf{g}^{\dagger}$ on side of group table g † g-table

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL g operators in ${\underset{E}{3}}^{D_{3}}$

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(m)}$ for GLOBAL \mathbf{g} operators in ${\underset{E}{E}}^{D_{3}}$

$\overline{\mathbf{P}}_{a b}^{(n)}$...for LOCAL $\overline{\mathbf{g}}$ operators in \bar{D}_{3}

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL \mathbf{g} operators in D_{3}

$\overline{\mathbf{P}}_{a b b}^{(0)} .$. for LOCAL $\overline{\bar{g}}$ operators in $\overline{D_{3}}$

Note how any global g-matrix commutes with any local g-matrix

$$
\begin{aligned}
& \left|\begin{array}{cc:cc}
a \boldsymbol{A} & b \boldsymbol{A} & a \boldsymbol{B} & b \boldsymbol{B} \\
c \boldsymbol{A} & d \boldsymbol{A} & c \boldsymbol{B} & d \boldsymbol{B} \\
\hdashline a \boldsymbol{C} & b \boldsymbol{C} & a \boldsymbol{D} & b \boldsymbol{D} \\
c \boldsymbol{C} & d \boldsymbol{C} & c \boldsymbol{D} & d \boldsymbol{D}
\end{array}\right|=\left|\begin{array}{ll:ll}
\boldsymbol{A} a & \boldsymbol{A b} & \boldsymbol{B a} & \boldsymbol{B} b \\
\boldsymbol{A c} & A d & B c & B d \\
\hline \boldsymbol{C a} & \boldsymbol{C b} & \boldsymbol{D} a & \boldsymbol{D} b \\
\boldsymbol{C c} & \boldsymbol{C} d & \boldsymbol{D c} & \boldsymbol{D} d
\end{array}\right|
\end{aligned}
$$

Review: Spectral resolution of \mathbf{D}_{3} Center (Class algebra) and its subgroup splitting
General formulae for spectral decomposition (D_{3} examples)
Weyl g-expansion in irep $D_{j k}^{\mu}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D_{j k}^{\mu}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of κ_{g} and κ_{g} in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local |gो-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\boldsymbol{H a m i l t o n i a n ~ a n d ~} D_{3}$ group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamiltonian local-symmetry eigensolution

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give: $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle_{\text {norm }}$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\begin{array}{l}\mu_{m^{\prime} n^{\prime}}^{\prime} \\ \left|\begin{array}{c}\mu n\end{array}\right\rangle\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { orm }^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathbf{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu n \\ \mu\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle{ }_{m^{\prime} n}^{\mu}\right| \mathbf{g}\left|\begin{array}{l}\mu n \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\begin{aligned}
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \quad \begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{p}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \begin{array}{c}
\text { Mock-Mach } \\
\stackrel{\text { and }}{\text { commutation }}
\end{array} \\
& =\mathbf{P}_{m n^{\prime}}^{\mu} \mathbf{\sigma}^{-1}|\boldsymbol{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\text { inverse }}{ }
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{|c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original Ret $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
\end{aligned}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n^{\prime}}^{\mu} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}}{\ell^{(\mu)}}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }^{2}
\end{gathered}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu^{\prime}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\frac{G}{\ell^{(\mu)}}}}{\ell^{(\mu)}}} \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}}{\ell^{(\mu)}}}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{l}\mu \\ m\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell(\mu)}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
=\underset{m n}{\rho^{\mu}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}}{\ell^{(\mu)}}} \longleftarrow \text { inverse }^{\text {in }}
$$

$$
\left.=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu} \mathbf{1}\right\rangle \sqrt{\frac{{ }^{\prime}}{\ell^{(\mu)}}}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu n^{\prime}
\end{array}\right\rangle
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu n \\ m\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}{ }^{(\mu)}}{\ell^{(\mu)}}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
=\underset{\mathbf{P}^{\mu}}{\mu^{\mu}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}^{G}}{\ell^{(\mu)}}} \longleftarrow \text { inverse }
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G} \ell^{(\mu)}}{\ell^{(\mu)}}}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right\rangle
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{|c}\mu \\ m n\end{array}\right\rangle$

$$
\mathrm{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}{ }^{(\mu)}}{\ell^{(\mu)}}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
=\mathbf{P}_{\ell^{\mu}}^{\mu^{\mu}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{o_{G}}{\ell^{(\mu)}}} \longleftarrow \text { inverse }
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G}}{\ell^{(\mu)}}}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu n^{\prime}
\end{array}\right\rangle
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

$R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}=$				
$\left\|\mathbf{P}_{x x}^{A_{1}}\right\rangle$	$\left\|\mathbf{P}_{y y}^{A_{2}}\right\rangle$	$\left\|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y x}^{E_{1}}\right\rangle$	$\left\|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y y}^{E_{1}}\right\rangle$	
$\int D^{A_{1}}(\mathbf{g})$				$\left\|\mathbf{P}^{(\mu)}\right\rangle$-base ordering to concentrate
	$D^{A_{2}}(\mathbf{g})$.		
		$\begin{aligned} & D_{x x}^{E_{1}}(\mathbf{g}) \quad D_{x y}^{E_{1}} \\ & D_{y x}^{E_{1}}(\mathbf{g}) \end{aligned} D_{y y}^{E_{1}}$.	
			$\begin{array}{ccc}D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}$	D-matrices

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component
$\left\langle\begin{array}{l}\mu \\ m n^{\prime}\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)$
D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}=$

$\left\lvert\,$| $\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle$ | $\left\|\mathbf{P}_{y y}^{A_{2}}\right\rangle$ | $\left\|\mathbf{P}_{x x}^{E_{1}}\right\rangle$ | $\left\|\mathbf{P}_{y x}^{E_{1}}\right\rangle$ | $\left\|\mathbf{P}_{x y}^{E_{1}}\right\rangle$ | $\left\|\mathbf{P}_{y y}^{E_{1}}\right\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{c\|c\|cc\|ccc}D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}\right)$ | | | | | | | $\left\|\mathbf{P}^{(\mu)}\right\rangle$-base |
| :---: |
| ordering to |
| concentrate |\right.

global- \mathbf{g}
D-matrices

$$
R^{P}(\mathrm{~g})=T R^{\mathrm{G}}(\mathrm{~g}) T^{1}=
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis $R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=$
$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}{ }^{E^{*}{ }^{*}}(\mathbf{g})\end{array}\right)$
here
Local $\overline{\mathbf{g}}$-matrix
is not concentrated

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left.\left|\begin{array}{|l|l|l|l}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{A_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle
\end{array}\right| \begin{array}{|l|}
\mathbf{P}_{y x}^{E_{1}}
\end{array}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle
$$

$$
\left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}} & \cdot & D_{x y}^{E_{1}} \\
\hline \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}} & \cdot & D_{y y}^{E_{1}}
\end{array}\right)
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu & m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

here
global g-matrix
\longleftarrow is not concentrated

$$
\begin{aligned}
& R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}= \\
& \left|\begin{array}{|l|l|l|}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\right| \begin{array}{l}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\left|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle \\
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\
\cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\
\cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}
\end{array}\right) \\
& \bar{R}^{P}(\mathbf{g})=\bar{T} R^{G}(\mathbf{g}) \bar{T}^{\dagger}=
\end{aligned}
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=
$$

$$
\left|\begin{array}{lllll}
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{A_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle
\end{array}\right| \begin{array}{|l}
\left.\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array}
$$

$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$

$$
\bar{R}^{P}(\overline{\mathbf{g}})=\bar{T} R^{G}(\overline{\mathbf{g}}) \bar{T}^{\dagger}=
$$

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{A_{2}}\right\rangle
$$

$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
General formulae for spectral decomposition (D_{3} examples)
Weyl g-expansion in irep $D_{j k}^{\mu}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D_{j k}^{\mu}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of κ_{g} and κ_{g} in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathrm{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
\rightarrow Hamiltonian local-symmetry eigensolution
D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
\mathbf{H} matrix in
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis:

$$
\left.\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\right\rangle \mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

\mathbf{H} matrix in
$|\mathbf{P}(\mu)\rangle$-basis:
$(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=\left(\begin{array}{c|c|cc|cc}H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}}\end{array}\right), ~\left(\begin{array}{llll} \\ \cdot & \cdot & & \\ \hline\end{array}\right)$

$$
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$\underset{|\mathbf{g}\rangle \text {-basis: }}{\mathbf{(H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \bar{g}=\left(\begin{array}{cccccc}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right)}$

$H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle$

Let: $\left|{ }_{m n}^{\mu}\right\rangle \equiv\left|\mathbf{P}_{m n}^{\mu}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (which will canceltabout out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$\underset{\mid \mathbf{g}) \text {-basis: }}{(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \bar{g}=\left(\begin{array}{llllll}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right)}$

$$
\left[\begin{array}{c}
\text { Projector conjugation p. } 3 \mathrm{c} \\
\left(|m\rangle\left\langle\left.\langle |\right|^{\dagger}=\mid n\right\rangle\langle m|\right. \\
\left(\mathbf{P}_{m n}^{u}\right)^{\dagger}=\mathbf{P}_{n m}^{u}
\end{array}\right]
$$

$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (wo, fuggetatabout it! cancel out)

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\begin{array}{r}
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{a a m}^{\mu}}{(\text { norm })^{2}} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H} \mathbf{P}_{a m}^{\mu} \mathbf{P}_{n a \mid}^{\mu}|\mathbf{1}\rangle \\
\text { Mock-Mach } \\
\text { (norm) } \\
\text { commutation } \\
\mathbf{r} \overline{\mathbf{r}}=\overline{\mathbf{r}} \mathbf{r} \\
(\text { p. } 89)
\end{array}
$$

$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathbf{g}}^{\circ} G D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu} G}}$ (which will cancel out)

D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\underset{(n o r m)^{2}}{\langle\mathbf{1}| \mathbf{P}_{a m}^{\mu} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H} \mathbf{P}_{a m}^{\mu} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\delta_{m n}^{(n o r m)^{2}}\langle\mathbf{1}| \mathbf{H} \underset{\frac{\mathbf{P}_{a b}}{(n o r m)^{2}}}{ }|\mathbf{1}\rangle}$
Use $\mathbf{P}_{m n}^{\mu}$-orthonormality

$$
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
$$

(p.18)

$$
\left.\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{(\mu)} \cdot n o r m} \sum_{\mathrm{g}}^{\circ} D_{m n}^{\mu^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 116-122):
norm $=\sqrt{|1| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{G}}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left.\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{(\mu)} \cdot n o r m} \sum_{\mathrm{g}}^{\circ} D_{m n}^{\mu^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 116-122):
norm $=\sqrt{|1| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{G}}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{A_{1}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}^{*} *}\left(r^{2}\right)+i_{1} D^{A_{1}^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3}
$$

$$
\left|\mathbf{P}_{x x}^{P_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
H^{A_{1}}=r_{0} D^{4^{4 *}}(1)+r_{1} D^{4^{4}}\left(r^{1}\right)+r_{1}^{*} D^{4^{*}}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{4}}\left(i_{2}\right)+i_{3} D^{4^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3}
$$

$$
H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}
$$

$$
\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

$$
\begin{aligned}
& H^{A_{1}}=r_{0} D^{4^{8}(}(1)+r_{1} D^{41^{4}}\left(r^{1}\right)+r_{1}^{*} D^{44^{8}}\left(r^{2}\right)+i_{1} D^{44^{*}}\left(i_{1}\right)+i_{2} D^{4^{8}}\left(i_{2}\right)+i_{3} D^{4^{8}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{4_{2}}=r_{0} D^{4^{*}}(1)+r_{1} D^{4^{*}}\left(r^{1}\right)+r_{1}^{*} D^{4_{2}^{*}}\left(r^{2}\right)+i_{1} D^{4_{2}^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}
\end{aligned}
$$

$\underset{\mathbf{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (ireps) of $\underset{\mathbf{i}^{2}}{\mathbf{\mathbf { i } _ { 1 }}} \underset{\mathbf{g}}{ }$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y} E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \mid \mathbf{P}_{x y}^{E_{i}}
$$

$$
\left(\begin{array}{ll}
H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\
H_{y x}^{E_{1}} & H_{y y}^{E_{1}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right)
$$

$$
\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\mathbf{P}_{m n}^{(\mu)}=\frac{\ell_{G}^{(\mu)}}{\sum_{\mathrm{g}}} D_{m n}^{(\mu)}(\underline{g}) \mathbf{g}
$$

Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!

-Local symmetery eigenvalue formulae (L.S.=> off-diagonal zero.)

$$
\begin{aligned}
r_{1}=r_{2}=r_{1} *= & r, \quad i_{1}=i_{2}=i_{1}^{*}=i \\
& A_{1} \text {-level: } H+2 r+2 i+\dot{i}_{3} \\
\text { gives: } & \text { A -level: } H+2 r-2 i-\dot{\zeta}_{1} \\
& E_{x} \text {-level: } H-r-i+\dot{i}_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3}
\end{aligned}
$$

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states

$$
\begin{aligned}
\stackrel{i}{\mathbf{i}}_{3}|(m)\rangle & =\mathbf{i}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle \\
& =(-1)^{e}|(m)\rangle
\end{aligned}
$$

$$
\left|{ }_{e b}^{(m)}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle
$$

Local (BOD) symmetry

$$
\begin{aligned}
& \overline{\overline{\mathbf{i}}_{3}} \mid e b \\
& =(m)\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{i}_{3}}|1\rangle \\
& =\mathbf{P}_{e b}^{(m)}{ }^{\boldsymbol{i}}{ }_{3}^{\dagger}|1\rangle=(-1)^{b}|(m)\rangle
\end{aligned}
$$

When there is no there, there...

Nobody Home
where LOCAL and GLOBAL

(a) Local $D_{3} \supset C_{2}\left(i_{3}\right)$ model

