Group Theory in Quantum Mechanics
Lecture 5 13117

Spectral Decomposition with Repeated Eigenvalues

(Quantum Theory for Computer Age - Ch. 3 of Unit 1 )
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 )

Review: matrix eigenstates (“ownstates) and ldempotent projectors (. in-deyencracy cas )

Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values )
(Preparing for:Degenerate eigenvalues )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular— Hamilton-Cayley— Minimal equations
Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: BZ( - ) and.: NZ( 0 0 )
Applications of Nilpotent operators later on

[ ...

Ildempotents and “Good degeneracy” example: GZ[ R
Secular equation by minor expansion o
Example of minimal equation projection

Orthonormalization of degenerate eigensolutions
Projection Pi-matrix anatomy (Gramian matrices)

Gram-Schmidt procedure fo) [, )

and:H= > |

. . 1 .
Orthonormalization of commuting eigensolutions. Examples: G { L

The old "1=1-1 trick"-Spectral decomposition by projector Spllttmg
Irreducible projectors and representations (Trace checks)

Minimal equation for projector P=P+

How symmetry groups become eigen-solvers
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»Reviews matrix eigenstates (“ownstates) and Idempotent projectors (i, -degencracy case)
Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values )




Unitary operators and matrices that change state vectors...
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In general, matrix H can make an ortho-complete set of ng if
and only if, the H minimal equation has no repeated factors.

Then and only then is matrix H fully diagonalizable.
\ J

"If (and only if) just one (/s =1) of each distinct factor is needed, then H is diagonalizable.

0= (—I)N(H — 811)1 (H — 521)1 (H — gpl)1 where: p=N

miy =N
)

n (M — gml)

€m¢£k

since this p-th degree equation spectrally decomposes H into p operators: P, = 1_[ (8 - )
k=~ ©m

EnZEEL

H= e/Pg, + e2Pg, +..+ 5pP5p that are orthonormal: ng Pe, = 0k Pg,

and complete: 1 =Pg, + P, +...+ ng
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Applications of Nilpotent operators later on
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.
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Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
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N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Such an operator is called a nilpotent operator or, simply a nilpotent.
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent.
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)
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Nilpotents and “Bad degeneracy”™ examples: B g 119 ) , and.: NZ( - )

Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

- mm mEEEmmomE o= om

0= (H — ell)iz.i(H — 821)1 ..., but: iNz(H — sll)l(H - 821)1 ,,,,,, = 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

(h 1)
B=Lo b )

-Trai(B) +|:iet|B|
Secular equation has two equal roots (¢=b twice): § (8) = g2 22be + b* = (s — b)2 =0
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.
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0= (H — 611)52.5(H — 821)1 ..., but: iNz(H — sll)l(H - 821)1 ,,,,,, = 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

B_ (b 1)

Iy 2 2 .

Secular equation has two equal roots (¢=b twice): § (8) =¢e" =2be+b" = (s — b) =0
0

This gives HC equation: ~ S(B)=B*-25B+5"1=(B - bl)2 =0 =

-Trai(B) +|:iet|B|
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

el e el vl |

0= (H — 611)52.5(H — 821)1 ..., but: iNz(H — sll)l(H - 821)1 ,,,,,, = 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

B_ (b 1)

Iy 2 2 .

Secular equation has two equal roots (¢=b twice): § (8) =¢e" =2be+b" = (s — b) =0
0

This gives HC equation: ~ S(B)=B*-25B+5"1=(B - bl)2 =0 =
This 1n turn gives a /
nilpotent eigen-projector: N =B -5l = L 8

-Trai(B) +|:iet|B|
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

el e el vl |

0= (H — 611)52.5(H — 821)1 ..., but: iNz(H — sll)l(H - 821)1 ,,,,,, = 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

B_ (b 1)

Iy 2 2 .

Secular equation has two equal roots (¢=b twice): § (8) =¢e" =2be+b" = (s — b) =0
0

This gives HC equation: ~ S(B)=B*-25B+5"1=(B - bl)2 =0 =
This 1n turn gives a / \
nilpotent eigen-projector: N =B -5l = 8 (1) )

...which satisfies: N2 =0 (but N 5 0) and: BN = 5N = NB

-Trai(B) +|:iet|B|
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.
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0= (H — 611)52.5(H — 821)1 ..., but: iNz(H — ell)l(H - 521)1 ,,,,,, = 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

B_ (b 1)

Iy 2 2 .

Secular equation has two equal roots (¢=b twice): § (8) =¢e" =2be+b" = (s — b) =0
0

This gives HC equation: ~ S(B)=B*-25B+5"1=(B - bl)2 =0 =
This 1n turn gives a

-Trai(B) +|:iet|B|
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nilpotent eigen-projector: N =B -5l = / 8 (1) )
..which satisfies: N* =0 (but N =0) and: BN = 5N = NB

(

This nilpotent N contains only one non-zero eigenket and one eigenbra. |5) = k (1) ) , (Y= ( 0 1 )
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

el e el vl |

0= (H — 611)52.5(H — 821)1 ..., but: iNz(H — ell)l(H - 521)1 ,,,,,, = 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

B_ (b 1)

Iy 2 2 .

Secular equation has two equal roots (¢=b twice): § (8) =¢e" =2be+b" = (s — b) =0
0

This gives HC equation: ~ S(B)=B*-25B+5"1=(B - bl)2 =0 =
This 1n turn gives a

-Trai(B) +|:iet|B|
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nilpotent eigen-projector: N =B -5l = / 8 (1) )
..which satisfies: N* =0 (but N =0) and: BN = 5N = NB

(

This nilpotent N contains only one non-zero eigenket and one eigenbra. |5) = k (1) ) , (Y= ( 0 1 )

These two have zero-norm! (<b‘ b> = ()
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Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

el e el vl |

0= (H — 611)52.5(H — 821)1 ..., but: iNz(H — ell)l(H - 521)1 ,,,,,, = 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-¢21)... factors

N2:(H _ 811)2 (H _ 821)2 ...... -0 cannot keep N? from being zero.)

Order-2 Nilpotent: Non-zero N whose square N is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

B_ (b 1)

Iy 2 2 .

Secular equation has two equal roots (¢=b twice): § (8) =¢e" =2be+b" = (s — b) =0
0

This gives HC equation: ~ S(B)=B*-25B+5"1=(B - bl)2 =0 =
This 1n turn gives a / \
nilpotent eigen-projector: N =B -5l = 8 (1) J

...which satisfies: N2 =0 (but N 5 0) and: BN = 5N = NB

-Trai(B) +|:iet|B|
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This nilpotent N contains only one non-zero eigenket and one eigenbra. |5) = ( (1) ) , (Y= ( 0 1 )

These two have zero-norm! (<b‘ b> =(0) The usual idempotent spectral resolution 1s no-go.
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Applications of Nilpotent operators later on é



As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N = |7)(2] is an example of an elementary operator eu, = |a)(b|



As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N =|7)(2] is an example of an elementary operator ew, = |a){b|

N and its partners comprise a 4-dimensional U(2) unit tensor operator space

U(Z) op-Space= {e]1=’1><1’, 612:‘]><2’, 62]:‘2><]’, 622=’2> <2‘ ¥
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They form an elementary matrix algebra e;; €wn = Ojk €in Of unit tensor operators.
The non-diagonal ones are non-diagonalizable nilpotent operators



As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N =|7)(2] is an example of an elementary operator ew, = |a){b|

N and its partners comprise a 4-dimensional U(2) unit tensor operator space

U(Z) op-Space= {e]1=’1><1’, 612:‘]><2’, 62]:‘2><]’, 622=’2> <2‘ ¥
(3 ) o3 4 (2 0 (0]

They form an elementary matrix algebra e;j exn = Ojk €im of unit tensor operators.
The non-diagonal ones are non-diagonalizable nilpotent operators

Their co-Dimensional cousins are the creation-destruction a;"a; operators.



-

eigen OWH

Diagonalizability criterion

Ildempotents and “Good degeneracy”’ example: GZ[ 1 1 : J

Secular equation by minor expansion
Example of minimal equation projection

P;

The old "1=1-1 trick"-

Ildempotent projectors

b 1)
0 b )

(
L



Idempotents and “Good degeneracy’ example: Gz{

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

G=

[0

0
0
1

0

O = O

0

O O =

1)

0
0
0

SEq:

S(s) = det‘G— €1| = det

—&
0
0
1

0
—£
1
0

1

1)

1 - -

0
1
—&
0

1

0

0
—£
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ldempotents and “Good degeneracy” example: GZ{E .

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) £ 0 0 1
e SEq:  S(¢)=det|G-c1|=detf © ¢ T O
0100 0 1 -&¢ 0
100 0 1 0 0 -e

e has a 4t degree Secular Equation (SEq)
e*— (C1x1 diag of ) €3 + (322x2 diag minors of G) €2 — (323x3 diag minors of G) €1 + (4x4 determinant of &)

el=()
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ldempotents and “Good degeneracy” example: GZ{E .

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) £ 0 0 1
e SEq:  S(¢)=det|G-c1|=detf © ¢ T O
0100 0 1 -&¢ 0
100 0 1 0 0 -e

e has a 4t degree Secular Equation (SEq)
g4 — (C1x1 diag of ) €3 + (322x2 diag minors of G) €2 — (33x3 diag minors of G) €1 + (4x4 determinant of &)
el=0 0

Trace of G=0
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Idempotents and “Good degeneracy’ example: G={

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) e 0 0 1
g=| VU 1Y SEq: S(8)=det‘G—81|=det O -e 10
0O 1 0 O 0O 1 -¢ O

1 0 0 O 1 0 0 -¢

e has a 4t degree Secular Equation (SEq)
e* — (X1x1 diag of G) €3 + (2x2 diag minors of G) €2 — (33x3 diag minors of G) €1 + (4x4 determinant of &)
€1=0 \/WO'\J )

M(12)=0
Trace of (G=0 (12)

0
0
M@13)=0  M(23)=-1

0

1

0

0 0 1
M4)=-1  MQ4)=0  M(34)=0

0 0
0 0

0 0

0

1
I 0

0
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An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) e 0 0 1
g-| V0 IO SEq:  S(¢)-det|G-¢l|=detf © "F 10
0100 0 1 —& 0

1 00 0 I 0 0 -¢

e has a 4t degree Secular Equation (SEq)
e* — (X1x1 diag of G) €3 + (2x2 diag minors of G) €2 — (33x3 diag minors of G) €1 + (4x4 determinant of &)
1— \/Y\J
el=( 0 i,
Trace of G=0 M(12)=0 M(123)=0 M(234)=0

0 00
0
1

o O

1
0

0
0
M@13)=0  M(23)=-1 M(124)=0

0 1 0 0
0 0

1

0 0

00 0|1 10
M(14)=-1  MQ24)=0  M@G4)=0 M(134)=0

0 0 0 0 1
0 0

0

0 0

0

1
I 0

0




Idempotents and “Good degeneracy’ example: G={

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

[0 0 0 1

0 010
0O 1 0 0
1 0 0 O

)

SEq:

S(e) = det‘G— £1| = det

e has a 4t degree Secular Equation (SEq)
e* — (X1x1 diag of G) €3 + (2x2 diag minors of G) €2 — (33x3 diag minors of G) €1 + (4x4 determinant of &)
—

Trace of (G=0

M(12)=0

0
0
M(13)=0

0

00 0
M(14) = -1

0

1
I 0

M(23)=-1

0

1

M(24) =

0

0

1

0
0

M(34)=0

0 0
0 0

M(123)

o O

0
1

0 0
0 0

1 0

0

M(124)=0

M(134)=0

=0
0 00

1
0

1
0

0

0 1

—&
0
0
1

M(234)=0

0
—&
1
0

1

1)

0
1
-
0

1

0

0
—&

+1
detG =

- (-1)

—_ O O
oS = O
o O =

0 1
1 0

= (=D)(=1)

=+1

- (=1)(1)




eigen OWH Ildempotent projectors

Diagonalizability criterion
(b 1)
Lo s )
Idempotents and “Good degeneracy’ example: GZ[ 1 1 | J
Secular equation by minor expansion
Example of minimal equation projection

P;

The old "1=1-1 trick"-



Idempotents and “Good degeneracy’ example: GZ{ﬁ 3

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) £ 0 0 1
e SEq:  S(¢)=det|G-c1|=detf © ¢ T O
0100 0 1 -&¢ 0
100 0 1 0 0 -e

e has a 4t degree Secular Equation (SEq) w1th repeat pairs of degenerate roots (e,=*1)
2
S(s)—O—e —2e% +1= (3 1) (s+1)
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An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) £ 0 0 1
e SEq:  S(¢)=det|G-c1|=detf © ¢ T O
0100 0 1 -&¢ 0
100 0 1 0 0 -e

e has a 4t degree Secular Equation (SEq) w1th repeat pairs of degenerate roots (e,=*1)
2
S(s)—O—e —2e% +1= (3 1) (s+1)
G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(¢) — S(G)
2 2
S(G)=0=G*-2G?+1=(G-1) (G +1}



Idempotents and “Good degeneracy’ example: GZ{ﬁ 3

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) e 0 0 1
G-| VO 1O SEq:  S(¢)=det|G-c1|=detf © ¢ T O
01 0 0 0 1 -& 0
100 0 1 0 0 -¢

e has a 4t degree Secular Equation (SEq) w1th repeat pairs of degenerate roots (e,=*1)
2
S(e)—O—e —2e% +1= (5 1) (3+1)
G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2
S(G)=0=G*-2G?+1=(G-1) (G +1}
Yet G satisfies Minimal Equation (MinEq) of only 2" degree with no repeats.
0=(G-1)(G+1)



Idempotents and “Good degeneracy’ example: GZ{ﬁ 3

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) e 0 0 1
G-| VO 1O SEq:  S(¢)=det|G-c1|=detf © ¢ T O
01 0 0 0 1 -& 0
100 0 1 0 0 -¢

e has a 4t degree Secular Equation (SEq) w1th repeat palrs of degenerate roots (e,=*1)
S(e)—O—e —2e% +1= (e 1) (3+1)
G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(¢) — S(G)
$(G)=0=G*-2G?+1=(G-1)*(G+1)’
Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!
0=(G-1)(G+1) [[(M-¢,1)
P o
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Idempotents and “Good degeneracy’ example: GZ{ﬁ 3

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) e 0 0 1
G-| VO 1O SEq:  S(¢)=det|G-c1|=detf © ¢ T O
01 0 0 0 1 -& 0
100 0 1 0 0 -¢

e has a 4t degree Secular Equation (SEq) w1th repeat palrs of degenerate roots (e,=*1)
S(e)—O—e —2e% +1= ( —1) (3+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
$(G)=0=G*-2G?+1=(G-1)*(G+1)’

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!

0=(G-1)(G+1) [[(M-¢,1)
Two ortho-complete projection operators are derived by Projection formula: P, = g”ﬁ (8 2 )
-
(100 1) (1 0 0 -1)
G=G—(—1)1=1 0110 PG_G—(I)I_l 0 1 -1 0
+l +1—(—1) 21 0 1 1 0O —1__1_i1i_2 0 -1 1 0
001 -1 0 0 1




Idempotents and “Good degeneracy’ example: GZ{ﬁ 3

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) e 0 0 1
G-| VO 1O SEq:  S(¢)=det|G-c1|=detf © ¢ T O
01 0 0 0 1 -& 0
100 0 1 0 0 -¢

e has a 4t degree Secular Equation (SEq) w1th repeat palrs of degenerate roots (e,=*1)
S(e)—O—e —2e% +1= ( —1) (3+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
$(G)=0=G*-2G?+1=(G-1)*(G+1)’

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!

0=(G-1)(G+1) [[(M-¢,1)
Two ortho-complete projection operators are derived by Projection formula: P, = g”ﬁ (8 2 )
-
(100 1) (1 0 0 -1)
G=G—(—1)1=1 0110 PG_G—(I)I_l 0 1 -1 0
+l +1—(—1) 21 0 1 1 0O —1__1_i1i_2 0 -1 1 0
; 0 0 1 20 01
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|
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Idempotents and “Good degeneracy’ example: GZ{ﬁ 3

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) e 0 0 1
G-| VO 1O SEq:  S(¢)=det|G-c1|=detf © ¢ T O
01 0 0 0 1 -& 0
100 0 1 0 0 -¢

e has a 4t degree Secular Equation (SEq) w1th repeat palrs of degenerate roots (e,=*1)
S(e)—O—e —2e% +1= ( —1) (3+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
$(G)=0=G*-2G?+1=(G-1)*(G+1)’

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!

0=(G-1)(G+1) [[(M-¢,1)
Two ortho-complete projection operators are derived by Projection formula: P, = g”ﬁ (8 2 )
-
(100 1) (1 0 0 -1)
G=G—(—1)1=1 0110 PG_G—(I)I_l 0 1 -1 0
+l +1—(—1) 21 0 1 1 0O —1__1_i1i_2 0 -1 1 0
; 0 0 1 -1 0 0 1

Each of. these prOJectors ‘contains two hnearly 1ndependent ket or' bra vectors:

( o \ These 4 are more than

linearly independent...
...they are orthogonal.

)
“12>_‘_12)_ 1

V2 2

—1
0

‘_11) 1
“11>= \/5 _\/5{ 8




An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) -¢ 0 0 1
g=| 0V 0 1O SEq: S(8)=det‘G—€1|=det O —e 10
O 1 0 O 0 Il -¢ 0

1 0 0 O 1 0O 0 -e¢

e has a 4t degree Secular Equation (SEq) w1th repeat pairs of degenerate roots (e,=*1)
2

S(e)—O—e —2e% +1= (e 1) (3+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2

S(G)=0=G*-2G?+1=(G-1) (G +1}

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!
0=(G-1(G+1) [[(M-¢,1)
Two ortho-complete projection operators are derived by Projection formula: P, ==

(100 1) (1 0 0 -1)
¢ G-(-11 1] 0 1 1 0 ¢ G=(1)t 1| o 1 -1 o
e (-1) 200 1 1 0 P-1=_1-{1j=5 0 -1 1 0

; 0 0 1 10 0 I

. 0 hase.d are more than
Bra-Ket repeats may need to be made orthogonal. Two methods shown next: independent...

1: Gram-Schmidt orthogonalization (harder)  2: Commuting projectors (easier) Lo .1 gonal




Orthonormalization of degenerate eigensolutions
Projection Pi-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure

The old "1=1-1 trick"-

P=p-

/T

o O

O =

~————



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-1 vector (j;| is already orthogonal to row-2 vector [j2):  (ji]j2) = 0




Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row- ] Vector (1| is already orthogonal to row-2 vector |j2):  (ji|j2) =



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row- ] Vector (1| is already orthogonal to row-2 vector |j2):  (ji|j2) =

(Pf) - (Pf)

(......\/...kl..\(......\

b, b, b, b, b, b, ok |.

X
w

Sen

‘e
o



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row- ] Vector (1| is already orthogonal to row-2 vector |j2):  (ji|j2) =

(Pj)

.| Ok)|.




Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row- ] Vector (1| is already orthogonal to row-2 vector |j2):  (ji|j2) =

(Pf) - (Pf)

.| Ok)|.

/

N34=ba=ks= (j3|js) = (blk)=bek =

b ]k )i +b 2k2+b 3k 3+b4k4+b 5k 5+b5k6



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-1 vector (j;| is already orthogonal to row-2 vector [j2):  (ji]j2) = 0

()

—_—

S

N—
I

ksl .. .. L 0]

j)34 =by=kz= (ij’ ‘ ]4) = (b‘k) =bek = biki+brkr+b3kz+biks+bsks+bsks

©6lk)

/ (11k) % \ / \
Qlk) | L
Gy GR) OB G4 G5 G6) | \(3Ik) § _ (blk) Quasi-Dirac notation
Dra row p=3rd 4lk) ,§ shows vector relations
Gk | S
3



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row- ] Vector (j1| is already orthogonal to row-2 vector |j2):  (ji|j2) =

(Pj)

—_—

S

N—
I

[ Vo \
b, b, _ Aok |
(b|k) =bek = biki+boko+bs3ks+biks+bsks+bsks
/ (11k) % \ / \
Qlk) | L
Gy GR) OB G4 G5 G6) | \(3Ik) § _ (blk) Quasi-Dirac notation
bra row p=3rd (41k) Ng shows vector relations
Gk | S
(61k) E

Diagonal matrix elements (Pj)i = rowk-columng-e-product (ji|jx)= (k|k) is k#-norm value (usually real)
/ \( by | (k) \ RN C
@lb) | @2lk) S I

Gl G2y GB) G4 G5 6l6) @b | (k) by 0k
k) (2) KI3) k4 k5 K6) | @) | @) ]
slb) | Gk L

©lb) | 61k




Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row- ] Vector (j1| is already orthogonal to row-2 vector |j2):  (ji|j2) =

(Pf) - (Pf)

[ Vo \
b, b, _ Aok |
(b|k) =bek = biki+boko+bs3ks+biks+bsks+bsks
/ (11k) % \ / \
Qlk) | L
Gy GR) OB G4 G5 G6) | \(3Ik) § _ (blk) Quasi-Dirac notation
bra row p=3rd (41k) Ng shows vector relations
Gk | S
(61k) E

Diagonal matrix elements (Pj)i = rowk-columng-e-product (ji|jx)= (k|k) is k#-norm value (usually real)

( V! by | (k) I R
@) | @ik [l |0 | kn normalized vectors
Gl GR2) 13 G4) G5 Gl6) | @3lb) | (3lk) | el ] ket= |ji)=j)V(k|k)
K (k2) (K13) (k14) (I5) (kI6) @lb) | (@lk) RN R g
GIb) | (5lk) R I e bm:</k|:(lkw(k’k)
6Ib) | 6lk) S N I s0: (Jijx)=1




eigen OWH Ildempotent projectors

Diagonalizability criterion

—
o O
O =
~—

Orthonormalization of degenerate eigensolutions
Projection Pi-matrix anatomy (Gramian matrices)

» Gram-Schmidt procedure [

The old "1=1-1 trick"-



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-1 vector (j;| is already orthogonal to row-2 vector [j2):  (ji]j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector [j2) with a vector |j2)=|j4/) normal to (j;| ?



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector [j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= N2(j:|j;)*+ N1 N2[(1|j2)+ G2lj) ]+ N22(j2|j2)



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector [j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= N2(j:|j;)*+ N1 N2[(1|j2)+ G2lj) ]+ N22(j2|j2)

Solve these by substituting: =- N2(j11j2)/(11j1)
to give: 1 N2 (jilj2)?/Giiljir) - N22[Giliz)+ G2lin1Ginliz)/Ginlin) + N22(jz|j2)
1/N2? = (ja|j2) + Gy G+A- - GG - G2linGiliz)/ Gl
1/N22= (ja|j2) - Golj)Gilj2)/Galjin)




Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector [j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= Ni2(j;|ji)+ N1 N2[(:[j2)+ (2l1) ]+ N22(j2|)2)

Solve these by substituting: =- N2(j11j2)/(11j1)
to give: 1 N2 (jilj2)?/Giiljir) - N22[Giliz)+ G2lin1Ginliz)/Ginlin) + N22(jz|j2)
/N2 = (j2|j2) + G G+A- - GG - G2linGiliz)/Giljn)
VN2 = (jo|j2) - G2ljnGilj2)/Giljr)

So the new orthonormal pair is: )= i)
1

JGili)

. . | N,Gil i), . .
2 =N1 1 Nz )= = 1. 1 Nz 2
7o) =N|j)+N,|j) Glio i)+ N, 7))
[ . (]1|]2) N 1 (. (]1‘]2
_Nz )T T . 1 = L. 1. ) 1
UJ) (JI\J1)|])) G |j)_(12|11)(Jl|Jz)L|]) (il Jj )| ))
V227G



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector [j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= Ni2(j;|ji)+ N1 N2[(:[j2)+ (2l1) ]+ N22(j2|)2)

Solve these by substituting: =- N2(j11j2)/(11j1)
to give: 1 N2 (jilj2)?/Giiljir) - N22[Giliz)+ G2lin1Ginliz)/Ginlin) + N22(jz|j2)
/N2 = (j2|j2) + G G+A- - GG - G2linGiliz)/Giljn)
VN2 = (jo|j2) - G2ljnGilj2)/Giljr)

So the new orthonormal pair is: )= i)
1

JGili)

. . | N,Gil i), . .
2 =N1 1 Nz )= = 1. 1 Nz 2
7o) =N|j)+N,|j) Glio i)+ N, 7))
[ . (]1|]2) N 1 (. (]1‘]2
_Nz )T T . 1 = L. 1. ) 1
UJ) (JI\J1)|])) G |j)_(12|11)(Jl|Jz)L|]) (il Jj )| ))
V227G

OK. That’s for 2 vectors. Like to try for 37



Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector [j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= Ni2(j;|ji)+ N1 N2[(:[j2)+ (2l1) ]+ N22(j2|)2)

Solve these by substituting: =- N2(j11j2)/(11j1)
to give: 1 N2 (jilj2)?/Giiljir) - N22[Giliz)+ G2lin1Ginliz)/Ginlin) + N22(jz|j2)
/N2 = (j2|j2) + G G+A- - GG - G2linGiliz)/Giljn)
VN2 = (jo|j2) - G2ljnGilj2)/Giljr)

So the new orthonormal pair is: )= i)
1

JGili)

. . | N,Gil i), . .
2 =N1 1 Nz )= = 1. 1 Nz 2
7o) =N|j)+N,|j) Glio i)+ N, 7))
[ . (]1|]2) N 1 (. (]1‘]2
_Nz )T T . 1 = L. 1. ) 1
UJ) (JI\J1)|])) G |j)_(Jz|J1)(]1|]2)U]) (il Jj )| ))
V227G

OK. That’s for 2 vectors. Like to try for 37
Instead, let’ try another way to “orthogonalize’ that might be more elegante.
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Irreducible projectors and representations (Trace checks)
Minimal equation for projector P=P?

How symmetry groups become eigen-solvers



Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

(100 1) (1 0 0 -1)
G=G-(—1)1=1 01 1 0 o G-(U1 1] o 1 -1 o
Tl-(-1) 2l 0 1 10 TS T2 0 o110

______ Pootrs I O B I

( I\




Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

(100 1) (1 0 0 -1)
G=G-(—1)1=1 01 1 0 o G-(U1 1] o 1 -1 o
+l +1—(—1) 210 1 10 —1=_1_i1i=§ 0 -1 1 0

I 001 -1 0 0 1
(1) [ 0) (1) 0 )
1>=11)=1[ 0 1>=12)_1t 1J ‘ 1> ‘ 11)_ 1 0 ‘_1>=_12)= 1 1 J
Vol o] T 2 Vool 2| o o 2| -
1 0 -1 0

Dirac notation for G-splitéwmpleteness relaétion using eigenvectors is the following:

1=P1G+P—G1 = ‘11><11‘ + ‘12><12‘ + “11><‘11‘ + “12><‘12‘




Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we gor a lucky orthogonality)

(100 1) (1 0 0 -1)
G=G-(—1)1=1 01 1 0 o G-(U1 1] o 1 -1 o
+l +1—(—1) 210 1 10 —1=_1_i1i=5 0 -1 1 0

1001 -1 0 0 1

(1) ([ 0) (1) 0 )
1>=11)=1[ 0 1>=12)=1t 1J IR B 3N TN ) B J
Vol 2o " 2 Yoo 2| o AN RN S
1 0 -1 0

Dirac notation for G-splitéwmpleteness relaétion using eigenvectors is the following:

1=P7+P5 = |1,)(1] + 1,)(L, + -1)(-1, + -1,)(-1,
- P I ¥ P, ¥ P*Tl{ ¥ ?jlz
Each of the original G p}"&)jectors are spligx'in two parts with one keflbrg in each.
(1 001)Y (0070 0) (1 00 -1) (0 0" 0 0)
G 1loo0oo0o0] 1l 01 1 0 G _ 1o o0 o0 |,1]0 1 -10
PP 0000|201 10| TTTRT2l 0 0 0 o J+2l 0 -1 1 OJ
1 0 0 1 000 0 -1 0 0 1 0 0 0 O
= ]+ 11,)(1,] = SL |=1,)(-1,]




Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we gor a lucky orthogonality)

(100 1) (1 0 0 -1)
G=G-(—1)1=1 01 1 0 o G-(U1 1] o 1 -1 o
+l +1—(—1) 210 1 10 —1=_1_i1i=5 0O -1 1 0

100 1 -1 0 0 1

(1) ([ 0) (1) 0 )
1>=11)=1[ 0 1>=12)=1t 1J IR B 3N TN ) B J
Voo 2l o T 2 Yoo 2| o SN C I Y
1 0 -1 0

Dirac notation for G-splitéwmpleteness relaétion using eigenvectors is the following:

1=P1G+P—G1 = ‘11><11‘ + ‘12><12‘ + “11><‘11‘ + “12><‘12‘

= P1 + P1 + P | + P
| ) =4 .

Each of the original G projectors are splitin two parts with one keflbrg in each.

(100 1) (0070 0) (1 00 <1) (0 0°0 0)

G 1loo0oo0o0] 1l 01 1 0 G _ 1o o0 o0 |,1]0 1 -10
Pr=h+h, =3 000020110 et =gl 0 0 0 0 J+2l 0 -1 1 oJ
1 0 0 1 000 0 -1 0 0 1 0 0 0 0

= |11><11| + |12><12| = ’_11><_11‘ + “12><‘12’

There are co-ly many ways to split G projectors. Now we let another operator H do the final splitting.




Urthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
[« - - 1) (- - 2 )
2 . .

the G= 1 b J from before, and new operator H=




Urthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
[« - - 1) (- - 2 )

the G= from before, and new operator H=

(First, 1t 1s important to verify that they do, in fact, commute.)

[ -« -1 2 ) Y [ -2

\( o

)
GH = - - - HG

b OO O

S O N O
S O O N
S NN OO

7 .
-2



Urthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
[« - - 1) (- - 2 )

Problem: ! *~ ~ - , S
Find an ortho-complete projector set that spectrally resolves both G and H.

the G= from before, and new operator H=




Urthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
[« - - 1) (- - 2 )

Problem: ! *~ ~ - , S
Find an ortho-complete projector set that spectrally resolves both G and H.

Previous completeness for G:

the G= from before, and new operator H=

1= PC + PS
(100 1) (1 0 0 —-1)
ot tro| o 1 -10
200 1 1.0 2] 0 -1 1 0
1 0 0 1 -1 0 0 1




Urthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
[« - - 1) (- - 2 )

Problem: ! *~ ~ - , S
Find an ortho-complete projector set that spectrally resolves both G and H.

Previous completeness for G:

the G= from before, and new operator H=

1= P& ¥ P¢ 1= | + P
(100 1) (1 0 0 -1) (101 0) (1 0
ot oo 10 ot oo |, 1o
2001 10| 2l 0 -1 1 0 20101 0| 2/ -1 0
10 0 1 -1 0 0 1 0 1 0 1 0 -1

s G-(-1)f . G-(1)1

(Left as an exercise)

Current completeness for H:

-1




P;

[« - 1) 2

(
Orthonormalization of commuting eigensolutions. Examples: Gzl | and: H=[ ) ?J

The old "1=1-1 trick"-Spectral decomposition by projector sp i}ting
Irreducible projectors and representations (Trace checks)

Minimal equation for projector P=P?

How symmetry groups become eigen-solvers



Urthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
[« - - 1) (- - 2 )

Problem: ! *~ ~ - , '2
Find an ortho-complete projector set that spectrally resolves both G and H.

Previous completeness for G:

the G= from before, and new operator H=

Current completeness for H:

1= P& ¥ P¢ 1= | + P
(10 0 1) 1 0 0 —1) (101 0) 1 0 -1
ot oo 10 _oroon | 1o 10
2l 0110 2l 0 =1 1 o 21101 0 2] =1 0 1
1 0 0 1 -1 0 0 1 01 0 1 0 -1 0

Solutio

h:

The old "1=1-1 trick"-Spectral decomposition by projector splitting

Multiplying G and H completeness relations
1=1-1 =(Pf; +P_G1)(

H
l)+2

H GpH GpH GpH GpH
+ P_z) =1= (P+1P+2 +P P, +PP,+P P

(Left as an exercise)

0 )
-1




Urthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
[ . . . 1) [ . . 2 .

the G=| = ~ ! * | from before, and new operator H=| =~ =~ =~
Problem: ! | ’
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pﬁ + P_Ci 1= Pg + P_H2 (Left as an exercise)
(100 1) [ 1 0 0 -1) (1 010) (1 0 -1 0)
o1t rof o 1 -1 0 oo o 1 0 -
210 1 10 20 -1 1 0 21010 2 -1 0 1 0
. 1 0 0 1 -1 0 0 1 0O I 0 1 0O -1 0 1
Solutloh:

The old "1=1-1 trick"-Spectral decomposition by projector splitting
Multiplying G and H completeness relations gives a set of projectors

— G G H H GpH GpH GpH GpH
1=1-1- (P+1 +PS )(P+2 ¥ P_z) -1- (P+1P+2 + PSP L pCPH 4 P_IP_z) /

GH _ pGpH _
l)+1,+2 = 1)+1P+2 -

(111 1)

A=
p— e
O N =Y
p— ek
p— ek e



Urthonormalization of commuifing eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

[ . . . 1) [ . . 2 .
the G= 1 I'“|' from before, and new operator H= . 2
Problem: ' ’
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pﬁ + P_Ci 1= Pg + P_H2 (Left as an exercise)
(100 1) (1 0 0 -1) (10 1 0) (1 0 -1 0)
ot o o1 -0 oot oo f o1 0 -
2000:1 1 0 20 -1 1 0 21010 2 -1 0 1 0
0 0 1 -1 0 0 17 01 0 1 0 -1 0 1
Solutloh -

The OIq’ "1=1.1 trick" Speal;ra[ decomposztzon by projector splitting
Multlplymg G and-H completeness relations gives a set of projectors

G pG\(pH G G G G
1=1-1- (P + P )(P + P! ) 1- (P+1P+2+P+1P_2+P_1P+2+P_1P_2) /
V L4

b
GH _ pGpH _
l)+1 +2 = 1)+1P+2 -



Urthonormalization of commuifing eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

[« - - 1) (- - 2 )
the G=| = ~ ! * | from before, and new operator H=| =~ =~ =~
Problem: ! *~ ~ - , -
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pﬁ + P_Ci 1= Pg + P_H2 (Left as an exercise)
(100 1) (1 0 0 -1) (101 0V (T 0 -1 0)
_Hforr o, o1 o-10 oo b0 10 -
2001 10| 2 0 -1 1 0 2070 1 0| 2/ -1 0 1 0
L1001 -1 0 0 1} .7 0O I 0 1 0O -1 0 1
Solutloh:: .......

-

The old "1=1-1 trick"-Speciral decorposition by projecior splitiing
Multiplying G and H comipleteness relations gives a set of projectors

—“
-

v
_ G oG\oH i GoH  pGpH . 5GpH  pGpH
1=1-1= (Pn T-?=L)(P+z + P—z)\= 1= (P+1P+2 +P P+ PP+ P—1P—2) /

-~
- ~
-~
- .~~

GH _ pGpH _ GH _ —
l)+1,+2 = 1)+1P+2 - l)+1,—2 = 1)+1P -

(

1
4

ke
O N i Sy WY
ke e



Urthonormalization of commuifing eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

[ . . . 1) [ . . 2 .
the G=| = ~ ! * | from before, and new operator H=| =~ =~ =~
Problem! ' = " ° | '2
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pﬁ + P_Ci 1= Pg + P_H2 (Left as an exercise)
(100 1) (1 %9 0 -1) (10 1 0)Y [ 1 0 -1 0)
oo, b o 1v-1 0 ot o o o1 o0 -l
21011 0] 20 0 -1 0 21101 0| 2 -1 0 1 0
L1001 -1 0 0% 1 S0 10 1 0 -1 0 1
Solutloh: :

The old "1=1-1 trick"-Spectral decé‘n?position by p"rojector splitting
Multiplying G and H completeness telations gives a set of projectors

_ G, pG\pH , pH GpH , pGpH , pGpH i pH
1=1-1-= (1>+1 +PS )(P+2 ¥ P_z) -1- (P+1P+2 +PLPY + POPE + I;ﬁP_z) /

Lo
GH _ pGpH _ GH _ pGpH _ GH _3GH _
l)+1,+2 = P+1P+2 - P+1,—2 = l)+1P—2 - 1)—1,+2 = P—IP+2 -

( Yo (1 -1 -1 1) (1 -1 1 -1)

11 -1 1 1 -1 Il -1 1 -1 1
41 -1 1 1 -1 49 1 -1 1 -1
1 -1 -1 1 -1 1 -1 1

1
4

—_
N T S
—_—
—



Urthonormalization of commuifing eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

[ . . . 1) [ . . 2 .
the G=| 1 I'“|' from before, and new operator H= o 2
Problem: ' = * -
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pﬁ + P_Ci 1= Pg + P_H2 (Left as an exercise)
(100 1) [ 1 0%0 -1) (101 0) (175 -1 0)
_otr o, 1o 1 -0 _oro | o1 0 -
210 1 10 20 -1 1 0 21010 2 =1 0 1 0
100 1 -1 0 0 1 0 1 0 1 0 -1 0 1
Solutloh ,

The old "1=1-1 trick"-Spectral decomposztlon by pm]ector Spllttmg
Multiplying G and H completeness relations gives.a set of prOJectors

1= 11_(Pﬁ+P§)(P+2+P_2) 1= (PGP T e L ) S . ) /

¥

“A
GH GpH GH GpH GH GpH _ GH GpH _
Pio=P P, = P =P P, = P =P P, P, =P P,
( V(1 -1 -1 1) (1 -11 1) (1 1 -1 -1)

-1 1 1 -1] 1} -1 1 -1 1 1 1 -1 -1

1
49 -1 1 1 -1 49 1 -1 1 -1 41 -1 -1 1 1
I -1 -1 1 -1 1 -1 1 -1 -1 1 1

1
4

—_
—_—
—_—
—_—



Urthonormalization of commuifing eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

the G=

Problem !

[

1

1

1

)

from before, and new operator H=

[

2

2

2 )
2

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:

1=
(

_1
2

Solutioh:

—_— 0 O

G
1)+1

S = = O

S == O

—_— 0 O

+

)

1

0

0
—1

G
P
0
1
—1
0

0
-1
1
0

-1 )
0
0
1

Current completeness for H:
1=

N | —

1
0
1
0

H
l)+2

_— O = O

S = O

+

o) [

1 |
0 2
1

The old "1=1-1 trick"-Spectral decomposition by projector splitting

Multiplying G and H completeness relations gives a set of projectors and ei%in—relations for both:
1=1-1 =(Pﬁ +P§)(Pg +P_I§)=1 =(Pﬁpg +

GH
l)+ 1,+2

(

1
4

ke
ke ek

O N i Sy Y

_pGpH _
=1)+1P+2_

)

ke

(

1
4

GH _ pGpH _
P+1,—2 = l)+1P—2 -

1

1

1
1

-1

-1

-1
1
1

—1

1)
-1
-1

1

pCépH

+17 -2

GH _ pGpH _
l)—1,+2 =P P+2 -

1

(1
1 -1 1

41 1
-1 1

GpH GpH
+PCPY 4 P_lP_z) /

GH _ pGpH _
P ,=PP,=

|
-1
-1

1
1
-1
—1

1 -1 W

-1 -1
1 1
1 1

P_H2 (Left as an exercise)
1 0 -1 0 )
o 1 0 -1
-1 0 1 O
o -1 0 1

7

)
GH GpH
GP)' = GPOP,)' =

GpGH
8g Pg,h

GH GpH G H HpGH
HPY)! = HPOP! = POHP)! = P

)




Urthonormalization of commuifing eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

(- - 1) (. . 2 )
the G= 1 . from before, and new operator H= . z
Problem: ' ’
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pﬁ + P_Ci 1= Pg + P_H2 (Left as an exercise)
(1 001) (1 0 0 -1) (1 010) (1 0 -1 0)
o1t rof o 1 -1 0 oo o 1 0 -
210 1 10 20 -1 1 0 21010 2 -1 0 1 0
. 1 0 1 -1 0 0 1 0O I 0 1 0O -1 0 1
Solutloh:

The old "1=1-1 trick"-Spectral decomposition by projector splitting
Multiplying G and H completeness relations gives a set of projectors and ei%in—relations for both:

1=1-1=(Pﬁ+Pﬁ)(Pg +P_I§)=1=(Pﬁpg +PﬁP_‘§+PﬁPg+P§Pg) / ((GPGH—GPGPH _GpGH )
B g g
LeRPie RLeRGPIeLerle RO | o pogpn o
(11 11) (1 =1 =1 1) (1 =11 =1V (1 1 -1 -1\ =)
o1t bt 1 =1 =11 =1 1| 11 1 -1 -1
411 11| 4 -1 1 1 -1 41 =11 1] 4 -1 -1 1 1
1111 1 -1 -1 1 -1 1 -1 1 -1 -1 11

...and a the same P, projectors spectrally resolve both G and H.
(G (+1)P 1 +(+1)PGH2 +(=1)PG1, +( PGHZ) (H (+2)P5, +(=2) PG, + (+2) PG, +(-2) PG,




P;

[« - 1) 2
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Orthonormalization of commuting eigensolutions. Examples: Gzl | and: H=[ ) ?J
The old "1=1-1 trick"-Spectral decomposition by projector sp l}tzng o

Irreducible projectors and representations (Trace checks)

Minimal equation for projector P=P?

How symmetry groups become eigen-solvers



Irreducible projectors and representations (Trace checks)

Another Problem:How do you tell when a Projector Py or Py, is “splittable’ (Correct term is reducible.)

...and a the same P, projectors spectrally resolve both G and H.
(G (+1)P 142 +(+1)P+GL}I2 +(—1)PG1 W + PGHD (H +2 P 142 +( Z)PGH2 +(+2)PG1 0 +( 2)PG1H2




Irreducible projectors and representations (Trace checks)

PGH

Another Problem:How do you tell when a ProjectoP, orPy";)' is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace = sum of its diagonal elements.

...and a the same P, projectors spectrally resolve both G and H.
(G (+1)P 142 +(+1)P+GL}I2 +(—1)PG1 W + PGHD (H +2 P 142 +( Z)PGH2 +(+2)PG1 0 +( 2)PG1H2




Irreducible projectors and representations (Trace checks)

Another Probleidow do you tell when a Projector PG or PGH 1s ‘splittable’ (Correct term is reducible.)
Solution: It’s all in the matrix Trace = sum of its diagonal elements
+1

G GH
P=P 1+2+P+1 -2
1= P¢ 4 P¢ 1= P + P
; :
GH GpH GH GpH
Pho=PiP,= Ph=PP,=
(111 1) (1 -1 -1 1)
1111 1 .11 1 -1
4111 1| 4 -1 1 1 -1
1111 1 -1 -1 1
...and a the same P, projectors spectrally resolve both G and H
GH GH
(G (+1)P 142 +(+1)P 5 +( I)P 142 +

PGHz) CH +2 1+2+( 2)PGH2+(+2)PG1+2+( 2)

GH
P12




Irreducible projectors and representations (Trace checks)

Another Probleliiow do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace = sum of its diagonal elements.

__'!'_r_g_c__e___yG )=2 so that projector is reducible to 2 irreducible projectors. (In this case: PG Pff_{ 4+ poH
Trace___PGH )=1 so that projector 1s irreducible.
1= P& ¥ P¢ 1= | + P
O e
(111 1) (1 -1 -1 1)
1111 1 .11 1 -1
41111 4 -1 1 1 -1
1111 1 -1 -1 1
...and a the same P, projectors spectrally resolve both G and H.
Gi GH GH GH GH GH
(G= (+1)P1+2+(+1)P La(-y)PSE +(-1)PSE ) (= (w2) Pl +(2) PO, +(+2) PG, + (-2) PO,




Irreducible projectors and representations (Trace checks)

Another Probleliiow do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace = sum of its diagonal elements.
Trace ( PG ) 2 so that prOJector 1S reduczble to 2 irreducible projectors. (In this case: p& = p&'

ol +1+

.....................

§1= Pﬁ + PS 1= P + P
_____ GH GpH GH GppH
P+1+2 PP, = P ,=P P, =
(1 111) /1-1-11\
11111 1 .11 1 -1
401111 4 =1 1 1 =1
1111

...and a the same P, projectors spectrally resolve both G and H.

PGH

(G (+1)P 1+2+(+1)1>GH2+( I)PG +2+ PGHz) (H +2 p 1+2+( 2)PGH2+(+2)PGH2+

-2)

GH
P12




P;

(- - 1) 2 )

(

Orthonormalization of commuting eigensolutions. Examples: Gzl | and: H=[ ) ?J
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Irreducible projectors and representations (Trace checks)

» Minimal equation for projector P=P?
How symmetry groups become eigen-solvers



Irreducible projectors and representations (Irace checks)

Another Probleliiow do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace:

Trace PG )=2 so that projector is reducible to 2 irreducible projectors. (In this case: PG _ Pﬁ‘_{ pﬁf
Trace ( pGH )=1 so that projector 1s irreducible.

Trace 1) 4 so that 1s reducible to 4 irreducible projectors.

f p
Minimal equation for an idempotent projector is: P?=P or: P>-P = (P-0-1)(P-1-1) =0
So projector eigenvalues are limited to repeated 0’s and /’s. Trace counts the latter.

- J
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Orthonormalization of commuting eigensolutions. Examples: Gzl | and: H=[ ) ?J
The old "1=1-1 trick"-Spectral decomposition by projector sp l}tzng o

Irreducible projectors and representations (Trace checks)

Minimal equation for projector P=P?

How symmetry groups become eigen-solvers
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How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator K and knew that K commutes
with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'KG=K or GKG'=K (Here assuming unitary
KH=HK or H'/KH=K or HKH'=K G'=G and H=H)
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with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'KG=K or GKG'=K (Here assuming unitary
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This means K is invariant to the transformation by G and H
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How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator K and knew that K commutes
with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'KG=K or GKG'=K (Here assuming unitary
KH=HK or H'/KH=K or HKH'=K G'=G and H=H)

This means K is invariant to the transformation by G and H
and all their products GH, GH?2, G2H.,.. etc. and all their inverses G,HT,.. etc.

The group gk —{1, G, H,.. }so formed by such operators is called a symmetry group for K.

In certain ideal cases a K-matrix (K) is a linear combination of matrices (1),(G),(H),... from k.
Then spectral resolution of {(1),(G),(H),.. } also resolves (K).

We will study i1deal cases first. More general cases are built from these.






Matrix products and eigensolutions for active analyzers

Consider a 45° tilted (0 7=p1/2=m/4 or B ]=90°) analyzer followed by a untilted (f2=0) analyzer.
Active analyzers have both paths open and a phase shift e-i£2 between each path.
Here the first analyzer has Q2 7=90°. The second has Q2=180°.

YouT) il otz 0], 'PIN)
Pn=ly)
. /’{;ﬁf i r
£ .E I_:E!I I
Hﬁ\,ﬁ d

W ' 3 : 20 =
TR SECIN BN ﬂ
The transfer matrix for each analyzer is a sum of projection operators for each open path
multiplied by the phase factor that is active at that path. Apply phase factor e-i£21 =e-i7t/2 to

top path in the first analyzer and the factor e-i€22 =e-IT to the top path in the second analyzer.

(1Y (0 <) [ oa-i —1-i )
—im (e_i” ) - ' ' ' ' — i 2 2 2 2
L N B L Bt R | I
2 2 2 2 2 2

The matrix product T(total)=T(2)T(1) relates input states [¥'IN) to output states: (Y OQUT) =T(total)\¥'IN)
[ 1-i —1-=i ) [ —1+i 1+i ) (-1 & ) [ -1 )

V2 2| |2 ﬁ

—i 1 -

2 2 J_J_

We drop the overall phase e-i7t/4 since we can re-attach it later. T(total) yields two eigenvalues and projectors.

(a0 T )
o)< 1{2) (1) ¢ {_12_,- K B I

2 2 2 2

i
7+1 -
2 2
: - (a2 i) (a2 =i )
A —0)\.—‘1=0,0.r:)\,:+1, -1 » \/5 \/5 L —i 1+\/5J » L i _1+\/§J
, gives projectors = 1_(_1) = N S 2

o35 BP0t | [(Woup eaben JB e, lete be VB e | AP
=[+1) '=]+1>

0 [ ] M



