
Group Theory in Quantum Mechanics
Lecture 13 (3.12.13) 

Smallest non-Abelian isomorphic groups D3 ~C3v
(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 5 Ch. 15 )

(PSDS - Ch. 3 )

3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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Fig. 3.1.3 PSDS

3-Dihedral-axes group D3     vs.     3-Vertical-mirror-plane groupC3v 

Showing that D3 and C3v are isomorphic* (D3 ~ C3v share product table)

*isomorphic means
mathematically the
same abstract group
even if physically
different action.
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Fig. 3.1.3 PSDS

3-Dihedral-axes group D3     vs.     3-Vertical-mirror-plane groupC3v 

180°D3-Y-axis-rotation:  ρ3 =
−1 ⋅ ⋅
⋅ +1 ⋅
⋅ ⋅ −1
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180°D3-ρ2 -axis-rotation:  ρ2                                  maps to :⊥ρ2 -mirror-plane reflection:  σ 2 = ρ2⋅I =  I⋅ρ2

180°D3-ρ1-axis-rotation:   ρ1                                  maps to :⊥ρ1-mirror-plane reflection:  σ 1 = ρ1⋅I =  I⋅ρ1
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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Deriving D3 ~ C3v products - By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉 

1
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Deriving D3 ~ C3v products - By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉 

Example: Find C3v product σ1r1⏐1〉= σ1⏐r1〉
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Deriving D3 ~ C3v products - By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉 

Example: Find C3v product σ1r1⏐1〉= σ1⏐r1〉

1
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Factor r1 
on   right
acts  first

left is last
(like Hebrew)
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Deriving D3 ~ C3v products - By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉 

Example: Find C3v product σ1r1⏐1〉= σ1⏐r1〉

1
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=σ1 1σ1

r1r1

r1r1

1σ1

σ2σ2r
1r1σ3σ3σ2

r2 r2

σ2σ2

result:
σ1r1= σ2

Other σ1 results from graph:
σ1 {1,  r1, r2, σ1, σ2, σ3}
= {σ1,σ2,σ3, 1 ,  r1,  r2}

22Tuesday, March 12, 2013



σ2⏐1〉=⏐  〉σ2σ2

σ2
plane

11 =σ2 11
σ2σ2

σ3⏐1〉=⏐  〉σ3σ3

11 =σ3 11
σ3σ3σ3

plane

σ1
plane

σ1σ1σ1⏐1〉=⏐  〉

11 =σ1 11σ1σ1

r1⏐1〉=⏐  〉r1r1

r1
11 = 11

r1r1
r1

120° 

rotation

Deriving D3 ~ C3v products - By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉 

Example: Find C3v product σ1r1⏐1〉= σ1⏐r1〉

1
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result:
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Other σ1 results from graph:
σ1 {1,  r1, r2, σ1, σ2, σ3}
= {σ1,σ2,σ3, 1 ,  r1,  r2}
….whole C3v group table:

   

 

form
C3v  gg†

1 r2 r1 σ1 σ2 σ3

1 1 r2 r1 σ1 σ2 σ3

r1 r1 1 r2 σ3 σ1 σ2

r2 r2 r1 1 σ2 σ3 σ1

σ1 σ1 σ3 σ2 1 r1 r2

σ2 σ2 σ1 σ3 r2 1 r1

σ3 σ3 σ2 σ1 r1 r2 1
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form
C3v  gg†

1 r2 r1 σ1 σ2 σ3

1 1 r2 r1 σ1 σ2 σ3

r1 r1 1 r2 σ3 σ1 σ2

r2 r2 r1 1 σ2 σ3 σ1

σ1 σ1 σ3 σ2 1 r1 r2

σ2 σ2 σ1 σ3 r2 1 r1

σ3 σ3 σ2 σ1 r1 r2 1
   

 

form
D3 gg†

1 r2 r1 ρ1 ρ2 ρ3

1 1 r2 r1 ρ1 ρ2 ρ3

r1 r1 1 r2 ρ3 ρ1 ρ2

r2 r2 r1 1 ρ2 ρ3 ρ1

ρ1 ρ1 ρ3 ρ2 1 r1 r2

ρ2 ρ2 ρ1 ρ3 r2 1 r1

σ3 ρ3 ρ2 ρ1 r1 r2 1

Deriving D3 ~ C3v products - By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉 

D3 and C3v 
clearly are 
isomorphic 

D3~C3v 
share 

group table

...except for
notation
ρk ↔ σk
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Fig. 2.2.2 PSDSFig. 3.1.1 PSDS

2 1 C6D3

C10D5

C14D7

Q, , D4

 ...,T , D6

C2×C2 =D2 C4

C2 C1
C3

C5

C7
C8

C9

2 1
2 1

2 1
2 1

..., D8

Total number Ng of distinct groups
Ng

number NA are Abelian
NA
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Fig. 2.2.2 PSDS

Fig. 3.1.1 PSDS

2 1 C6D3

C10D5

C14D7

Q, , D4

 ...,T , D6

C2×C2 =D2 C4

C2 C1
C3

C5

C7
C8

C9

2 1
2 1

2 1
2 1

..., D8

Total number Ng of distinct groups
Ng

number NA are Abelian
NA
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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Deriving D3 ~ C3v products by nomograms based on U(2) Hamilton-turns

(Fig. 3.1.5 PSDS)

(Fig. 3.1.6 PSDS)
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N1

N2
Hamilton Turn

N1→→N2

Θ/2
Rotation vectorΘΘ
Rotation angle = Θ

(Θ/2 Arc)

1st Mirror

plane

2nd Mirror

plane

Deriving D3 ~ C3v products by nomograms based on U(2) Hamilton-turns

(From Lect. 8 p. 57...)
(Fig. 3.1.5 PSDS)

(Fig. 10.A.7 QTCA)

(Fig. 3.1.6 PSDS)

N1
N2 N'1

N'2

ΘΘ

ΘΘ'

R[ΘΘ']•R[ΘΘ]

N1

N'2

ΘΘ"

Product R[ΘΘ"]
=R[ΘΘ']•R[ΘΘ]

(Fig. 10.A.8 QTCA)
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Deriving D3 ~ C3v products by nomograms based on U(2) Hamilton-turns

30Tuesday, March 12, 2013



Deriving D3 ~ C3v products by nomograms based on U(2) Hamilton-turns
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D3⊂D6     Transverse 180° rotations D3⊂D6       z-Axial 120° rotations

D6 Transverse 180° rotations

D6 
z-Axial 
n(60°) 
rotations
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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Deriving D3 ~ C3v equivalence transformations and classes

(From Lect. 8 p. 62...)

(Fig. 3.2.1 PSDS)

ΘΘ"

Product R[ΘΘ"]
= R[ΘΘ']•R[ΘΘ]

Product R[ΘΘ''']
= R[ΘΘ]•R[ΘΘ']

ΘΘ'''

Product
R[ΘΘ']•R-1[ΘΘ]

Product
R-1[ΘΘ]•R[ΘΘ']

(Fig. 10.A.9 QTCA)
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11
ρ1ρ1

ρ2ρ2

ρ3ρ3 ρ1
axis

ρ2
axis

ρ3
axis

ρ3
axis

ρ1
axis

ρ2
axis

r1r1

r2r2
r2r1

   

 

form
D3 gg†

1 r2 r1 ρ1 ρ2 ρ3

1 1 r2 r1 ρ1 ρ2 ρ3

r1 r1 1 r2 ρ3 ρ1 ρ2

r2 r2 r1 1 ρ2 ρ3 ρ1

ρ1 ρ1 ρ3 ρ2 1 r1 r2

ρ2 ρ2 ρ1 ρ3 r2 1 r1

σ3 ρ3 ρ2 ρ1 r1 r2 1

Deriving D3 ~ C3v equivalence transformations and classes

Transforming D3 operators using D3 operators 
Example 1: Rotating ρ3 axis crank using r1 puts it down onto ρ1 

ρ2
axis

ρ3
axis

r1

ρ1
axis
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11
ρ1ρ1

ρ2ρ2

ρ3ρ3 ρ1
axis

ρ2
axis

ρ3
axis

ρ3
axis

ρ1
axis

ρ2
axis

r1r1

r2r2
r2r1

   

 

form
D3 gg†

1 r2 r1 ρ1 ρ2 ρ3

1 1 r2 r1 ρ1 ρ2 ρ3

r1 r1 1 r2 ρ3 ρ1 ρ2

r2 r2 r1 1 ρ2 ρ3 ρ1

ρ1 ρ1 ρ3 ρ2 1 r1 r2

ρ2 ρ2 ρ1 ρ3 r2 1 r1

σ3 ρ3 ρ2 ρ1 r1 r2 1

Deriving D3 ~ C3v equivalence transformations and classes

Transforming D3 operators using D3 operators 
Example 1: Rotating ρ3 axis crank using r1 puts it down onto ρ1 

ρ2
axis

ρ3
axis

r1

ρ1
axis

Seems to imply:   r1ρ3(r1)-1=r1ρ3r2= ρ1

37Tuesday, March 12, 2013



11
ρ1ρ1

ρ2ρ2

ρ3ρ3 ρ1
axis

ρ2
axis

ρ3
axis

ρ3
axis

ρ1
axis

ρ2
axis

r1r1

r2r2
r2r1

   

 

form
D3 gg†

1 r2 r1 ρ1 ρ2 ρ3

1 1 r2 r1 ρ1 ρ2 ρ3

r1 r1 1 r2 ρ3 ρ1 ρ2

r2 r2 r1 1 ρ2 ρ3 ρ1

ρ1 ρ1 ρ3 ρ2 1 r1 r2

ρ2 ρ2 ρ1 ρ3 r2 1 r1

σ3 ρ3 ρ2 ρ1 r1 r2 1

Deriving D3 ~ C3v equivalence transformations and classes

Transforming D3 operators using D3 operators 
Example 1: Rotating ρ3 axis crank using r1 puts it down onto ρ1 

ρ2
axis

ρ3
axis

r1

ρ1
axis

Seems to imply:   r1ρ3(r1)-1=r1ρ3r2= ρ1

Need to check that with table:

   r1ρ3r2 = ρ2 r2
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11
ρ1ρ1

ρ2ρ2

ρ3ρ3 ρ1
axis

ρ2
axis

ρ3
axis

ρ3
axis

ρ1
axis

ρ2
axis

r1r1

r2r2
r2r1

   

 

form
D3 gg†

1 r2 r1 ρ1 ρ2 ρ3

1 1 r2 r1 ρ1 ρ2 ρ3

r1 r1 1 r2 ρ3 ρ1 ρ2

r2 r2 r1 1 ρ2 ρ3 ρ1

ρ1 ρ1 ρ3 ρ2 1 r1 r2

ρ2 ρ2 ρ1 ρ3 r2 1 r1

σ3 ρ3 ρ2 ρ1 r1 r2 1

Deriving D3 ~ C3v equivalence transformations and classes

Transforming D3 operators using D3 operators 
Example 1: Rotating ρ3 axis crank using r1 puts it down onto ρ1 

ρ2
axis

ρ3
axis

r1

ρ1
axis

Seems to imply:   r1ρ3(r1)-1=r1ρ3r2= ρ1

Need to check that with table:

   r1ρ3r2 = ρ2 r2 = ρ1 Checks out!
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11
ρ1ρ1

ρ2ρ2

ρ3ρ3 ρ1
axis

ρ2
axis

ρ3
axis

ρ3
axis

ρ1
axis

ρ2
axis

r1r1

r2r2
r2r1

   

 

form
D3 gg†

1 r2 r1 ρ1 ρ2 ρ3

1 1 r2 r1 ρ1 ρ2 ρ3

r1 r1 1 r2 ρ3 ρ1 ρ2

r2 r2 r1 1 ρ2 ρ3 ρ1

ρ1 ρ1 ρ3 ρ2 1 r1 r2

ρ2 ρ2 ρ1 ρ3 r2 1 r1

σ3 ρ3 ρ2 ρ1 r1 r2 1

Deriving D3 ~ C3v equivalence transformations and classes

Transforming D3 operators using D3 operators 
Example 2: Rotating ρ3 axis crank using ρ1 puts it down onto ρ2 

ρ2
axis

ρ3
axis

ρ1
axis

Seems to imply:   ρ1 ρ3(ρ1)-1= ρ1 ρ3 ρ1 = ρ2

Need to check that with table:

   ρ1 ρ3 ρ1
 = r2 ρ1 = ρ2 Checks out!
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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Abelian (Commutative) C2, C3, ...,C6 ...
H diagonalized by rp symmetry operators that COMMUTE
with H (rpH =H rp),
and with each other (rprq =rp+q =rqrp).
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Abelian (Commutative) C2, C3, ...,C6 ...
H diagonalized by rp symmetry operators that COMMUTE
with H (rpH =H rp),
and with each other (rprq =rp+q =rqrp).

Non-Abelian (do not commute) D3, Oh,...
While all H symmetry operations COMMUTE
with H (UH =HU )
most do not with each other (UV ≠ VU ).
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Abelian (Commutative) C2, C2, ...,C6 ...
H diagonalized by rp symmetry operators that COMMUTE
with H (rpH =H rp),
and with each other (rprq =rp+q =rqrp).

Non-Abelian (do not commute) D3, Oh,...
While all H symmetry operations COMMUTE
with H (UH =HU )
most do not with each other (UV ≠ VU ).

Q: So how do we write H in terms of non-commutative U ?
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

Global vs Local symmetry and Mock-Mach principle
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Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

Global vs Local symmetry and Mock-Mach principle
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Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

R commutes

with allR

Global vs Local symmetry and Mock-Mach principle
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Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

...But how do you actually make the R and R operations?

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

R commutes

with allR

Mock-Mach
relativity principle

R|1〉=R-1|1〉
...for one state |1) only!

Global vs Local symmetry and Mock-Mach principle
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Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

...But how do you actually make the R and R operations?

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

R commutes

with allR

Mock-Mach
relativity principle

R|1〉=R-1|1〉
...for one state |1) only!

Global vs Local symmetry and Mock-Mach principle
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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1
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3
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1
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1

i
3
i
2
1 r r2

i
2

i
1
i
3
r2 1 r

i
3

i
2
i
1
r r2 1

r2

r(120°)

|11〉
i3

i1

|i3〉
|i1〉

|r2〉

|r〉

x

y

i2
|i2〉

D
3
-defined

local-wave
bases
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ii33

rr22
ii11
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ii22

Example of GLOBAL vs LOCAL symmetry algebra

for D3~C3v
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|11〉
i3

i1

|i3〉
|i1〉

|r2〉

|r〉

x

y

i2
|i2〉

D
3
-defined

local-wave
bases

11

ii33

rr22
ii11

rr
ii22

Example of GLOBAL vs LOCAL symmetry algebra

for D3~C3v

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉
(After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations and rotation axes
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RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

DD33 gglloobbaall
gggg††--ttaabbllee

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1
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⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

DD33 gglloobbaall
gggg††--ttaabbllee

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

DD33 llooccaall
gg††gg--ttaabblleeTo represent internal {..T,U,V,... } switch g g† on side of group table

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG(r) = RG (r2) = RG( i1) = RG ( i2) = RG( i3) =
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1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

DD33 gglloobbaall
gggg††--ttaabbllee

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

DD33 llooccaall
gg††gg--ttaabblleeTo represent internal {..T,U,V,... } switch g g† on side of group table

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG(r) = RG (r2) = RG( i1) = RG ( i2) = RG( i3) =

RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i
1
) = RG (i

2
) = RG (i

3
) =

Example of RELATIVITY-DUALITY for D
3
~C

3v

To represent external {..T,U,V,... }switch g g
† on top of group table

DD
33
gglloobbaall

gggg††--ttaabbllee

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i

r 1 r i i i

r r 1 i i i

i i i 1 r r

i i i r 1 r

i i i r r 1

2

2

2

2

2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

DD33 llooccaall
gg††gg--ttaabblleeTo represent internal {..T,U,V,... } switch g g

† on side of group table

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R
G (1) = R

G(r) = R
G (r2) = R

G( i
1
) = R

G ( i
2
) = R

G( i
3
) =

RESULT:

Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

So an HH-matrix

having GGlloobbaall symmetryD
3

is made from

LLooccaall symmetry matrices

HH = 1 rr rr ii ii iiH r r i i i0 1 2

1 2 3+ + + + +1 2 1 2 3

1 r r i i i

r 1 r i i i

r r 1 i i i

i i i 1 r r

i i i r 1 r

i i i r r 1

2

2

2

2

2

2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2
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1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Example of RELATIVITY-DUALITY for D
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To represent external {..T,U,V,... }switch g g
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RESULT:

Any R(T)

commute

with any R(U)...

(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

So an HH-matrix

having GGlloobbaall symmetryD
3

is made from

LLooccaall symmetry matrices

HH = 1 rr rr ii ii iiH r r i i i0 1 2

1 2 3+ + + + +
1 2 1 2 3
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Local HH matrix

parametrized by g’s
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3
= 〈i3|HH|1〉= i3*

H = 〈1 |HH| 1 〉=H*
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= 〈 r |HH|1〉= r

2
*
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= 〈i1|HH|1〉= i1*
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= 〈i2|HH|1〉= i2*
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Example of RELATIVITY-DUALITY for D
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To represent external {..T,U,V,... }switch g g
†
on top of group table
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RESULT:

Any R(T)

commute

with any R(U)...

(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

So an HH-matrix

having GGlloobbaall symmetryD
3

is made from

LLooccaall symmetry matrices

HH = 1 rr rr ii ii iiH r r i i i0 1 2

1 2 3+ + + + +
1 2 1 2 3
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3
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local-wave

bases

Local HH matrix

parametrized by g’s

i
3
= 〈i3|HH|1〉= i3*

H = 〈1 |HH| 1 〉=H*
r
1
= 〈 r |HH|1〉= r

2
*

i
1
= 〈i1|HH|1〉= i1*

r
2
= 〈r2|HH|1〉= r

1
*

i
2
= 〈i2|HH|1〉= i2*

All the global g commute

with general local HH matrix.
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RESULT:

Any R(T)

commute

with any R(U)...

(Even if T and U do not...)

...and T·U=V if & only if T·U=V.
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So an HH-matrix

having GGlloobbaall symmetryD
3

is made from

LLooccaall symmetry matrices

HH = 1 rr rr ii ii iiH r r i i i0 1 2

1 2 3+ + + + +
1 2 1 2 3
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
Spectral analysis of non-commutative “Group-table Hamiltonian”
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

 r κi r-1 = i2 + i3 + i1 = κi   or:    r κi  = κi r

κg's are mutually commuting with respect to themselves 
and all-commuting with respect to the whole group.

   
hgh−1

h=1

°G
∑ =υgκ g  ,           where: υg = °G

°κ g
= integer

°κg is order of class κg and must evenly divide group order °G.
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

Note also:

  κ
2
2 − κ2 − 2·1 = 0   κ

2
3 = 3·κ2 + 3·1
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)

Note also:

  

κ2
2 − κ2 − 2·1 = 0

0 = (κ2 − 2·1)(κ2 +1)

  κ
2
3 = 3·κ2 + 3·1
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

Note also:

  

κ2
2 − κ2 − 2·1 = 0

0 = (κ2 − 2·1)(κ2 +1)
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

   

0 = (κ3− 3·1)P A1

κ3P
A1 = +3·P A1

   

P A1 =
(κ3 + 3·1)(κ3 − 0·1)

(+3+ 3)(+3− 0)
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

   

0 = (κ3− 3·1)P A1

κ3P
A1 = +3·P A1

   

0 = (κ3+ 3·1)P A2

κ3P
A2 = −3·P A2

   

P A1 =
(κ3 + 3·1)(κ3 − 0·1)

(+3+ 3)(+3− 0)

P A2 =
(κ3 − 3·1)(κ3 − 0·1)

(−3− 3)(−3− 0)
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

   

0 = (κ3− 3·1)P A1

κ3P
A1 = +3·P A1

   

0 = (κ3+ 3·1)P A2

κ3P
A2 = −3·P A2    

0 = (κ3− 0·1)PE

κ3P
E = +0·PE

   

P A1 =
(κ3 + 3·1)(κ3 − 0·1)

(+3+ 3)(+3− 0)

P A2 =
(κ3 − 3·1)(κ3 − 0·1)

(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)

(+0− 3)(+0+ 3)
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

   

κ1 = 1·P A1 + 1·P A2 +  1·PE

κ2 = 2·P A1 − 2·P A2 − 1·PE

κ3 = 3·P A1 − 3·P A2 + 0·PE

   

0 = (κ3− 3·1)P A1

κ3P
A1 = +3·P A1

   

0 = (κ3+ 3·1)P A2

κ3P
A2 = −3·P A2    

0 = (κ3− 0·1)PE

κ3P
E = +0·PE

   

P A1 =
(κ3 + 3·1)(κ3 − 0·1)

(+3+ 3)(+3− 0)

P A2 =
(κ3 − 3·1)(κ3 − 0·1)

(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)

(+0− 3)(+0+ 3)
Note also:

  

κ2
2 − κ2 − 2·1 = 0

0 = (κ2 − 2·1)(κ2 +1)
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

IInnvveerrssee rreessoolluuttiioonn ggiivveess DD33 Character Table

PA1= (κκ3+3·1)(κκ3-0·1)
(+3+3) (+3-0)

PA2= (κκ3-3·1)(κκ3-0·1)
(-3-3) (-3-0)

PE= (κκ3-3·1)(κκ3+3·1)
(+0-3) (+0+3)

   

P A1 = (κ1 + κ2 + κ3)/6 = (1+ r + r2 + i1 + i2 + i3)/6

P A2 = (κ1 + κ2 + κ3)/6 = (1+ r + r2 − i1 − i2 − i3)/6

PE = (2κ1 − κ2 + 0)/3= (21− r − r2 )/3

   

κ1 = 1·P A1 + 1·P A2 +  1·PE

κ2 = 2·P A1 − 2·P A2 − 1·PE

κ3 = 3·P A1 − 3·P A2 + 0·PE

   

0 = (κ3− 3·1)P A1

κ3P
A1 = +3·P A1

   

0 = (κ3+ 3·1)P A2

κ3P
A2 = −3·P A2    

0 = (κ3− 0·1)PE

κ3P
E = +0·PE

   

P A1 =
(κ3 + 3·1)(κ3 − 0·1)

(+3+ 3)(+3− 0)

P A2 =
(κ3 − 3·1)(κ3 − 0·1)

(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)

(+0− 3)(+0+ 3)
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

IInnvveerrssee rreessoolluuttiioonn ggiivveess DD33 Character Table

PA1= (κκ3+3·1)(κκ3-0·1)
(+3+3) (+3-0)

PA2= (κκ3-3·1)(κκ3-0·1)
(-3-3) (-3-0)

PE= (κκ3-3·1)(κκ3+3·1)
(+0-3) (+0+3)
χ k

α χ1
α χ2

α χ3
α

α = A1 1 1 1
α = A2 1 1 −1
α = E 2 −1 0

   

P A1 = (κ1 + κ2 + κ3)/6 = (1+ r + r2 + i1 + i2 + i3)/6

P A2 = (κ1 + κ2 − κ3)/6 = (1+ r + r2 − i1 − i2 − i3)/6

PE = (2κ1 − κ2 + 0)/3= (21− r − r2 )/3

   

κ1 = 1·P A1 + 1·P A2 +  1·PE

κ2 = 2·P A1 − 2·P A2 − 1·PE

κ3 = 3·P A1 − 3·P A2 + 0·PE

   

0 = (κ3− 3·1)P A1

κ3P
A1 = +3·P A1

   

0 = (κ3+ 3·1)P A2

κ3P
A2 = −3·P A2    

0 = (κ3− 0·1)PE

κ3P
E = +0·PE

   

P A1 =
(κ3 + 3·1)(κ3 − 0·1)

(+3+ 3)(+3− 0)

P A2 =
(κ3 − 3·1)(κ3 − 0·1)

(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)

(+0− 3)(+0+ 3)
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

IInnvveerrssee rreessoolluuttiioonn ggiivveess DD33 Character Table

PA1= (κκ3+3·1)(κκ3-0·1)
(+3+3) (+3-0)

PA2= (κκ3-3·1)(κκ3-0·1)
(-3-3) (-3-0)

PE= (κκ3-3·1)(κκ3+3·1)
(+0-3) (+0+3)
χ k

α χ1
α χ2

α χ3
α

α = A1 1 1 1
α = A2 1 1 −1
α = E 2 −1 0

   

P A1 = (κ1 + κ2 + κ3)/6 = (1+ r + r2 + i1 + i2 + i3)/6

P A2 = (κ1 + κ2 − κ3)/6 = (1+ r + r2 − i1 − i2 − i3)/6

PE = (2κ1 − κ2 + 0)/3= (21− r − r2 )/3

   

κ1 = 1·P A1 + 1·P A2 +  1·PE

κ2 = 2·P A1 − 2·P A2 − 1·PE

κ3 = 3·P A1 − 3·P A2 + 0·PE

   

0 = (κ3− 3·1)P A1

κ3P
A1 = +3·P A1

   

0 = (κ3+ 3·1)P A2

κ3P
A2 = −3·P A2    

0 = (κ3− 0·1)PE

κ3P
E = +0·PE

   

P A1 =
(κ3 + 3·1)(κ3 − 0·1)

(+3+ 3)(+3− 0)

P A2 =
(κ3 − 3·1)(κ3 − 0·1)

(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)

(+0− 3)(+0+ 3)

Irreducible 
characters
are traces

χκ(α)=Tr D(α)(rκ) 
of 

irreducible 
representations

D(α)(rκ) 
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Step in spectral analysis of D3 “group-table”Hamiltonian: Algebra of D3 Center(Classes)
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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D3  Algebra

i1 i2 i3

 c1=1

 ci = i1 + i2  +i3
 cr = r2 + r

 D3 Center
(All-commuting

operators)

 r2

 r

A  Maximal  Set of  Commuting
Operators

PPA1

PPA2

PPE

PE
xx yy
PE

PE
11

22
PE

PE
xy yx
PE

PE
12

21
PE

Another
Maximal  Set

 of  Commuting
Operators

Important invariant numbers or “characters”
α= Irreducible representation (irrep) dimension or level degeneracy
Centrum: κ(G)=Σ

irrep(α) (α)0 =Number of classes, invariants, irrep types, all-commuting ops
Rank: ρ(G)=Σ

irrep(α) (α)1 =Number of irrep idempotents P(α), mutually-commuting ops
Order: ο(G)=Σ

irrep(α) (α)2 =Total number of irrep projectors P(α) or symmetry ops

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

(Fig. 15.2.1 QTCA)
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D3  Algebra

i1 i2 i3

 c1=1

 ci = i1 + i2  +i3
 cr = r2 + r

 D3 Center
(All-commuting

operators)

 r2

 r

A  Maximal  Set of  Commuting
Operators

PPA1

PPA2

PPE

PE
xx yy
PE

PE
11

22
PE

PE
xy yx
PE

PE
12

21
PE

Another
Maximal  Set

 of  Commuting
Operators

Important invariant numbers or “characters”
α= Irreducible representation (irrep) dimension or level degeneracy
Centrum: κ(G)=Σ

irrep(α) (α)0 =Number of classes, invariants, irrep types, all-commuting ops
Rank: ρ(G)=Σ

irrep(α) (α)1 =Number of irrep idempotents P(α), mutually-commuting ops
Order: ο(G)=Σ

irrep(α) (α)2 =Total number of irrep projectors P(α) or symmetry ops

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

κ(D3)=(1)0+ (1)0+ (2)0= 3
ρ(D3)=(1)1+ (1)1+ (2)1= 4
°(D3)=(1)2+ (1)2+ (2)2= 6
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Step in spectral analysis of D3 “group-table”Hamiltonian: Algebra of D3 Center(Classes)
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

P A1=(κ1+ κ2+ κ3)/6= (1+r+r2+i1+i2+i3)/6⇒ R(P A1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(P A1) = 1

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

P A1=(κ1+ κ2+ κ3)/6= (1+r+r2+i1+i2+i3)/6⇒ R(P A1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(P A1) = 1

   

So: R(P A1) reduces to:

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

P A1=(κ1+ κ2+ κ3)/6= (1+r+r2+i1+i2+i3)/6⇒ R(P A1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(P A1) = 1

P A2=(κ1+ κ2− κ3)/6= (1+r+r2−i1−i2−i3)/6⇒ R(P A2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6     TraceR(P A2 ) = 1

   

So: R(P A1) reduces to:

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

So: R(P A2) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

P A1=(κ1+ κ2+ κ3)/6= (1+r+r2+i1+i2+i3)/6⇒ R(P A1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(P A1) = 1

P A2=(κ1+ κ2− κ3)/6= (1+r+r2−i1−i2−i3)/6⇒ R(P A2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6     TraceR(P A2 ) = 1

PE= (2κ1−κ2+0)/3=(21−r−r2+0+0+0)/3  ⇒   R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3     TraceR(PE ) = 4

   

So: R(P A1) reduces to:

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

So: R(P A2) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

So: R(PE ) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Step in spectral analysis of D3 “group-table”Hamiltonian: Algebra of D3 Center(Classes)
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

R(P A1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒     TraceR(P A1) = 1      So: R(P A1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(P A2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒    TraceR(P A2 ) = 1

R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3   ⇒   TraceR(PE ) = 4

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

R(P A1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒     TraceR(P A1) = 1      So: R(P A1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(P A2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒    TraceR(P A2 ) = 1     So: R(P A2g) reduces to:

D
A2 (g) ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3   ⇒   TraceR(PE ) = 4

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

R(P A1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒     TraceR(P A1) = 1      So: R(P A1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(P A2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒    TraceR(P A2 ) = 1     So: R(P A2g) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3   ⇒   TraceR(PE ) = 4     So: R(PEg) reduces to:

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 

  

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ D

11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Step in spectral analysis of D3 “group-table”Hamiltonian: Algebra of D3 Center(Classes)
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

TraceR(P A1) = 1      So: R(P A1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

TraceR(P A2 ) = 1     So: R(P A2g) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

TraceR(PE ) = 4     So: R(PEg) reduces to:

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 

  

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ D

11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

So: R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Step in spectral analysis of D3 “group-table”Hamiltonian: Algebra of D3 Center(Classes)
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “ireps”) foretold by characters or traces 

   

    R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

{RG(g)}has lots of empty space and looks like it could be reduced.
But, {RG(g)} cannot be diagonalized all-at-once. (Not all g commute.) 

Nevertheless, {RG(g)} can be block-diagonalized 
all-at-once into  “ireps” A1, A2, and E1 
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “ireps”) foretold by characters or traces 

   

    R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

{RG(g)}has lots of empty space and looks like it could be reduced.
But, {RG(g)} cannot be diagonalized all-at-once. (Not all g commute.) 

Nevertheless, {RG(g)} can be block-diagonalized 
all-at-once into  “ireps” A1, A2, and E1 

We relate traces of {RG(g)} :   

   

(g) = {1} {r1,r2 } {i1 ,i2,i3 }

TraceRG (g) = 6 0 0

(g) = {1} {r1,r2 } {i1, i2, i3 }
χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

to D3 character table:

   

χ A1(g) 1 1 1

+χ A2 (g) 1 1 −1

+2χ E1(g) 2·2 −2⋅1 0
6 0 0
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        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1

i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “ireps”) foretold by characters or traces 

   

    R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

{RG(g)}has lots of empty space and looks like it could be reduced.
But, {RG(g)} cannot be diagonalized all-at-once. (Not all g commute.) 

Nevertheless, {RG(g)} can be block-diagonalized 
all-at-once into  “ireps” A1, A2, and E1 

We relate traces of {RG(g)} :   

   

(g) = {1} {r1,r2 } {i1 ,i2,i3 }

TraceRG (g) = 6 0 0

(g) = {1} {r1,r2 } {i1, i2, i3 }
χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

to D3 character table:

   

χ A1(g) 1 1 1

+χ A2 (g) 1 1 −1

+2χ E1(g) 2·2 −2⋅1 0
6 0 0

So{RG(g)} can be block-diagonalized into a  direct sum⊕ of “ireps” RG(g)=DA1(g)⊕DA2(g)⊕2DE1(g)
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane group C3v
           D3 and C3v are isomorphic (D3 ~ C3v share product table)
           Deriving D3 ~ C3v products:  
               By group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
               By nomograms based on U(2) Hamilton-turns
           Deriving D3 ~ C3v equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution 
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
               Global vs Local symmetry expansion of D3 Hamiltonian

1st-Step in spectral analysis of D3 “group-table”Hamiltonian: Algebra of D3 Center(Classes)
        All-commuting operators and D3-invariant class algebra 
        All-commuting projectors and D3-invariant characters 
        Group invariant numbers: Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 
       Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 
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Spectral splitting in symmetry breaking foretold by character analysis 

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3
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Spectral splitting in symmetry breaking foretold by character analysis 

Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3

(Fig. 5.6.1 PSDS)
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Spectral splitting in symmetry breaking foretold by character analysis 

Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3

Use R(3)~U(2) character formula: 
R(3) character
where: 2+1

is -orbital dimension
 

χ (2π
n
) =
sin (2+1)π

n
sinπ

n

(From Lect. 11 p. 11)

(Fig. 5.6.1 PSDS)
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Spectral splitting in symmetry breaking foretold by character analysis 

Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3

Use R(3)~U(2) character formula: 
R(3) character
where: 2+1

is -orbital dimension
 

χ (2π
n
) =
sin (2+1)π

n
sinπ

n

 

χ (Θ) = sin(+2
1 )Θ

sinΘ
2

(From Lect. 11 p. 11)

(Fig. 5.6.1 PSDS)
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Spectral splitting in symmetry breaking foretold by character analysis 

Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3

Use R(3)~U(2) character formula: 
R(3) character
where: 2+1

is -orbital dimension
 

χ (2π
n
) =
sin (2+1)π

n
sinπ

n

 

χ (Θ) Θ = 0 2π
3

π

 = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ (Θ) = sin(+2
1 )Θ

sinΘ
2

(g) = {1} {r1,r2 } {i1, i2, i3 }
χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

...and D3 character table:

(From Lect. 11 p. 11)

(Fig. 5.6.1 PSDS)
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Spectral splitting in symmetry breaking foretold by character analysis 

Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 

1A1

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3

Use R(3)~U(2) character formula: 
R(3) character
where: 2+1

is -orbital dimension
 

χ (2π
n
) =
sin (2+1)π

n
sinπ

n

 

χ (Θ) Θ = 0 2π
3

π

 = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ (Θ) = sin(+2
1 )Θ

sinΘ
2

 

f (α )() f A1 f A2 f E1

 = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }
χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

...and D3 character table:

(From Lect. 11 p. 11)

(Fig. 5.6.1 PSDS)
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Spectral splitting in symmetry breaking foretold by character analysis 

Crystal-field splitting: O(3)⊃D3 symmetry reduction and D↓D3 splitting 

1A1

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3

 

f (α )() f A1 f A2 f E1

 = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }
χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

 D3 character table:

E1

A2

R(3)⊃D3

 =1

A1

E1

 =2

A1

E1

E1

A2 =3

E1

A2

A1

E1

E1

A2 =4
A2

E1
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