Group Theory in Quantum Mechanics Lecture 10 (2.19-26.13)

Representations of cyclic groups $C_3 \subset C_6 \supset C_2$

(Quantum Theory for Computer Age - Ch. 6-9 of Unit 3) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 3-7 of Ch. 2)

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states

 Comparing wave function operator algebra to bra-ket algebra

 Modular quantum number arithmetic

 C3-group jargon and structure of various tables
- C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves
- C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Introduction to C_N beat dynamics and "Revivals" in Lecture 11

C₃ **g**[†]**g**-product-table and basic group representation theory
C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states
Modular quantum number arithmetic
C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C₃ **g**[†]**g**-product-table and basic group representation theory

C_3	$\mathbf{r}^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$\mathbf{r}^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger} = \mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1} = \mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

C₃ **g**[†]**g**-product-table and basic group representation theory

C_3	$\mathbf{r}^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$\mathbf{r}^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger} = \mathbf{g}^{-1}$ in the 1st column

so all unit **1**=**g**⁻¹**g** elements lie on diagonal.

A C₃ H-matrix is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -table and so is each \mathbf{r}^{p} -matrix representation.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad + r_1 \cdot \mathbf{r}^1 \qquad + r_2 \cdot \mathbf{r}^2$$

C_3 **g**[†]**g**-product-table and basic group representation theory

C_3	$\mathbf{r}^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$\mathbf{r}^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

 C_3 **g**[†]**g**-product-table

Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger} = \mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1} = \mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

A C₃ H-matrix is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -table and so is each \mathbf{r}^{p} -matrix representation.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad + r_1 \cdot \mathbf{r}^1 \qquad + r_2 \cdot \mathbf{r}^2$$

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

C_3 **g**[†]**g**-product-table and basic group representation theory

C_3	$\mathbf{r}^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$\mathbf{r}^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

 C_3 **g**[†]**g**-product-table

Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger} = \mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1} = \mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

A C₃ H-matrix is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -table and so is each \mathbf{r}^{p} -matrix representation.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad + r_1 \cdot \mathbf{r}^1 \qquad + r_2 \cdot \mathbf{r}^2$$

Constants r_k that are grayed-out may change values if C_3 symmetry is broken

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

C₃ **g**[†]**g**-product-table and basic group representation theory

C_3	$\mathbf{r}^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$\mathbf{r}^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

A C₃ H-matrix is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -table and so is each \mathbf{r}^{p} -matrix representation.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad + r_1 \cdot \mathbf{r}^1 \qquad + r_2 \cdot \mathbf{r}^2$$

Constants r_k that are *grayed-out* may change values if C_3 symmetry is broken

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

Conjugation symmetry
However, no matter how C₃ is broken,
a Hermitian-symmetric Hamiltonian $(H_{jk}^*=H_{kj}) \text{ requires that } r_0^*=r_0 \text{ and } r_1^*=r_2.$

C_3 **g**[†]**g**-product-table and basic group representation theory

C_3	$\mathbf{r}^0 = 1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$\mathbf{r}^0 = 1$	_	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

 C_3 **g**[†]**g**-product-table

Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger} = \mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1} = \mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

A C₃ H-matrix is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -table and so is each \mathbf{r}^{p} -matrix representation.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = r_0 \cdot \mathbf{1} \qquad + r_1 \cdot \mathbf{r}^1 \qquad + r_2 \cdot \mathbf{r}^2$$

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

Conjugation symmetry

Hermitian Hamiltonian $(H_{jk}^* = H_{kj})$ requires $r_0^* = r_0$ and $r_1^* = r_2$.

C₃ operators {**r**⁰, **r**¹, **r**²} also label unit base states:

$$|0\rangle = \mathbf{r}^0 |0\rangle$$

$$|1\rangle = \mathbf{r}^I |0\rangle$$

$$|2\rangle = \mathbf{r}^2 |0\rangle$$

modulo-3

C₃ **g**[†]**g**-product-table and basic group representation theory
C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states
Modular quantum number arithmetic
C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=1$, or $\mathbf{r}^3-1=0$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$)

"Chi"(χ) refers to <u>characters</u> or characteristic roots

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$)

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where}: \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

"Chi"(χ) refers to <u>characters</u> or <u>characteristic</u> roots

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

1- symmetry implies easier
$$-1$$
, or $1-1-0$ resolved by times -1 700ts of unity χ $m-c$ $-\phi m$.

Complex numbers
$$z$$
 make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$\mathbf{1} = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where}: } \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$$

"Chi" (χ) refers to

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

Complex numbers z make it easy to find cube roots of
$$z = 1 = e^{2\pi i m}$$
. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - 1 = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where}: \chi_m = e^{-im\frac{2\pi}{3}} = \psi^*_m$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi^*_1$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi^*_2$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

"Chi"(χ) refers to <u>characters</u> or <u>characteristic</u> roots

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

1- symmetry implies cubic $\mathbf{I}^*-\mathbf{I}$, or $\mathbf{I}^*-\mathbf{I}-\mathbf{U}$ resolved by times \mathbf{J}^* roots of unity χ m-e-m- $-\psi_m$.

Complex numbers
$$z$$
 make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies : } \mathbf{0} = \mathbf{r}^3 - 1 = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where : } \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* $(\mathbf{P}^{(m)}) = \delta_{mn} \mathbf{P}^{(m)}$ and sum to unit 1 by a *completeness* relation:

"Chi"(χ) refers to <u>characters</u> or characteristic roots

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

1- symmetry implies easie 1 1, or 1 -1 0 resorved by three 3 700 is 0, unity χ m c ϕ m.

Complex numbers
$$z$$
 make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - 1 = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where}: \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation:

$$\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$$
 Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$

C₃ Spectral resolution: 3rd roots of unity

"Chi"(χ) refers to <u>characters</u> or <u>characteristic</u> roots

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

r-symmetry implies cubic **r**³-**1**, or **r**³-**1**-**0** resolved by three 3rd roots of unity χ _m-erd $= \psi_m$

Complex numbers
$$z$$
 make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where } : \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation:

$$\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$$
 Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$

 \mathbf{r}^{l} -Spectral-Decomp. $\mathbf{r}^{l} = \chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)}$

"Chi"(χ) refers to <u>characters</u> or characteristic roots

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

r-symmetry implies cubic **r**³-**1**, or **r**³-**1**-**0** resolved by three 3rd roots of unity χ _m-erd $= \psi_m$

Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ $1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where } : \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$ $\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$ $\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation:

$$\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$$
 Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$

$$\mathbf{r}^{I}$$
-Spectral-Decomp. $\mathbf{r}^{I} = \chi_{0} \mathbf{P}^{(0)} + \chi_{I} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)}$

$$\mathbf{r}^2$$
-Spectral-Decomp. $\mathbf{r}^2 = (\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$

C₃ **g**[†]**g**-product-table and basic group representation theory
C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states

Comparing wave function operator algebra to bra-ket algebra

Modular quantum number arithmetic

C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions
Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

"Chi"(χ) refers to <u>characters</u> or <u>characteristic</u> roots

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

1- symmetry implies cubic Γ^*-1 , or Γ^*-1-0 resolved by times S^* roots of unity χ_m — e^{m-m} — ψ_m

Complex numbers z make it easy to find cube roots of
$$z = 1 = e^{2\pi i m}$$
. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - 1 = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where}: \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation:

$$\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$$
 Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$
 $\chi_0 = \mathbf{e}^{i0} = 1$, $\chi_1 = \mathbf{e}^{-i2\pi/3}$, $\chi_2 = \mathbf{e}^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$
 $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. \mathbf{r}^2 -Spectral-Decomp. $\mathbf{r}^2 = (\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} + i 2\pi/3$

"(χ) refers to characters or

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

Complex numbers z make it easy to find cube roots of
$$z = 1 = e^{2\pi i m}$$
. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - 1 = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where}: \chi_m = e^{-im\frac{2\pi}{3}} = \psi^*_m$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi^*_1$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi^*_2$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation:

$$\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)} \quad Ortho-Completeness \quad \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$

$$\chi_0 = \mathbf{e}^{i0} = \mathbf{1}, \quad \chi_1 = \mathbf{e}^{-i2\pi/3}, \quad \chi_2 = \mathbf{e}^{-i4\pi/3}. \quad \mathbf{r}^{1} - Spectral-Decomp. \quad \mathbf{r}^{1} = \chi_0 \quad \mathbf{P}^{(0)} + \chi_1 \quad \mathbf{P}^{(1)} + \chi_2 \quad \mathbf{P}^{(2)}$$

$$(\chi_0)^2 = 1$$
, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. \mathbf{r}^2 -Spectral-Decomp. $\mathbf{r}^2 = (\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$

$$\frac{1}{\sqrt{xis}} \qquad m = 0 \qquad \chi_{00} = 1 \qquad \chi_{01} = 1 \qquad \chi_{02} = 1$$

$$\frac{wave-number}{m} \qquad m = 1 \qquad \chi_{10} = 1 \qquad \chi_{11} = e^{-i2\pi/3} \chi_{12} = e^{i2\pi/3}$$

$$m = 2 \qquad \chi_{20} = 1 \qquad \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{-i2\pi/3}$$

"Chi" (χ) refers to characters or

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

Complex numbers z make it easy to find cube roots of
$$z = 1 = e^{2\pi i m}$$
. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where } : \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation:

$$\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)} \quad Ortho-Completeness \quad \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$

$$\chi_0 = \mathbf{e}^{i0} = 1, \quad \chi_1 = \mathbf{e}^{-i2\pi/3}, \quad \chi_2 = \mathbf{e}^{-i4\pi/3}. \quad \mathbf{r}^{1} - Spectral-Decomp. \quad \mathbf{r}^{1} = \chi_0 \quad \mathbf{P}^{(0)} + \chi_1 \quad \mathbf{P}^{(1)} + \chi_2 \quad \mathbf{P}^{(2)}$$

$$(\chi_0)^2 = 1, \quad (\chi_1)^2 = \chi_2, \quad (\chi_2)^2 = \chi_1. \quad \mathbf{r}^2 - Spectral-Decomp. \quad \mathbf{r}^2 = (\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$$

$$\chi_{00} = 1 \quad \chi_{01} = 1 \quad \chi_{02} = 1$$

$$\chi_{10} = 1 \quad \chi_{11} = e^{-i2\pi/3} \chi_{12} = e^{i2\pi/3}$$

$$\chi_{20} = 1 \quad \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{-i2\pi/3}$$

C₃ character conjugate is wave function

"(χ) refers to characters or

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r- symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m=e^{im2\pi/3}=\psi_m$.

Complex numbers z make it easy to find cube roots of
$$z = 1 = e^{2\pi i m}$$
. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$1 = \mathbf{r}^3 \text{ implies}: \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1}) \text{ where } : \chi_m = e^{-im\frac{2\pi}{3}} = \psi_m^*$$

$$\chi_1 = e^{-i1\frac{2\pi}{3}} = \psi_1^*$$

$$\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi_2^*$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation:

$$\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$$
 Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$
 $\chi_0 = \mathbf{e}^{i0} = 1$, $\chi_1 = \mathbf{e}^{-i2\pi/3}$, $\chi_2 = \mathbf{e}^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$
 $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. \mathbf{r}^2 -Spectral-Decomp. $\mathbf{r}^2 = (\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$

Real axis

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states

 Comparing wave function operator algebra to bra-ket algebra

 Modular quantum number arithmetic

 C3-group jargon and structure of various tables
 - C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves
 - C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^I = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$$

or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^0\rangle)$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)} \sqrt{3} |1\rangle = |\mathbf{0}_3\rangle + |1_3\rangle + |2_3\rangle
\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^I = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^I\rangle = |\mathbf{0}_3\rangle + e^{-i2\pi/3} |1_3\rangle + e^{i2\pi/3} |2_3\rangle$$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^2\rangle = |\mathbf{0}_3\rangle + e^{i2\pi/3} |\mathbf{1}_3\rangle + e^{-i2\pi/3} |\mathbf{2}_3\rangle$$

or ket relations: $(to |1\rangle = |\mathbf{r}^0\rangle)$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)} \sqrt{3} |1\rangle = |\mathbf{0}_3\rangle + |1_3\rangle + |2_3\rangle$$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^I = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

$$\sqrt{3} |\mathbf{r}^I\rangle = |\mathbf{0}_3\rangle + e^{-i2\pi/3} |\mathbf{1}_3\rangle + e^{i2\pi/3} |\mathbf{2}_3\rangle$$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^2\rangle = |\mathbf{0}_3\rangle + e^{i2\pi/3} |\mathbf{1}_3\rangle + e^{-i2\pi/3} |\mathbf{2}_3\rangle$$

Inverting *O-C* is easy: just †-*conjugate*!

or ket relations: $(to |1\rangle = |\mathbf{r}^0\rangle)$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)} + \mathbf{P}^{(2)} + \mathbf{P}^{(3)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)} + \mathbf{P}^{(2$$

$$\sqrt{3} | \mathbf{r}^{I} \rangle = | \mathbf{0}_{3} \rangle + e^{-i2\pi/3} | \mathbf{1}_{3} \rangle + e^{i2\pi/3} | \mathbf{2}_{3} \rangle$$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^2\rangle = |\mathbf{0}_3\rangle + e^{i2\pi/3} |\mathbf{1}_3\rangle + e^{-i2\pi/3} |\mathbf{2}_3\rangle$$

Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)

or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^0\rangle)$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)} \sqrt{3} |1\rangle = |\mathbf{0}_3\rangle + |1_3\rangle + |2_3\rangle$$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^I = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^I\rangle = |\mathbf{0}_3\rangle + e^{-i2\pi/3} |\mathbf{1}_3\rangle + e^{i2\pi/3} |\mathbf{2}_3\rangle$$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^2\rangle = |\mathbf{0}_3\rangle + e^{i2\pi/3} |\mathbf{1}_3\rangle + e^{-i2\pi/3} |\mathbf{2}_3\rangle$$

Inverting *O-C* is easy: just †-conjugate! (and norm by $\frac{1}{3}$)

$$\mathbf{P}^{(0)} = \frac{1}{3}(\mathbf{r}^0 + \mathbf{r}^1 + \mathbf{r}^2) = \frac{1}{3}(1 + \mathbf{r}^1 + \mathbf{r}^2)$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^0 + \chi_1^* \mathbf{r}^1 + \chi_2^* \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^1 + e^{-i2\pi/3} \mathbf{r}^2)$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} +$$

$$\mathbf{P}^{(l)} = \mathbf{1} = \mathbf{P}^{(0)} -$$

$$\mathbf{P}^{(l)}$$
 +

or ket relations:
$$(to |\mathbf{1}\rangle = |\mathbf{r}^0\rangle)$$

 $\mathbf{P}^{(2)} (\sqrt{3}|1\rangle = |\mathbf{0}_3\rangle + |\mathbf{1}_3\rangle + |\mathbf{2}_3\rangle$

$$(\iota o \mid \mathbf{I}) = \mid \mathbf{r} \mid$$

 $|2_3\rangle$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^{1} = 1 \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

$$\sqrt{3} |\mathbf{r}^{I}\rangle = |\mathbf{0}_{3}\rangle + e^{-i2\pi/3} |\mathbf{1}_{3}\rangle + e^{i2\pi/3} |\mathbf{2}_{3}\rangle$$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^2\rangle = |\mathbf{0}_3\rangle + e^{i2\pi/3} |\mathbf{1}_3\rangle + e^{-i2\pi/3} |\mathbf{2}_3\rangle$$

(or norm by $\sqrt{\frac{1}{3}}$)

Inverting *O-C* is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)

$$\mathbf{P}^{(0)} = \frac{1}{3}(\mathbf{r}^0 + \mathbf{r}^1 + \mathbf{r}^2) = \frac{1}{3}(1 + \mathbf{r}^1 + \mathbf{r}^2)$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{1}^{*} \mathbf{r}^{1} + \chi_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^0 + \chi_2^* \mathbf{r}^1 + \chi_1^* \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^1 + e^{+i2\pi/3} \mathbf{r}^2)$$

$$\begin{vmatrix} \mathbf{0}_{3} \rangle = \mathbf{P}^{(0)} | \mathbf{1} \rangle \sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + |\mathbf{r}^{1}\rangle + |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{1}_{3}\rangle = \mathbf{P}^{(1)} | \mathbf{1} \rangle \sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{+i2\pi/3} |\mathbf{r}^{1}\rangle + e^{-i2\pi/3} |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{2}_{3}\rangle = \mathbf{P}^{(2)} | \mathbf{1} \rangle \sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{-i2\pi/3} |\mathbf{r}^{1}\rangle + e^{+i2\pi/3} |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)} \sqrt{3} |\mathbf{r}^2\rangle = |\mathbf{0}_3\rangle + e^{i2\pi/3} |\mathbf{1}_3\rangle + e^{-i2\pi/3} |\mathbf{2}_3\rangle$$

Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^0 + \mathbf{r}^1 + \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^1 + \mathbf{r}^2)$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^0 + \chi_1^* \mathbf{r}^1 + \chi_2^* \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^1 + e^{-i2\pi/3} \mathbf{r}^2)$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$|\mathbf{r}|^{3} \mathbf{P}^{(2)} | \sqrt{3} | \mathbf{r}^{1} \rangle = |\mathbf{0}_{3}\rangle + e^{-i2\pi/3} |\mathbf{1}_{3}\rangle + e^{i2\pi/3} |\mathbf{2}_{3}\rangle$$

$$|\mathbf{r}|^{2} \mathbf{P}^{(2)} | \sqrt{3} | \mathbf{r}^{2} \rangle = |\mathbf{0}_{3}\rangle + e^{i2\pi/3} |\mathbf{1}_{3}\rangle + e^{-i2\pi/3} |\mathbf{2}_{3}\rangle$$

$$|\mathbf{0}_{3}\rangle = \mathbf{P}^{(0)} |\mathbf{1}\rangle \sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + |\mathbf{r}^{1}\rangle + |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{1}_{3}\rangle = \mathbf{P}^{(1)} |\mathbf{1}\rangle \sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{+i2\pi/3} |\mathbf{r}^{1}\rangle + e^{-i2\pi/3} |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{2}_{3}\rangle = \mathbf{P}^{(2)} |\mathbf{1}\rangle \sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{-i2\pi/3} |\mathbf{r}^{1}\rangle + e^{+i2\pi/3} |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

Real axis

 $(\sqrt{3}|\mathbf{1}\rangle = |\mathbf{0}_3\rangle + |\mathbf{1}_3\rangle +$

or ket relations: $(to |1\rangle = |\mathbf{r}^0\rangle)$

$$m = 0 \quad p = 1 \quad p = 2$$

$$m = 0 \quad \chi_{00} = 1 \quad \chi_{01} = 1 \quad \chi_{02} = 1$$

$$\frac{wave-number}{m} \quad m = 1 \quad \chi_{10} = 1 \quad \chi_{11} = e^{-i2\pi/3} \chi_{12} = e^{i2\pi/3}$$

$$m = 2 \quad \chi_{20} = 1 \quad \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{-i2\pi/3}$$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^I = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)

Inverting *O-C* is easy: just †-conjugate! (and norm by
$$\frac{1}{3}$$
)

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{1}^{*} \mathbf{r}^{1} + \chi_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{2} + \chi_{1}^{*} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{2} + \chi_{1}^{*} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3$$

or ket relations: $(to |1\rangle = |\mathbf{r}^0\rangle)$

 $\sqrt{3}|1\rangle = |0_3\rangle + |1_3\rangle +$

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

$$\sqrt{3} | \mathbf{r}^{l} \rangle = |0_{3}\rangle + e^{-i2\pi/3} |1_{3}\rangle + e^{i2\pi/3} |2_{3}\rangle$$

 $\sqrt{3}|1\rangle = |0_3\rangle + |1_3\rangle +$

or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^0\rangle)$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$$

Inverting *O-C* is easy: just †-conjugate! (and norm by $\frac{1}{3}$)

$$\sqrt{3}$$
 $|\mathbf{r}^2\rangle = |0_3\rangle + e^{i2\pi/3} |1_3\rangle + e^{-i2\pi/3} |2_3\rangle$

Verting O-C is easy: Just 1-conjugate! (and norm by
$$\frac{1}{3}$$
)

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^0 + \mathbf{r}^1 + \mathbf{r}^2) = \frac{1}{3} (1 + \mathbf{r}^1 + \mathbf{r}^2)$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^0 + \chi_1^* \mathbf{r}^1 + \chi_2^* \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^1 + e^{-i2\pi/3} \mathbf{r}^2)$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$|\mathbf{0}_{3}\rangle = \mathbf{P}^{(0)}|0\rangle\sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + |\mathbf{r}^{1}\rangle + |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{1}_{3}\rangle = \mathbf{P}^{(1)}|0\rangle\sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{+i2\pi/3}|\mathbf{r}^{1}\rangle + e^{-i2\pi/3}|\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{2}_{3}\rangle = \mathbf{P}^{(2)}|0\rangle\sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{-i2\pi/3}|\mathbf{r}^{1}\rangle + e^{+i2\pi/3}|\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

Real axis

Two distinct types of modular "quantum" numbers:

p=0,1,or 2 is power p of operator \mathbf{r}^p labeling oscillator position point p m=0,1,or 2 that is the mode momentum m of waves

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$

$$\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

+
$$\mathbf{P}^{(2)}$$
 $\langle \sqrt{3} | 1 \rangle = | \mathbf{0}_3 \rangle + | \mathbf{1}_3 \rangle + | \mathbf{2}_3 \rangle$
 $\mathbf{P}^{(2)}$ + $\mathbf{e}^{i2\pi/3} \mathbf{P}^{(2)}$ $\langle \sqrt{3} | \mathbf{r}^I \rangle = | \mathbf{0}_3 \rangle + \mathbf{e}^{-i2\pi/3} | \mathbf{1}_3 \rangle + \mathbf{e}^{i2\pi/3} | \mathbf{2}_3 \rangle$

$$(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)} \sqrt{2}$$

$$\sqrt{3} |\mathbf{r}^2\rangle = |0_3\rangle + e^{i2\pi/3} |1_3\rangle + e^{-i2\pi/3} |2_3\rangle$$

or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^0\rangle)$

Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)

$$\mathbf{P}^{(0)} = \frac{1}{3}(\mathbf{r}^0 + \mathbf{r}^1 + \mathbf{r}^2) = \frac{1}{3}(\mathbf{1} + \mathbf{r}^1 + \mathbf{r}^2)$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^0 + \chi_1^* \mathbf{r}^1 + \chi_2^* \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^1 + e^{-i2\pi/3} \mathbf{r}^2)$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$|\mathbf{0}_{3}\rangle = \mathbf{P}^{(0)}|0\rangle\sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + |\mathbf{r}^{1}\rangle + |\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{1}_{3}\rangle = \mathbf{P}^{(1)}|0\rangle\sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{+i2\pi/3}|\mathbf{r}^{1}\rangle + e^{-i2\pi/3}|\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

$$|\mathbf{2}_{3}\rangle = \mathbf{P}^{(2)}|0\rangle\sqrt{3} = \frac{|\mathbf{r}^{0}\rangle + e^{-i2\pi/3}|\mathbf{r}^{1}\rangle + e^{+i2\pi/3}|\mathbf{r}^{2}\rangle}{\sqrt{3}}$$

Real axis

Two distinct types of modular "quantum" numbers:

p=0,1,or 2 is power p of operator \mathbf{r}^p labeling oscillator position point p m=0,1, or 2 that is the *mode momentum m* of waves

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3)

$$m = 0$$
 $\chi_{00} = 1$
 $\chi_{01} = 1$
 $\chi_{02} = 1$
 $\chi_{02} = 1$
 $\chi_{02} = 1$

$$m=2\frac{3}{3}$$
 $\chi_{20}=1$ $\chi_{21}=e^{i2\pi/3}\chi_{22}=e^{-i2\pi/3}$

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states

Comparing wave function operator algebra to bra-ket algebra

Modular quantum number arithmetic

C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Comparing wave function operator algebra to bra-ket algebra

C₃ Plane wave function
$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector
$$x_p = L \cdot p$$
Wavevector
$$k_m = 2\pi m / 3L = 2\pi / \lambda_m$$
Wavelength
$$\lambda_m = 2\pi / k_m = 3L / m$$

C₃ Plane wave function
$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector
$$x_p = L \cdot p$$

$$Wavevector$$

$$k_m = 2\pi m / 3L = 2\pi / \lambda_m$$

$$Wavelength$$

$$\lambda_m = 2\pi / k_m = 3L / m$$

$$|\mathbf{r}^p| |q\rangle = |q+p\rangle$$
 implies: $\langle q|(\mathbf{r}^p)^{\dagger} = \langle q|\mathbf{r}^{-p} = \langle q+p|$ implies: $\langle q|\mathbf{r}^p = \langle q-p|$

C₃ Plane wave function
$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector
$$x_p = L \cdot p$$

$$Wavevector$$

$$k_m = 2\pi m / 3L = 2\pi / \lambda_m$$

$$Wavelength$$

$$\lambda_m = 2\pi / k_m = 3L / m$$

 $\mathbf{r}^p |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^p)^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p|$ implies: $\langle q | \mathbf{r}^p = \langle q-p|$ Action of \mathbf{r}^p on m-ket $|(m)\rangle = |k_m\rangle$ is inverse to action on coordinate bra $\langle x_q| = \langle q|$.

C₃ Plane wave function
$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector
$$x_p = L \cdot p$$

$$Wavevector$$

$$k_m = 2\pi m / 3L = 2\pi / \lambda_m$$

$$Wavelength$$

$$\lambda_m = 2\pi / k_m = 3L / m$$

 $\mathbf{r}^p |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^p)^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p|$ implies: $\langle q | \mathbf{r}^p = \langle q-p|$ Action of \mathbf{r}^p on m-ket $|(m)\rangle = |k_m\rangle$ is inverse to action on coordinate bra $\langle x_q| = \langle q|$.

(Norm factors left out) $\psi_{k_m}(x_q - p \cdot L) = \langle x_q \mid \mathbf{r}^p \mid k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)}$

C₃ Plane wave function
$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector
$$x_p = L \cdot p$$
Wavevector
$$k_m = 2\pi m / 3L = 2\pi / \lambda_m$$
Wavelength
$$\lambda_m = 2\pi / k_m = 3L / m$$

 $\mathbf{r}^p |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^p)^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p|$ implies: $\langle q | \mathbf{r}^p = \langle q-p|$ Action of \mathbf{r}^p on m-ket $|(m)\rangle = |k_m\rangle$ is inverse to action on coordinate bra $\langle x_q| = \langle q|$.

```
(Norm factors left out) \psi_{k_m}(x_q - p \cdot L) = \langle x_q | \mathbf{r}^p | k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)}\langle q - p | (m) \rangle = \langle q | \mathbf{r}^p | (m) \rangle = e^{-ik_m x_p} \langle q | (m) \rangle
```

C₃ Plane wave function
$$\psi_m(x_p) = e^{ik_m \cdot x_p}$$

$$\sqrt{3}$$

$$= e^{imp2\pi/3}$$

$$\sqrt{3}$$

C₃ Lattice position vector
$$x_p = L \cdot p$$

$$Wavevector$$

$$k_m = 2\pi m / 3L = 2\pi / \lambda_m$$

$$Wavelength$$

$$\lambda_m = 2\pi / k_m = 3L / m$$

$$\mathbf{r}^p |q\rangle = |q+p\rangle$$
 implies: $\langle q | (\mathbf{r}^p)^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p|$ implies: $\langle q | \mathbf{r}^p = \langle q-p|$
Action of \mathbf{r}^p on m -ket $|(m)\rangle = |k_m\rangle$ is inverse to action on coordinate bra $\langle x_q| = \langle q|$.

(Norm factors left out)
$$\psi_{k_m}(x_q - p \cdot L) = \langle x_q \mid \mathbf{r}^p \mid k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)}$$
$$\langle q - p \mid (m) \rangle = \langle q \mid \mathbf{r}^p \mid (m) \rangle = e^{-ik_m x_p} \langle q \mid (m) \rangle$$

This implies: $\mathbf{r}^{p} \mid (m) \rangle = e^{-ik_{m}x_{p}} \mid (m) \rangle$

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states

 Comparing wave function operator algebra to bra-ket algebra

 Modular quantum number arithmetic

 C3-group jargon and structure of various tables
 - C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves
 - C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Two distinct types of modular "quantum" numbers: p=0,1,or 2 is power p of operator \mathbf{r}^p labeling oscillator position point p m=0,1,or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp\cdot 2\pi/3} = e^{i4\cdot 2\pi/3} = e^{i1\cdot 2\pi/3} = e^{i3\cdot 2\pi/3} = e^{i2\pi/3} = \rho_1$.

Two distinct types of modular "quantum" numbers: p=0,1,or 2 is power p of operator \mathbf{r}^p labeling oscillator position point p m=0,1,or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp\cdot 2\pi/3} = e^{i4\cdot 2\pi/3} = e^{i1\cdot 2\pi/3} = e^{i3\cdot 2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-}times\text{-}2) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{ or } 2 \text{ is } power p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator } position point p$ m=0,1, or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp\cdot 2\pi/3} = e^{i4\cdot 2\pi/3} = e^{i1\cdot 2\pi/3} = e^{i3\cdot 2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-}times\text{-}2) \mod 3$ is not 4 but 1 $(4 \mod 3\text{=}1)$, the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, $5 \mod 3 = 2$ so $(\rho_1)^5 = \rho_2$, and $6 \mod 3 = 0$ so $(\rho_1)^6 = \rho_0$.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{ or } 2 \text{ is } power p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator } position point p$ m=0,1, or 2 that is the mode momentum m of waves m or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp\cdot 2\pi/3} = e^{i4\cdot 2\pi/3} = e^{i1\cdot 2\pi/3} = e^{i3\cdot 2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2-times-2) \mod 3$ is not 4 but 1 $(4 \mod 3=1)$, the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

 $\chi_{I}^{*} = e^{+i2\pi/3}$ $\chi_{I}^{*} = e^{+i2\pi/3}$ $\chi_{0}^{*} = 1 = e^{+i0}$ $\chi_{0}^{*} = 1 = e^{-i2\pi/3}$ $\chi_{0}^{*} = e^{-i2\pi/3}$ $\chi_{0}^{*} = e^{-i2\pi/3}$

Two distinct types of modular "quantum" numbers: n=0.1 or 2 is nower n of operator \mathbf{r}^p labeling oscilla

p=0,1,or 2 is power p of operator \mathbf{r}^p labeling oscillator point p m=0,1,or 2 that is the mode momentum m of waves

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp\cdot 2\pi/3} = e^{i4\cdot 2\pi/3} = e^{i1\cdot 2\pi/3} = e^{i3\cdot 2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-}times\text{-}2) \mod 3$ is not 4 but 1 $(4 \mod 3\text{=}1)$, the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Imagine going around ring reading off address points $p=\dots$ 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,

...for regular integer points ...-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8,....

 $\chi_{I}^{*}=e^{+i2\pi/3}$ $\chi_{0}^{*}=1=e^{+i0}$ $\chi_{0}^{*}=1=e^{-i2\pi/3}$ $\chi_{0}^{*}=e^{-i2\pi/3}$

Two distinct types of modular "quantum" numbers:

p=0,1, or 2 is power p of operator \mathbf{r}^p labeling oscillator point p m=0,1, or 2 that is the mode momentum m of waves

m=0,1,or 2 that is the *mode momentum m* of waves

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp\cdot 2\pi/3} = e^{i4\cdot 2\pi/3} = e^{i1\cdot 2\pi/3} = e^{i3\cdot 2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-}times\text{-}2) \mod 3$ is not 4 but 1 $(4 \mod 3\text{=}1)$, the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Imagine going around ring reading off address points $p=\dots 0$, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,

...for regular integer points ...-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8,....

 $e^{imp2\pi/3}$ must always equal $e^{i(mp \mod 3)2\pi/3}$.

$$(\rho_m)^p = (e^{im2\pi/3})^p = e^{imp \cdot 2\pi/3} = \rho_{mp} = e^{i(mp \bmod 3)2\pi/3} = \rho_{mp \bmod 3}$$

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states

 Comparing wave function operator algebra to bra-ket algebra

 Modular quantum number arithmetic

 C3-group jargon and structure of various tables
 - C₃ Eigenvalues and wave dispersion functions
 Standing waves vs Moving waves
 - C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C_3	$r^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$r^2=r^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$r^2=r^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^2	1

C_3	$\chi_0=1$	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_0 = 1 = \chi_3$		χ_1	χ_2
$\chi_2 = \chi_1^{-1}$	χ_2	χ_0	χ_1
$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ_0

C₃-group {
$$\mathbf{r}^0$$
, \mathbf{r}^1 , \mathbf{r}^2 }-table obeyed by { $\chi_0 = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{+i2\pi/3}$ }

Set
$$\{\chi_0, \chi_1, \chi_2\}$$
 is an irreducible representation (irrep) of C_3 $\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$

C_3	$r^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$r^2=r^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	r ²
$r^2=r^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^2	1

C_3	$\chi_0=1$	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_0 = 1 = \chi_3$	χ_0	χ_1	χ_2
$\chi_2 = \chi_1^{-1}$	χ_2	χ_0	χ_1
$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ_0

C₃-group {
$$\mathbf{r}^0$$
, \mathbf{r}^I , \mathbf{r}^2 }-table obeyed by { $\chi_0 = 1$, $\chi_I = e^{-i2\pi/3}$, $\chi_2 = e^{+i2\pi/3}$ }

Set
$$\{\chi_0, \chi_1, \chi_2\}$$
 is an irreducible representation (irrep) of C_3 $\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$

C_3	$r^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$r^2=r^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	r ²
$r^2=r^{-1}$	\mathbf{r}^{2}	1	\mathbf{r}^{1}
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^2	1

		$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_0 = 1 = \chi_3$	χ_0	χ_1	χ_2
$\chi_0 = 1 = \chi_3$ $\chi_2 = \chi_1^{-1}$ $\chi_1 = \chi_2^{-2}$	χ_2	χ_0	χ_1
$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ_0

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

g =	\mathbf{r}^0	\mathbf{r}^{1}	\mathbf{r}^2	,	$\mathbf{g} =$	r ⁰	r ¹	r ²
$\frac{\mathbf{D^{(0)}(g)}}{D^{(0)}(\mathbf{g})}$			$\chi_2^{(0)}$		$D^{(0)}(\mathbf{g})$	1	1	1
$D^{(1)}(\mathbf{g})$				_	$D^{(1)}(\mathbf{g})$	1	$e^{-\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$

C₃-group {
$$\mathbf{r}^0$$
, \mathbf{r}^l , \mathbf{r}^2 }-table obeyed by { $\chi_0 = 1$, $\chi_l = e^{-i2\pi/3}$, $\chi_2 = e^{+i2\pi/3}$ }

Set
$$\{\chi_0, \chi_1, \chi_2\}$$
 is an irreducible representation (irrep) of C_3 $\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$

C_3	$r^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$r^2=r^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	r ²
$r^2=r^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^2	1

C_3	$\chi_0=1$	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_0 = 1 = \chi_3$	χ_0	χ_1	χ_2
$\chi_2 = \chi_1^{-1} \\ \chi_1 = \chi_2^{-2}$	χ_2	χ_0	χ_1
$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ_0

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

$\sigma =$	\mathbf{r}^0	\mathbf{r}^1	r ²		g =	r ⁰	\mathbf{r}^1	\mathbf{r}^2
$\frac{\mathbf{D^{(0)}(g)}}{D^{(0)}(\mathbf{g})}$					$D^{(0)}(\mathbf{g})$	1	1	1
$D^{(1)}(\mathbf{g})$				=	$D^{(1)}(\mathbf{g})$	1	$e^{-\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_{2}^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$

The *identity irrep* $D^{(0)}=\{1,1,1\}$ obeys *any* group table.

C₃-group {
$$\mathbf{r}^0$$
, \mathbf{r}^l , \mathbf{r}^2 }-table obeyed by { $\chi_0 = 1$, $\chi_l = e^{-i2\pi/3}$, $\chi_2 = e^{+i2\pi/3}$ }

Set
$$\{\chi_0, \chi_1, \chi_2\}$$
 is an irreducible representation (irrep) of C_3 $\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$

C_3	$r^0=1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$r^2=r^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	r ²
$r^2=r^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^2	1

		$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_0 = 1 = \chi_3$	χ_0	χ_1	χ_2
$\chi_2 = \chi_1^{-1}$	χ_2	χ_0	χ_1
$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ_0

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

$\sigma =$	\mathbf{r}^0	\mathbf{r}^1	r ²		g =	r ⁰	\mathbf{r}^1	\mathbf{r}^2
	$\chi_0^{(0)}$				$D^{(0)}(\mathbf{g})$	1	1	1
$D^{(1)}(\mathbf{g})$				=	$D^{(1)}(\mathbf{g})$	1	$e^{-\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$

The *identity irrep* $D^{(0)}=\{1,1,1\}$ obeys *any* group table.

Irrep $D^{(2)}=\{1, e^{+i2\pi/3}, e^{-i2\pi/3}\}$ is a *conjugate irrep* to $D^{(1)}=\{1, e^{-i2\pi/3}, e^{+i2\pi/3}\}$

$$D^{(2)} = D^{(1)} *$$

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states

 Comparing wave function operator algebra to bra-ket algebra

 Modular quantum number arithmetic

 C3-group jargon and structure of various tables

- C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves
- C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Eigenvalues and wave dispersion functions
$$\langle m|\mathbf{H}|m\rangle = \langle m|r_0\mathbf{r}^0 + r_1\mathbf{r}^1 + r_2\mathbf{r}^2|m\rangle = r_0e^{i0(m)\frac{2\pi}{3}} + r_1e^{i1(m)\frac{2\pi}{3}} + r_2e^{i2(m)\frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
)
$$= r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}})$$
(all-real)

Eigenvalues and wave dispersion functions
$$\langle m|\mathbf{H}|m\rangle = \langle m|r_0\mathbf{r}^0 + r_1\mathbf{r}^1 + r_2\mathbf{r}^2|m\rangle = r_0e^{i0(m)\frac{2\pi}{3}} + r_1e^{i1(m)\frac{2\pi}{3}} + r_2e^{i2(m)\frac{2\pi}{3}}$$

$$\frac{(Here \ we \ assume \ r_1 = r_2 = r)}{(all-real)} = r_0^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r\ (for\ m = 0) \\ r_0 - r\ (for\ m = \pm 1) \end{cases}$$

Eigenvalues and wave dispersion functions
$$\langle m|\mathbf{H}|m\rangle = \langle m|r_0\mathbf{r}^0 + r_1\mathbf{r}^1 + r_2\mathbf{r}^2|m\rangle = r_0e^{i0(m)\frac{2\pi}{3}} + r_1e^{i1(m)\frac{2\pi}{3}} + r_2e^{i2(m)\frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r \text{ (for } m = 0) \\ r_0 - r \text{ (for } m = \pm 1) \end{cases}$$

Quantum **H**-values:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i2\frac{m\pi}{3}} \\ e^{-i2\frac{m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r \text{ (for } m = 0) \\ r_0 - r \text{ (for } m = \pm 1) \end{cases}$$

Quantum **H**-values:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\langle m|\mathbf{H}|m\rangle = \langle m|r_0\mathbf{r}^0 + r_1\mathbf{r}^1 + r_2\mathbf{r}^2|m\rangle = r_0e^{i0(m)\frac{2\pi}{3}} + r_1e^{i1(m)\frac{2\pi}{3}} + r_2e^{i2(m)\frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r (\text{for } m = 0) \\ r_0 - r (\text{for } m = \pm 1) \end{cases}$$

Quantum **H**-values:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i2m\pi} \\ e^{-i2m\pi} \\ e^{-i2m\pi} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i2m\pi} \\ e^{-i2m\pi} \\ e^{-i2m\pi} \end{pmatrix}$$

exciton-like

dispersion function

$$\omega_{\rm H}(m) = r_0(1-\cos\frac{2m\pi}{3})$$

$$\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$$

$$\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i \frac{1}{0} (m) \frac{2\pi}{3}} + r_1 e^{i \frac{1}{3} (m) \frac{2\pi}{3}} + r_2 e^{i \frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r (\text{for } m = 0) \\ r_0 - r (\text{for } m = \pm 1) \end{cases}$$
Classical **K**-values:

Quantum **H**-values:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i2\frac{m\pi}{3}} \\ e^{-i2\frac{m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i2\frac{m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} K & -k & -k \\ -k & K & -k \\ -k & -k & K \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix} = \left(K - 2k\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

exciton-like

dispersion function

$$\omega_{\rm H}(m) = r_0(1-\cos\frac{2m\pi}{3})$$

$$\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$$

$$\langle m|\mathbf{H}|m\rangle = \langle m|r_0\mathbf{r}^0 + r_1\mathbf{r}^1 + r_2\mathbf{r}^2|m\rangle = r_0e^{i0(m)\frac{2\pi}{3}} + r_1e^{i1(m)\frac{2\pi}{3}} + r_2e^{i2(m)\frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r \text{ (for } m = 0) \\ r_0 - r \text{ (for } m = \pm 1) \end{cases}$$

Quantum **H**-values:

$$\begin{pmatrix} r_0 & r & r \\ r & r_0 & r \\ r & r & r_0 \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix} = \left(r_0 + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

Classical K-values:

$$\begin{pmatrix} r_0 & r & r \\ r & r_0 & r \\ r & r & r_0 \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{-i\frac{2m\pi}{3}} \end{pmatrix} = \begin{pmatrix} r_0 + 2r\cos(\frac{2m\pi}{3}) \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} K & -k & -k \\ -k & K & -k \\ -k & -k & K \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} K - k & -k \\ -k & K & -k \\ -k & -k & K \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} K - eigenvalue \dots \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} I \\ I \\ I \\ I \end{pmatrix}$$

$$\begin{pmatrix} I \\$$

exciton-like

dispersion function

$$\omega_{\rm H}(m) = r_0(1-\cos\frac{2m\pi}{3})$$

$$\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$$

$$\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i \frac{1}{0} (m) \frac{2\pi}{3}} + r_1 e^{i \frac{1}{3} (m) \frac{2\pi}{3}} + r_2 e^{i \frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r \text{ (for } m = 0) \\ r_0 - r \text{ (for } m = \pm 1) \end{cases}$$
Classical **K**-values:

Quantum **H**-values:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} = \begin{pmatrix} r_{0} + 2r\cos(\frac{2m\pi}{3}) \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} r_{0} + 2r\cos(\frac{2m\pi}{3}) \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} K - k - k \\ -k & K - k \\ -k & -k & K \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} K - 2k\cos(\frac{2m\pi}{3}) \\ e^{-i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} K - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$= \begin{pmatrix} R - 2k\cos(\frac{2m\pi}{3}) \\ -e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} K & -k & -k \\ -k & K & -k \\ -k & -k & K \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -i^{2m\pi} \end{pmatrix}$$
 K-eigenvalue = $\begin{pmatrix} K - 2k \cos \theta \\ \cos \theta \end{pmatrix}$ needs Square

exciton-like

dispersion function

$$\omega_{\rm H}(m) = r_0(1-\cos\frac{2m\pi}{3})$$

$$\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$$

 $\omega_{\rm H}(m)$ is quadratic for low m

(long wavelength λ)

phonon-like dispersion function

$$\omega_{\rm K}(m) = \sqrt{2k - 2k\cos\frac{2m\pi}{3}}$$

$$= 2\sqrt{k}\sin\frac{m\pi}{3}$$

$$\omega_{\rm K}(m) \sim 2\sqrt{k}(\frac{m\pi}{3})^{1}$$

$$\omega_{\rm K}(m) \text{ is linear for low } m$$

(long wavelength λ)

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states
 Modular quantum number arithmetic
 C3-group jargon and structure of various tables
- C₃ Eigenvalues and wave dispersion functions.

 Standing waves vs Moving waves
 - C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

$$\langle m|\mathbf{H}|m\rangle = \langle m|r_0\mathbf{r}^0 + r_1\mathbf{r}^1 + r_2\mathbf{r}^2|m\rangle = r_0e^{i0(m)\frac{2\pi}{3}} + r_1e^{i1(m)\frac{2\pi}{3}} + r_2e^{i2(m)\frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r \text{ (for } m = 0) \\ r_0 - r \text{ (for } m = \pm 1) \end{cases}$$
Classical **K**-values:

Quantum **H**-values:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ i^{2}\frac{m\pi}{3} \\ e^{-i^{2}\frac{m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ i^{2}\frac{m\pi}{3} \\ e^{-i^{2}\frac{m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} r_0 & r & r \\ r & r_0 & r \\ r & r & r_0 \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{-i\frac{2m\pi}{3}} \end{pmatrix} = \left(r_0 + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} K & -k & -k \\ -k & K & -k \\ -k & -k & K \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix} = \left(K - 2k\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix}$$

Standing waves possible if **H** is all-real (No curly C-stuff allowed!)

$$\langle m|\mathbf{H}|m\rangle = \langle m|r_0\mathbf{r}^0 + r_1\mathbf{r}^1 + r_2\mathbf{r}^2|m\rangle = r_0e^{i0(m)\frac{2\pi}{3}} + r_1e^{i1(m)\frac{2\pi}{3}} + r_2e^{i2(m)\frac{2\pi}{3}}$$

(Here we assume
$$r_1 = r_2 = r$$
) (all-real)

$$= r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r \text{ (for } m = 0) \\ r_0 - r \text{ (for } m = \pm 1) \end{cases}$$
Classical **K**-values:

Quantum **H**-values:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i2\frac{m\pi}{3}} \\ e^{-i2\frac{m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i2\frac{m\pi}{3}} \\ e^{-i2\frac{m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{-i\frac{2m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} K & -k & -k \\ -k & K & -k \\ -k & -k & K \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ -e^{i\frac{2m\pi}{3}} \end{pmatrix} = \left(K - 2k\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix}$$

Standing waves possible if **H** is all-real (No curly C-stuff allowed!)

Moving eigenwave Standing eigenwaves	H – eigenfrequencies	K – eigenfrequencies
$\begin{vmatrix} (+1)_{3} \rangle = \int_{3}^{1} \begin{pmatrix} 1 \\ e^{+i2\pi/3} \\ e^{-i2\pi/3} \end{pmatrix} \begin{vmatrix} c_{3} \rangle = \frac{\left (+1)_{3} \rangle + \left (-1)_{3} \right\rangle}{\sqrt{2}} = \int_{6}^{1} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ States $ (+)\rangle$ and $ (-)\rangle$ in any mixtures are still stati $\begin{vmatrix} (-1)_{3} \rangle = \int_{3}^{1} \begin{pmatrix} e^{-i2\pi/3} \\ e^{+i2\pi/3} \end{pmatrix} \begin{vmatrix} s_{3} \rangle = \frac{\left (+1)_{3} \rangle + \left (-1)_{3} \rangle}{i\sqrt{2}} = \int_{2}^{1} \begin{pmatrix} 0 \\ +1 \\ -1 \end{pmatrix}$	$\omega^{(+1)_3} = r_0 + 2r \cos(\frac{+2m\pi}{3})$ = $r_0 - r$ onary due to (\pm) -deger $\omega^{(-1)_3} = r_0 + 2r \cos(\frac{-2m\pi}{3})$ = $r_0 - r$	$\sqrt{k_0 - 2k \cos(\frac{+2m\pi}{3})}$ $= \sqrt{k_0 + k}$ $neracy\left(\cos(+x) = \cos(-x)\right)$ $\sqrt{k_0 - 2k \cos(\frac{-2m\pi}{3})}$ $= \sqrt{k_0 + k}$
$\begin{pmatrix} 1 \end{pmatrix}$	$\omega^{(0)_3} = r_0 + 2r$	$\sqrt{k_0 - 2k}$

Eigenvalues and wave dispersion functions - Standing waves

(Possible if **H** is all-real)

Radial standing waves (all-real)

Eigenvalues and wave dispersion functions - Standing waves

(Possible if **H** is all-real)

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states
 Modular quantum number arithmetic
 C3-group jargon and structure of various tables
- C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

1st Step in Abelian symmetry analysis

Expand C_6 symmetric \mathbf{H} matrix using C_6 group table (form)

$$\mathbf{H} \! = r_0 \mathbf{r}^0 \! + \! r_1 \mathbf{r}^1 \! + \! r_2 \mathbf{r}^2 \! + \dots + \! r_{n-1} \mathbf{r}^{n-1} \! = \! \sum r_q \mathbf{r}^k$$

 C_6 group table gives r-matrices,...

(known as a *regular* representation of the group)

1st Step in Abelian symmetry analysis $Expand \ C_6 \ symmetric \ \mathbf{H} \ matrix \ using \ C_6 \ group \ table(form)$

$$\mathbf{H} = r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 + \dots + r_{n-1} \mathbf{r}^{n-1} = \sum r_q \mathbf{r}^k$$

C₆ group table gives **r**-matrices,... Put "1" wherever **r**³ appears in product-table

(known as a regular representation of the group)

1st Step in Abelian symmetry analysis

Expand C_6 symmetric **H** matrix using C_6 group table form

$$\mathbf{H} = r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 + \dots + r_{n-1} \mathbf{r}^{n-1} = \sum r_q \mathbf{r}^k$$

C₆ group table gives **r**-matrices,...C₆-allowed **H**-matrices...

Nearest neighbor coupling

$$\begin{pmatrix} r_0 & r_5 & & & r_1 \\ r_1 & r_0 & r_5 & & & \\ & r_1 & r_0 & r_5 & & \\ & & r_1 & r_0 & r_5 & \\ & & & r_1 & r_0 & r_5 \\ & & & & r_1 & r_0 & r_5 \\ r_5 & & & & r_1 & r_0 \end{pmatrix}$$

 $|\mathbf{r}^{5}| = \mathbf{r}^{5} |\mathbf{r}^{0}\rangle$ $|\mathbf{r}^{4}| = \mathbf{r}^{4} |\mathbf{r}^{0}\rangle$ $|\mathbf{r}^{2}| = \mathbf{r}^{2} |\mathbf{r}^{0}\rangle$

<u>ALL</u> neighbor coupling

$$\begin{pmatrix} r_0 & r_5 & r_4 & r_3 & r_2 & r_1 \\ r_1 & r_0 & r_5 & r_4 & r_3 & r_2 \\ r_2 & r_1 & r_0 & r_5 & r_4 & r_3 \\ r_3 & r_2 & r_1 & r_0 & r_5 & r_4 \\ r_4 & r_3 & r_2 & r_1 & r_0 & r_5 \\ r_5 & r_4 & r_3 & r_2 & r_1 & r_0 \end{pmatrix}$$

C_6 group table gives **r**-matrices,... $|1)=1|r^0$ Nearest neighbor coupling $|r^5|=r^5|r^0$ $|r^5|=r^5|r^0$

$$|1\rangle = 1|r^0\rangle$$
 $|r^5\rangle = r^5|r^0\rangle$
 $|r^1\rangle = r^1|r^0\rangle$

$$\begin{pmatrix}
r_0 & r_5 & & & r_1 \\
r_1 & r_0 & r_5 & & & \\
& r_1 & r_0 & r_5 & & & \\
& & r_1 & r_0 & r_5 & & \\
& & & r_1 & r_0 & r_5 & \\
& & & & r_1 & r_0 & r_5 \\
r_5 & & & & r_1 & r_0
\end{pmatrix}$$

 r_1 equals conjugate of r_5 : $(r_1 = r_5^*)$

Conjugation symmetry Hermitian Hamiltonian ($\mathbf{H}_{jk}^* = \dot{\mathbf{H}}_{kj}$) requires $r_0^* = r_0$ and $r_1 = r_5^*$.

Elementary Bloch model assumes both are real $(r_1 = -r = r_5^*)$

 C_6 group table gives **r**-matrices,...

[1)=1| \mathbf{r}^0), Elementary - Bloch - Model : Nearest

$$|1)=1|r^{0}$$
 $|r^{5})=r^{5}|r^{0}$
 $|r^{1})=r^{1}|r^{0}$

$$\mathbf{H}^{B1(6)} = r_0 \mathbf{1} + \frac{r_1}{r_1} \mathbf{r}^1 + \frac{r_5}{r_5} \mathbf{r}^5 = 2r \mathbf{1} - r \mathbf{r}^1 + -r \mathbf{r}^{-1}$$

$$\begin{pmatrix} r_0 & r_5 & \cdot & \cdot & \cdot & r_1 \\ r_1 & r_0 & r_5 & \cdot & \cdot & \cdot \\ \cdot & r_1 & r_0 & r_5 & \cdot & \cdot \\ \cdot & \cdot & r_1 & r_0 & r_5 & \cdot \\ \cdot & \cdot & \cdot & r_1 & r_0 & r_5 \\ r_5 & \cdot & \cdot & \cdot & r_1 & r_0 \end{pmatrix} = \begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & p \\ 2r & -r & \cdot & \cdot & \cdot & -r & 0 \\ -r & 2r & -r & \cdot & \cdot & \cdot & -r & 0 \\ \cdot & -r & 2r & -r & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & -r & 2r & -r & \cdot & \cdot & 2 \\ \cdot & \cdot & \cdot & -r & 2r & -r & \cdot & 4 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 4 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 4 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 4 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 4 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\ \cdot & \cdot & \cdot & -r & 2r & -r & 5 \\$$

$\mathbf{H}^{B1(6)} = 2r1 - r\mathbf{r}^{1} - r\mathbf{r}^{-1}$							
0	1	2	3	4	5	p	
2 <i>r</i>	-r $2r$	•	•	•	- <i>r</i>	0	
-r	2 <i>r</i>	- <i>r</i>	•	•	•	1	
•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	•	•	2	
	•	-r	2 <i>r</i>	-r	•	3	
	•	•	-r	2 <i>r</i>	- <i>r</i>	4	
-r	•		•	-r	2 <i>r</i>	5	

(b) 2^{nd} Neighbor C_6

Conjugation symmetry

$$(\mathbf{H}_{jk}^* = \mathbf{H}_{kj})_{\text{requires } r_0^* = r_0 \text{ and } r_2 = r_4^*.$$

 r_1 equals conjugate of r_5 : $(r_1 = r_5^* = -r)$

 $(r_2 = r_4^* = -s)$ We assume both are real

C_6 group table gives r-matrices,..., and all C_6 -allowed H-matrices... $|1|=1|r^0$, All-neighbor coupling:

$$\mathbf{H}^{B1(6)} = r_0 \mathbf{1} + r_2 \mathbf{r}^2 + r_4 \mathbf{r}^4$$

$$\begin{pmatrix} r_0 & \cdot & r_4 & \cdot & r_2 & \cdot \\ & \cdot & r_0 & \cdot & r_4 & \cdot & r_2 \\ & r_2 & \cdot & r_0 & \cdot & r_4 & \cdot \\ & \cdot & r_2 & \cdot & r_0 & \cdot & r_4 \\ & r_4 & \cdot & r_2 & \cdot & r_0 & \cdot \\ & \cdot & r_4 & \cdot & r_2 & \cdot & r_0 \end{pmatrix}$$

 $|\mathbf{r}^{5}| = \mathbf{r}^{5} |\mathbf{r}^{0}|$ $|{\bf r}^3) = {\bf r}^3 |{\bf r}^0$

 $\mathbf{H}^{A(6)} = r_0 \mathbf{1} + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 + r_3 \mathbf{r}^3 + r_4 \mathbf{r}^4 + r_5 \mathbf{r}^5$

 $|r^{1}| = \mathbf{r}^{I} |r^{0}| (r_{0} \quad r_{5} \quad r_{4} \quad r_{3} \quad r_{2} \quad r_{1}$

$\mathbf{H}^{B1(6)} = 2r1 - r\mathbf{r}^{1} - r\mathbf{r}^{-1}$							
0	1	2	3	4	5	p	
2 <i>r</i>	-r				- <i>r</i>	0	
-r	2 <i>r</i>	- <i>r</i>				1	
	-r	2r	-r	•	•	2	
	•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	•	3	
		•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	4	
-r	•	•	•	-r	2 <i>r</i>	5	

Neighbor C_6

DO (_		
$\mathbf{H}^{B2(6)}$	$=H_{\gamma}$	1-sr	$r^2 - sr$	<u>-2</u>		
0	1	2	3	4	5	p
H_2	•	- s	•	- s	•	0
	H_2		- s		- s	1
-s		H_2		- s	•	2
	- s	•	H_2		- s	3
-s		- s	•	H_2	•	4
	- s	•	- s	•	H_2	5

(c) 3^{rd} Neighbor C_6

$^{8(6)}=E$	$I_2 1 - t$	$\mathbf{r}^3 - t$	r^{-3}		I
1	2	3	4	5	p
	•	<i>−t</i>	•	•	0
H_3			-t	•	1
•	H_3	•	•	<u>-t</u>	2
•	•	H_3		•	3
<i>−t</i>	•		H_3	•	4
•	- t	•	•	H_3	5
	3 .	$\frac{1}{3}$ \cdot \cdot H_3 \cdot	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 r_1 equals conjugate of r_5 : ($r_1 = r_5^* = -r$)

$$(\underline{r_2} = \underline{r_4}^* = -s)$$

 $(r_2 = r_4^* = -s)$ $(r_3 = r_3^* = t)$ must be real

C_6 group table gives **r**-matrices,..., and all C_6 -allowed **H**-matrices...

Nearest neighbor coupling

$$\begin{pmatrix} r_0 & r_5 & & & r_1 \\ r_1 & r_0 & r_5 & & & \\ & r_1 & r_0 & r_5 & & \\ & & r_1 & r_0 & r_5 & & \\ & & & r_1 & r_0 & r_5 & \\ & & & & r_1 & r_0 & r_5 \\ r_5 & & & & r_1 & r_0 \end{pmatrix}$$

$$|\mathbf{r}^{5}| = \mathbf{r}^{5} |\mathbf{r}^{0}\rangle$$

$$|\mathbf{r}^{5}| = \mathbf{r}^{5} |\mathbf{r}^{0}\rangle$$

$$|\mathbf{r}^{1}| = \mathbf{r}^{1} |\mathbf{r}^{0}\rangle$$

 $|{\bf r}^3) = {\bf r}^3 |{\bf r}^0$

ALL neighbor coupling

2nd Step

H diagonalized by spectral resolution of r, $r^2,...,r^6=1$

All $x=r^p$ satisfy $x^0=1$ and use 6^{th} -roots-of-1 for eigenvalues

 $\psi_1^{1} = e^{2\pi i/6}$ $\psi_{1}^{3} = \psi_{2}^{l} = -1$ $\psi_{l}^{4} = \psi_{4}^{l} = \psi_{l}^{-2} = e^{-4\pi i/6}$ $\psi_1^{5} = \psi_5^{1} = \psi_1^{-1} = e^{-2\pi i/6}$

 $D^{m}(\mathbf{r})=e^{-2\pi i m/6}$ $=\chi_I^m=\psi_I^{m*}$ p=power (exponent) or position point

m = momentumor wave-number

11)

6th-roots of 1 m=0,...,5

Groups "know" their roots and will tell you them if you ask nicely! You efficiently get:

- •invariant projectors
- •irreducible projectors
- •irreducible representations (irreps)
- •H eigenvalues
- •H eigenvectors
- T matrices
- dispersion functions

 $\psi_1^{I} = e^{2\pi i/6}$

 $\psi_1^3 = \psi_3^I = -1$

 $\psi_1^2 = \psi_2^l = e^{4\pi i/6}$

 $\psi_{l}^{4} = \psi_{4}^{l} = \psi_{l}^{-2} = e^{-4\pi i/6}$

 $\psi_1^{5} = \psi_5^{l} = \psi_1^{-l} = e^{-2\pi i/6}$

H diagonalized by spectral resolution of r, $r^2,...,r^6=1$

top-row flip not needed...

 $\mathbf{P}^{(m)} = \mathbf{P}^{(m)}$

All $x=r^p$ satisfy $x^6=1$ and use 6^{th} -roots-of-1 for eigenvalues

$$D^{m}(\mathbf{r})=e^{-2\pi i m/6}$$

$$D^{m}(\mathbf{r}^{p})=e^{-2\pi i \mathbf{m} \cdot p/6}=\chi_{p}^{m}=\psi_{p}^{m}$$

p=power (exponent)

or position point

m = momentumor wave-number

Projectors P(m) are eigenvalue "placeholders" having orthogonal-idempotent products, eigen-equations,

 $\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta^{mn}\mathbf{P}^{(m)}$

and one completeness rule: P(0)+P(1)+P(2)+...+P(5)=1

H diagonalized by spectral resolution of r, $r^2,...,r^6=1$ top-row flip not needed... All $x=r^p$ satisfy $x^0=1$ and use 6^{th} -roots-of-1 for eigenvalues $\mathbf{P}^{(m)} = \mathbf{P}^{(m)}$ $\psi_{l}^{I} = e^{2\pi i/6}$ p=power (exponent) $\psi_{1}^{3} = \psi_{3}^{1} = -1$ or position point m = momentum $\psi_1^5 = \psi_5^I = \psi_1^{-1} = e^{-2\pi i/6}$ or wave-number Inverse C_6 spectral resolution m-wave $\psi_p^{m}=D^{m*}(r^p)=e^{+2\pi i m \cdot p/6}$: $\psi_0^4 \psi_1^4 \psi_2^4 \psi_3^4 \psi_4^4 \psi_5^4$ $m=5 | \psi_0^5 \psi_1^5 \psi_2^5 \psi_3^5 \psi_4^5 \psi_5^5$

$$C_6$$
 character
$$\chi_{mp} = e^{-imp2\pi/6}$$
 is wave function conjugate
$$\psi_m^*(r_p) = e^{-imp2\pi/6}$$
 (with norm $\sqrt{6}$)

$$C_6$$
 Plane wave function
$$\psi_m(r_p) = \frac{e^{ik_m \cdot r_p}}{\sqrt{6}}$$

$$= \frac{e^{imp2\pi/6}}{\sqrt{6}}$$

$$C_6$$
 Lattice position vector $r_p = L \cdot p$

Wavevector
$$k_m = 2\pi m / 6L = 2\pi / \lambda_m$$

Wavelength
$$\lambda_m = 2\pi/k_m = 6L/m$$

Backwards phasors for conjugate waves (turn counter-clockwise)

$\chi_p^m(C_6)$	$r^{p=0}$	\mathbf{r}^1	\mathbf{r}^2	\mathbf{r}^3	\mathbf{r}^4	\mathbf{r}^5
$m = \frac{0}{6}$	1	1	1	1	1	1
1 ₆	1	$arepsilon^*$	$arepsilon^{2*}$	-1	$arepsilon^2$	ε
2 ₆	1	$arepsilon^{2*}$	$arepsilon^2$	1	$arepsilon^{2*}$	$arepsilon^2$
$3_6 = -3_6$	1	-1	1	-1	1	-1
$4_6 = -2_6$	1	$arepsilon^2$	$arepsilon^{2*}$	1	$arepsilon^2$	$arepsilon^{2*}$
$5_6 = -1_6$	1	ε	$arepsilon^2$	-1	$arepsilon^{2*}$	ε

$$\varepsilon = e^{i2\pi/6}$$

Wave phasor stuff? FUGggedd-aboudit!

Tuesday, February 26, 2013

*C*₆ *characters in library*

Wavevector $k_m = 2\pi / \lambda_m$ $= 2\pi m / NL$

Wavelength $\lambda_m = 2\pi/k_m$ = NL/m

 C_N Plane wave function $\psi_m(x_p)$ $= e^{ik_m \cdot x_p}$ \sqrt{N} $= e^{imp2\pi/N}$ \sqrt{N}

 C_N Lattice position vector $r_p = L \cdot p$

Wavevector

 $k_m=2\pi/\lambda_m$

 $=2\pi m/NL$

Fourier

N = 72

transformation: matrix

Wavelength $\lambda_m = 2\pi/k_m$

=NL/m

 C_N *Plane wave* function

$$\psi_m(x_p)$$

$$=e^{ik_{m}\cdot x_{p}}$$

$$\overline{\sqrt{N}}$$

$$=\underline{e^{imp2\pi/N}}$$

$$\frac{e^{imp2\pi/N}}{\sqrt{N}}$$

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states
 Modular quantum number arithmetic
 C3-group jargon and structure of various tables
- C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher

Complete sets of coupling parameters and Fourier dispersion

Gauge shifts due to complex coupling

C₆ Beam analyzer used in Unit 3 Ch. 8 thru Ch. 9

Fig. 8.1.1

$$\mathbf{H} = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad where: \ \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m)$$
 (Dispersion functions)

$$\mathbf{H} = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad where: \ \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m)$$
 (Dispersion functions)

 r_1 equals conjugate of r_5 : ($r_1 = r_5^* = -r$)

$$\mathbf{H} = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} x_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad \text{where} : \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m) \text{ (Dispersion functions)}$$

$$\text{Elementary}$$

$$\text{Bloch Model}$$

$$\mathbf{H} = H_1 \mathbf{1} - r \mathbf{r} - r \mathbf{r}^{-1}$$

$$\mathbf{H} = H_1 \mathbf{1} - r \mathbf{r} - r \mathbf{r}^{-1}$$

$$\mathbf{H} = H_1 \mathbf{1} - r \mathbf{r} - r \mathbf{r}^{-1}$$

Complete sets of C₆ coupling parameters and Fourier dispersion

$$\omega_{m}(\mathbf{H}^{GB(N)}) = \langle m | \sum_{p=0}^{\infty} r_{p} \mathbf{r}^{p} | m \rangle = \sum_{p=0}^{\infty} r_{p} \langle m | \mathbf{r}^{p} | m \rangle = \sum_{p=0}^{\infty} r_{p} e^{-i2\pi \frac{m \cdot p}{N}} = \sum_{p=0}^{\infty} |r_{p}| e^{-i(2\pi \frac{m \cdot p}{N} - \phi_{p})}$$

Real C_6 Bloch $\mathbf{H}^{GB(N)}$ eigenvalues are Fourier series with 4 (for N=6) Fourier parameters

$$\{r_0 = H, r_1 = r_{-1}, r_2 = s_{-2}, r_3 = t_{-2}\}$$

$$\omega_{m}(\mathbf{H}_{real}^{GB(6)}) = r_{0} + r_{1}(e^{i\pi\frac{m\cdot 1}{3}} + e^{-i\pi\frac{m\cdot 1}{3}}) + r_{2}(e^{i\pi\frac{m\cdot 2}{3}} + e^{-i\pi\frac{m\cdot 2}{3}}) + r_{3}(e^{i\pi\frac{m\cdot 3}{3}})$$
 (for real: $r_{p} = r_{-p} = r_{p}^{*}$)
$$= H + 2r\cos\pi\frac{m\cdot 1}{3} + 2s\cos\pi\frac{m\cdot 2}{3} + t(-1)^{m}$$

giving 4 $\omega_{\rm m}$ -levels:

 $\omega_{m} = \begin{cases} \omega_{0} = H + 2r + 2s + t \\ \omega_{\pm 1} = H + r - s - t \\ \omega_{\pm 2} = H - r - s + t \\ \omega_{3} = H - 2r + 2s - t \end{cases}$

...in terms of 4 solvable r_p -parameters:

$$r_{p} = \begin{cases} H = \frac{1}{4} (\omega_{0} + \omega_{1} + \omega_{2} + \omega_{3}) \\ r = \frac{1}{6} (\omega_{0} + \omega_{1} - \omega_{2} - \omega_{3}) \\ s = \frac{1}{6} (\omega_{0} - \omega_{1} - \omega_{2} + \omega_{3}) \\ t = \frac{1}{6} (\omega_{0} - 2\omega_{1} + 2\omega_{2} - \omega_{3}) \end{cases}$$

General Bloch $\mathbf{H}^{\mathrm{GB}(N)}$ eigenvalues are Fourier series with six (for N=6) Fourier parameters

$$\{r_0 = H, r_1 = re^{i\phi_1}, r_{-1} = re^{-i\phi_1}, r_2 = se^{i\phi_2}, r_{-2} = se^{-i\phi_2}, r_3 = t = r_{-3}\}$$

$$\omega_{m}(\mathbf{H}_{complex}^{GZB(6)}) = H + 2r\cos\left(\pi\frac{m\cdot 1}{3} - \phi_{1}\right) + 2s\cos\left(\pi\frac{m\cdot 2}{3} - \phi_{2}\right) + t(-1)^{m} \quad \text{(for complex: } r_{-p} = r_{p}^{*}\text{)}$$

- C₃ **g**[†]**g**-product-table and basic group representation theory
 C₃ **H**-and-**r**^p-matrix representations and conjugation symmetry
- C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling
- Ortho-completeness inversion for operators and states
 Modular quantum number arithmetic
 C3-group jargon and structure of various tables
- C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves
- Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Complex sets of C_6 coupling parameters and gauge shifts

$$\omega_{m}(\mathbf{H}^{GB(N)}) = \langle m | \sum_{p=0}^{\infty} r_{p} \mathbf{r}^{p} | m \rangle = \sum_{p=0}^{\infty} r_{p} \langle m | \mathbf{r}^{p} | m \rangle = \sum_{p=0}^{\infty} r_{p} e^{-i2\pi \frac{m \cdot p}{N}} = \sum_{p=0}^{\infty} |r_{p}| e^{-i(2\pi \frac{m \cdot p}{N} - \phi_{p})}$$

Complex Bloch matrix $\mathbf{H}^{GB(N)}$ eigenvalues are Fourier series with 6 (for N=6) Fourier parameters $\{r_0=H, r_1=re^{i\phi_1}, r_{-1}=re^{-i\phi_1}, r_2=se^{i\phi_2}, r_{-2}=se^{-i\phi_2}, r_3=t=r_{-3}\}$

$$\omega_{m}(\mathbf{H}_{complex}^{GZB(6)}) = r_{0} + r_{1}e^{i\pi\frac{m\cdot 1}{3}} + r_{-1}e^{-i\pi\frac{m\cdot 1}{3}} + r_{2}e^{-i\pi\frac{m\cdot 2}{3}} + r_{-2}e^{-i\pi\frac{m\cdot 2}{3}} + r_{3}e^{-i\pi\frac{m\cdot 3}{3}}$$
 (for complex: $r_{-p} = r_{p}^{*}$)

giving 6 $\omega_{\rm m}$ -levels:

...in terms of 6 solvable r_p -parameters:

$$\omega_{m} = \begin{cases} \omega_{0} = r_{0} + r_{1} + r_{-1} + r_{2} + r_{-2} + r_{3} \\ \omega_{+1} = r_{0} + r_{1}e^{\frac{i\pi}{3}} + r_{-1}e^{\frac{i\pi}{3}} + r_{2}e^{\frac{i2\pi}{3}} + r_{-2}e^{\frac{-i2\pi}{3}} - r_{3} \\ \omega_{-1} = r_{0} + r_{1}e^{\frac{-i\pi}{3}} + r_{-1}e^{\frac{i\pi}{3}} + r_{2}e^{\frac{-i2\pi}{3}} + r_{-2}e^{\frac{i2\pi}{3}} - r_{3} \\ \omega_{+2} = r_{0} + r_{1}e^{\frac{-i2\pi}{3}} + r_{-1}e^{\frac{-i2\pi}{3}} - r_{2}e^{\frac{i\pi}{3}} - r_{-2}e^{\frac{i\pi}{3}} + r_{3} \\ \omega_{-2} = r_{0} + r_{1}e^{\frac{-i2\pi}{3}} + r_{-1}e^{\frac{i2\pi}{3}} - r_{2}e^{\frac{-i\pi}{3}} - r_{-2}e^{\frac{i\pi}{3}} + r_{3} \\ \omega_{3} = r_{0} - r_{1} - r_{-1} + r_{2} + r_{-2} - r_{3} \end{cases}$$

$$r_{p} = \begin{cases} r_{0} = ? \\ r_{1} = ? \\ r_{-1} = ? \\ r_{2} = ? \end{cases}$$
 Left as an exercise...
$$r_{-2} = ? \\ r_{3} = ?$$

Geometric solution shown next...

$$\omega_{m}(\mathbf{H}_{complex}^{GZB(6)}) = H + 2r\cos\left(\pi\frac{m\cdot 1}{3} - \phi_{1}\right) + 2s\cos\left(\pi\frac{m\cdot 2}{3} - \phi_{2}\right) + t(-1)^{m} \quad \text{(for complex: } r_{-p} = r_{p}^{*}\text{)}$$

Nearest neighbor coupling

$$\begin{pmatrix} r_0 & r_{-1} & & & r_1 \\ r_1 & r_0 & r_{-1} & & & \\ & r_1 & r_0 & r_{-1} & & \\ & & r_1 & r_0 & r_{-1} & \\ & & & r_1 & r_0 & r_{-1} \\ r_1 & & & & r_1 & r_0 \end{pmatrix}$$

Nearest neighbor coupling

$$\mathbf{H}^{\mathrm{B1(6)}} = \begin{pmatrix} r_{0} & r_{-1} & & & r_{1} \\ r_{1} & r_{0} & r_{-1} & & & \\ & r_{1} & r_{0} & r_{-1} & & & \\ & & r_{1} & r_{0} & r_{-1} & & \\ & & & r_{1} & r_{0} & r_{-1} \\ & & & & r_{1} & r_{0} & r_{-1} \\ r_{1} & & & & r_{1} & r_{0} \end{pmatrix} \qquad \begin{array}{c} complex \ components \\ r_{1} = -re^{i\phi} \ imply \\ conjugate \ components \\ r^{*}_{1} = r_{-1} = -re^{-i\phi} \\ \end{array}$$

For Hermitian $\mathbf{H}^{\mathrm{B1(6)}} = (\mathbf{H}^{\mathrm{B1(6)}})^{\dagger}$ complex components

...eigensolutions for all possible C_6 symmetric complex H

$$\mathbf{H} = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad where: \ \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m) \quad \text{(Dispersion function)}$$

Nearest neighbor coupling

$$\mathbf{H}^{\text{B1(6)}} = \begin{pmatrix} r_{0} & r_{1} & & r_{1} \\ r_{1} & r_{0} & r_{1} & & \\ & r_{1} & r_{0} & r_{1} & \\ & & r_{1} & r_{0} & r_{1} \\ & & & r_{1} & r_{0} & r_{1} \\ & & & & r_{1} & r_{0} & r_{1} \\ r_{1} & & & & r_{1} & r_{0} \end{pmatrix} \qquad \begin{array}{c} complex \ components \\ r_{1} = -re^{i\phi} \ imply \\ conjugate \ components \\ r^{*}_{1} = r_{-1} = -re^{-i\phi} \\ \\ r^{*}_{1} = r_{-1} = -re^{-i\phi} \\ \end{array}$$

For Hermitian $\mathbf{H}^{\mathrm{B1(6)}} = (\mathbf{H}^{\mathrm{B1(6)}})^{\dagger}$ complex components

$$\omega^{\text{B1(6)}}(k_m) = r_0 \chi^m_0 + r_1 \chi^m_1 + r_{-1} \chi^m_{-1}$$

$$= r_0 - r e^{i\phi} e^{i2\pi m/6} - r e^{-i\phi} e^{-i2\pi m/6}$$

$$= r_0 - 2r \cos(2\pi m/6 + \phi)$$

...eigensolutions for all possible C_6 symmetric complex H

$$\mathbf{H} = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad where: \ \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m) \quad \text{(Dispersion function)}$$

Nearest neighbor coupling

$$\mathbf{H}^{\text{B1}(6)} = \begin{pmatrix} r_{0} & r_{1} & & & r_{1} \\ r_{1} & r_{0} & r_{1} & & & \\ & r_{1} & r_{0} & r_{1} & & & \\ & & r_{1} & r_{0} & r_{1} & & \\ & & & r_{1} & r_{0} & r_{1} \\ r_{1} & & & & r_{1} & r_{0} \end{pmatrix}$$

$$complex components$$

$$r_{1} = -re^{i\phi} \quad imply$$

$$conjugate components$$

$$r^{*}_{1} = r_{-1} = -re^{-i\phi}$$

$$r^{*}_{1} = r_{-1} = -re^{-i\phi}$$

For Hermitian H^{B1(6)}=(H^{B1(6)})†

$$\omega^{\text{B1(6)}}(k_m) = r_0 \chi^m_0 + r_1 \chi^m_1 + r_{-1} \chi^m_{-1}$$

$$= r_0 - r e^{i\phi} e^{i2\pi m/6} - r e^{-i\phi} e^{-i2\pi m/6}$$

$$= r_0 - 2r \cos(2\pi m/6 + \phi)$$

...eigensolutions for all possible C_6 symmetric complex H

$$\mathbf{H} = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad where: \ \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m) \quad \text{(Dispersion function)}$$

In this C-Type situation m-eigenstates are <u>required</u> to be <u>moving</u> waves $e^{ik_m \cdot x_p}$

Simulating Complex Systems With Simpler Ones

Discrete Rotor Waves
Bohr-Rotors Made of Quantum Dots

 $H_0 H_1 H_2 H_3 H_2 H_1$ $H_1 H_0 H_1 H_2 H_3 H_2$ $H_2 H_1 H_0 H_1 H_2 H_3$ $H_3 H_2 H_1 H_0 H_1 H_2$ $H_2 H_3 H_2 H_1 H_0 H_1$ $H_1 H_2 H_3 H_2 H_1 H_0$

Simulating Complex Systems With Simpler Ones

Discrete Rotor Waves Bohr-Rotors Made of Quantum Dots

Hexagonal becomes Octahedral

