Group Theory in Quantum Mechanics Lecture 12 (3.7.13)

C_Nsymmetry systems coupled, uncoupled, and re-coupled

(Geometry of U(2) characters - Ch. 6-12 of Unit 3) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-12 of Ch. 2)

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

All ∞ -well peak must be made of sine wave components.

So how is the ∞ -well "flipped revival explained?

1.

All ∞ -well peak must be made of sine wave components.

2. Bohr rotor peak made of *sine* wave components is *anti*-symmetric, so an *upside-down mirror* image peak must accompany any peak.

(b) Bohr Rotor at t=0

Φ=0'

(d) Half-time revival at $t = \tau/2$

Bohr-Image

wave

4. Bohr rotor half-time revival is *same*-side-up copy of initial peak on *opposite* side of ring. So that upside-down Bohr-image will appear upside-down on the other side at half-time revival.

M's wave does a *partial revival* as it makes an upside down-delta function around x=0.8W.

3. So how is the ∞ -well "flipped revival explained?

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Thursday, March 7, 2013

Consider sine and cosine eigenvectors of a 14-by-14 elementary Bloch matrix $\mathbf{H}^{\text{EB}(14)}$																		
$ \left\langle \cos^{m} \right = \left(\begin{array}{ccc} c_{0}^{m} = 1 \\ c_{1}^{m} \\ c_{2}^{m} \\ c_{3}^{m} \\ c_{4}^{m} \\ c_{5}^{m} \\ c_{6}^{m} \\ c_{7}^{m} = 1 \\ c_{-6}^{m} \\ c_{-5}^{m} \\ c_{-4}^{m} \\ c_{-3}^{m} \\ c_{-2}^{m} \\ c_{-1}^{m} \\ c_{-$																		
$\left\langle sin^{m} \right = \left(\begin{array}{ccc} s_{0}^{m} = 0 \\ s_{1}^{m} & s_{2}^{m} & s_{3}^{m} & s_{4}^{m} & s_{5}^{m} & s_{6}^{m} \\ s_{7}^{m} = 0 \\ s_{-6}^{m} & s_{-5}^{m} & s_{-4}^{m} & s_{-3}^{m} & s_{-2}^{m} & s_{-1}^{m} \\ s_{-p}^{m} = \sin\left(\begin{array}{c} m \cdot p \\ \frac{\pi}{7} \end{array} \right) = -s_{-p}^{m}$															$\left(n \cdot p \frac{\pi}{7}\right) = -s_{-p}^{m}$			
$\mathbf{H}^{\mathrm{EB}(14)} \left sin^{m} \right\rangle = \boldsymbol{\omega}^{m(14)} \left sin^{m} \right\rangle$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
<i>p</i> / <i>p</i> ′	0	1	2	3	4	5	6	7	-6	-5	-4	-3	-2	-1				
0	2 <i>r</i>	- <i>r</i>	•	•	•	•	•	•	•	•	•	•	•	- <i>r</i>	0		0	where: $\omega^{m(14)} = 2r(1 - \cos\frac{2\pi m}{14})$
1	- <i>r</i>	2 <i>r</i>	- <i>r</i>	•		•	_r 2r								s_1^m		s_1^m	where:
2		- <i>r</i>	2 <i>r</i>	- <i>r</i>	•	•	•								s_2^m		s_2^m	$\omega^{m(14)} = 2r(1 - \cos \frac{2\pi m}{2})$
3		•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	•	•								s_3^m		s_3^m	$\begin{array}{c} 0 & -27 (1 & \cos -) \\ 14 \end{array}$
4		•	•	- <i>r</i>	2 <i>r</i>	- <i>r</i>									s_4^m		<i>s</i> ^{<i>m</i>} ₄	
5		•	•	•	- <i>r</i>	2 <i>r</i>	-r								s_5^m		<i>s</i> ₅ ^{<i>m</i>}	
6	•	•	•	•	•	- <i>r</i>	2 <i>r</i>	- <i>r</i>							s_6^m	$=\omega^{m(14)}$		
7	•						-r	2 <i>r</i>	- <i>r</i>						$\begin{bmatrix} 0\\ \dots\\ m \end{bmatrix}$		<u>0</u> 	
6								- <i>r</i>	2 <i>r</i>	-r	•				S_{-6}^{m}		$\begin{array}{c} s_{-6}^{m} \\ s_{-5}^{m} \end{array}$	
-5									-r	2 <i>r</i>	- <i>r</i>				S_{-5}^{m}		$\begin{vmatrix} s_{-5} \\ s_{-4}^m \end{vmatrix}$	
-4									•	- <i>r</i>	2 <i>r</i>	- <i>r</i>		•	S_{-4}^{m}		$\begin{vmatrix} s_{-4} \\ s_{-3}^m \end{vmatrix}$	
-3									•	•	- <i>r</i>	2 <i>r</i>	<i>-r</i>	•	S_{-3}^{m}		$\begin{vmatrix} s_{-3} \\ s_{-2}^m \end{vmatrix}$	
-2									•	•	•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	S_{-2}^{m}			
-1	- <i>r</i>								•	•	•	•	-r	2 <i>r</i>)	$\left(\left s_{-1}^{m} \right \right)$)

Consider sine and cosine eigenvectors of a 14-by-14 elementary Bloch matrix $\mathbf{H}^{\text{EB}(14)}$

$$\left\langle \cos^{m} \right| = \left(\begin{array}{ccc} c_{0}^{m} = 1 \\ c_{1}^{m} \\ c_{2}^{m} \\ c_{3}^{m} \\ c_{4}^{m} \\ c_{5}^{m} \\ c_{6}^{m} \\ c_{7}^{m} = 1 \\ c_{-6}^{m} \\ c_{-5}^{m} \\ c_{-5}^{m} \\ c_{-4}^{m} \\ c_{-3}^{m} \\ c_{-2}^{m} \\ c_{-1}^{m} \\ c_{-$$

 $\mathbf{H}^{\mathrm{EB}(14)} \bigg| \sin^{m} \bigg\rangle = \omega^{m(14)} \bigg| \sin^{m} \bigg\rangle$

 $\mathbf{H}^{\text{EB}(14)}$ gives eigensolution of a 6-by-6-constrained Bloch matrix $\mathbf{H}^{\text{CM}(6)}$

where:

 $\mathbf{H}^{\text{EB(14)}}$ gives eigensolution of a 6-by-6 constrained Bloch matrix $\mathbf{H}^{\text{CM(6)}}$ using its sine-waves only

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Fig. 2.7.6 PrinciplesSymmetryDynamics&Spectroscopy

Fig. 2.7.6 PrinciplesSymmetryDynamics&Spectroscopy

Two kinds of C_{12} *symmetry states are coupled by* **K***-matrix.*

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry states are coupled by **K**-matrix. $|k_{m}\rangle = \mathbf{P}^{(m)}|r^{0}\rangle \cdot \sqrt{12} = (|r^{0}\rangle + e^{-ik_{m}}|r^{2}\rangle + e^{-2ik_{m}}|r^{4}\rangle + \dots) / \sqrt{12} \qquad |k_{m}\rangle = \mathbf{P}^{(m)}|r^{1}\rangle \cdot \sqrt{12} = (|r^{1}\rangle + e^{-ik_{m}}|r^{3}\rangle + e^{-2ik_{m}}|r^{5}\rangle + \dots) / \sqrt{12}$

$$\begin{array}{c} \begin{array}{c} C_{24} \text{ lattice reduced to } C_{12} \text{ symmetry} \\ \hline Fig. 2.7.6 \text{ PSDS} \\ \hline \\ (r^{23}|\mathbf{X}) \\ \hline \\ (1|\mathbf{X}) \end{array} \end{array} \xrightarrow{\mathbf{a}} \begin{array}{c} \vec{a} \\ \vec{$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C₁₂ symmetry states are coupled by **K**-matrix. $|k_{m}\rangle = \mathbf{P}^{(m)}|r^{0}\rangle \cdot \sqrt{12} = \left(|r^{0}\rangle + e^{-ik_{m}}|r^{2}\rangle + e^{-2ik_{m}}|r^{4}\rangle + \dots\right)/\sqrt{12} \qquad |k_{m}'\rangle = \mathbf{P}^{(m)}|r^{1}\rangle \cdot \sqrt{12} = \left(|r^{1}\rangle + e^{-ik_{m}}|r^{3}\rangle + e^{-2ik_{m}}|r^{5}\rangle + \dots\right)/\sqrt{12}$

$$\langle k_m | \mathbf{K} | k_m \rangle = \langle r^0 | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12 = \langle r^0 | \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12$$

$$= \langle r^0 | \mathbf{K} | r^0 \rangle + e^{-ik_m} \langle r^0 | \mathbf{K} | r^2 \rangle + e^{-2ik_m} \langle r^0 | \mathbf{K} | r^4 \rangle | r^5 \rangle + \dots$$

$$= \underline{a} + \overline{a} + 0 + 0 + \dots$$

$$\begin{array}{c} \begin{array}{c} C_{24} \text{ lattice reduced to } C_{12} \text{ symmetry} \\ \hline Fig. 2.7.6 \text{ PSDS} \\ \hline \\ (r^{23}|\mathbf{X}) \\ \hline \\ (1|\mathbf{X}) \end{array} \end{array} \xrightarrow{\mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{Fig. 2.7.6 \text{ PSDS}}$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry states are coupled by K-matrix. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + ...)/\sqrt{12}$ $|k'_m\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + ...)/\sqrt{12}$

$$\langle k_m | \mathbf{K} | k_m \rangle = \langle r^0 | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12 = \langle r^0 | \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12$$

$$= \langle r^0 | \mathbf{K} | r^0 \rangle + e^{-ik_m} \langle r^0 | \mathbf{K} | r^2 \rangle + e^{-2ik_m} \langle r^0 | \mathbf{K} | r^4 \rangle | r^5 \rangle + \dots$$

$$= \underline{a} + \overline{a} + 0 + 0 + \dots$$

$$\langle k'_{m} | \mathbf{K} | k_{m} \rangle = \langle r^{1} | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12 = \langle r^{1} | \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12$$

$$= \langle r^{1} | \mathbf{K} | r^{0} \rangle + e^{-ik_{m}} \langle r^{1} | \mathbf{K} | r^{2} \rangle + e^{-2ik_{m}} \langle r^{1} | \mathbf{K} | r^{4} \rangle | r^{5} \rangle + \dots$$

$$= -\underline{a} + e^{-ik_{m}} (-\overline{a}) + 0 + \dots$$

$$= -(\underline{a} + e^{-ik_{m}}\overline{a}) = \langle k_{m} | \mathbf{K} | k'_{m} \rangle *$$

$$\begin{cases} \langle r^{0} | \mathbf{K} | r^{0} \rangle \langle r^{0} | \mathbf{K} | r^{1} \rangle \langle r^{0} | \mathbf{K} | r^{2} \rangle \dots \langle r^{0} | \mathbf{K} | r^{1} \rangle \\ \langle r^{0} | \mathbf{K} | r^{1} \rangle \langle r^{0} | \mathbf{K} | r^{2} \rangle \dots \langle r^{0} | \mathbf{K} | r^{1} \rangle \\ \langle r^{1} | \mathbf{K} | r^{0} \rangle \langle r^{1} | \mathbf{K} | r^{1} \rangle \langle r^{0} | \mathbf{K} | r^{2} \rangle \dots \langle r^{1} | \mathbf{K} | r^{1} \rangle \\ \vdots \\ \langle r^{1} | \mathbf{K} | r^{0} \rangle \langle r^{1} | \mathbf{K} | r^{1} \rangle \langle r^{1} | \mathbf{K} | r^{2} \rangle \dots \langle r^{1} | \mathbf{K} | r^{1} \rangle \\ \vdots \vdots \vdots \vdots \vdots \vdots \\ \vdots \vdots \vdots \vdots \\ \vdots \\ \end{pmatrix} = \begin{pmatrix} \underline{a + \overline{a} - \underline{a} - 0 & \dots - \overline{a} \\ -\underline{a} - \underline{a + \overline{a}} - \overline{a} & \dots & 0 \\ \vdots \\ -\underline{a} - \underline{a + \overline{a}} - \overline{a} & \dots & 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{pmatrix}$$

$$P^{(m)} = \frac{1}{12} \Big(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \Big) \text{ where: } k_m = \frac{2\pi m}{12}$$

$$Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.$$

$$|k_m\rangle = \mathbf{P}^{(m)} |r^{0}\rangle \sqrt{12} = \Big(|r^{0}\rangle + e^{-ik_m} |r^{2}\rangle + e^{-2ik_m} |r^{4}\rangle + \dots \Big) / \sqrt{12} \qquad |k'_m\rangle = \mathbf{P}^{(m)} |r^{1}\rangle \sqrt{12} = \Big(|r^{1}\rangle + e^{-ik_m} |r^{3}\rangle + e^{-2ik_m} |r^{5}\rangle + \dots \Big) / \sqrt{12}$$

$$= \langle r^{0} | \mathbf{K} | r^{0} \rangle + e^{-ik_m} \langle r^{0} | \mathbf{K} | r^{2} \rangle + e^{-2ik_m} \langle r^{0} | \mathbf{K} | r^{4} \rangle | r^{5} \rangle + \dots$$

$$= \underline{a + \overline{a}} + 0 + 0 + \dots$$

$$= \left(\frac{a + \overline{a} - (\underline{a} + e^{-ik_m} \overline{a}) \\ \langle k'_m | \mathbf{K} | k_m \rangle \rangle \langle k'_m | \mathbf{K} | k'_m \rangle \Big)$$

$$= \left(\frac{a + \overline{a} - (\underline{a} + e^{-ik_m} \overline{a}) \\ \langle k'_m | \mathbf{K} | k_m \rangle \rangle \langle k'_m | \mathbf{K} | k'_m \rangle \right)$$

$$\langle k_m | \mathbf{K} | k_m \rangle = \langle r^0 | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12 = \langle r^0 | \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12$$

$$= \langle r^0 | \mathbf{K} | r^0 \rangle + e^{-ik_m} \langle r^0 | \mathbf{K} | r^2 \rangle + e^{-2ik_m} \langle r^0 | \mathbf{K} | r^4 \rangle | r^5 \rangle + \dots$$

$$= \underline{a} + \overline{a} + 0 + 0 + \dots$$

$$\langle k'_{m} | \mathbf{K} | k_{m} \rangle = \langle r^{1} | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12 = \langle r^{1} | \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12$$

$$= \langle r^{1} | \mathbf{K} | r^{0} \rangle + e^{-ik_{m}} \langle r^{1} | \mathbf{K} | r^{2} \rangle + e^{-2ik_{m}} \langle r^{1} | \mathbf{K} | r^{4} \rangle | r^{5} \rangle + \dots$$

$$= -\underline{a} + e^{-ik_{m}} (-\overline{a}) + 0 + \dots$$

$$= -(\underline{a} + e^{-ik_{m}}\overline{a}) = \langle k_{m} | \mathbf{K} | k'_{m} \rangle *$$

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry states are coupled by **K**-matrix. $|k_{m}\rangle = \mathbf{P}^{(m)}|r^{0}\rangle \cdot \sqrt{12} = (|r^{0}\rangle + e^{-ik_{m}}|r^{2}\rangle + e^{-2ik_{m}}|r^{4}\rangle + \dots) / \sqrt{12} \qquad |k_{m}\rangle = \mathbf{P}^{(m)}|r^{1}\rangle \cdot \sqrt{12} = (|r^{1}\rangle + e^{-ik_{m}}|r^{3}\rangle + e^{-2ik_{m}}|r^{5}\rangle + \dots) / \sqrt{12}$

$$\langle \mathbf{K} \rangle^{k_m} = \begin{pmatrix} \langle k_m | \mathbf{K} | k_m \rangle & \langle k_m | \mathbf{K} | k'_m \rangle \\ \langle k'_m | \mathbf{K} | k_m \rangle & \langle k'_m | \mathbf{K} | k'_m \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \underline{a} + \overline{a} & -(\underline{a} + e^{+ik_m} \overline{a}) \\ -(\underline{a} + e^{-ik_m} \overline{a}) & \underline{a} + \overline{a} \end{pmatrix}$$

$$\begin{array}{c} \begin{array}{c} C_{24} \ lattice \ reduced \ to \ C_{12} \ symmetry \\ Fig. 2.7.6 \ PSDS \\ \hline \\ (r^{23} | \mathbf{X}) \\ \hline \\ (r^{23} | \mathbf{X}) \\ \hline \\ (r^{1} | \mathbf{X}) \\ \hline \\ (r^{2} | \mathbf{X}) \\ \hline \\ (r^{3} | \mathbf{X}) \\ \hline \\$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry states are coupled by K-matrix. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + ...)/\sqrt{12}$ $|k'_m\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + ...)/\sqrt{12}$

Secular Eq.:

$$0 = \kappa^{2} - Tr \langle \mathbf{K} \rangle^{k_{m}} + Det \langle \mathbf{K} \rangle^{k_{m}}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - (\underline{a} + e^{+ik_{m}}\overline{a})(\underline{a} + e^{-ik_{m}}\overline{a})$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - \underline{a}^{2} - \overline{a}^{2} - 2\overline{a}\underline{a}\cos k_{m}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + 2\overline{a}\underline{a}(1 - \cos k_{m})$$

$$\langle \mathbf{K} \rangle^{k_m} = \begin{pmatrix} \langle k_m | \mathbf{K} | k_m \rangle & \langle k_m | \mathbf{K} | k'_m \rangle \\ \langle k'_m | \mathbf{K} | k_m \rangle & \langle k'_m | \mathbf{K} | k'_m \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \underline{a} + \overline{a} & -(\underline{a} + e^{+ik_m} \overline{a}) \\ -(\underline{a} + e^{-ik_m} \overline{a}) & \underline{a} + \overline{a} \end{pmatrix}$$

$$C_{24} \text{ lattice reduced to } C_{12} \text{ symmetry} = \frac{1}{(1 + e^{-ik_m}\mathbf{r}^2 + e^{-2ik_m}\mathbf{r}^4 + e^{-3ik_m}\mathbf{r}^6 + \dots + e^{+2ik_m}\mathbf{r}^{-4} + e^{+ik_m}\mathbf{r}^{-2}) \text{ where: } k = \frac{2\pi m}{2\pi m}$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry states are coupled by K-matrix. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + ...)/\sqrt{12}$ $|k'_m\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + ...)/\sqrt{12}$

Secular Eq.:

$$0 = \kappa^{2} - Tr \langle \mathbf{K} \rangle^{k_{m}} + Det \langle \mathbf{K} \rangle^{k_{m}}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - (\underline{a} + e^{+ik_{m}}\overline{a})(\underline{a} + e^{-ik_{m}}\overline{a})$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - \underline{a}^{2} - \overline{a}^{2} - 2\overline{a}\underline{a}\cos k_{m}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - \underline{a}^{2} - \overline{a}^{2} - 2\overline{a}\underline{a}\cos k_{m}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + 2\overline{a}\underline{a}(1 - \cos k_{m})$$

$$\langle \mathbf{K} \rangle^{k_{m}} = \begin{pmatrix} \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle & \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle \\ \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle & \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle \end{pmatrix}$$

Eigenvalues:

$$\kappa = \omega_{k_m}^2 = \underline{a} + \overline{a} \pm \sqrt{\underline{a}^2 + 2\overline{a}\underline{a}\cos k_m + \overline{a}^2}$$

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes
Intro to other examples of band theory Avoided crossing view of band-gaps

Bohr-It simulations assume ring-periodic-boundary conditions

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D₂ and C_{2v} Spectral decomposition of D₂ Some D₂ modes Outer product properties and the Group Zoo

Fig. 2.12.7 PSDS

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D_2 and $C_{2\nu}$ Spectral decomposition of D_2 Some D_2 modes Outer product properties and the Group Zoo

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Finally! Symmetry groups that are not just C_N (And some that are)

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Finally! Symmetry groups that are not just C_N (And some that are) Starting with D_2

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Finally! Symmetry groups that are not just C_N (And some that are) Starting with D_2 and C_{2h} and C_{2v}

D₂ Symmetry (The 4-Group)

D₂ Symmetry (The 4-Group)

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D₂ and C_{2v}
Spectral decomposition of D₂
Some D₂ modes
Outer product properties and the Group Zoo D_2 spectral decomposition: The old "1=1•1 trick" again Two C_2 subgroup minimal equations:

 $R_x^2 - 1 = 0,$ $R_y^2 - 1 = 0.$

$$\mathbf{R}_{x}^{2} - \mathbf{1} = \mathbf{0}, \qquad \mathbf{R}_{y}^{2} - \mathbf{1} = \mathbf{0}.$$

$$\mathbf{P}_{x}^{+} = \frac{\mathbf{1} + \mathbf{R}_{x}}{2} \qquad reducible \qquad \mathbf{P}_{y}^{+} = \frac{\mathbf{1} + \mathbf{R}_{y}}{2}$$

$$\mathbf{P}_{x}^{-} = \frac{\mathbf{1} - \mathbf{R}_{x}}{2} \qquad projectors \qquad \mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{2}$$

$$\mathbf{1} = \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} \qquad Completness \qquad \mathbf{1} = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$$

$$\mathbf{R}_{x} = \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} \qquad Spec. decomps \qquad \mathbf{R}_{y} = \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-}$$

The old "1=1•1 trick" $1 = 1 \cdot 1 = \left(\mathbf{P}_x^+ + \mathbf{P}_x^-\right) \cdot \left(\mathbf{P}_y^+ + \mathbf{P}_y^-\right) = \mathbf{P}_x^+ \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^- + \mathbf{P}_x^- \cdot \mathbf{P}_y^-$ gives irrep projectors

$$\mathbf{R}_{x}^{2} - \mathbf{1} = \mathbf{0}, \qquad \mathbf{R}_{y}^{2} - \mathbf{1} = \mathbf{0}.$$

$$\mathbf{P}_{x}^{+} = \frac{\mathbf{1} + \mathbf{R}_{x}}{2} \qquad reducible \qquad \mathbf{P}_{y}^{+} = \frac{\mathbf{1} + \mathbf{R}_{y}}{2}$$

$$\mathbf{P}_{x}^{-} = \frac{\mathbf{1} - \mathbf{R}_{x}}{2} \qquad projectors \qquad \mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{2}$$

$$\mathbf{1} = \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} \qquad Completness \qquad \mathbf{1} = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$$

$$\mathbf{R}_{x} = \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} \qquad Spec.decomps \qquad \mathbf{R}_{y} = \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-}$$

The old "1=1•1 trick" 1=1·1=
$$(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-})\cdot(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-})=\mathbf{P}_{x}^{+}\cdot\mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{-}$$
 gives irrep projectors
 $\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+}\cdot\mathbf{P}_{y}^{+} = \frac{(\mathbf{1}+\mathbf{R}_{x})\cdot(\mathbf{1}+\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z})$
 $\mathbf{P}^{-+} \equiv \mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{+} = \frac{(\mathbf{1}-\mathbf{R}_{x})\cdot(\mathbf{1}+\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z})$
 $\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+}\cdot\mathbf{P}_{y}^{-} = \frac{(\mathbf{1}+\mathbf{R}_{x})\cdot(\mathbf{1}-\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z})$
 $\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{-} = \frac{(\mathbf{1}-\mathbf{R}_{x})\cdot(\mathbf{1}-\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z})$

$$\begin{aligned} \mathbf{R}_{x}^{2}-\mathbf{1} = \mathbf{0}, & \mathbf{R}_{y}^{2}-\mathbf{1} = \mathbf{0}. \\ \mathbf{P}_{x}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{x}}{2} & reducible & \mathbf{P}_{y}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{y}}{2} \\ \mathbf{P}_{x}^{-} &= \frac{\mathbf{1} - \mathbf{R}_{x}}{2} & projectors & \mathbf{P}_{y}^{-} &= \frac{\mathbf{1} - \mathbf{R}_{y}}{2} \\ \mathbf{1} &= \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} & Completness & \mathbf{1} &= \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-} \\ \mathbf{R}_{x} &= \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} & Spec. decomps & \mathbf{R}_{y} = \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-} \end{aligned}$$
The old "1=1•1 trick" 1=1•1 $(\mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-}) \cdot (\mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}) = \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} & gives irrep projectors \\ \mathbf{P}^{++} &= \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{(\mathbf{1} + \mathbf{R}_{x}) \cdot (\mathbf{1} + \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}) & (completeness is first) \\ \mathbf{P}^{-+} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} - \mathbf{R}_{z}) & \mathbf{1} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{-} \\ \mathbf{R}_{x} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{-} \\ \mathbf{P}^{--} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} + \mathbf{R}_{z}) & \mathbf{R}_{z} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (-1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (-1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (-1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (-1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (-1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{z} = (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--} +$

P

Ρ

P

P

$$\begin{aligned} \mathbf{R}_{x}^{2-} \mathbf{1} &= \mathbf{0}, & \mathbf{R}_{y}^{2-} \mathbf{1} &= \mathbf{0}. \\ \mathbf{P}_{x}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{x}}{2} & reducible & \mathbf{P}_{y}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{y}}{2} \\ \mathbf{P}_{x}^{-} &= \frac{\mathbf{1} - \mathbf{R}_{x}}{2} & \mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{2} \\ \mathbf{1} &= \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} & Completness & \mathbf{1} &= \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-} \\ \mathbf{R}_{x} &= \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} & Spec.decomps & \mathbf{R}_{y} &= \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-} \end{aligned}$$
The old " $\mathbf{1} = \mathbf{1} \cdot \mathbf{1}$ trick" $\mathbf{1} = \mathbf{1} \cdot \mathbf{1} = (\mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-}) \cdot (\mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}) = \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} & gives \ irrep \ projectors \\ \mathbf{P}^{++} &= \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} &= \frac{(\mathbf{1} + \mathbf{R}_{x}) \cdot (\mathbf{1} + \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}) \\ \mathbf{P}^{++} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} &= \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} + \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{P}^{++} &= \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-} &= \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{P}^{+-} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} &= \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{R}_{z} &= (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--} \\ \mathbf{R}_{y} &= (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{++} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--} \\ \mathbf{P}^{--} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} &= \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y}}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} + \mathbf{R}_{z}) \\ \frac{C_{z}^{2}}{1} \cdot \mathbf{R}_{y}}{\frac{1}{1} \cdot \mathbf{R}_{y}} + \frac{C_{z}^{2}}{1} \cdot \mathbf{R}_{y}}{\frac{1}{1} \cdot \mathbf{R}_{y} \cdot \mathbf{R}_{z} \cdot \mathbf{R}_{y}} \\ \frac{C_{z}^{2}}{2} \cdot \mathbf{R}_{z}^{-} &= \mathbf{R}_{z}^{-} \cdot \mathbf{P}_{y}^{-} &= \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{R}_{y} + \mathbf{R}_{z}} + \mathbf{R}_{z}) \\ \frac{C_{z}^{2}}{1} \cdot \mathbf{R}_{y}}{\frac{1}{1} \cdot \mathbf{R}_{z}} + \frac{\mathbf{R}_{z} \cdot \mathbf{R}_{z}}{\frac{1}{1} \cdot \mathbf{R}_{z} \cdot \mathbf{R}_{z} \cdot \mathbf{R}_{z}} \\ \frac{C_{z}^{2}}{1} \cdot \mathbf{R}_{y}}{\frac{1}{1} \cdot \mathbf{R}_{z}} + \frac{\mathbf{R}_{z} \cdot \mathbf{R}_{z}}{\frac{1}{1} \cdot \mathbf{R}_{z} \cdot \mathbf{R}_{z} \cdot \mathbf{R}_{z}} \\ \frac{C_{z}^{2}}{1} \cdot \mathbf{R}_{z}}{\frac$

Thursday, March 7, 2013

 $\begin{array}{c|c} C_2^y & \mathbf{1} & \mathbf{R}_y \\ \hline + & 1 & 1 \end{array}$ D_2 spectral decomposition: The old " $1=1\cdot 1$ trick" again Two C_2 subgroup minimal equations and their projectors: $C_2^x \times C_2^y \mid \mathbf{1} \cdot \mathbf{1} \quad \mathbf{R}_x \cdot \mathbf{1} \mid \mathbf{1} \cdot \mathbf{R}_y \quad \mathbf{R}_x \cdot \mathbf{R}_y$ $R_x^2 - 1 = 0$. $R_v^2 - 1 = 0.$ 1.1 1.1 1.1 1.1 $\mathbf{P}_{y}^{+} = \frac{\mathbf{I} + \mathbf{R}_{y}}{2}$ $\mathbf{P}_x^+ = \frac{\mathbf{1} + \mathbf{R}_x}{2}$ -1.1 $-1 \cdot 1$ reducible $1 \cdot (-1)$ 1.1 $1 \cdot (-1)$ +.-1.1 projectors -1.1 $1 \cdot (-1) - 1 \cdot (-1)$ 1.1 $\mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{2}$ $\mathbf{P}_x^- = \frac{1 - \mathbf{R}_x}{2}$ **1** \mathbf{R}_x \mathbf{R}_y \mathbf{R}_z Completness $1 = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$ $1 = P_{r}^{+} + P_{r}^{-}$ $-\cdot + 1 - 1$ $+\cdot - 1 1$ $\mathbf{R}_{x} = \mathbf{P}_{x}^{+} - \mathbf{P}_{r}^{-}$ Spec.decomps $\mathbf{R}_{v} = \mathbf{P}_{v}^{+} - \mathbf{P}_{v}^{-}$ The old "1=1•1 trick" $1 = 1 \cdot 1 = (P_x^+ + P_x^-) \cdot (P_y^+ + P_y^-) = P_x^+ \cdot P_y^+ + P_x^- \cdot P_y^+ + P_x^- \cdot P_y^- + P_x^- \cdot P_y^-$ gives irrep projectors $\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{\left(\mathbf{1} + \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} + \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}\right)$ (completeness is first) $\mathbf{P}^{-+} \equiv \mathbf{P}_x^- \cdot \mathbf{P}_y^+ = \frac{\left(\mathbf{1} - \mathbf{R}_x\right) \cdot \left(\mathbf{1} + \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_x + \mathbf{R}_y - \mathbf{R}_z\right)$ $\mathbf{1} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{R}_{r} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{P}^{+-} \equiv \mathbf{P}_x^+ \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} + \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_x - \mathbf{R}_y - \mathbf{R}_z\right)$ $\mathbf{R}_{v} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{R}_{\tau} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{P}^{--} \equiv \mathbf{P}_x^- \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} - \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_x - \mathbf{R}_y + \mathbf{R}_z\right)$ $\frac{C_{2}^{x} | \mathbf{1} | \mathbf{R}_{x} |}{| \mathbf{1} | \mathbf{1} |} \times \frac{C_{2}^{y} | \mathbf{1} | \mathbf{R}_{y} |}{| \mathbf{1} | \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} | \mathbf{R}_{x} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{R}_{y} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{y} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1}$ Shortcut notation for getting D₂ character table $1 \cdot (-1) - 1 \cdot (-1)$ $1 \cdot 1 - 1 \cdot 1$

Thursday, March 7, 2013

 $C_2^x \times C_2^y \mid \mathbf{1} \cdot \mathbf{1} \quad \mathbf{R}_x \cdot \mathbf{1} \mid \mathbf{1} \cdot \mathbf{R}_y \quad \mathbf{R}_x \cdot \mathbf{R}_y$ $R_x^2 - 1 = 0$. $R_v^2 - 1 = 0.$ 1.1 1.1 1.1 1.1 -1.11.1 $\mathbf{P}_{y}^{+} = \frac{\mathbf{I} + \mathbf{R}_{y}}{2}$ $\mathbf{P}_x^+ = \frac{\mathbf{1} + \mathbf{R}_x}{2}$ 1.1 $1 \cdot (-1)$ $1 \cdot (-1)$ 1.1 reducible $1 \cdot (-1) - 1 \cdot (-1)$ $1 \cdot 1 - 1 \cdot 1$ projectors $\mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{\mathbf{2}}$ $\mathbf{P}_x^- = \frac{\mathbf{1} - \mathbf{R}_x}{2}$ **1** $\mathbf{R}_x \mid \mathbf{R}_y \mid \mathbf{R}_z$ D_{2} $++=A_1$ | 1 1 | 1 1 Note $1 = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$ Completness $1 = P_{r}^{+} + P_{r}^{-}$ common Spec.decomps notation $\mathbf{R}_{r} = \mathbf{P}_{r}^{+} - \mathbf{P}_{r}^{-}$ $\mathbf{R}_{v} = \mathbf{P}_{v}^{+} - \mathbf{P}_{v}^{-}$ The old "1=1•1 trick" $1 = 1 \cdot 1 = \left(\mathbf{P}_x^+ + \mathbf{P}_x^-\right) \cdot \left(\mathbf{P}_y^+ + \mathbf{P}_y^-\right) = \mathbf{P}_x^+ \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^- + \mathbf{P}_x^- \cdot \mathbf{P}_y^-$ gives irrep projectors $\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{\left(\mathbf{1} + \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} + \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}\right)$ (completeness is first) $\mathbf{P}^{-+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} = \frac{\left(\mathbf{1} - \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} + \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} - \mathbf{R}_{z}\right)$ $\mathbf{1} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{R}_{r} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-} = \frac{\left(\mathbf{1} + \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} - \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_{x} - \mathbf{R}_{y} - \mathbf{R}_{z}\right)$ $\mathbf{R}_{v} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{R}_{\tau} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{\left(\mathbf{1} - \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} - \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} + \mathbf{R}_{z}\right)$ $\frac{C_{2}^{x} | \mathbf{1} | \mathbf{R}_{x} |}{| \mathbf{1} | \mathbf{1} |} \times \frac{C_{2}^{y} | \mathbf{1} | \mathbf{R}_{y} |}{| \mathbf{1} | \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} | \mathbf{R}_{x} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{R}_{y} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} |} = \frac{-\cdot$ Shortcut notation for getting D₂ character table $1 \cdot (-1) - 1 \cdot (-1)$ $1 \cdot 1 - 1 \cdot 1$

 $\mathbf{T} \mathbf{R}_{y}$

 \times

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D_2 and C_{2v} Spectral decomposition of D_2 Some D_2 modes Outer product properties and the Group Zoo

$$\begin{pmatrix} \langle 1 | \ddot{x} \rangle \\ \langle 2 | \ddot{x} \rangle \\ \langle 3 | \ddot{x} \rangle \\ \langle 4 | \ddot{x} \rangle \end{pmatrix} = \begin{pmatrix} A & a & b & c \\ a & A & c & b \\ b & c & A & a \\ c & b & a & A \end{pmatrix} \begin{pmatrix} \langle 1 | x \rangle \\ \langle 2 | x \rangle \\ \langle 3 | x \rangle \\ \langle 4 | x \rangle \end{pmatrix} \qquad A = -(k_a \cos^2(a, b) + k_b + k_c \cos^2(b, c))/m, \\ a = -k_a \cos^2(a, b)/m, \\ b = -k_b/m, \\ c = -k_c \cos^2(b, c)/m.$$

$$\begin{split} |e^{A_1}\rangle &\equiv |e^1\rangle = P^1 |1\rangle \sqrt{4} = (|1\rangle + |2\rangle + |3\rangle + |4\rangle)/2, \\ |e^{B_2}\rangle &\equiv |e^2\rangle = P^2 |1\rangle \sqrt{4} = (|1\rangle - |2\rangle + |3\rangle - |4\rangle)/2, \\ |e^{B_1}\rangle &\equiv |e^3\rangle = P^3 |1\rangle \sqrt{4} = (|1\rangle + |2\rangle - |3\rangle - |4\rangle)/2, \\ |e^{A_2}\rangle &\equiv |e^4\rangle = P^4 |1\rangle \sqrt{4} = (|1\rangle - |2\rangle - |3\rangle + |4\rangle)/2, \end{split}$$

Fig. 2.8.2 PSDS

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D_2 and C_{2v} Spectral decomposition of D_2 Some D_2 modes Outer product properties and the Group Zoo

Thursday, March 7, 2013

C_6 is product $C_3 \times C_2$ (but C_4 is NOT $C_2 \times C_2$)

C_6 is product $C_3 \times C_2$ (but C_4 is NOT $C_2 \times C_2$)

	$C_3 \times C_2 = C_6$	1	$\mathbf{r} = h^2$	$\mathbf{r}^2 = h^4$	$\mathbf{R} = \mathbf{h}^3$	$\mathbf{r} \cdot \mathbf{R} = h$	$\mathbf{r}^2 \cdot \mathbf{R} = h^5$
	$(0)_3 \cdot (0)_2 = (0)_6$	1	1	1	1	1	1
	$(1)_3 \cdot (0)_2 = (2)_6$	1	$e^{2\pi i/3}$	$e^{-2\pi i/3}$	1	$e^{2\pi i/3}$	$e^{-2\pi i/3}$
=	$(2)_3 \cdot (0)_2 = (4)_6$	1	$e^{-2\pi i/3}$	$e^{2\pi i/3}$	1	$e^{-2\pi i/3}$	$e^{2\pi i/3}$
	$(0)_3 \cdot (1)_2 = (3)_6$					-1	-1
	$\left(1\right)_{3}\cdot\left(1\right)_{2}=\left(5\right)_{6}$	1	$e^{2\pi i/3}$	$e^{-2\pi i/3}$	-1		$-e^{-2\pi i/3}$
	$(2)_3 \cdot (1)_2 = (1)_6$	1	$e^{-2\pi i/3}$	$e^{2\pi i/3}$	-1	$-e^{-2\pi i/3}$	$-e^{2\pi i/3}$