Group Theory in Quantum Mechanics

C_{N} symmetry systems coupled, uncoupled, and re-coupled
(Geometry of U(2) characters - Ch. 6-12 of Unit 3)
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-12 of Ch. 2)
Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry
Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Group Zoo

Breaking C_{N} cyclic coupling into linear chains
$\xrightarrow{\text { Review of } 1 D \text {-Bohr-ring related to infinite square well (and review of revival) }} \begin{aligned} & \text { Breaking } C_{2 N+2} \text { to approximate linear } N \text {-chain }\end{aligned}$
Band-It simulation: Intro to scattering approach to quantum symmetry

```
Breaking \(C_{2 N}\) cyclic coupling down to \(C_{N}\) symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
```

Finally! Symmetry groups that are not just C_{N}
The "4-Group (s)" D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Group Zoo
(a) Infinite Square Well

(b) Bohr Rotor

All ∞-well peak must be made of sine wave components.
(a) Infinite Square Well at $t=0$

(c) Half-time revival at $t=\tau / 2$

So how is the ∞-well "flipped revival explained?

After only 50 round-trips M's wave does a partial revival as it makes an upside down-delta function around $x=0.8 \mathrm{~W}$.

All ∞-well peak must be made of sine wave components.
(a) Infinite Square Well at $t=0$

(c) Half-time revival at $t=\tau / 2$

3. So how is the ∞-well "flipped revival explained?
2. Bohr rotor peak made of sine wave components is anti-symmetric, so an upside-down mirror image peak must accompany any peak.
(b) Bohr Rotor at $t=0$

(d) Half-fime revivval at $t \neq \tau / 2$

4. Bohr rotor half-time revival is same-side-up copy of initial peak on opposite side of ring. So that upside-down Bohr-image will appear upside-down on the other side at half-time revival.

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry

```
Breaking C C2N cyclic coupling down to C CN symmetry
    Acoustical modes vs. Optical modes
    Intro to other examples of band theory
    Avoided crossing view of band-gaps
```

Finally! Symmetry groups that are not just C_{N}
The " $4-\operatorname{Group}(s)$ " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D2 modes
Outer product properties and the Group Zoo

C6 symmetry: Elementary Bloch Hamiltonian $\mathbf{H}^{1 B(6)}$ (1st neighbor coupling)

C6 Symmetry: Elementary Bloch Hamiltonian $\mathbf{H}^{1 B(6)}$ (1st neighbor coupling)

$$
\mathbf{H}^{1 B(6)}\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)=\left(\begin{array}{cccccc}
p=0 & 1 & 2 & 3 & 4 & 5 \\
2 r & -r & \cdot & \cdot & \cdot & -r \\
-r & 2 r & -r & \cdot & \cdot & \cdot \\
\cdot & -r & 2 r & -r & \cdot & \cdot \\
\cdot & \cdot & -r & 2 r & -r & \cdot \\
\cdot & \cdot & \cdot & -r & 2 r & -r \\
-r & \cdot & \cdot & \cdot & -r & 2 r
\end{array}\right)\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)=2 r\left(1-\cos \frac{2 \pi m}{6}\right)\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right) \quad r=3
$$

C6 symmetry: Elementary Bloch Hamiltonian $\mathbf{H}^{1 B(6)}$ (1st neighbor coupling)

$$
\mathbf{H}^{1 B(6)}\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\boldsymbol{\psi}_{3}^{m} \\
\boldsymbol{\psi}_{4}^{m} \\
\boldsymbol{\psi}_{5}^{m}
\end{array}\right)=\left(\begin{array}{cccccc}
p=0 & 1 & 2 & 3 & 4 & 5 \\
2 r & -r & \cdot & \cdot & \cdot & -r \\
-r & 2 r & -r & \cdot & \cdot & \cdot \\
\cdot & -r & 2 r & -r & \cdot & \cdot \\
\cdot & \cdot & -r & 2 r & -r & \cdot \\
\cdot & \cdot & \cdot & -r & 2 r & -r \\
-r & \cdot & \cdot & \cdot & -r & 2 r
\end{array}\right)\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)=2 r\left(1-\cos \frac{2 \pi m}{6}\right)\left(\begin{array}{l}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)
$$

$\mathbf{H}^{I B(6)}$ eigensolutions are very sensitive to zeroing or constraing a coupling!

Consider sine and cosine eigenvectors of a 14-by-14 elementary Bloch matrix $\mathbf{H}^{\mathrm{EB}(14)}$

$$
\begin{aligned}
& \left\langle\cos ^{m}\right|=\left(\left.\begin{array}{lllllll}
c_{0}^{m}=1 & c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & c_{4}^{m} & c_{5}^{m} & c_{6}^{m}
\end{array} c_{7}^{m}=1 \right\rvert\, \begin{array}{llllll}
c_{-6}^{m} & c_{-5}^{m} & c_{-4}^{m} & c_{-3}^{m} & c_{-2}^{m} & c_{-1}^{m}
\end{array}\right) \quad \quad c_{p}^{m}=\cos \left(m \cdot p \frac{\pi}{7}\right)=c_{-p}^{m} \\
& \left\langle\sin ^{m}\right|=\left(\begin{array}{lllllll|l|lllllll}
s_{0}^{m}=0 & s_{1}^{m} & s_{2}^{m} & s_{3}^{m} & s_{4}^{m} & s_{5}^{m} & s_{6}^{m} & s_{7}^{m}=0 & s_{-6}^{m} & s_{-5}^{m} & s_{-4}^{m} & s_{-3}^{m} & s_{-2}^{m} & s_{-1}^{m}
\end{array}\right) \quad s_{p}^{m}=\sin \left(m \cdot p \frac{\pi}{7}\right)=-s_{-p}^{m}
\end{aligned}
$$

$$
\mathbf{H}^{\mathrm{EB}(14)}\left|\left\langle i^{m}\right\rangle \quad=\omega^{m(14)}\right|\left\langle i^{m}\right\rangle
$$

where:
$\omega^{m(14)}=2 r\left(1-\cos \frac{2 \pi m}{14}\right)$

Consider sine and cosine eigenvectors of a 14-by-14 elementary Bloch matrix $\mathbf{H}^{\mathrm{EB}(14)}$

$$
\begin{aligned}
& \left\langle\cos ^{m}\right|=\left(\left.\begin{array}{lllllll}
c_{0}^{m}=1 & c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & c_{4}^{m} & c_{5}^{m} & c_{6}^{m}
\end{array} c_{7}^{m}=1 \right\rvert\, \begin{array}{llllll}
c_{-6}^{m} & c_{-5}^{m} & c_{-4}^{m} & c_{-3}^{m} & c_{-2}^{m} & c_{-1}^{m}
\end{array}\right) \quad \quad c_{p}^{m}=\cos \left(m \cdot p \frac{\pi}{7}\right)=c_{-p}^{m} \\
& \left\langle\sin ^{m}\right|=\left(\begin{array}{lllllllllllll}
s_{0}^{m}=0 & s_{1}^{m} & s_{2}^{m} & s_{3}^{m} & s_{4}^{m} & s_{5}^{m} & s_{6}^{m} & s_{7}^{m}=0 & s_{-6}^{m} & s_{-5}^{m} & s_{-4}^{m} & s_{-3}^{m} & s_{-2}^{m}
\end{array} s_{-1}^{m}\right) \quad \quad s_{p}^{m}=\sin \left(m \cdot p \frac{\pi}{7}\right)=-s_{-p}^{m}
\end{aligned}
$$

$$
\left.\mathbf{H}^{\mathrm{EB}(4)}\left|\left\langle i^{m}\right\rangle=\omega^{m(14)}\right| s i^{m}\right\rangle
$$

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a δ-by- 6 constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking $C_{2 N+2}$ to approximate linear N-chain
\longrightarrow Band-It simulation: Intro to scattering approach to quantum symmetry

```
Breaking \(C_{2 N}\) cyclic coupling down to \(C_{N}\) symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
```

Finally! Symmetry groups that are not just C_{N}
The "4-Group(s)" D_{2} and $C_{2 v}$
Spectral decomposition of D_{2} Some D_{2} modes
Outer product properties and the Group Zoo
$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a 6-by- 6 constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only


```
Breaking CN cyclic coupling into linear chains
    Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking C2N+2 to approximate linear N-chain
    Band-It simulation: Intro to scattering approach to quantum symmetry
```

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_{N} The "4-Group(s)" D_{2} and $C_{2 v}$ Spectral decomposition of D_{2} Some D2 modes Outer product properties and the Group Zoo

Fig. 2.7.6 rrincipless $S_{y m m e t r y} D_{\text {ynamicss }} S_{\text {pectroscopy }}$

Fig. 2.7.6 Principips $S_{y m m e t r y} D_{\text {ynamics }} S_{\text {pectroscopy }}$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.
$\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m}}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$

$$
\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{k_{m}}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right) \text { where: } \quad k_{m}=\frac{2 \pi m}{12}
$$

Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.

$$
\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m} \mid}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m} \mid}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

$$
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle=\left\langle r^{0}\right| \mathbf{P}^{(n)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{0}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12
$$

$$
=\left\langle r^{0}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots
$$

$$
=\underline{a}+\bar{a}+0 \quad+\quad 0 \quad+\ldots
$$

$$
\begin{aligned}
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & =\left\langle r^{1}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{1}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12 \\
& =\left\langle r^{1}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots \\
& =-\underline{a}+e^{-i k_{m}} \quad(-\bar{a})+\ldots \\
& =-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right)=\left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle^{*}
\end{aligned}
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$

$$
\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right) \text { where: } \quad k_{m}=\frac{2 \pi m}{12}
$$

Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.

$$
\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m} \mid}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m} \mid}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

$$
\begin{aligned}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & =\left\langle r^{0}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(n)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{0}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12 \\
& =\left\langle r^{0}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots \\
& =\underline{a}+\bar{a}+\quad 0
\end{aligned}+\frac{0}{+}+\ldots
$$

$$
\langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{n}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
$$

$$
\begin{aligned}
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & =\left\langle r^{1}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{1}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12 \\
& =\left\langle r^{1}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots \\
& =-\underline{a} \quad+e^{-i k_{m}} \quad(-\bar{a})+\quad+\quad 0 \quad+\ldots \\
& =-\left(\underline{a} \quad+e^{-i k_{m}} \bar{a}\right)=\left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle *
\end{aligned}
$$

Breaking C_{N} cyclic coupling into linear chains

Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry
Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes Intro to other examples of band theory
Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Group Zoo

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.
$\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m} \mid}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}$

$$
\begin{aligned}
\langle\mathbf{K}\rangle^{k_{m}} & =\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{aligned}
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{w}} \mathbf{r}^{-2}\right)$ where: $\quad k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.

$$
\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m} \mid}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m} \mid}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

Secular Eq.:

$$
\begin{aligned}
& 0=\kappa^{2}-\operatorname{Tr}\langle\mathbf{K}\rangle^{k_{m}}+\quad \operatorname{Det}\langle\mathbf{K}\rangle^{k_{m}} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\left(\underline{a}+e^{+i k_{m}} \bar{a}\right)\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\underline{a}^{2}-\bar{a}^{2}-2 \bar{a} \bar{a} \cos k_{m} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+2 \bar{a} \underline{a}\left(1-\cos k_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle\mathbf{K}\rangle^{k_{m}} & =\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{aligned}
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{w}} \mathbf{r}^{-2}\right)$ where: $\quad k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry states are coupled by \mathbf{K}-matrix.

$$
\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m} \mid}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m} \mid}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

Secular Eq.:

$$
\begin{aligned}
& 0=\kappa^{2}-\operatorname{Tr}\langle\mathbf{K}\rangle^{k_{m}}+\quad \operatorname{Det}\langle\mathbf{K}\rangle^{k_{m}} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\left(\underline{a}+e^{+i k_{m}} \bar{a}\right)\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\underline{a}^{2}-\bar{a}^{2}-2 \bar{a} \underline{a} \cos k_{m} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+2 \bar{a} \underline{a}\left(1-\cos k_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle\mathbf{K}\rangle^{k_{m}} & =\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{k}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{aligned}
$$

Eigenvalues:

$$
\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}
$$

Figure 2.7.7 Band splitting due to $C_{24}-C_{12}$ symmetry breaking.
Eigenvalues:
$\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}$

$$
\begin{array}{r}
\langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
=\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{array}
$$

Figure 2.7.7 Band splitting due to $C_{24}-C_{12}$ symmetry breaking.
Eigenvalues:
$\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}$

$$
\begin{array}{r}
\langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
=\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{array}
$$

Figure 2.7.7 Band splitting due to $C_{24}-C_{12}$ symmetry breaking.
Eigenvalues:
$\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}$

$$
\begin{array}{r}
\langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
=\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{array}
$$

Breaking C_{N} cyclic coupling into linear chains

Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry
Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

```
Finally! Symmetry groups that are not just CN
    The "4-Group(s)" D}\mp@subsup{D}{2}{}\mathrm{ and C}\mp@subsup{C}{2v}{
    Spectral decomposition of }\mp@subsup{D}{2}{
        Some D2 modes
    Outer product properties and the Group Zoo
```

Fig. 2.12.1 PSDS

$$
\begin{aligned}
& \text { Figure 2.12.1 } C_{12} \text { "clocktane" potential wells and energy levels. (a) Zero potential gives } \\
& \text { Bohr orbital levels. (b) Weak potential gives small and-gap splittings at (} m \text {) }=6,12, \ldots . \text { (c) } \\
& \text { Strong potential gives tightly clustered bands and wide gaps. (Splitting of clusters is } \\
& \text { exaggerated for clarity.) }
\end{aligned}
$$

Breaking C_{N} cyclic coupling into linear chains
Review of $1 D$-Bohr-ring related to infinite square well (and review of revival)
Breaking $\mathrm{C}_{2 \mathrm{~N}+2}$ to approximate linear N -chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_{N} The "4-Group (s)" D_{2} and $C_{2 v}$ Spectral decomposition of D_{2} Some D2 modes
Outer product properties and the Group Zoo

Fig. 2.12.7 PSDS
$\mid X$ up $\rangle \mid X$ down \rangle

Fig. 2.12.7 PSDS

Fig. 2.12.8 PSDS

$$
\begin{gathered}
\mid X \text { up }\rangle \mid X \text { down }\rangle \\
\langle H\rangle= \\
\left.\begin{array}{lr}
H+p \cdot E & -S \\
-S & H-p \cdot E
\end{array}\right)
\end{gathered}
$$

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
\rightarrow
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}

Some D_{2} modes
Outer product properties and the Group Zoo

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

D2 Symmetry (The 4-Group)

1: THE ORIGINAL POSITION R_{z} : THE HALF-TURN POSITION

Don't touch the fan blade.
Rotate it by 180° around its axle or the z axis.
R_{y} : THE OVERTURNED POSITION Overturn it 180° around the y axis.
R_{x} : THE FLIPPED POSITION Flip it 180° around the x axis.

Fig. 2.1.1 PSDS

D2 Symmetry (The 4-Group)

1: THE ORIGINAL POSITION R_{z} : THE HALF-TURN POSITION

Don't touch the fan blade.
Rotate it by 180° around its axle or the z axis.
R_{y} : THE OVERTURNED POSITION Overturn it 180° around the y axis.
R_{x} : THE FLIPPED POSITION Flip it 180° around the x axis.

Fig. 2.1.1 PSDS

Fig. 2.1.2 PSDS

$$
\left|R_{z}\right\rangle=R_{z}|1\rangle
$$

POSITION

$$
\left|R_{y}\right\rangle=R_{y}|1\rangle
$$

FLIPPED
POSITION

$$
\left|R_{x}\right\rangle=\mathbb{R}_{x}|1\rangle
$$

```
Breaking \(C_{N}\) cyclic coupling into linear chains
Review of \(1 D\)-Bohr-ring related to infinite square well (and review of revival)
Breaking \(\mathrm{C}_{2 \mathrm{~N}+2}\) to approximate linear N -chain Band-It simulation: Intro to scattering approach to quantum symmetry
```

```
Breaking C2N cyclic coupling down to CN symmetry
    Acoustical modes vs. Optical modes
    Intro to other examples of band theory
    Avoided crossing view of band-gaps
```

Finally! Symmetry groups that are not just C_{N}
The "4-Group (s)" D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Group Zoo
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again Two C_{2} subgroup minimal equations:

$$
R_{x}^{2}-\mathbf{1}=\mathbf{0}, \quad \mathbf{R y}^{2}-\mathbf{1}=\mathbf{0}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbf{R}_{x}^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{\mathbf{y}}{ }^{2} \mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbf{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbf{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbf{R}_{\mathrm{x}}^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{\mathbf{y}}{ }^{2}-\mathbf{1}=\mathbf{0} \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbf{R}_{\mathrm{x}}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{\mathbf{y}}{ }^{2}-\mathbf{1}=\mathbf{0} \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & & \mathbf{R y}^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbf{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbf{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors
$\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)$
$\mathbf{P}^{+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)$
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors

$$
\begin{array}{ll}
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right) & \quad \begin{array}{l}
(\text { completeness is first })
\end{array} \\
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right) & \mathbf{R}_{x}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{--} \\
\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right) & \mathbf{R}_{y}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{--} \\
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right) & \mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbf{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

(completeness is first)

$$
\mathbf{P}^{-+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

Shortcut notation for getting D_{2} character table

C_{2}^{x}	$\mathbf{1}$	\mathbf{R}_{x}				
+	1	1				
-	1	-1	\times	C_{2}^{y}	$\mathbf{1}$	\mathbf{R}_{y}
:---:	:---:	:---:				
+	1	1				
-	1	-1				

$\left.+$| | | |
| :---: | :---: | :---: |
| | | |
| C_{2}^{y} | $\mathbf{1}$ | \mathbf{R}_{y} |
| + | 1 | 1 |
| - | 1 | -1 | \right\rvert\,$=$

$$
\mathbf{R}_{x}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{-+}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-}
$$

$$
\mathbf{R}_{y}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-}
$$

$$
\mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{-+}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--}
$$

$C_{2}^{x} \times C_{2}^{y}$	$\mathbf{1} \cdot \mathbf{1}$	$\mathbb{R}_{x} \cdot \mathbf{1}$	$\mathbf{1} \cdot \mathbf{R}_{y}$	$\mathbb{R}_{x} \cdot \mathbf{R}_{y}$
$+\cdot+$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$
$-\cdot+$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot 1$	$-1 \cdot 1$
$+\cdot-$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot(-1)$	$1 \cdot(-1)$
$-\cdot-$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot(-1)$	$-1 \cdot(-1)$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

$\left.=\begin{array}{c|cc|cc|}C_{2}^{x} \times C_{2}^{y} & \mathbf{1} \cdot \mathbf{1} & \mathbf{R}_{x} \cdot \mathbf{1} & \mathbf{1} \cdot \mathbf{R}_{y} & \mathbf{R}_{x} \cdot \mathbf{R}_{y} \\ \hline+\cdot+ & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 \\ -\cdot+ & 1 \cdot 1 & -1 \cdot 1 & 1 \cdot 1 & -1 \cdot 1 \\ \hline+\cdot- & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot(-1) & 1 \cdot(-1) \\ -\cdot- & 1 \cdot 1 & -1 \cdot 1 & 1 \cdot(-1) & -1 \cdot(-1) \\ \hline & \begin{array}{c|cc|cc|}D_{2} & \mathbf{1} & \mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z} \\ \hline+\cdot+ & 1 & 1 & 1 & 1 \\ -\cdot+ & 1 & -1 & 1 & -1 \\ \hline+\cdot- & 1 & 1 & -1 & -1 \\ -\cdot- & 1 & -1 & -1 & 1 \\ \hline\end{array}\end{array}\right)$

The old " $\mathbf{1}=\mathbf{1} \bullet \mathbf{1}$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

Shortcut notation for getting D_{2} character table

C_{2}^{x}	$\mathbf{1}$	\mathbf{R}_{x}				
+	1	1				
-	1	-1	\times	C_{2}^{y}	$\mathbf{1}$	\mathbf{R}_{y}
:---:	:---:	:---:				
+	1	1				
-	1	-1				

$$
\begin{aligned}
& \mathbf{1}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--} \\
& \mathbf{R}_{x}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-1} \\
& \mathbf{R}_{y}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{--} \\
& \mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{-+}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{-1}
\end{aligned}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbf{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

$=$| $C_{2}^{x} \times C_{2}^{y}$ | $\mathbf{1} \cdot \mathbf{1}$ | $\mathbb{R}_{x} \cdot \mathbf{1}$ | $\mathbf{1} \cdot \mathbf{R}_{y}$ | $\mathbb{R}_{x} \cdot \mathbf{R}_{y}$ |
| :---: | :---: | :---: | :---: | :---: |
| $+\cdot+$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ |
| $-\cdot+$ | $1 \cdot 1$ | $-1 \cdot 1$ | $1 \cdot 1$ | $-1 \cdot 1$ |
| $+\cdot-$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ |
| $-\cdot-$ | $1 \cdot 1$ | $-1 \cdot 1$ | $1 \cdot(-1)$ | $-1 \cdot(-1)$ |

$=$| D_{2} | $\mathbf{1}$ | \mathbf{R}_{x} | \mathbf{R}_{y} | \mathbf{R}_{z} |
| :---: | :---: | :---: | :---: | :---: |
| $++=A_{1}$ | 1 | 1 | 1 | 1 |
| $+=A_{2}$ | 1 | -1 | 1 | -1 |
| $+-=B_{1}$ | 1 | 1 | -1 | -1 |
| $-=B_{2}$ | 1 | -1 | -1 | 1 |

The old $^{\prime \prime} \mathbf{1}=\mathbf{1} \cdot \mathbf{1}$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}$| $-=B_{2}$ |
| :--- |
| $+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors |

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbb{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

Shortcut notation for getting D_{2} character table

C_{2}^{x}	$\mathbf{1}$	\mathbf{R}_{x}				
+	1	1				
-	1	-1	\times	C_{2}^{y}	$\mathbf{1}$	\mathbf{R}_{y}
:---:	:---:	:---:				
+	1	1				
-	1	-1				

$$
\begin{aligned}
& \mathbf{1}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--} \\
& \mathbf{R}_{x}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-1} \\
& \mathbf{R}_{y}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{--} \\
& \mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{-+}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{-1}
\end{aligned}
$$

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Group Zoo

$\left|e^{A_{1}}\right\rangle \equiv\left|e^{1}\right\rangle=P^{1}|1\rangle \sqrt{4}=(|1\rangle+|2\rangle+|3\rangle+|4\rangle) / 2$,

$$
\left|e^{B_{2}}\right\rangle \equiv\left|e^{2}\right\rangle=P^{2}|1\rangle \sqrt{4}=(|1\rangle-|2\rangle+|3\rangle-|4\rangle) / 2,
$$

$$
\left|e^{B_{1}}\right\rangle \equiv\left|e^{3}\right\rangle=P^{3}|1\rangle \sqrt{4}=(|1\rangle+|2\rangle-|3\rangle-|4\rangle) / 2,
$$

$$
\left|e^{A_{2}}\right\rangle \equiv\left|e^{4}\right\rangle=P^{4}|1\rangle \sqrt{4}=(|1\rangle-|2\rangle-|3\rangle+|4\rangle) / 2,
$$

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) / 2 \quad(A+a+b+c)^{1 / 2}
$$

$$
\left(\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right) / 2
$$

$$
(A-a+b-c)^{1 / 2}
$$

$$
\left(\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right) / 2
$$

$$
(A+a-b-c)^{1 / 2}
$$

$$
\left(\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right) / 2
$$

$$
(A-a-b+c)^{1 / 2}
$$

Fig. 2.8.2 PSDS

Breaking C_{N} cyclic coupling into linear chains

Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Group Zoo

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

 16 non-Abelian groups. (See also Figure 2.11.1.)

C_{6} is product $\mathrm{C}_{3} \times \mathrm{C}_{2}$ (but C_{4} is NOT $\mathrm{C}_{2} \times \mathrm{C}_{2}$)

$$
\begin{array}{c|ccc}
C_{3} & \mathbf{1} & \mathbf{r} & \mathbf{r}^{2} \\
\hline(0)_{3} & 1 & 1 & 1 \\
(1)_{3} & 1 & e^{2 \pi i / 3} & e^{-2 \pi i / 3} \\
(2)_{3} & 1 & e^{-2 \pi i / 3} & e^{2 \pi i / 3}
\end{array} \times \begin{array}{c|cc|}
C_{2} & \mathbf{1} & \mathbf{R} \\
\hline(0)_{2} & 1 & 1 \\
(1)_{2} & 1 & -1 \\
\hline
\end{array}
$$

$C_{3} \times C_{2}$	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1} \cdot \mathbf{R}$	$\mathbf{r} \cdot \mathbf{R}$	$\mathbf{r}^{2} \cdot \mathbf{R}$
$(0)_{3} \cdot(0)_{2}$	$1 \cdot 1$					

$=$| $(1)_{3} \cdot(0)_{2}$ | $1 \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $1 \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(2)_{3} \cdot(0)_{2}$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ |
| $(0)_{3} \cdot(1)_{2}$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ |
| $(1)_{3} \cdot(1)_{2}$ | $1 \cdot 1$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $1 \cdot(-1)$ | $e^{2 \pi i / 3} \cdot(-1)$ | $e^{-2 \pi i / 3} \cdot(-1)$ |
| $(2)_{3} \cdot(1)_{2}$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $1 \cdot 1$ | $1 \cdot(-1)$ | $e^{-2 \pi i / 3} \cdot(-1)$ | $e^{2 \pi i / 3} \cdot(-1)$ |

C_{6} is product $\mathrm{C}_{3} \times \mathrm{C}_{2}$ (but C_{4} is NOT $\mathrm{C}_{2} \times \mathrm{C}_{2}$)

$C_{3} \times C_{2}=C_{6}$	$\mathbf{1}$	$\mathbf{r}=h^{2}$	$\mathbf{r}^{2}=h^{4}$	$\mathbf{R}=\mathbf{h}^{3}$	$\mathbf{r} \cdot \mathbf{R}=h$	$\mathbf{r}^{2} \cdot \mathbf{R}=h^{5}$
$(0)_{3} \cdot(0)_{2}=(0)_{6}$	1	1	1	1	1	1
$(1)_{3} \cdot(0)_{2}=(2)_{6}$	1	$e^{2 \pi i / 3}$	$e^{-2 \pi i / 3}$	1	$e^{2 \pi i / 3}$	$e^{-2 \pi i / 3}$
$=(2)_{3} \cdot(0)_{2}=(4)_{6}$	1	$e^{-2 \pi i / 3}$	$e^{2 \pi i / 3}$	1	$e^{-2 \pi i / 3}$	$e^{2 \pi i / 3}$
$(0)_{3} \cdot(1)_{2}=(3)_{6}$	1	1	1	-1	-1	-1
$(1)_{3} \cdot(1)_{2}=(5)_{6}$	1	$e^{2 \pi i / 3}$	$e^{-2 \pi i / 3}$	-1	$-e^{2 \pi i / 3}$	$-e^{-2 \pi i / 3}$
$(2)_{3} \cdot(1)_{2}=(1)_{6}$	1	$e^{-2 \pi i / 3}$	$e^{2 \pi i / 3}$	-1	$-e^{-2 \pi i / 3}$	$-e^{2 \pi i / 3}$

