Group Theory in Quantum Mechanics

Representations of cyclic groups $C_{3} \subset C_{6} \supset C_{2}$

(Quantum Theory for Computer Age - Ch. 6-9 of Unit 3)
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 3-7 of Ch. 2)
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Comparing wave function operator algebra to bra-ket algebra
Modular quantum number arithmetic
C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions
Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion
Gauge shifts due to complex coupling
Introduction to C_{N} beat dynamics and "Revivals" in Lecture 11
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions
Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion
Gauge shifts due to complex coupling
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table
Pairs each operator \mathbf{g} in the $1^{\text {st }}$ row
with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the $1^{\text {st }}$ column
so all unit $\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ elements lie on diagonal.
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table
Pairs each operator \mathbf{g} in the $1^{\text {st }}$ row
with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the $1^{\text {st }}$ column
so all unit $\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ elements lie on diagonal.

A C $C_{3} \mathbf{H}$-matrix is then constructed directly from the $\mathbf{g}^{\dagger} \mathbf{g}$-table and so is each \mathbf{r}^{p}-matrix representation.

$$
\begin{aligned}
& \mathbf{H}=\left(\begin{array}{lll}
r_{0} & r_{1} & r_{2} \\
r_{2} & r_{0} & r_{1} \\
r_{1} & r_{2} & r_{0}
\end{array}\right)=r_{0}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&+r_{1}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
&=r_{0} \cdot \mathbf{r}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
&+r_{1} \cdot \mathbf{r}^{1} \quad+r_{2} \cdot \mathbf{r}^{2}
\end{aligned}
$$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table
Pairs each operator \mathbf{g} in the $1^{\text {st }}$ row
with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the $1^{\text {st }}$ column
so all unit $\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ elements lie on diagonal.
$\mathrm{A} \mathrm{C}_{3} \mathbf{H}$-matrix is then constructed directly from the $\mathbf{g}^{\dagger} \mathbf{g}$-table and so is each \mathbf{r}^{p}-matrix representation.

$$
\begin{aligned}
& \mathbf{H}=\left(\begin{array}{lll}
r_{0} & r_{1} & r_{2} \\
r_{2} & r_{0} & r_{1} \\
r_{1} & r_{2} & r_{0}
\end{array}\right)=r_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&=r_{1}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)+r_{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
&=r_{0} \cdot \mathbf{1}+r_{1} \cdot \mathbf{r}^{1} \quad+r_{2} \cdot \mathbf{r}^{2}
\end{aligned}
$$

H-matrix coupling constants $\left\{r_{0}, r_{1}, r_{2}\right\}$ relate to particular operators $\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$ that transmit a particular force or current.

$$
{\underset{\nabla}{r}}_{r_{0}} \text { Point } p=0 \bmod 3 \quad\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table
Pairs each operator \mathbf{g} in the $1^{\text {st }}$ row
with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the $1^{\text {st }}$ column
so all unit $\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ elements lie on diagonal.
$\mathrm{A} \mathrm{C}_{3} \mathbf{H}$-matrix is then constructed directly from the $\mathbf{g}^{\dagger} \mathbf{g}$-table and so is each \mathbf{r}^{p}-matrix representation.

$$
\begin{aligned}
& \mathbf{H}=\left(\begin{array}{lll}
r_{0} & r_{1} & r_{2} \\
r_{2} & r_{0} & r_{1} \\
r_{1} & r_{2} & r_{0}
\end{array}\right)=r_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+r_{1}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
&=r_{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
&=r_{0} \cdot \mathbf{1}+r_{1} \cdot \mathbf{r}^{1} \quad+r_{2} \cdot \mathbf{r}^{2}
\end{aligned}
$$

Constants r_{k} that are grayed-out may change values if C_{3} symmetry is broken

H-matrix coupling constants $\left\{r_{0}, r_{1}, r_{2}\right\}$ relate to particular operators $\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$ that transmit a particular force or current.

A. Point
$\boldsymbol{r}_{0} p=0 \bmod 3$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table
Pairs each operator \mathbf{g} in the $1^{\text {st }}$ row
with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the $1^{\text {st }}$ column
so all unit $\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ elements lie on diagonal.
$\mathrm{A} \mathrm{C}_{3} \mathbf{H}$-matrix is then constructed directly from the $\mathbf{g}^{\dagger} \mathbf{g}$-table and so is each \mathbf{r}^{p}-matrix representation.

$$
\begin{aligned}
\mathbf{H}=\left(\begin{array}{cc}
r_{0}, \ldots r_{1} \ldots r_{2} \\
r_{2} & r_{0}
\end{array}\right)=r_{1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
r_{1} & r_{2}
\end{array}\right)+r_{1}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) & +r_{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& =r_{0} \cdot \mathbf{1} r+r_{1} \cdot \mathbf{r}^{1} \\
& +r_{2} \cdot \mathbf{r}^{2}
\end{aligned}
$$

Constants r_{k} that are grayed-out
may change values
if C_{3} symmetry is broken
\mathbf{H}-matrix coupling constants $\left\{r_{0}, r_{1}, r_{2}\right\}$ relate to particular operators $\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$ that transmit a particular force or current.

Conjugation symmetry

However, no matter how C_{3} is broken, a Hermitian-symmetric Hamiltonian $\left(H_{j k}^{*}=H_{k j}\right)$ requires that $r_{0}^{*}=r_{0}$ and $r_{1}^{*}=r_{2}$.

zero-state

$$
x_{0}=x_{1}=x_{2}=0
$$

$r_{0} p=0 \bmod 3$
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table
Pairs each operator \mathbf{g} in the $1^{\text {st }}$ row
with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the $1^{\text {st }}$ column
so all unit $\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ elements lie on diagonal.
$\mathrm{A} \mathrm{C}_{3} \mathbf{H}$-matrix is then constructed directly from the $\mathbf{g}^{\dagger} \mathbf{g}$-table and so is each \mathbf{r}^{p}-matrix representation.

$$
\left.\begin{array}{rl}
\mathbf{H}=\left(\begin{array}{cc}
r_{0}, & r_{1} \ldots r_{2} \\
r_{2} & r_{0}
\end{array}\right)=r_{1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
r_{1} & r_{2} & r_{0}
\end{array}\right) & =r_{0}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
0 & 0 \\
1 \\
1 & 0
\end{array} 0\right)+r_{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

\mathbf{H}-matrix coupling constants $\left\{r_{0}, r_{1}, r_{2}\right\}$ relate to particular operators $\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$ that transmit a partifular force or current.

Hermitian Hamiltonian $\left(H_{j k}^{*}=H_{k j}\right)$ requires $r_{0}^{*}=r_{0}$ and $r_{1}^{*}=r_{2}$.
C_{3} operators $\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$ also label unit base states:
$|0\rangle=\mathbf{r}^{0}|0\rangle$
$|1\rangle=\mathbf{r}^{l}|0\rangle$
$|2\rangle=\mathbf{r}^{2}|0\rangle$
modulo-3

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
\longrightarrow
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Modular quantum number arithmetic
C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions
Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion
Gauge shifts due to complex coupling

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
\mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity
We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
\mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$. Complex numbers z make it easy to find cube roots of $z=1=e^{2 \pi i m}$. (Answer: $z^{1 / 3}=e^{2 \pi i m / 3}$)

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}. \mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$. Complex numbers z make it easy to find cube roots of $z=1=e^{2 \pi i m}$. (Answer: $z^{1 / 3}=e^{2 \pi i m / 3}$)

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where : } \chi_{m}=e^{-i m^{2 \pi}}=\psi^{*}{ }_{m}
$$

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}. \mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$. Complex numbers z make it easy to find cube roots of $z=1=e^{2 \pi i m}$. (Answer: $\left.z^{1 / 3}=e^{2 \pi i m / 3}\right)$. $\quad \mathbf{1}=\mathbf{r}^{3}$ implies: $\mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right)$ where $: \chi_{m}=e^{-i m^{2 \pi}}=\psi_{m}^{*}{ }_{m}^{*}=e^{-i 0^{2 \pi}}=1 .\left\{\begin{array}{l}\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\ \chi_{2}=e^{-i 2_{3}^{2 \pi}}=\psi_{2}^{*}\end{array}\right.$

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
\mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies: } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where : } \chi_{m}=e^{-i m_{\overline{3}}^{2 \pi}}=\psi_{m}^{*}{ }_{m}^{*}=\begin{array}{l}
\chi_{0}=e^{-i 0^{2 \pi}}=1 \\
\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{3}}=\psi_{2}^{*}
\end{array}
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r},

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
\mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{\mathrm{i} m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where }: \chi_{m}=e^{-i m^{2 \pi}}=\psi_{m}^{* *}\left\{\begin{array}{l}
\chi_{0}=e^{-i 0^{2 \pi}}=1 \\
\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{2 \pi}}=\psi_{2}^{*}
\end{array}\right.
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
\mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies: } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where }: \chi_{m}=e^{-i m_{3}^{2 \pi}}=\psi_{m}^{*}{ }_{m}^{*}=\begin{array}{l}
\chi_{0}=e^{-i 0^{2 \pi}}=1 \\
\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{2 \pi}}=\psi_{2}^{*}
\end{array}
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

$$
\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)} \quad \text { Ortho-Completeness } \quad \mathbf{1}=\quad \mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}
$$

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
\mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies: } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where }: \chi_{m}=e^{-i m_{3}^{2 \pi}}=\psi_{m}^{*}{ }_{m}^{*}=\begin{array}{l}
\chi_{0}=e^{-i 0^{2 \pi}}=1 \\
\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{2 \pi}}=\psi_{2}^{*}
\end{array}
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

$$
\begin{array}{rlrlrl}
\mathbf{r} \cdot \mathbf{P}^{(n)}=\chi_{m} \mathbf{P}^{(n)} & \text { Ortho-Completeness } & \mathbf{1}= & \mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)} \\
& \mathbf{r}^{l} \text {-Spectral-Decomp. } & & \mathbf{r}^{l}=\chi_{0} & \mathbf{P}^{(0)}+\chi_{1} & \mathbf{P}^{(1)}+\chi_{2}
\end{array} \mathbf{P}^{(2)}
$$

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
\mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where : } \chi_{m}=e^{-i m^{2 \pi}}=\psi_{m}^{* *}\left\{\begin{array}{l}
\chi_{0}=e^{-i 0 \frac{2 \pi}{3}}=1 \\
\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{2 \pi}}=\psi_{2}^{*}
\end{array}\right.
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

$$
\left.\begin{array}{rllll}
\mathbf{r} \cdot \mathbf{P}^{(n)}=\chi_{m} \mathbf{P}^{(n)} & \text { Ortho-Completeness } & \mathbf{1}= & \mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)} \\
& \mathbf{r}^{l} \text {-Spectral-Decomp. } & \mathbf{r}^{l}=\chi_{0} & \mathbf{P}^{(0)}+\chi_{1} & \mathbf{P}^{(1)}+\chi_{2}
\end{array} \mathbf{P}^{(2)}\right)
$$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}. \mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies: } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where : } \chi_{m}=e^{-i m^{2 \pi}}=\psi_{m}^{*}\left\{\begin{array}{l}
\chi_{0}=e^{-i 0^{2 \pi}}=1 \\
\chi_{1}=e^{-i)_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{2 \pi}}=\psi_{2}^{*}
\end{array}\right.
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

$$
\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)} \text { Ortho-Completeness } \quad \mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}
$$

$$
\chi_{0}=\mathrm{e}^{i 0=1}, \quad \chi_{1}=\mathrm{e}^{-i 2 \pi / 3}, \quad \chi_{2}=\mathrm{e}^{-i 4 \pi / 3} . \quad \mathbf{r}^{l} \text {-Spectral-Decomp. } \quad \mathbf{r}^{l}=\chi_{0} \quad \mathbf{P}^{(0)}+\chi_{1} \quad \mathbf{P}^{(1)}+\chi_{2} \quad \mathbf{P}^{(2)}
$$

$$
\left(\chi_{0}\right)^{2}=1, \quad\left(\chi_{1}\right)^{2}=\chi_{2}, \quad\left(\chi_{2}\right)^{2}=\chi_{1} . \quad \mathbf{r}^{2} \text {-Spectral-Decomp. } \quad \mathbf{r}^{2}=\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}
$$

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
"Chi" (χ) refers to characters or characteristic roots \mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{\text {im2 }}$ 信 $=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies: } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where }: \chi_{m}=e^{-i m_{3}^{2 \pi}}=\psi_{m}^{*}\left\{\begin{array}{l}
\chi_{0}=e^{-i 0_{3}^{2 \pi}}=1 \\
\chi_{1}=e^{-i \frac{2 \pi}{3}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{2 \pi}}=\psi_{2}^{*}
\end{array}\right.
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

$$
\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)} \text { Ortho-Completeness } \quad \mathbf{1}=\quad \mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}
$$

$$
\chi_{0}=\mathrm{e}^{i 0=1}, \quad \chi_{1}=\mathrm{e}^{-i 2 \pi / 3}, \quad \chi_{2}=\mathrm{e}^{-i 4 \pi / 3} . \quad \mathbf{r}^{l} \text {-Spectral-Decomp. } \quad \mathbf{r}^{l}=\chi_{0} \quad \mathbf{P}^{(0)}+\chi_{1} \quad \mathbf{P}^{(1)}+\chi_{2} \quad \mathbf{P}^{(2)}
$$

$$
\left(\chi_{0}\right)^{2}=1, \quad\left(\chi_{1}\right)^{2}=\chi_{2}, \quad\left(\chi_{2}\right)^{2}=\chi_{1} . \quad \mathbf{r}^{2} \text {-Spectral-Decomp. } \quad \mathbf{r}^{2}=\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}
$$

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
"Chi" (χ) refers to characters or characteristic roots \mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies: } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where : } \chi_{m}=e^{-i m^{2 \pi}}=\psi_{m}^{*}{ }_{m}^{*}=\left\{\begin{array}{l}
\chi_{0}=e^{-i 0^{2 \pi}}=1 \\
\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{\overline{3}}^{2 \pi}}=\psi_{2}^{*}
\end{array}\right.
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

$\mathbf{r} \cdot \mathbf{P}^{(n)}=\chi_{m} \mathbf{P}^{(n)}$	Ortho-Completeness	$\mathbf{1}=$	$\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}$		
$\chi_{0}=\mathrm{e}^{i 0=1,}, \quad \chi_{1}=\mathrm{e}^{-i 2 \pi / 3}, \quad \chi_{2}=\mathrm{e}^{-i 4 \pi / 3}$.	\mathbf{r}^{l}-Spectral-Decomp.	$\mathbf{r}^{l}=\chi_{0}$	$\mathbf{P}^{(0)}+\chi_{1}$	$\mathbf{P}^{(1)}+\chi_{2}$	$\mathbf{P}^{(2)}$
$\left(\chi_{0}\right)^{2}=1$,	$\left(\chi_{1}\right)^{2}=\chi_{2}$,	$\left(\chi_{2}\right)^{2}=\chi_{l}$.	\mathbf{r}^{2}-Spectral-Decomp.	$\mathbf{r}^{2}=\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}$	

$$
\begin{aligned}
& \begin{array}{l}
m=0_{3} \\
m=1_{3} \\
m=2_{3}
\end{array} \begin{array}{lll}
\chi_{00}=1 \quad \chi_{01}=1 \quad \chi_{02}=1 \\
\chi_{10}=1 \quad \chi_{11}=\mathrm{e}^{-i 2 \pi / 3} \chi_{12}=\mathrm{e}^{i 2 \pi / 3} \\
\chi_{20}=1 & \chi_{21}=\mathrm{e}^{i 2 \pi / 3} \chi_{22}=\mathrm{e}^{-i 2 \pi / 3}
\end{array} \\
& 3 \\
& p=0 \quad p=1 \quad p=2
\end{aligned}
$$

C_{3} mode phase character table
C_{3} character conjugate

$$
\chi_{m p}^{*}=e^{i m p 2 \pi / 3}
$$

is wave function

$$
\psi_{m}\left(r_{p}\right)=e^{i k_{m} \cdot r_{p}} \sqrt{\sqrt{3}}
$$

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since \mathbf{H} is a combination of powers \mathbf{r}^{p}.
"Chi" (χ) refers to characters or characteristic roots \mathbf{r} - symmetry implies cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{-} \mathbf{1}=\mathbf{0}$ resolved by three $3^{\text {rd }}$ roots of unity $\chi^{*}{ }_{m}=\mathrm{e}^{i m 2 \pi / 3}=\psi_{m}$.

$$
\begin{aligned}
& \text { Complex numbers } \left.z \text { make it easy to find cube roots of } z=1=e^{2 \pi i m} \text {. (Answer: } z^{1 / 3}=e^{2 \pi i m / 3}\right) \\
& \qquad \mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\chi_{0} \mathbf{1}\right)\left(\mathbf{r}-\chi_{1} \mathbf{1}\right)\left(\mathbf{r}-\chi_{2} \mathbf{1}\right) \text { where : } \chi_{m}=e^{-i m^{2 \pi}}=\psi_{m}^{*}{ }_{m}^{*}=\left\{\begin{array}{l}
\chi_{0}=e^{-i 0^{2 \pi}}=1 \\
\chi_{1}=e^{-i 1_{3}^{2 \pi}}=\psi_{1}^{*} \\
\chi_{2}=e^{-i 2_{3}^{3}}=\psi_{2}^{*}
\end{array}\right.
\end{aligned}
$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of \mathbf{r}, They must be orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and sum to unit $\mathbf{1}$ by a completeness relation:

$$
\mathbf{r} \cdot \mathbf{P}^{(m)}=\chi_{m} \mathbf{P}^{(m)} \text { Ortho-Completeness } \quad \mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}
$$

$$
\chi_{0}=\mathrm{e}^{i 0=1}, \quad \chi_{1}=\mathrm{e}^{-i 2 \pi / 3}, \quad \chi_{2}=\mathrm{e}^{-i 4 \pi / 3} . \quad \mathbf{r}^{l} \text {-Spectral-Decomp. } \quad \mathbf{r}^{l}=\chi_{0} \quad \mathbf{P}^{(0)}+\chi_{1} \quad \mathbf{P}^{(1)}+\chi_{2} \quad \mathbf{P}^{(2)}
$$

$$
\left(\chi_{0}\right)^{2}=1, \quad\left(\chi_{1}\right)^{2}=\chi_{2}, \quad\left(\chi_{2}\right)^{2}=\chi_{1} . \quad \mathbf{r}^{2} \text {-Spectral-Decomp. } \quad \mathbf{r}^{2}=\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}
$$

$$
\begin{array}{r|l||}
\frac{\text { wave-number }}{m=} m=0_{3} & \chi_{00}=1 \quad \chi_{01}=1 \quad \chi_{02}=1 \\
\chi_{10}=1 \quad \chi_{11}=\mathrm{e}^{-i 2 \pi / 3} \chi_{12}=\mathrm{e}^{i 2 \pi / 3} \\
m=2_{3} & \chi_{20}=1 \quad \chi_{21}=\mathrm{e}^{i 2 \pi / 3} \chi_{22}=\mathrm{e}^{-i 2 \pi / 3}
\end{array}
$$

p is position

C_{3} mode phase character table

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Comparing wave function operator algebra to bra-ket algebra
Modular quantum number arithmetic
C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Given unitary Ortho-Completeness operator relations:

$$
\begin{aligned}
& \mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(1)}=\mathbf{1}= \\
& \chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{1}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(2)} \\
&\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)}
\end{aligned}
$$

Given unitary Ortho-Completeness operator relations: or ket relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$ $\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)} \sqrt{3}|1\rangle=\left|0_{3}\right\rangle+\quad\left|1_{3}\right\rangle+\quad\left|2_{3}\right\rangle$
$\left.\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{l}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{\mathrm{i} 2 \pi / 3} \mathbf{P}^{(2)}|\sqrt{3}| \mathbf{r}^{l}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|2_{3}\right\rangle$
$\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)} \sqrt{3}\left|\mathbf{r}^{2}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|2_{3}\right\rangle$

Given unitary Ortho-Completeness operator relations:
or ket relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$ $\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)} \sqrt{\sqrt{3}}|1\rangle=\left|0_{3}\right\rangle+\quad\left|1_{3}\right\rangle+\quad\left|2_{3}\right\rangle$
$\left.\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(l)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{l}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{\mathrm{i} 2 \pi / 3} \mathbf{P}^{(2)}|\sqrt{3}| \mathbf{r}^{l}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|2_{3}\right\rangle$
$\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{\mathrm{i} 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)} \sqrt{3}\left|\mathbf{r}^{2}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|2_{3}\right\rangle$ Inverting $O-C$ is easy: just \dagger-conjugate!

Given unitary Ortho-Completeness operator relations:
or ket relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$ $\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)} \sqrt{\sqrt{3}}|1\rangle=\left|0_{3}\right\rangle+\quad\left|1_{3}\right\rangle+\quad\left|2_{3}\right\rangle$
$\left.\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{l}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{\mathrm{i} 2 \pi / 3} \mathbf{P}^{(2)}|\sqrt{3}| \mathbf{r}^{l}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|2_{3}\right\rangle$
$\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)}\left(\sqrt{3}\left|\mathbf{r}^{2}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|2_{3}\right\rangle\right.$ Inverting $O-C$ is easy: just \dagger-conjugate! (and norm by $\frac{1}{3}$)

Given unitary Ortho-Completeness operator relations:
or ket relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$

$$
\begin{aligned}
& \mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)} \sqrt{3}|1\rangle=\left|0_{3}\right\rangle+\quad\left|1_{3}\right\rangle+\quad\left|2_{3}\right\rangle \\
& \left.\chi_{0} \mathbf{P}^{(0)}+\chi_{l} \mathbf{P}^{(l)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{l}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(l)}+\mathrm{e}^{\mathrm{i} 2 \pi / 3} \mathbf{P}^{(2)}|\sqrt{3}| \mathbf{r}^{l}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|2_{3}\right\rangle \\
& \left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{\mathrm{i} 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)} \sqrt{3}\left|\mathbf{r}^{2}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|2_{3}\right\rangle
\end{aligned}
$$

Inverting $O-C$ is easy: just \uparrow-conjugate! (and norm by $\frac{1}{3}$)

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{1}^{*} \mathbf{r}^{1}+\chi_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{2}^{*} \mathbf{r}^{1}+\chi_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)
\end{aligned}
$$

Given unitary Ortho-Completeness operator relations:
or ket relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$

$$
\begin{aligned}
& \mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)} \\
&\left.\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{l}=1\right\rangle=\left|0_{3}\right\rangle+\left|1_{3}\right\rangle+\mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{\mathrm{i} 2 \pi / 3} \mathbf{P}^{(2)} \\
&\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}\left.=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{\mathrm{e} 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{(2 \pi / 3}\left|2_{3}\right\rangle \\
& \sqrt{3}\left|\mathbf{r}^{2}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{\mathrm{i} 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|2_{3}\right\rangle
\end{aligned}
$$

Inverting $O-C$ is easy: just \dagger-conjugate! (and norm by $\frac{1}{3}$)

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1} \quad \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{1}^{*} \mathbf{r}^{1}+\chi_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{2}^{*} \mathbf{r}^{1}+\chi_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)
\end{aligned}
$$

(or norm by $\left.\sqrt{\frac{1}{3}}\right)$
$\left|0_{3}\right\rangle=\mathbf{P}^{(0)}|\mathbf{1}\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle++\left|\mathbf{r}^{1}\right\rangle+}{\sqrt{3}}\left|\mathbf{r}^{2}\right\rangle$
$\left|1_{3}\right\rangle=\mathbf{P}^{(1)}|\mathbf{1}\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+e^{+i 2 \pi / 3}\left|\mathbf{r}^{1}\right\rangle+e^{-i 2 \pi / 3}\left|\mathbf{r}^{2}\right\rangle}{\sqrt{3}}$
$\left|2_{3}\right\rangle=\mathbf{P}^{(2)}|\mathbf{1}\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+e^{-i 2 \pi / 3}\left|\mathbf{r}^{1}\right\rangle+e^{+i 2 \pi / 3}\left|\mathbf{r}^{2}\right\rangle}{\sqrt{3}}$

Given unitary Ortho-Completeness operator relations:
or Ret relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$
$\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+$
$\mathbf{P}^{(2)}$
$\left\{\begin{array}{l}\sqrt{3}|\mathbf{1}\rangle=\left|0_{3}\right\rangle+\quad\left|1_{3}\right\rangle+\quad\left|2_{3}\right\rangle \\ \sqrt{3}\left|\mathbf{r}^{l}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{i 2 \pi / 3}\left|2_{3}\right\rangle \\ \sqrt{3}\left|\mathbf{r}^{2}\right\rangle=\left|0_{3}\right\rangle+\mathrm{e}^{i 2 \pi / 3}\left|1_{3}\right\rangle+\mathrm{e}^{-i 2 \pi / 3}\left|2_{3}\right\rangle\end{array}\right.$
$\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{1}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(2)}$
$\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)}$ Inverting $O-C$ is easy: just \dagger-conjugate! (and norm by $\frac{1}{3}$)

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{1}^{*} \mathbf{r}^{1}+\chi_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{2}^{*} \mathbf{r}^{1}+\chi_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { (or norm by } \sqrt{\frac{1}{3}} \text {) } \\
\left|0_{3}\right\rangle=\mathbf{P}^{(0)}|\mathbf{1}\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+\quad\left|\mathbf{r}^{1}\right\rangle+}{\sqrt{3}}\left|\mathbf{r}^{2}\right\rangle \\
\left|1_{3}\right\rangle=\mathbf{P}^{(1)}|\mathbf{1}\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+e^{+i 2 \pi / 3}\left|\mathbf{r}^{1}\right\rangle+e^{-i 2 \pi / 3}\left|\mathbf{r}^{2}\right\rangle}{\sqrt{3}} \\
\left|2_{3}\right\rangle=\mathbf{P}^{(2)}|\mathbf{1}\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+e^{-i 2 \pi / 3}\left|\mathbf{r}^{1}\right\rangle+e^{+i 2 \pi / 3}\left|\mathbf{r}^{2}\right\rangle}{\sqrt{3}}
\end{gathered}
$$

C_{3} mode phase character table

$$
m=0_{3} \chi_{00}=1 \quad \chi_{01}=1 \quad \chi_{02}=1
$$

$$
\begin{aligned}
& \frac{\text { wave-number }}{m=} m=1_{3} \\
& \text { "momentum" } \\
& m=2_{3}
\end{aligned} \left\lvert\, \begin{aligned}
& \chi_{10}=1 \chi_{11}=\mathrm{e}^{-i 2 \pi / 3} \chi_{12}=\mathrm{e}^{i 2 \pi / 3} \\
& \chi_{21}=\mathrm{e}^{i 2 \pi / 3} \chi_{22}=\mathrm{e}^{-i 2 \pi / 3}
\end{aligned}\right.
$$

Given unitary Ortho-Completeness operator relations:

$$
\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}
$$

$\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{1}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(2)}$
$\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)}$
or ket relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$

Inverting $O-C$ is easy: just \dagger-conjugate! (and norm by $\frac{1}{3}$)

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{1}^{*} \mathbf{r}^{1}+\chi_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{2}^{*} \mathbf{r}^{1}+\chi_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)
\end{aligned}
$$

Two distinct types of modular "quantum" numbers:

$$
\begin{gathered}
\text { (or norm by } \sqrt{\frac{1}{3}} \text {) } \\
\left|0_{3}\right\rangle=\mathbf{P}^{(0)}|0\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+\quad\left|\mathbf{r}^{1}\right\rangle+}{\sqrt{3}}\left|\mathbf{r}^{2}\right\rangle \\
\left|1_{3}\right\rangle=\mathbf{P}^{(1)}|0\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+e^{+i 2 \pi / 3}\left|\mathbf{r}^{1}\right\rangle+e^{-i 2 \pi / 3}\left|\mathbf{r}^{2}\right\rangle}{\sqrt{3}} \\
\left|2_{3}\right\rangle=\mathbf{P}^{(2)}|0\rangle \sqrt{3}=\frac{\left|\mathbf{r}^{0}\right\rangle+e^{-i 2 \pi / 3}\left|\mathbf{r}^{1}\right\rangle+e^{+i 2 \pi / 3}\left|\mathbf{r}^{2}\right\rangle}{\sqrt{3}}
\end{gathered}
$$ $p=0,1$, or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p

$$
\begin{array}{l|l}
m=0 \\
3 & \chi_{00}=1 \quad \chi_{01}=1 \quad \chi_{02}=1 \\
m=2_{3} & \chi_{10}=1 \quad \chi_{11}=\mathrm{e}^{-i 2 \pi / 3} \chi_{12}=\mathrm{e}^{i 2 \pi / 3} \\
\chi_{20}=1 \quad \chi_{21}=\mathrm{e}^{i 2 \pi / 3} \chi_{22}=\mathrm{e}^{-i 2 \pi / 3}
\end{array}
$$

C_{3} mode phase character table $p \underline{\text { is }}$ position

Given unitary Ortho-Completeness operator relations:

$$
\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}
$$

$\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{1}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(2)}$
$\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)}$
or Ret relations: $\quad\left(\right.$ to $\left.|\mathbf{1}\rangle=\left|\mathbf{r}^{0}\right\rangle\right)$ Inverting $O-C$ is easy: just \dagger-conjugate! (and norm by $\frac{1}{3}$)

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{1}^{*} \mathbf{r}^{1}+\chi_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{2}^{*} \mathbf{r}^{1}+\chi_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)
\end{aligned}
$$

Two distinct types of modular "quantum" numbers: $p=0,1$, or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p $m=0,1$, or 2 that is the mode momentum m of waves

$$
\begin{aligned}
& \frac{\text { wave-number }}{m=} m=\left.1{ }_{3}\right|_{10}=1 \chi_{11}=\mathrm{e}^{-i 2 \pi / 3} \chi_{12}=\mathrm{e}^{i 2 \pi / 3} \\
& \\
& \\
& \\
& \text { "momentum" } \\
& \chi_{20}=1 \chi_{21}=\mathrm{e}^{i 2 \pi / 3} \chi_{22}=\mathrm{e}^{-i 2 \pi / 3}
\end{aligned}
$$

C_{3} mode phase character table

Pis Position

Given unitary Ortho-Completeness operator relations:

$$
\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(1)}=\mathbf{1}=\mathbf{P}^{(0)}+\quad \mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}
$$

$\chi_{0} \mathbf{P}^{(0)}+\chi_{1} \mathbf{P}^{(1)}+\chi_{2} \mathbf{P}^{(2)}=\mathbf{r}^{1}=1 \mathbf{P}^{(0)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(2)}$
$\left(\chi_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\chi_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\chi_{2}\right)^{2} \mathbf{P}^{(2)}=\mathbf{r}^{2}=1 \mathbf{P}^{(0)}+\mathrm{e}^{i 2 \pi / 3} \mathbf{P}^{(1)}+\mathrm{e}^{-i 2 \pi / 3} \mathbf{P}^{(2)}$
Inverting $O-C$ is easy: just \dagger-conjugate! (and norm by $\frac{1}{3}$)

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{1}^{*} \mathbf{r}^{1}+\chi_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\chi_{2}^{*} \mathbf{r}^{1}+\chi_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)
\end{aligned}
$$

Two distinct types of modular "quantum" numbers: $p=0,1$, or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p $m=0,1$, or 2 that is the mode momentum m of waves

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: 3rd roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Comparing wave function operator algebra to bra-ket algebra
Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions
Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Comparing wave function operator algebra to bra-ket algebra

$$
\begin{gathered}
C_{3} \text { Plane wave function } \\
\begin{array}{c}
\psi_{m}\left(x_{p}\right)=\frac{e^{i k_{m}} \cdot x_{p}}{\sqrt{3}} \\
=\frac{e^{i m p} 2 \pi / 3}{\sqrt{3}}
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
C_{3} \text { Lattice position vector } \\
x_{p}=L \cdot p \\
\text { Wavevector } \\
k_{m}=2 \pi m / 3 L=2 \pi / \lambda_{m} \\
\text { Wavelength } \\
\lambda_{m}=2 \pi / k_{m}=3 L / m
\end{gathered}
$$

Comparing wave function operator algebra to bra-ket algebra

$$
\begin{aligned}
& C_{3} \text { Plane wave function } \\
& \begin{array}{c}
\psi_{m}\left(x_{p}\right)=\frac{e^{i k_{m}} \cdot x_{p}}{\sqrt{3}} \\
=\frac{e^{i m p} 2 \pi / 3}{\sqrt{3}}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
C_{3} \text { Lattice position vector } \\
x_{p}=L \cdot p \\
\text { Wavevector } \\
k_{m}=2 \pi m / 3 L=2 \pi / \lambda_{m} \\
\text { Wavelength } \\
\lambda_{m}=2 \pi / k_{m}=3 L / m
\end{gathered}
$$

$\mathbf{r}^{p}|q\rangle=|q+p\rangle$ implies: $\langle q|\left(\mathbf{r}^{p}\right)^{\dagger}=\langle q| \mathbf{r}^{-p}=\langle q+p|$ implies: $\langle q| \mathbf{r}^{p}=\langle q-p|$

Comparing wave function operator algebra to bra-ket algebra

$$
\begin{gathered}
C_{3} \text { Plane wave function } \\
\psi_{m}\left(x_{p}\right)=\frac{e^{i k_{m} \cdot x_{p}}}{\sqrt{3}}
\end{gathered}
$$

$$
C_{3} \text { Lattice position vector }
$$

$$
x_{p}=L \cdot p
$$

Wavevector

$$
k_{m}=2 \pi m / 3 L=2 \pi / \lambda_{m}
$$

Wavelength

$$
\lambda_{m}=2 \pi / k_{m}=3 L / m
$$

$\mathbf{r}^{p}|q\rangle=|q+p\rangle$ implies: $\langle q|\left(\mathbf{r}^{p}\right)^{\dagger}=\langle q| \mathbf{r}^{-p}=\langle q+p|$ implies: $\langle q| \mathbf{r}^{p}=\langle q-p|$
Action of \mathbf{r}^{p} on m-ket $|(m)\rangle=\left|k_{m}\right\rangle$ is inverse to action on coordinate bra $\left\langle x_{q}\right|=\langle q|$.

Comparing wave function operator algebra to bra-ket algebra

$$
\begin{aligned}
& C_{3} \text { Plane wave function } \\
& \psi_{m}\left(x_{p}\right)=\frac{e^{i k_{m} \cdot x_{p}}}{\sqrt{3}}
\end{aligned}
$$

$$
C_{3} \text { Lattice position vector }
$$

$$
x_{p}=L \cdot p
$$

Wavevector

$$
k_{m}=2 \pi m / 3 L=2 \pi / \lambda_{m}
$$

Wavelength

$$
\lambda_{m}=2 \pi / k_{m}=3 L / m
$$

$\mathbf{r}^{p}|q\rangle=|q+p\rangle$ implies: $\langle q|\left(\mathbf{r}^{p}\right)^{\dagger}=\langle q| \mathbf{r}^{-p}=\langle q+p|$ implies: $\langle q| \mathbf{r}^{p}=\langle q-p|$
Action of \mathbf{r}^{p} on m-ket $|(m)\rangle=\left|k_{m}\right\rangle$ is inverse to action on coordinate bra $\left\langle x_{q}\right|=\langle q|$.
(Norm factors left out)

$$
\psi_{k_{m}}\left(x_{q}-p \cdot L\right)=\left\langle x_{q}\right| \mathbf{r}^{p}\left|k_{m}\right\rangle=e^{i k_{m}\left(x_{q}-p \cdot L\right)}=e^{i k_{m}\left(x_{q}-x_{p}\right)}
$$

Comparing wave function operator algebra to bra-ket algebra

$$
\begin{aligned}
& C_{3} \text { Plane wave function } \\
& \begin{array}{c}
\psi_{m}\left(x_{p}\right)=\frac{e^{i k_{m}} \cdot x_{p}}{\sqrt{3}} \\
=\frac{e^{i m p} 2 \pi / 3}{\sqrt{3}}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
C_{3} \text { Lattice position vector } \\
x_{p}=L \cdot p \\
\text { Wavevector } \\
k_{m}=2 \pi m / 3 L=2 \pi / \lambda_{m} \\
\text { Wavelength } \\
\lambda_{m}=2 \pi / k_{m}=3 L / m
\end{gathered}
$$

$\mathbf{r}^{p}|q\rangle=|q+p\rangle$ implies: $\langle q|\left(\mathbf{r}^{p}\right)^{\dagger}=\langle q| \mathbf{r}^{-p}=\langle q+p|$ implies: $\langle q| \mathbf{r}^{p}=\langle q-p|$
Action of \mathbf{r}^{p} on m-ket $|(m)\rangle=\left|k_{m}\right\rangle$ is inverse to action on coordinate bra $\left\langle x_{q}\right|=\langle q|$.
(Norm factors left out)

$$
\begin{aligned}
& \psi_{k_{m}}\left(x_{q}-p \cdot L\right)=\left\langle x_{q}\right| \mathbf{r}^{p}\left|k_{m}\right\rangle=e^{i k_{m}\left(x_{q}-p \cdot L\right)}=e^{i k_{m}\left(x_{q}-x_{p}\right)} \\
& \langle q-p \mid(m)\rangle=\langle q| \mathbf{r}^{p}|(m)\rangle=e^{-i k_{m} x_{p}}\langle q \mid(m)\rangle
\end{aligned}
$$

Comparing wave function operator algebra to bra-ket algebra

$$
\begin{aligned}
& C_{3} \text { Plane wave function } \\
& \begin{array}{c}
\psi_{m}\left(x_{p}\right)=\frac{e^{i k_{m}} x_{p}}{\sqrt{3}} \\
=\frac{e^{i m p} 2 \pi / 3}{\sqrt{3}}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
C_{3} \text { Lattice position vector } \\
x_{p}=L \cdot p \\
\text { Wavevector } \\
k_{m}=2 \pi m / 3 L=2 \pi / \lambda_{m} \\
\text { Wavelength } \\
\lambda_{m}=2 \pi / k_{m}=3 L / m
\end{gathered}
$$

$\mathbf{r}^{p}|q\rangle=|q+p\rangle$ implies: $\langle q|\left(\mathbf{r}^{p}\right)^{\dagger}=\langle q| \mathbf{r}^{-p}=\langle q+p|$ implies: $\langle q| \mathbf{r}^{p}=\langle q-p|$
Action of \mathbf{r}^{p} on m-ket $|(m)\rangle=\left|k_{m}\right\rangle$ is inverse to action on coordinate bra $\left\langle x_{q}\right|=\langle q|$.
(Norm factors left out)

$$
\begin{aligned}
\psi_{k_{m}}\left(x_{q}-p \cdot L\right)= & \left\langle x_{q}\right| \mathbf{r}^{p}\left|k_{m}\right\rangle \\
\langle q-p \mid(m)\rangle \quad= & =\langle q| \mathbf{r}^{p}|(m)\rangle=e^{-i k_{m}\left(k_{q}-p \cdot L\right)}=e^{i k_{p}\left(x_{p}-x_{p}\right)}\langle q \mid(m)\rangle \\
\mathbf{r}^{p}|(m)\rangle & =e^{-i k_{m} x_{p}}|(m)\rangle
\end{aligned}
$$

This implies:
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling

Ortho-completeness inversion for operators and states
Comparing wave function operator algebra to bra-ket algebra
\rightarrow Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling
$p=0$, 1, or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p
 $m=0,1$, or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products $=0,1$, or 2 (integers-modulo-3)

For example, for $m=2$ and $p=2$ the number $\left(\rho_{m}\right)^{p}=\left(\mathrm{e}^{i m 2 \pi / 3}\right)^{p}$ is $\mathrm{e}^{i m p \cdot 2 \pi / 3}=\mathrm{e}^{i 4 \cdot 2 \pi / 3}=\mathrm{e}^{i 1 \cdot 2 \pi / 3} \mathrm{e}^{i 3 \cdot 2 \pi / 3}=\mathrm{e}^{i 2 \pi / 3}=\rho_{l}$.

Two distinct types of modular "quantum" numbers:

$p=0,1$, or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p
 $m=0,1$, or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products $=0,1$,or 2 (integers-modulo- 3)

For example, for $m=2$ and $p=2$ the number $\left(\rho_{m}\right)^{p=}\left(\mathrm{e}^{\mathrm{i} m 2 \pi / 3}\right)^{p}$ is $\mathrm{e}^{i m p \cdot 2 \pi / 3}=\mathrm{e}^{\mathrm{i} 4 \cdot 2 \pi / 3}=\mathrm{e}^{i \cdot 2 \pi / 3} \mathrm{e}^{\mathrm{i} \cdot 2 \pi / 3}=\mathrm{e}^{\mathrm{i} 2 \pi / 3}=\rho_{l}$.

That is, $(2-$ times -2$) \bmod 3$ is not 4 but $l(4 \bmod 3=1)$, the remainder of 4 divided by 3 .

Two distinct types of modular "quantum" numbers:

$p=0,1$,or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p
 $m=0,1$,or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products $=0,1$,or 2 (integers-modulo- 3)

For example, for $m=2$ and $p=2$ the number $\left(\rho_{m}\right)^{p=}\left(\mathrm{e}^{\mathrm{i} m 2 \pi / 3}\right)^{p}$ is $\mathrm{e}^{i m p \cdot 2 \pi / 3}=\mathrm{e}^{\mathrm{i} 4 \cdot 2 \pi / 3}=\mathrm{e}^{i \cdot 2 \pi / 3} \mathrm{e}^{\mathrm{i} \cdot 2 \pi / 3}=\mathrm{e}^{\mathrm{i} 2 \pi / 3}=\rho_{l}$.

That is, $(2$-times- 2$) \bmod 3$ is not 4 but $1(4 \bmod 3=1)$, the remainder of 4 divided by 3 .

Thus, $\left(\rho_{2}\right)^{2}=\rho_{l}$. Also, $5 \bmod 3=2$ so $\left(\rho_{l}\right)^{5}=\rho_{2}$, and $6 \bmod 3=0$ so $\left(\rho_{l}\right)^{6}=\rho_{0}$.

Two distinct types of modular "quantum" numbers:

$p=0,1$,or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p
 $m=0,1$,or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products $=0,1$,or 2 (integers-modulo- 3)

That is, $(2$-times- 2$) \bmod 3$ is not 4 but $1(4 \bmod 3=1)$, the remainder of 4 divided by 3 .

Thus, $\left(\rho_{2}\right)^{2}=\rho_{l}$. Also, $5 \bmod 3=2 \operatorname{so}\left(\rho_{l}\right)^{5}=\rho_{2}$, and $6 \bmod 3=0$ so $\left(\rho_{l}\right)^{6}=\rho_{0}$.

Other examples: $-1 \bmod 3=2\left[\left(\rho_{1}\right)^{-l}=\left(\rho_{-1}\right)^{l}=\rho_{2}\right]$ and $-2 \bmod 3=1$.

Two distinct types of modular "quantum" numbers:

$p=0,1$,or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p $m=0,1$, or 2 that is the mode momentum m of waves
 m or p obey modular arithmetic so sums or products $=0,1$,or 2 (integers-modulo- 3)

That is, $(2$-times- 2$) \bmod 3$ is not 4 but $1(4 \bmod 3=1)$, the remainder of 4 divided by 3 .

Thus, $\left(\rho_{2}\right)^{2}=\rho_{l}$. Also, $5 \bmod 3=2 \operatorname{so}\left(\rho_{l}\right)^{5}=\rho_{2}$, and $6 \bmod 3=0$ so $\left(\rho_{l}\right)^{6}=\rho_{0}$.

Other examples: $-1 \bmod 3=2\left[\left(\rho_{1}\right)^{-1}=\left(\rho_{-1}\right)^{l}=\rho_{2}\right]$ and $-2 \bmod 3=1$.

Imagine going around ring reading off address points $p=\ldots 0,1,2,0,1,2,0,1,2,0,1,2, \ldots$. ..for regular integer points $\ldots-3,-2,-1,0,1,2,3,4,5,6,7,8, \ldots$.

Two distinct types of modular "quantum" numbers:

$p=0,1$, or 2 is power p of operator \mathbf{r}^{p} labeling oscillator position point p $m=0,1$, or 2 that is the mode momentum m of waves
 m or p obey modular arithmetic so sums or products $=0,1$,or 2 (integers-modulo- 3)

For example, for $m=2$ and $p=2$ the number $\left(\rho_{m}\right)^{p=}\left(\mathrm{e}^{\mathrm{i} m 2 \pi / 3}\right)^{p}$ is $\mathrm{e}^{i m p \cdot 2 \pi / 3}=\mathrm{e}^{\mathrm{i} 4 \cdot 2 \pi / 3}=\mathrm{e}^{i \cdot 2 \pi / 3} \mathrm{e}^{\mathrm{i} \cdot 2 \pi / 3}=\mathrm{e}^{\mathrm{i} 2 \pi / 3}=\rho_{l}$.

That is, $(2$-times- 2$) \bmod 3$ is not 4 but $1(4 \bmod 3=1)$, the remainder of 4 divided by 3 .

Thus, $\left(\rho_{2}\right)^{2}=\rho_{l}$. Also, $5 \bmod 3=2 \operatorname{so}\left(\rho_{l}\right)^{5}=\rho_{2}$, and $6 \bmod 3=0$ so $\left(\rho_{l}\right)^{6}=\rho_{0}$.

Other examples: $-1 \bmod 3=2\left[\left(\rho_{1}\right)^{-1}=\left(\rho_{-1}\right)^{l}=\rho_{2}\right]$ and $-2 \bmod 3=1$.

Imagine going around ring reading off address points $p=\ldots 0,1,2,0,1,2,0,1,2,0,1,2, \ldots$. ..for regular integer points $\ldots-3,-2,-1,0,1,2,3,4,5,6,7,8, \ldots$.
$\mathrm{e}^{\mathrm{imp} 2 \pi / 3}$ must always equal $\mathrm{e}^{\mathrm{i}(m p \bmod 3) 2 \pi / 3}$.

$$
\left(\rho_{m}\right)^{p}=\left(\mathrm{e}^{\mathrm{i} m 2 \pi / 3}\right)^{p}=\mathrm{e}^{i m p \cdot 2 \pi / 3}=\rho_{m p}=\mathrm{e}^{\mathrm{i}(m p \bmod 3) 2 \pi / 3}=\rho_{m p} \bmod 3
$$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations C_{3} character table and modular labeling

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic
$\rightarrow C_{3}$-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions
Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C3-group jargon and structure of various tables
 C_{3}-group $\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$-table

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$				
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}				
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}				
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$				
C_{3}					$\chi_{0}=1$	$\chi_{1}=\chi_{2}^{-2}$	$\chi_{2}=\chi_{1}^{-1}$
$\chi_{0}=1=\chi_{3}$	χ_{0}	χ_{1}	χ_{2}				
$\chi_{2}=\chi_{1}^{-1}$	χ_{2}	χ_{0}	χ_{1}				
$\chi_{1}=\chi_{2}^{-2}$	χ_{1}	χ_{2}	χ_{0}				

C3-group jargon and structure of various tables

C_{3}-group $\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$-table

Set $\left\{\chi_{0}, \chi_{1}, \chi_{2}\right\}$ is an
irreducible representation
(irrep) of C_{3}
$\left\{D\left(\mathbf{r}^{0}\right)=\chi_{0}, D\left(\mathbf{r}^{1}\right)=\chi_{1}, D\left(\mathbf{r}^{2}\right)=\chi_{2}\right\}$

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$				
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}				
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}				
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$				
C_{3}					$\chi_{0}=1$	$\chi_{1}=\chi_{2}^{-2}$	$\chi_{2}=\chi_{1}^{-1}$
$\chi_{0}=1=\chi_{3}$	χ_{0}	χ_{1}	χ_{2}				
$\chi_{2}=\chi_{1}^{-1}$	χ_{2}	χ_{0}	χ_{1}				
$\chi_{1}=\chi_{2}^{-2}$	χ_{1}	χ_{2}	χ_{0}				

C_{3}-group jargon and structure of various tables

$$
\begin{array}{c|ccc|}
C_{3} & \mathbf{r}^{0}=\mathbf{1} & \mathbf{r}^{1}=\mathbf{r}^{-2} & \mathbf{r}^{2}=\mathbf{r}^{-1} \\
\hline \mathbf{r}^{0}=\mathbf{1} & \mathbf{1} & \mathbf{r}^{1} & \mathbf{r}^{2} \\
\mathbf{r}^{2}=\mathbf{r}^{-1} & \mathbf{r}^{2} & \mathbf{1} & \mathbf{r}^{1} \\
\mathbf{r}^{1}=\mathbf{r}^{-2} & \mathbf{r}^{1} & \mathbf{r}^{2} & \mathbf{1} \\
\hline
\end{array}
$$

C_{3}	$\chi_{0}=1$	$\chi_{1}=\chi_{2}^{-2}$	$\chi_{2}=\chi_{1}^{-1}$
$\chi_{0}=1=\chi_{3}$	χ_{0}	χ_{1}	χ_{2}
$\chi_{2}=\chi_{1}^{-1}$	χ_{2}	χ_{0}	χ_{1}
$\chi_{1}=\chi_{2}^{-2}$	χ_{1}	χ_{2}	χ_{0}

In fact, all three irreps $\left\{D^{(0)}, D^{(1)}, D^{(2)}\right\}$ listed in character table obey C_{3}-group table

$\mathrm{g}=$	$\mathbf{r}^{0} \quad \mathbf{r}$	$\mathbf{r}^{1} \quad \mathbf{r}^{2}$	$\mathrm{g}=$	r	\mathbf{r}^{1}	\mathbf{r}^{2}
$D^{(0)}(\mathbf{g})$	$\chi_{0}^{(0)} \chi$	$\chi_{1}^{(0)} \chi_{2}^{(0)}$	$D^{(0)}(\mathbf{g})$	1	1	1
$D^{(1)}(\mathbf{g})$	$\chi_{0}^{(1)} \chi$	$\chi_{1}^{(1)} \chi_{2}^{(1)}$	$D^{(1)}(\mathbf{g})$	1	- $\frac{1}{}$	${ }^{\text {mi }}$
$D^{(2)}(\mathbf{g})$	$\chi_{0}^{(2)} \quad \chi$	$\chi_{1}^{(2)} \chi_{2}^{(2)}$	$D^{(2)}(\mathbf{g})$			$e^{-\frac{2 \pi i}{3}}$

C_{3}-group jargon and structure of various tables

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

C_{3}	$\chi_{0}=1$	$\chi_{1}=\chi_{2}^{-2}$	$\chi_{2}=\chi_{1}^{-1}$
$\chi_{0}=1=\chi_{3}$	χ_{0}	χ_{1}	χ_{2}
$\chi_{2}=\chi_{1}^{-1}$	χ_{2}	χ_{0}	χ_{1}
$\chi_{1}=\chi_{2}^{-2}$	χ_{1}	χ_{2}	χ_{0}

In fact, all three irreps $\left\{D^{(0)}, D^{(1)}, D^{(2)}\right\}$ listed in character table obey C_{3}-group table

$\mathbf{g}=$	\mathbf{r}^{0}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{g}=$	\mathbf{r}^{0}	\mathbf{r}^{1}	\mathbf{r}^{2}
$D^{(0)}(\mathbf{g})$	$\chi_{0}^{(0)}$	$\chi_{1}^{(0)}$	$\chi_{2}^{(0)}$	$D^{(0)}(\mathbf{g})$ 1	1	1	
$D^{(1)}(\mathbf{g})$	$\chi_{0}^{(1)}$	$\chi_{1}^{(1)}$	$\chi_{2}^{(1)}$		(1) $D^{(1)}(\mathbf{g})$	1	$e^{-\frac{2 \pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_{0}^{(2)}$	$\chi_{1}^{(2)}$	$\chi_{2}^{(2)}$				
	$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2 \pi i}{3}}$	$e^{-\frac{2 \pi i}{3}}$			

The identity irrep

$$
D^{(0)}=\{1,1,1\}
$$

obeys any group table.

C3-group jargon and structure of various tables

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

C_{3}	$\chi_{0}=1$	$\chi_{1}=\chi_{2}^{-2}$	$\chi_{2}=\chi_{1}^{-1}$
$\chi_{0}=1=\chi_{3}$	χ_{0}	χ_{1}	χ_{2}
$\chi_{2}=\chi_{1}^{-1}$	χ_{2}	χ_{0}	χ_{1}
$\chi_{1}=\chi_{2}^{-2}$	χ_{1}	χ_{2}	χ_{0}

In fact, all three irreps $\left\{D^{(0)}, D^{(1)}, D^{(2)}\right\}$ listed in character table obey C_{3}-group table

The identity irrep

$$
D^{(0)}=\{1,1,1\}
$$

obeys any group table.

Irrep $D^{(2)}=\left\{1, \mathrm{e}^{+\mathrm{i} 2 \pi / 3}, \mathrm{e}^{-i 2 \pi / 3}\right\}$ is a conjugate irrep to $D^{(1)}=\left\{1, \mathrm{e}^{-i 2 \pi / 3}, \mathrm{e}^{+i 2 \pi / 3}\right\}$

$$
D^{(2)}=D^{(1) *}
$$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Comparing wave function operator algebra to bra-ket algebra
Modular quantum number arithmetic
C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions
Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Eigenvalues and wave dispersion functions

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{1}^{1}+r_{\mathbf{r}}{ }^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{1}{3}}+r_{2} e^{i(m) \frac{2 \pi}{3}}
$$

Eigenvalues and wave dispersion functions $\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}$
(Here we assume $\left.\boldsymbol{r}_{1}=r_{2}=r\right) \quad=r_{0} e^{i 0(m) \frac{2}{3} \pi}+r\left(e^{i^{2 m \pi} \frac{\overline{3}}{}}+e^{-i^{2 m \pi} \frac{3}{3}}\right)$ (all-real)

Eigenvalues and wave dispersion functions

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{\mathbf{r}}{ }^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{\pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}
$$

(Here we assume $\boldsymbol{r}_{l}=r_{2}=r$)

$$
=r_{0} e^{i 0(m) \frac{2 \pi}{3}}+r\left(e^{i^{2 m \pi}}+e^{-i \frac{2 m \pi}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)=\left\{\begin{array}{c}
r_{0}+2 r(\text { for } m=0) \\
r_{0}-r(\text { for } m= \pm 1)
\end{array}\right.
$$

Eigenvalues and wave dispersion functions

$$
\langle m| \mathbf{H}|m\rangle=\left\langle\left. m\right|_{r_{0}} \mathbf{1}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2} \mid m\right\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}
$$

(Here we assume $\boldsymbol{r}_{1}=r_{2}=r$) (all-real)

Quantum H-values:
$=r_{0} e^{i 0(m) \frac{2 \pi}{3}}+r\left(e^{i^{2} \frac{m \pi}{3}}+e^{-i \frac{2 m \pi}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)=\left\{\begin{array}{l}r_{0}+2 r(\text { for } m=0) \\ r_{0}-r(\text { for } m= \pm 1)\end{array}\right.$

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i i^{2} \overline{3} \pi} \\
e^{-i^{2 m} \frac{\overline{3}}{}}
\end{array}\right)=\left(r_{0}+2 r \cos \left({ }^{2 m \pi} \overline{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{\overline{3}}{}} \\
e^{-i^{2 m} \frac{\overline{3}}{2}}
\end{array}\right)
$$

Eigenvalues and wave dispersion functions - Moving waves
$\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}$
(Here we assume $r_{1}=r_{2}=r$) (all-real)

Quantum H-values:

$$
=r_{0} e^{i 0(m) \frac{2 \pi}{3}}+r\left(e^{i^{2} \frac{3 \pi}{3}}+e^{-i^{2} \frac{m \pi}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)=\left\{\begin{array}{c}
r_{0}+2 r(\text { for } m=0) \\
r_{0}-r(\text { for } m= \pm 1)
\end{array}\right.
$$

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i i^{2} \overline{3} \pi} \\
e^{-i^{2 m} \frac{\overline{3}}{}}
\end{array}\right)=\left(r_{0}+2 r \cos \left({ }^{2 m \pi} \overline{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{\overline{3}}{}} \\
e^{-i^{2 m} \frac{\overline{3}}{2}}
\end{array}\right)
$$

Eigenvalues and wave disperssion functions - Moving waves
$\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}$
(Here we assume $\boldsymbol{r}_{1}=r_{2}=r$) (all-real)

Quantum H-values:

$$
=r_{0} e^{i 0(m) \frac{2 \pi}{3}}+r\left(e^{i^{2} \frac{3 \pi}{3}}+e^{-i^{2} \frac{m \pi}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)=\left\{\begin{array}{c}
r_{0}+2 r(\text { for } m=0) \\
r_{0}-r(\text { for } m= \pm 1)
\end{array}\right.
$$

$$
\left(\begin{array}{ccc}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{i \frac{m \pi}{3}} \\
e^{-i^{2 \frac{2 m \pi}{3}}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
i^{2 \frac{m m \pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

	$p=0 \quad p=1 \quad p=$
$+1_{3}$	$\xrightarrow[\text { right-hand moving wave }]{1} \xrightarrow{e^{+2 \pi i / 3}} e^{-2 \pi i / 3}$
-1_{3}	$1, e^{-2 \pi i / 3} e^{+2 \pi i / 3}$ left-hand moving wave
03	$\begin{array}{ccc}1 & 1 & 1 \\ \text { scalar } & 1 \\ \text { standing } & \text { wave }\end{array}$

exciton-like
dispersion function

$$
\omega_{\mathrm{H}}(m)=r_{0}\left(1-\cos \frac{2 m \pi}{3}\right)
$$

$$
\omega_{\mathrm{H}}(m) \sim 2 r_{0}\left(\frac{m \pi}{3}\right)^{2}
$$

Eigenvalues and wave disperssion functions - Moving waves $\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}$
(Here we assume $\boldsymbol{r}_{1}=r_{2}=r$) (all-real)

Quantum \mathbf{H}-values:

$$
\begin{gathered}
=r_{0} e^{i 0(m) \frac{2 \pi}{3} \pi}+ \\
\left(\begin{array}{c}
\left.2 \frac{m \pi}{3}\right)
\end{array}\left(\begin{array}{c}
1 \\
e^{i \frac{2 m \pi}{3}} \\
e^{-i \frac{2 \pi}{3}}
\end{array}\right)\right.
\end{gathered}
$$

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \overline{3}} \\
e^{-i^{2 m} \overline{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left({ }^{2 m \pi} \overline{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \overline{3}} \\
e^{-i^{2 m} \overline{3}}
\end{array}\right)
$$

$+1_{3}$| $p=0$ | $p=1$ |
| :---: | :---: |$\quad p=2$

C_{3} moving waves
exciton-like
dispersion function

$$
\omega_{\mathrm{H}}(m)=r_{0}\left(1-\cos \frac{2 m \pi}{3}\right)
$$

$$
\omega_{\mathrm{H}}(m) \sim 2 r_{0}\left(\frac{m \pi}{3}\right)^{2}
$$

Eigenvalues and wave dispersion functions - Moving waves
$\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}$
(Here we assume $\boldsymbol{r}_{1}=r_{2}=r$) (all-real)

Quantum \mathbf{H}-values:

$$
\begin{gathered}
=r_{0} e^{i 0(m) \frac{2 \pi}{3}}+r\left(e^{i^{2} \frac{2 \pi}{3}}+e^{-i^{2} \frac{m \pi}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)=\left\{\begin{array}{c}
r_{0}+2 r(\text { for } m=0) \\
r_{0}-r(\text { for } m= \pm 1)
\end{array}\right. \text { Classical K-values: }
\end{gathered}
$$

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \overline{3}} \\
e^{-i^{2 m} \frac{\overline{3}}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \overline{3}} \\
e^{-i^{2 m} \overline{3}}
\end{array}\right)
$$

exciton-like
dispersion function

$$
\omega_{\mathrm{H}}(m)=r_{0}\left(1-\cos \frac{2 m \pi}{3}\right)
$$

$$
\omega_{\mathrm{H}}(m) \sim 2 r_{0}\left(\frac{m \pi}{3}\right)^{2}
$$

Eigenvalues and wave dispersion functions - Moving waves $\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1}{ }^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}$
(Here we assume $\boldsymbol{r}_{1}=r_{2}=r$) (all-real)

Quantum \mathbf{H}-values:

$$
\begin{aligned}
& =r_{0} e^{i 0(m) \frac{2 \pi}{3}}+ \\
& \left.2 \frac{2 m \pi}{3}\right)
\end{aligned}\left(\begin{array}{c}
1 \\
e^{i \frac{2 m \pi}{3}} \\
e^{-i \frac{2 m \pi}{3}}
\end{array}\right) .
$$

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \overline{3}} \\
e^{-i^{2 m} \frac{\overline{3}}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left({ }^{2 m \pi} \overline{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{1}{3}} \\
e^{-i^{2 m} \frac{m}{3}}
\end{array}\right)
$$

C_{3} moving waves

	$p=0 \quad p=1 \quad p=2$
$+1_{3}$	$1 \xrightarrow{e^{+2 \pi i / 3}} e^{-2 \pi i / 3}$ right-hand moving wave
-1_{3}	$\begin{gathered} 1 \\ \text { left-hand moving wave } \end{gathered}$
03	$\begin{array}{ccc}1 & 1 & 1 \\ \text { scalar } & 1 \\ \text { standing } & \text { wave }\end{array}$

exciton-like dispersion function

$$
\omega_{\mathrm{H}}(m)=r_{0}\left(1-\cos \frac{2 m \pi}{3}\right)
$$

$$
\omega_{\mathrm{H}}(m) \sim 2 r_{0}\left(\frac{m \pi}{3}\right)^{2}
$$

$\omega_{\mathrm{H}}(m)$ is quadratic for low m
(long wavelength λ)
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions
\longrightarrow Standing waves vs Moving waves
C6 Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Eigenvalues and wave dispersion functions - Standing waves

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{\mathbf{r}} \mathbf{1}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}
$$

$\begin{aligned} & \left.\text { (Here we assume } \boldsymbol{r}_{l}=r_{2}=r\right) \\ & \text { (all-real) }\end{aligned} \quad=r_{0} e^{i 0(m) \frac{2 \pi}{3}}+r\left(e^{i \frac{2 m \pi}{3}}+e^{-i^{2} \frac{m \pi}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)=\left\{\begin{array}{c}r_{0}+2 r(\text { for } m=0) \\ r_{0}-r(\text { for } m= \pm 1)\end{array}\right.$
Quantum H-values:
Classical \mathbf{K}-values:

$$
\left(\begin{array}{ccc}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{2 \frac{2 m \pi}{3}} \\
e^{-i^{2 \frac{2 \pi}{3}}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i \frac{2 n \pi}{3}} \\
e^{-i^{2 \frac{m \pi}{3}}}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{2} \frac{m \pi}{3} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(K-2 k \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{2 \pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Standing waves possible if \mathbf{H} is all-real (No curly C-stuff allowed!)

Eigenvalues and wave dispersion functions - Standing waves

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{\mathbf{r}} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i(m) \frac{2 \pi}{3}}+r_{1} e^{i(m) \frac{2 \pi}{3}}+r_{2} e^{i 2(m) \frac{2 \pi}{3}}
$$

(Here we assume $\boldsymbol{r}_{l}=r_{2}=r$) (all-real)

Quantum H-values:

$$
=r_{0} e^{i 0(m) \frac{2 \pi}{3}}+r\left(e^{i^{2} \frac{m \pi}{3}}+e^{-i^{2} \frac{m \pi}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)=\left\{\begin{array}{c}
r_{0}+2 r(\text { for } m=0) \\
r_{0}-r(\text { for } m= \pm 1)
\end{array}\right.
$$

$$
\left(\begin{array}{ccc}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m}{3}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{m}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right) \quad\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{m}{3}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(K-2 k \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{m}{3}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)
$$

Standing waves possible if \mathbf{H} is all-real (No curly C-stuff allowed!)

Moving eigenwave Standing eigenwaves	\mathbf{H} - eigenfrequencies	\mathbf{K} - eigenfrequencies
$\left\|(+1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c} 1 \\ e^{+i 2 \pi / 3} \\ e^{-i 2 \pi / 3} \end{array}\right)\left\|c_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle+\left\|(-1)_{3}\right\rangle}{\sqrt{2} \mu}=\frac{1}{\sqrt{6}}\left(\begin{array}{c} 2 \\ -1 \\ -1 \end{array}\right)$	$\begin{aligned} & \omega^{(+1)_{3}}=r_{0}+2 r \cos \left({ }^{(2 m \pi}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left(i^{2} \frac{2 m \pi}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
$\begin{gathered} \text { States }\left\|(+)^{\prime}\right\rangle \text { and }\left\|\left(\frac{\mathcal{L}}{}\right)\right\rangle \text { in any mixtures are still statt } \\ \left.\begin{array}{c} 1 \\ \left\|(-1)_{3}\right\rangle=\frac{1}{3} \\ e^{-i 2 \pi / 3} \\ e^{+i 2 \pi / 3} \end{array}\right)\left\|s_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle \frac{\downarrow}{}\left\|(-1)_{3}\right\rangle}{i \sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c} 0 \\ +1 \\ -1 \end{array}\right) \\ \left\|(0)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \end{gathered}$	nary due to (\pm)-dege $\begin{aligned} & \omega^{(-1) 3}=r_{0}+2 r \cos \left(\frac{-2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$ $\omega^{(0)_{3}}=r_{0}+2 r$	$\begin{aligned} & 2 \operatorname{eracy}(\cos (+x)=\cos (-x)) \\ & \sqrt{k_{0}-2 k \cos \left(\frac{-2 m \pi}{3}\right)} \\ & =\sqrt{k_{0}+k} \\ & \sqrt{k_{0}-2 k} \end{aligned}$

Eigenvalues and wave dispersion functions - Standing waves

Eigenvalues and wave dispersion functions - Standing waves

(Possible if \mathbf{H} is all-real)

Angular standing waves (all-real)

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling
$1^{\text {st }}$ Step in Abelian symmetry analysis Expand C_{6} symmetric $\mathbb{H I}$ matrix using C_{6} group table $\left(\frac{\text { form }^{\dagger}}{\mathrm{gg}}\right)$

$$
\mathbf{H}=r_{0} \mathbb{r}^{0}+r_{1} \mathbb{r}^{1}+r_{2} \mathbb{r}^{2}+\ldots+r_{n-1} \mathbb{r}^{n-1}=\sum r_{q} \mathbb{r}^{k}
$$

C_{6}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
$\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
\mathbf{r}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}
\mathbf{r}^{2}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}
\mathbf{r}^{3}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}
\mathbf{r}^{4}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}
\mathbf{r}^{5}	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$

C_{6} group table gives r-matrices,...
(known as a regular representation of the group)
$1^{\text {st }}$ Step in Abelian symmetry analysis Expand C_{6} symmetric \mathbf{H} matrix using C_{6} group table $\left(\frac{\mathrm{ggrm}^{\dagger}}{}{ }^{\dagger}\right)$
C_{6} group table gives \mathbf{r}-matrices,... Put """ wherever ${ }^{3}$ appears in product-table
(known as a regular representation of the group)
$1^{\text {st }}$ Step in Abelian symmetry analysis Expand C_{6} symmetric \mathbf{H} matrix using C_{6} group table (form) $\left.\mathrm{gg}^{\dagger}\right)$

C_{6} group table gives r-matrices,..

r_{1} equals conjugate of $r_{5}:\left(r_{1}=r_{5}^{*}\right)$

Elementary Bloch model assumes both are real

$$
\left(r_{1}=-r=r_{5}^{*}\right)
$$

C_{6} group table gives \mathbf{r}-matrices,...
Elementary-Bloch-Model : Nearest neighbor coupling:

$$
\mathbf{H}^{B 1(6)}=r_{0} \mathbf{1}+r_{1} \mathbf{r}^{1}+r_{5} \mathbf{r}^{5} \quad=2 r \mathbf{1}-r \mathbf{r}^{1}+-r \mathbf{r}^{-1}
$$

$$
\left(\begin{array}{cc}
r_{0} & r_{5} \\
r_{1} & r_{0} \\
\cdot & r_{1} \\
\cdot & \cdot \\
\cdot & \cdot \\
r_{5} & \cdot
\end{array}\right.
$$

$$
\left.\begin{array}{ccccc}
5 & \cdot & \cdot & \cdot & r_{1} \\
0 & r_{5} & \cdot & \cdot & \cdot \\
r_{1} & r_{0} & r_{5} & \cdot & \cdot \\
\cdot & r_{1} & r_{0} & r_{5} & \cdot \\
\cdot & \cdot & r_{1} & r_{0} & r_{5} \\
\cdot & \cdot & \cdot & r_{1} & r_{0}
\end{array}\right)=\left\lvert\, \begin{array}{cccccc|c}
0 & 1 & 2 & 3 & 4 & 5 & p \\
\hline 2 r & -r & \cdot & \cdot & \cdot & -r & 0 \\
-r & 2 r & -r & \cdot & \cdot & \cdot & 1 \\
\cdot & -r & 2 r & -r & \cdot & \cdot & 2 \\
\cdot & \cdot & -r & 2 r & -r & \cdot & 3 \\
\cdot & \cdot & \cdot & -r & 2 r & -r & 4 \\
-r & \cdot & \cdot & \cdot & -r & 2 r & 5 \\
\hline
\end{array}\right.
$$

(b) $2^{\text {nd }}$ Neighbor C_{6}

r_{1} equals conjugate of $r_{5}:\left(r_{1}=r_{5}^{*}=-r\right)$
$\left(r_{2}=r_{4}^{*}=-s\right)$ We assume both are real C_{6} group table gives r -matrices,..., and all C_{6} allowed H -matrices...
$\left.\left(\mathbf{r}^{5}\right)=\mathbf{r}^{5} \mid \mathbf{r}^{0}\right) r^{(1)}$
(a) $1^{s t}$ Neighbor C_{6}

$$
\begin{array}{|cccccc|c}
\mathbf{H}^{B 1(6)} & =2 r \mathbf{1}-r \mathbf{r}^{1}-r \mathbf{r}^{-1} \\
0 & 1 & 2 & 3 & 4 & 5 & p \\
\hline 2 r & -r & \cdot & \cdot & \cdot & -r & 0 \\
-r & 2 r & -r & \cdot & \cdot & \cdot & 1 \\
\cdot & -r & 2 r & -r & \cdot & \cdot & 2 \\
\cdot & \cdot & -r & 2 r & -r & \cdot & 3 \\
\cdot & \cdot & \cdot & -r & 2 r & -r & 4 \\
-r & \cdot & \cdot & \cdot & -r & 2 r & 5
\end{array}
$$

Neighbor C_{6}

(c) $3^{\text {rd }}$ Neighbor C_{6}

$t=t^{*}$

$|$| $\mathbf{H}^{B 3(6)}=H_{3} \mathbf{1}-t \mathbf{r}^{3}$ | $-t \mathbf{r}^{-3}$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | p |
| H_{3} | \cdot | \cdot | $-t$ | \cdot | \cdot | 0 |
| \cdot | H_{3} | \cdot | \cdot | $-t$ | \cdot | 1 |
| \cdot | \cdot | H_{3} | \cdot | \cdot | $-t$ | 2 |
| $-t$ | \cdot | \cdot | H_{3} | \cdot | \cdot | 3 |
| \cdot | $-t$ | \cdot | \cdot | H_{3} | \cdot | 4 |
| \cdot | \cdot | $-t$ | \cdot | \cdot | H_{3} | 5 |

r_{1} equals conjugate of $r_{5}:\left(r_{1}=r_{5}^{*}=-r\right)$

$$
\left(r_{2}=r_{4}^{*}=-s\right)
$$

$\left(r_{3}=r_{3}^{*}=t\right)$ must be real C_{6} group table gives $\mathbf{1}$-matrices,..., and all C_{σ} allowed H -matrices...

ALL neighbor coupling

$\left.\left.\mid r^{3}\right)=r^{3} \mid r^{0}\right)$

$2^{\text {nd }}$ Step

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1$
All $x=r^{p}$ satisfy $x^{6}=1$ and use $6^{\text {th }}$-roots-of- 1 for eigenvalues
$\psi_{l}^{0}=1$
$\psi_{l}^{l}=e^{2 \pi i} 6$
$\psi_{l}^{2}=\psi_{2}^{l}=e^{-4 \pi i / 6}$
$\psi_{l}^{3}=\psi_{3}^{l}=-1$
$\psi_{l}{ }^{4}=\psi_{4}^{l}=\psi_{l}^{-2}=e^{-4 \pi i 6}$
$\psi_{l}^{5}=\psi_{5}^{l}=\psi_{l}{ }^{-l}=e^{-2 \pi i / 6}$

$$
\begin{aligned}
& \begin{array}{l}
D^{m}(\boldsymbol{r})=e^{-2 \pi i m / 6} \\
D^{m}\left(\boldsymbol{r}^{p}\right)=e^{-2 \pi i m} \cdot p / 6 \\
= \\
p=\chi_{l}^{m}=\chi_{l}^{m}{ }^{m}=\psi_{p}^{m^{*}} \\
\text { or position point (exponent) }
\end{array} \\
& m=\begin{array}{l}
\text { momentum }
\end{array}
\end{aligned}
$$

Groups "know" their roots and will tell you them if you ask nicely!
You efficiently get:
-invariant projectors

- irreducible projectors
-irreducible representations (irreps)
- H eigenvalues
- H eigenvectors
-T matrices
-dispersion functions

$2^{\text {nd }}$ Step (contd.)

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1$
top-row flip
All $x=r^{p}$ satisfy $x^{6}=1$ and use $6^{\text {th }}$-roots-of- 1 for eigenvalues

$$
\begin{aligned}
& \psi_{l}^{0}=1 \\
& \psi_{l}^{l}=e^{2 \pi i / 6} \\
& \psi_{l}^{2}=\psi_{2}^{l}=e^{4 \pi i 6} \\
& \psi_{1}^{3}=\psi_{3}^{l}=-1 \\
& \psi_{1}^{4}=\psi_{t}^{l}=\psi_{l}^{-2}=e^{-4 \pi i 6} \\
& \psi_{1}^{5}=\psi_{5}^{l}=\psi_{1}^{-l}=e^{-2 \pi i / 6}
\end{aligned}
$$

$$
\mathbf{P}^{(m)}=\mathbf{P}^{(m) \dagger}
$$

$$
\mathbf{r}^{p}=\boldsymbol{\chi}_{p}^{0} \mathbf{P}^{(0)}
$$

$$
+\chi_{p}^{1} \mathbf{P}^{(\mathrm{l})}
$$

$$
+\chi_{p}^{2} \mathbf{P}^{(2)}
$$

$$
+\chi_{p}^{3} \mathbf{P}^{(3)}
$$

$+\chi_{p}^{4} \mathbf{P}^{(4)}+\chi_{p}^{5} \mathbf{P}^{(5)}$

Projectors $\mathbf{P}^{(n)}$ are eigenvalue "placeholders"having orthogonal-idempotent products, eigen $n_{\bar{\gamma}}$ equations,

$$
\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta^{m n} \mathbf{P}^{(m)} \quad \mathbf{r}^{p} \mathbf{P}^{(n)}=\chi_{p}{ }^{n} \mathbf{P}^{(n)}
$$

and one completeness rule: $\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(2)}+\ldots+\mathbf{P}^{(5)}=\mathbf{1}$

$2^{\text {nd }}$ Step (contd.)

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1$
top-row flip not needed...
$\mathbf{P}^{(m)}=\mathbf{P}^{(m) \dagger}$

${ }^{\text {ring }}$	$\mathbf{P}^{(0)}$	$\mathbf{P}^{(l)}$	$\mathbf{P}^{(2)}$	$\mathbf{P}^{(3)}$	$\mathbf{P}^{(4)}$	$\mathbf{P}^{(5)}$
(0)	$\mathbf{P}^{(0)}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}^{(l)}$	\cdot	$\mathbf{P}^{(1)}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}^{(2)}$	\cdot	\cdot	$\mathbf{P}^{(2)}$	\cdot	\cdot	\cdot
$\mathbf{P}^{(3)}$	\cdot	\cdot	\cdot	$\mathbf{P}^{(3)}$	\cdot	\cdot
$\mathbf{P}^{(4)}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}^{(4)}$	\cdot
$\mathbf{P}^{(5)}$	\cdot	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}^{(5)}$

$$
\begin{aligned}
& \psi_{l}^{0}=1 \\
& \psi_{l}^{l}=e^{2 \pi i 6} \\
& \psi_{l}^{2}=\psi_{2}^{l}=e^{4 \pi i 6} \\
& \psi_{I}^{3}=\psi_{3}^{l}=-1 \\
& \psi_{l}^{4}=\psi_{4}^{l}=\psi_{l}^{-2}=e^{-4 \pi i 6} \\
& \psi_{1}^{5}=\psi_{5}^{l}=\psi_{l}^{-1}=e^{-2 \pi i 6}
\end{aligned}
$$

$$
\mathbb{r}^{p}=\chi_{p}^{0} \mathbf{P}^{(0)}
$$

$$
+\chi_{p}^{1} \mathbf{P}^{(\mathrm{I})}
$$

$$
+\chi_{p}^{2} \mathbf{P}^{(2)}
$$

$$
+\chi_{p}^{3} \mathbf{P}^{(3)}
$$

$$
+\chi_{p}^{4} \mathbf{P}^{(4)}
$$

$$
\chi_{p}^{5} \mathbf{P}^{(5)}
$$

$\mathbf{P}^{(4)}+\chi_{p}^{5} \mathbf{P}^{(5)}$

$6 \cdot \mathbf{P}^{(m)}=\quad \psi_{0}{ }^{m} \mathbf{r}^{0} \quad+\psi_{1}{ }^{m} \mathbf{r}^{l}$
position p (or power of \mathbf{r}^{p})

$$
\mathrm{C}_{6} \mathrm{r}^{0} \quad \mathrm{r}^{1} \quad \mathrm{r}^{2} \quad \mathrm{r}^{3} \quad \mathrm{r}^{4} \quad \mathrm{r}^{5}
$$

C_{6} character
$\chi_{m p}=e^{-i m p} 2 \pi / 6$
is wave function conjugate

$$
\psi_{m}^{*}\left(r_{p}\right)=\frac{e^{-i m p 2 \pi / 6}}{\sqrt{6}}(\text { with norm } \sqrt{ } 6)
$$

C_{6} Plane wave function

$$
\psi_{m}\left(r_{p}\right)=\frac{e^{i k_{m} \cdot r_{p}}}{\sqrt{6}}
$$

$$
=\frac{e^{i m p 2 \pi / 6}}{\sqrt{6}}
$$

C_{6} Lattice position vector

$$
r_{p}=L \cdot p
$$

Wavevector
$k_{m}=2 \pi m / 6 L=2 \pi / \lambda_{m}$
Wavelength
$\lambda_{m}=2 \pi / k_{m}=6 L / m$

conjugate waves (turn counter-clockwise)

$\chi_{p}^{m}\left(C_{6}\right)$	$\mathbf{r}^{p=0}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{r}^{3}	\mathbf{r}^{4}	\mathbf{r}^{5}
$m=0_{6}$	1	1	1	1	1	1
1_{6}	1	ε^{*}	$\varepsilon^{2^{*}}$	-1	ε^{2}	ε
2_{6}	1	$\varepsilon^{2^{*}}$	ε^{2}	1	$\varepsilon^{2^{*}}$	ε^{2}
$3_{6}=-3_{6}$	1	-1	1	-1	1	-1
$4_{6}=-2_{6}$	1	ε^{2}	$\varepsilon^{2^{*}}$	1	ε^{2}	$\varepsilon^{2^{*}}$
$5_{6}=-1_{6}$	1	ε	ε^{2}	-1	$\varepsilon^{2^{*}}$	ε

$\varepsilon=\mathrm{e}^{i 2 \pi / 6}$

Wave phasor stuff? FUGggedd-aboudit!

C_{N} Lattice position vector $r_{p}=L \cdot p$

Wavevector
$k_{m}=2 \pi / \lambda_{m}$
$=2 \pi \mathrm{~m} / \mathrm{NL}$
Wavelength
$\lambda_{m}=2 \pi / k_{m}$
$=N L / m$
C_{N} Plane wave function
$\psi_{m}\left(x_{p}\right)$

$$
\frac{e^{i k_{m} \cdot x_{p}}}{\sqrt{N}}
$$

$=\frac{e^{i m p 2 \pi / N}}{\sqrt{N}}$
C_{24}

C_{N} Lattice
position
vector
$r_{p}=L \cdot p$
Wavevector $\quad N=72$
$k_{m}=2 \pi / \lambda_{m} \quad C_{72}$
$=2 \pi m / N L$
Fourier
transformation
Wavelength matrix

$$
\begin{gathered}
C_{N} \text { Plane wave } \\
\text { function } \\
\psi_{m}\left(x_{p}\right) \\
=\frac{e^{i k_{m}} x_{p}}{\sqrt{N}} \\
=\frac{e^{i m p} 2 \pi / N}{\sqrt{N}}
\end{gathered}
$$ Hobvoulo 3:

 Hio

$$
\begin{aligned}
\lambda_{m} & =2 \pi / k_{m} \\
& =N L / m
\end{aligned}
$$

$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling
C_{6} Beam analyzer used in Unit 3 Ch. 8 thru Ch. 9

Fig. 8.1.1
$3^{\text {rd }}$ Step Display all eigensolutions of all possible C_{6} symmetric real H $\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad$ where $: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right)$ (Dispersion functions)

$3^{\text {rd }}$ Step Display all eigensolutions of all possible C_{6} symmetric real H

 $\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad$ where $: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right)$ (Disperssion functions)$$
\begin{aligned}
& p=0 \\
& \text { Elementary } \\
& \text { Bloch Model } \\
& \mathbf{H = H _ { 1 } \mathbf { 1 - r } \boldsymbol { r } - \mathbf { r r } ^ { - 1 }}
\end{aligned}
$$

$3^{\text {rd }}$ Step Display all eigensolutions of all possible C_{6} symmetric real H $\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad$ where $: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right)$ (Disperssion functions)

3 r
 Step Display all eigensolutions of all possible C_{6} symmetric real H

 $\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad$ where $: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right)$ (Dispersion fuinctions)

Complete sets of C6 coupling parameters and Fourier dispersion

$$
\omega_{m}\left(\mathbf{H}^{G B(N)}\right)=\langle m| \sum_{p=0} r_{p} \mathbf{r}^{p}|m\rangle=\sum_{p=0} r_{p}\langle m| \mathbf{r}^{p}|m\rangle=\sum_{p=0} r_{p} e^{-i 2 \pi \frac{m \cdot p}{N}}=\sum_{p=0}\left|r_{p}\right| e^{-i\left(2 \pi \frac{m \cdot p}{N}-\phi_{p}\right)}
$$

Real C_{6} Bloch $\mathbf{H}^{\mathrm{GB}(N)}{ }^{(N)}$ eigenvalues are Fourier series with 4 (for $N=0$) Fourier parameters $\left\{r_{0}=H, \quad r_{1}=r=r_{-1}, r_{2}=s=r_{-2}, \quad r_{3}=t=r_{-3}\right\}$

$$
\begin{aligned}
\omega_{m}\left(\mathbf{H}_{\text {real }}^{G B B(6)}\right) & =r_{0}+r_{1}\left(e^{i \pi \frac{m \cdot 1}{3}}+e^{-i \pi \frac{m \cdot 1}{3}}\right) \\
& +r_{2}\left(e^{i \pi \frac{m \cdot 2}{3}}+e^{-i \pi \frac{m \cdot 2}{3}}\right)+r_{3}\left(e^{i \pi \frac{m \cdot 3}{3}}\right) \quad\left(\text { for real: } r_{p}=r_{-p}=r_{p}^{*}\right) \\
& =H+2 r \cos \pi \frac{m \cdot 1}{3}+
\end{aligned}+2 s \cos \pi \frac{m \cdot 2}{3}+t(-1)^{m} \quad l
$$

giving $4 \omega_{\mathrm{m}}$-levels:

$$
\omega_{m}=\left\{\begin{array}{c}
\omega_{0}=H+2 r+2 s+t \\
\omega_{ \pm 1}=H+r-s-t \\
\omega_{ \pm 2}=H-r-s+t \\
\omega_{3}=H-2 r+2 s-t
\end{array}\right.
$$

...in terms of 4 solvable \boldsymbol{r}_{p}-parameters:

$$
r_{p}=\left\{\begin{array}{l}
H=\frac{1}{4}\left(\omega_{0}+\omega_{1}+\omega_{2}+\omega_{3}\right) \\
r=\frac{1}{6}\left(\omega_{0}+\omega_{1}-\omega_{2}-\omega_{3}\right) \\
s=\frac{1}{6}\left(\omega_{0}-\omega_{1}-\omega_{2}+\omega_{3}\right) \\
t=\frac{1}{6}\left(\omega_{0}-2 \omega_{1}+2 \omega_{2}-\omega_{3}\right)
\end{array}\right.
$$

General Bloch $\mathbf{H}^{\mathrm{GB}(N)}$ eigenvalues are Fourier series with six (for $N=0$) Fourier parameters $\left\{r_{0}=H, \quad r_{1}=r e^{i \phi_{1}}, \quad r_{-1}=r e^{-i \phi_{1}}, \quad r_{2}=s e^{i \phi \phi_{2}}, \quad r_{-2}=s e^{-i \phi} 2, \quad r_{3}=t=r_{-3}\right\}$
$\omega_{m}\left(\mathbf{H}_{\text {complex }}^{\text {GZB(6) }}\right)=H+2 r \cos \left(\pi \frac{m \cdot 1}{3}-\phi_{1}\right)+2 s \cos \left(\pi \frac{m \cdot 2}{3}-\phi_{2}\right)+t(-1)^{m} \quad\left(\right.$ for complex: $\left.r_{-p}=r_{p}^{*}\right)$
$\mathrm{C}_{3} \mathbf{g}^{\dagger} \mathbf{g}$-product-table and basic group representation theory
$\mathrm{C}_{3} \mathbf{H}$-and- \mathbf{r}^{p}-matrix representations and conjugation symmetry
C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity and ortho-completeness relations
C_{3} character table and modular labeling
Ortho-completeness inversion for operators and states
Modular quantum number arithmetic C_{3}-group jargon and structure of various tables
C_{3} Eigenvalues and wave dispersion functions Standing waves vs Moving waves
C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity and higher
Complete sets of coupling parameters and Fourier dispersion
Gauge shifts due to complex coupling

Complex sets of C_{6} coupling parameters and gauge shifts

$$
\omega_{m}\left(\mathbf{H}^{G B(N)}\right)=\langle m| \sum_{p=0} r_{p} \mathbf{r}^{p}|m\rangle=\sum_{p=0} r_{p}\langle m| \mathbf{r}^{p}|m\rangle=\sum_{p=0} r_{p} e^{-i 2 \pi \frac{m \cdot p}{N}}=\sum_{p=0}\left|r_{p}\right| e^{-i\left(2 \pi \frac{m \cdot p}{N}-\phi_{p}\right)}
$$

Complex Bloch matrix $\mathbf{H}^{\mathrm{GB}(N)}$ eigenvalues are Fourier series with 6 (for $N=0$) Fourier parameters $\left\{r_{0}=H, \quad r_{1}=r e^{i \phi_{1}}, \quad r_{-1}=r e^{-i \phi_{1}}, \quad r_{2}=s e^{i \phi_{2}}, \quad r_{-2}=s e^{-i \phi_{2}}, \quad r_{3}=t=r_{-3}\right\}$

$$
\omega_{m}\left(\mathbf{H}_{\text {complex }}^{G Z B(6)}\right)=r_{0}+r_{1} e^{i \pi \frac{m \cdot 1}{3}}+r_{-1} e^{-i \pi \frac{m \cdot 1}{3}}+r_{2} e^{i \pi \frac{m \cdot 2}{3}}+r_{-2} e^{-i \pi \frac{m \cdot 2}{3}}+r_{3} e^{i \pi \frac{m \cdot 3}{3}} \quad\left(\text { for complex: } r_{-p}=r_{p}^{*}\right. \text {) }
$$

giving $6 \omega_{\mathrm{m}}$-levels: ...in terms of 6 solvable \boldsymbol{r}_{p}-parameters:

$$
\omega_{m}=\left\{\begin{array}{l}
\omega_{0}=r_{0}+r_{1}+r_{-1}+r_{2}+r_{-2}+r_{3} \\
\omega_{+1}=r_{0}+r_{1} e^{\frac{i \pi}{3}}+r_{-1} e^{\frac{-i \pi}{3}}+r_{2} e^{\frac{i 2 \pi}{3}}+r_{-2} e^{\frac{-i 2 \pi}{3}}-r_{3} \\
\omega_{-1}=r_{0}+r_{1} e^{\frac{-i \pi}{3}}+r_{-1} e^{\frac{i \pi}{3}}+r_{2} e^{\frac{-i 2 \pi}{3}}+r_{-2} e^{\frac{i 2 \pi}{3}}-r_{3} \\
\omega_{+2}=r_{0}+r_{1} e^{\frac{i 2 \pi}{3}}+r_{-1} e^{\frac{-i 2 \pi}{3}}-r_{2} e^{\frac{i \pi}{3}}-r_{-2} e^{\frac{-i \pi}{3}}+r_{3} \\
\omega_{-2}=r_{0}+r_{1} e^{\frac{-i 2 \pi}{3}}+r_{-1} e^{\frac{i 2 \pi}{3}}-r_{2} e^{\frac{-i \pi}{3}}-r_{-2} e^{\frac{i \pi}{3}}+r_{3} \\
\omega_{3}=r_{0}-r_{1}-r_{-1}+r_{2}+r_{-2}-r_{3}
\end{array} \quad r_{p}=\left\{\begin{array}{c}
r_{0}=? \\
r_{1}=? \\
r_{-1}=? \\
r_{2}=? \\
r_{-2}=? \\
r_{3}=?
\end{array} \quad \text { Left as an }\right. \text { exercise... }\right.
$$

Geometric solution shown next...

$$
\omega_{m}\left(\mathbf{H}_{\text {complex }}^{G Z B(6)}\right)=H+2 r \cos \left(\pi \frac{m \cdot 1}{3}-\phi_{1}\right)+2 s \cos \left(\pi \frac{m \cdot 2}{3}-\phi_{2}\right)+t(-1)^{m} \quad\left(\text { for complex: } r_{-p}=r_{p}^{*}\right)
$$

$3^{\text {rd }}$ Step (contd.)

...eigensolutions for all possible C_{6} symmetric complex H

$$
\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad \text { where }: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right) \quad \text { (Dispersion function) }
$$

Nearest neighbor coupling

$$
\left(\begin{array}{ccccc}
r_{0} & r_{-1} & & & \\
r_{1} \\
r_{1} & r_{0} & r_{-1} & & \\
& & r_{1} & r_{0} & r_{-1} \\
& \\
& & & r_{1} & r_{0} \\
r_{-1} & \\
& & & r_{1} & r_{0} \\
r_{-1} \\
r_{1} & & & & r_{1} \\
r_{0}
\end{array}\right)
$$

$3^{\text {rd }}$ Step (contd.)

...eigensolutions for all possible C_{6} symmetric complex H

$$
\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad \text { where }: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right) \quad \text { (Dispersion function) }
$$

Nearest neighbor coupling

$$
\mathbf{H}^{\mathrm{B} 1(6)}=\left(\begin{array}{ccccccc}
r_{0} & r_{-1} & & & & & r_{1} \\
r_{1} & r_{0} & r_{-1} & & & & \\
& r_{1} & r_{0} & r_{-1} & & \\
& & r_{1} & r_{0} & r_{-1} & \\
& & & r_{1} & r_{0} & r_{-1} \\
r_{-1} & & & & & r_{1} & r_{0}
\end{array}\right)
$$

For Hermitian $\mathbf{H}^{\mathrm{B} 1(6)}=\left(\mathbf{H}^{\mathrm{B} 1(6)}\right)^{\dagger}$
complex components
$r_{1}=-r e^{i \phi}$ imply
conjugate components

$$
r_{1}{ }_{1}=r_{-1}=-r e^{-i \phi}
$$

$\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad$ where $: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right)$
(Dispersion function)

Elementary Bloch Model

Nearest neighbor coupling

$$
\mathbf{H}^{\mathrm{B1}(6)}=\left(\begin{array}{ccccc}
r_{0} & r_{-1} & & & \\
r_{1} \\
r_{1} & r_{0} & r_{-1} & & \\
& r_{1} & \\
& r_{1} & r_{0} & r_{-1} & \\
& & r_{1} & r_{0} & r_{-1} \\
& & & r_{1} & r_{0} \\
r_{1} \\
r_{1} & & & & r_{1} \\
\hline
\end{array}\right)
$$

For Hermitian $\mathbf{H}^{\mathrm{Bl}(6)}=\left(\mathbf{H}^{\mathrm{Bl}(6)}\right)^{\dagger}$ complex components $r_{1}=-r e^{i \phi}$ imply
conjugate components

$$
r^{*}{ }_{1}=r_{-1}=-r e^{-i \phi}
$$

$$
\begin{aligned}
\omega^{\mathrm{B} 1(6)}\left(k_{m}\right) & =r_{0} \chi_{0}^{m}+r_{1} \chi_{1}^{m}+r_{-1} \chi^{m}{ }_{-1} \\
& =r_{0}-r e^{i \phi} e^{i 2 \pi m / 6}-r e^{-i \phi} e^{-i 2 \pi m / 6} \\
& =r_{0}-2 r \cos (2 \pi m / 6+\phi)
\end{aligned}
$$

$\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad$ where $: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right)$
(Dispersion function)

Elementary
Bloch Model
$\mathbf{H}=H_{1} \mathbf{1}-r \mathbf{r}-r \mathbf{r}^{-1}$

Nearest neighbor coupling
$\mathbf{H}^{\mathrm{B} 1(6)}=\left(\begin{array}{ccccccc}r_{0} & r_{-1} & & & & & r_{1} \\ r_{1} & r_{0} & r_{-1} & & & & \\ & r_{1} & r_{0} & r_{-1} & & \\ & r_{1} & r_{1} & r_{0} & r_{-1} & \\ & & & r_{1} & r_{0} & r_{-1} \\ r_{1} & & & & r_{1} & r_{0}\end{array}\right)$

For Hermitian $\mathbf{H}^{\mathrm{B1}(6)}=\left(\mathbf{H}^{\mathrm{B} 1(6)}\right)^{\dagger}$ complex components $r_{1}=-r e^{i \phi}$ imply
conjugate components

$$
r_{1}^{*}=r_{-1}=-r e^{-i \phi}
$$

${ }_{3}$ eigenvalues of \mathbf{H}^{B}
B1(6)

$$
\begin{aligned}
\omega^{\mathrm{B} 1(6)}\left(k_{m}\right) & =r_{0} \chi_{0}^{m}+r_{1} \chi_{1}^{m}+r_{-1} \chi^{m}{ }_{-1} \\
& =r_{0}-r e^{i \phi} e^{i 2 \pi m / 6}-r e^{-i \phi} e^{-i 2 \pi m / 6} \\
& =r_{0}-2 r \cos (2 \pi m / 6+\phi)
\end{aligned}
$$

$3^{\text {rd }}$ Step (contd.)

...eigensolutions for all possible C_{6} symmetric complex H
$\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad$ where : $\omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right) \quad$ (Dispersion function)

In this C-Type situation m-eigenstates
are required to be moving waves $e^{i k_{m^{\prime}} x_{p}}$

Simulating Complex Systems With Simpler Ones

Simulating Complex Systems With Simpler Ones

$\left(\begin{array}{llllll}H_{0} & \boldsymbol{H}_{1} & H_{2} & H_{3} & H_{2} & \boldsymbol{H}_{1} \\ \boldsymbol{H}_{1} & H_{0} & \boldsymbol{H}_{\mathbf{1}} & H_{2} & H_{3} & H_{2} \\ H_{2} & \boldsymbol{H}_{1} & H_{0} & \boldsymbol{H}_{1} & H_{2} & H_{3} \\ H_{3} & H_{2} & \boldsymbol{H}_{1} & H_{0} & \boldsymbol{H}_{\mathbf{1}} & H_{2} \\ H_{2} & H_{3} & H_{2} & \boldsymbol{H}_{1} & H_{0} & \boldsymbol{H}_{\mathbf{1}} \\ \boldsymbol{H}_{\mathbf{1}} & H_{2} & H_{3} & H_{2} & \boldsymbol{H}_{1} & H_{0}\end{array}\right)$

