Group Theory in Quantum Mechanics Lecture 5 (1.27.15)

Spectral Decomposition with Repeated Eigenvalues

(Quantum Theory for Computer Age - Ch. 3 of Unit 1) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1)

Review: matrix eigenstates ("ownstates) and Idempotent projectors (Syan-deyeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values)
(Preparing for: Degenerate eigenvalues)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{l}1 \\ 1\end{array} 1\right.$.
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $\mathbf{G}=\left(\begin{array}{ll}\therefore & 1 \\ , & 1\end{array}\right)$ and: $\mathbf{H}=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 2 & 2\end{array}\right)$
The old "1=1.1 trick"-Spectral decomposition by projector splitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$
How symmetry groups become eigen-solvers

Review: matrix eigenstates ("ownstates) and Idempotent projectors (SYon-degenerayy case)
Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=$, and: $\mathbf{N}=$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: G=
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $\mathbf{G}=\quad$ and: $\mathbf{H}=$
The old "1=1.1 trick"-Spectral decomposition by projector splitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$
How symmetry groups become eigen-solvers

Unitary operators and matrices that change state vectors...

... and eigenstates ("ownstates) that are mostly immune to T...

For Unitary operators $\mathbf{T}=\mathbf{U}$, the eigenvalues must be phase factors $\varepsilon_{k}=e^{i \alpha_{k}}$

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues)
Eigen-Operator-Projectors $\mathbf{P}_{k}:$
$\mathbf{M P}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}=\frac{\prod_{m * k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$

Operator ortho-completeness, and spectral decomposition
$\begin{aligned} & \text { (For: Non-Degenerate eigenvalues) } \\ & \text { Eigen-Operator-Projectors } \mathbf{P}_{k}: \\ & \mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}\end{aligned} \quad \mathbf{P}_{k}=\frac{\prod_{m * k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$
Dirac notation form:
$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$

Operator ortho-completeness, and spectral decomposition
$\begin{array}{ll}\text { (For: Non-Degenerate eigenvalues) } \\ \text { Eigen-Operator-Projectors } \mathbf{P}_{k}: & \mathbf{P}_{k}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \\ \mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}\end{array}$
Dirac notation form:
$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations
$\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}$
Dirac notation form:
$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$

Operator ortho-completeness, and spectral decomposition
(For: Non-Degenerate eigenvalues)
Eigen-Operator-Projectors $\mathbf{P}_{k}:$
$\mathbf{M P}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$
Dirac notation form:
$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations
$\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}$
Dirac notation form:
$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$
Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

Operator ortho-completeness, and spectral decomposition
(For: Non-Degenerate eigenvalues) $\quad \mathbf{P}_{k}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$
Eigen-Operator-Projectors $\mathbf{P}_{k}:$
$\mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}$
Dirac notation form:
$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations
$\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}$
Dirac notation form:
$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$
Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

Eigen-operators have Spectral Decomposition of operator $\mathbf{M}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{N} \mathbf{P}_{N}$

Dirac notation form:

$$
\mathbf{M}=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\varepsilon_{2}\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\varepsilon_{n}\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

...and operator Functional Spectral Decomposition of a function $f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1} \quad+f\left(\varepsilon_{2}\right) \mathbf{P}_{2} \quad+\ldots+\quad f\left(\varepsilon_{N}\right) \mathbf{P}_{N}$

Dirac notation form:
$f(\mathbf{M})=f\left(\varepsilon_{1}\right)\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+f\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+f\left(\varepsilon_{n}\right)\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (OSegeneraay case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)

```
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
    Secular }->\mathrm{ Hamilton-Cayley }->\mathrm{ Minimal equations
    Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: B= , and: N=
    Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: G=
    Secular equation by minor expansion
    Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
    Projection }\mp@subsup{\mathbf{P}}{j}{}\mathrm{ -matrix anatomy (Gramian matrices)
    Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G= and: }\mathbf{H=
    The old "1=1.1 trick"-Spectral decomposition by projector splitting
    Irreducible projectors and representations (Trace checks)
    Minimal equation for projector }\mathbf{P}=\mp@subsup{\mathbf{P}}{}{2
```

Operator ortho-completeness, and spectral decomposition

$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations
$\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}$
Dirac notation form:
$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$
Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

Eigen-operators have Spectral Decomposition of operator $\mathbf{M}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{N} \mathbf{P}_{N}$

Dirac notation form:

$$
\mathbf{M}=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\varepsilon_{2}\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\varepsilon_{n}\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

...and operator Functional Spectral Decomposition
of a function $f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1} \quad+f\left(\varepsilon_{2}\right) \mathbf{P}_{2} \quad+\ldots+f\left(\varepsilon_{N}\right) \mathbf{P}_{N}$
Dirac notation form:
$f(\mathbf{M})=f\left(\varepsilon_{1}\right)\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+f\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+f\left(\varepsilon_{n}\right)\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

Operator ortho-completeness, and spectral decomposition

$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations
$\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}$
Dirac notation form:
$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$
Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

Eigen-operators have Spectral Decomposition of operator $\mathbf{M}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{N} \mathbf{P}_{N}$

Dirac notation form:

$$
\mathbf{M}=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\varepsilon_{2}\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\varepsilon_{n}\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

...and operator Functional Spectral Decomposition
of a function $f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1} \quad+f\left(\varepsilon_{2}\right) \mathbf{P}_{2} \quad+\ldots+f\left(\varepsilon_{N}\right) \mathbf{P}_{N}$
Dirac notation form:
$f(\mathbf{M})=f\left(\varepsilon_{1}\right)\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+f\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+f\left(\varepsilon_{n}\right)\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

Operator ortho-completeness, and spectral decomposition

$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations
$\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}$
Dirac notation form:
$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$
Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

Eigen-operators have Spectral Decomposition of operator $\mathbf{M}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{N} \mathbf{P}_{N}$

Dirac notation form:

$$
\mathbf{M}=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\varepsilon_{2}\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\varepsilon_{n}\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

...and operator Functional Spectral Decomposition
of a function $f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1} \quad+f\left(\varepsilon_{2}\right) \mathbf{P}_{2} \quad+\ldots+f\left(\varepsilon_{N}\right) \mathbf{P}_{N}$
Dirac notation form:
$f(\mathbf{M})=f\left(\varepsilon_{1}\right)\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+f\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+f\left(\varepsilon_{n}\right)\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$
(Dirac notation form is more complicated.) To be discussed in this lecture.

Operator ortho-completeness, and spectral decomposition

$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations
$\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}$
Dirac notation form:

$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$

(Dirac notation form is more complicated.) To be discussed in this lecture.
$\mathbf{P}_{\varepsilon_{j}} \mathbf{P}_{\varepsilon_{k}}=\delta_{\varepsilon_{j} \varepsilon_{k}} \mathbf{P}_{\varepsilon_{k}}= \begin{cases}\mathbf{0} & \text { if }: \varepsilon_{j} \neq \varepsilon_{k} \\ \mathbf{P}_{\varepsilon_{k}} & \text { if }: \varepsilon_{j}=\varepsilon_{k}\end{cases}$
(Dirac notation form is more complicated.)
To be discussed in this lecture.

Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

Eigen-operators have Spectral Decomposition of operator $\mathbf{M}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{N} \mathbf{P}_{N}$

Dirac notation form:

$$
\mathbf{M}=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\varepsilon_{2}\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\varepsilon_{n}\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

...and operator Functional Spectral Decomposition
of a function $f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1} \quad+f\left(\varepsilon_{2}\right) \mathbf{P}_{2} \quad+\ldots+f\left(\varepsilon_{N}\right) \mathbf{P}_{N}$
Dirac notation form:
$f(\mathbf{M})=f\left(\varepsilon_{1}\right)\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+f\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+f\left(\varepsilon_{n}\right)\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

Operator ortho-completeness, and spectral decomposition
(For: Non-Degenerate eigenvalues)
Eigen-Operator-Projectors $\mathbf{P}_{k}: \quad \mathbf{P}_{k}=\frac{\prod_{m \neq k}\left(\mathbf{N}-\varepsilon_{m} \mathbf{1}\right)}{\prod\left(\varepsilon_{k}-\varepsilon_{m}\right)} \longrightarrow$
$\mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}$

r

Dirac notation form:
$\mathbf{M P}_{\varepsilon_{k}}=\varepsilon_{k} \mathbf{P}_{\varepsilon_{k}}=\mathbf{P}_{\varepsilon_{k}} \mathbf{M}$
$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations

$$
\begin{aligned}
& \mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}=\left\{\begin{array}{ll}
\mathbf{0} & \text { if }: j \neq k \\
\mathbf{P}_{k} & \text { if }: j=k
\end{array} \longrightarrow\right. \\
& \text { Dirac notation form: } \\
& \left|\varepsilon_{j}\right\rangle\left\langle\delta_{j}\right| \cdot\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|
\end{aligned} \longrightarrow
$$

$\Pi\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)$
$D_{\varepsilon_{k}}=\frac{\varepsilon_{m} \neq \varepsilon_{k}}{\underbrace{}_{\varepsilon_{m} \neq \varepsilon_{k}}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$
(Dirac notation form is more complicated.) To be discussed in this lecture.

Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

(Dirac notation form is more complicated.) To be discussed in this lecture.

Eigen-operators have Spectral Decomposition of operator $\mathbf{M}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{N} \mathbf{P}_{N}$

Dirac notation form:

$$
\mathbf{M}=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\varepsilon_{2}\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\varepsilon_{n}\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

...and operator Functional Spectral Decomposition
of a function $f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1} \quad+f\left(\varepsilon_{2}\right) \mathbf{P}_{2} \quad+\ldots+f\left(\varepsilon_{N}\right) \mathbf{P}_{N}$
Dirac notation form:
$f(\mathbf{M})=f\left(\varepsilon_{1}\right)\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+f\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+f\left(\varepsilon_{n}\right)\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

Operator ortho-completeness, and spectral decomposition
(For: Non-Degenerate eigenvalues)
Eigen-Operator-Projectors $\mathbf{P}_{k}: \quad \mathbf{P}_{k}=\frac{\prod\left(\mathcal{E}_{m}\right)}{\prod\left(\varepsilon_{k}-\varepsilon_{m}\right)} \longrightarrow$
$\mathbf{M P}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M} \xrightarrow[m \neq k]{ }$
$\mathbf{M P}_{\varepsilon_{k}}=\varepsilon_{k} \mathbf{P}_{\varepsilon_{k}}=\mathbf{P}_{\varepsilon_{k}} \mathbf{M}$
Dirac notation form:
(For:Degenerate eigenvalues)

$$
\mathbf{P}_{\varepsilon_{k}}=\frac{\prod_{\varepsilon_{n} \neq \varepsilon_{k}}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{\varepsilon_{m} \neq \varepsilon_{k}}\left(\varepsilon_{k}-\varepsilon_{m}\right)}
$$

$\mathbf{M}\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \mathbf{M}$
Eigen-Operator- \mathbf{P}_{k}-Orthonormality Relations

$$
\begin{aligned}
& \mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}=\left\{\begin{array}{cc}
\mathbf{0} & \text { if }: j \neq k \\
\mathbf{P}_{k} & \text { if }: j=k
\end{array} \longrightarrow \mathbf{P}_{\varepsilon_{j}} \mathbf{P}_{\varepsilon_{k}}=\delta_{\varepsilon_{j} \varepsilon_{k}} \mathbf{P}_{\varepsilon_{k}}=\left\{\begin{array}{ll}
\mathbf{0} & \text { if }: \varepsilon_{j} \neq \varepsilon_{k} \\
\mathbf{P}_{\varepsilon_{k}} & \text { if }: \varepsilon_{j}=\varepsilon_{k}
\end{array}\right. \text { nirac notation form: }\right.
\end{aligned}
$$

(Dirac notation form is more complicated.) To be discussed in this lecture.
$\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j}\right|\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|$ \qquad
(Dirac notation form is more complicated.)
To be discussed in this lecture.
Eigen-Operator- \mathbf{P}_{j}-Completeness Relations

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n} \longrightarrow \mathbf{1}=\mathbf{P}_{\varepsilon_{1}}+\mathbf{P}_{\varepsilon_{2}}+\ldots+\mathbf{P}_{\varepsilon_{n}}
$$

Dirac notation form:

$$
\mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
$$

(Dirac notation form is more complicated.) To be discussed in this lecture.

Eigen-operators have Spectral Decomposition
of operator $\mathbf{M}=\varepsilon_{1} \mathbf{P}_{l}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{N} \mathbf{P}_{N} \longrightarrow \mathbf{M}=\varepsilon_{1} \mathbf{P}_{\varepsilon_{1}}+\boldsymbol{\varepsilon}_{2} \mathbf{P}_{\varepsilon_{2}}+\ldots+\boldsymbol{\varepsilon}_{n} \mathbf{P}_{\varepsilon_{n}}$
Dirac notation form:
$\mathbf{M}=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\varepsilon_{2}\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\varepsilon_{n}\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$
(Dirac notation form is more complicated.)
...and operator Functional Spectral Decomposition
$\begin{array}{lll}\text { of a function } f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1} & +f\left(\varepsilon_{2}\right) \mathbf{P}_{2} \quad+\ldots+f\left(\varepsilon_{N}\right) \mathbf{P}_{N} \longrightarrow f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{\varepsilon_{1}}+f\left(\varepsilon_{2}\right) \mathbf{P}_{\varepsilon_{2}}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{\varepsilon_{n}}, \ldots\end{array}$ Dirac notation form:

$$
f(\mathbf{M})=f\left(\varepsilon_{1}\right)\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+f\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+f\left(\varepsilon_{n}\right)\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right| \longrightarrow \quad \text { (Dirac notation form is more complicated.) }
$$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (O)egeneracy case) Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion

```
Nilpotents and "Bad degeneracy" examples: }\mathbf{B}=(\begin{array}{ll}{b}&{1}\\{0}&{b}\end{array})\mathrm{ , and: }\mathbf{N}=(\begin{array}{ll}{0}&{1}\\{0}&{0}\end{array}
    Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: G=
    Secular equation by minor expansion
    Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
    Projection }\mp@subsup{\mathbf{P}}{j}{}\mathrm{ -matrix anatomy (Gramian matrices)
    Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples:G=
and: }\mathbf{H}
    The old "1=1.1 trick"-Spectral decomposition by projector sptitting
    Irreducible projectors and representations (Trace checks)
    Minimal equation for projector }\mathbf{P}=\mp@subsup{\mathbf{P}}{}{2
    How symmetry groups become eigen-solvers
```

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{l}\right|-0\right)$ of N-by- N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{1}}, \varepsilon_{1_{2}} \ldots \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case.

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{l}\right|-0\right)$ of N-by- N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{l}}, \varepsilon_{1_{2}} \ldots \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{1}\right|-0\right)$ of N-by-N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{l}}, \varepsilon_{1_{2} \ldots}, \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible \mathbb{H} can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ε_{j} is ℓ_{j}-fold degenerate so secular equation (SEq) factors as follows:

$$
S(\varepsilon)=0=(-1)^{N}\left(\varepsilon-\varepsilon_{1}\right)^{\ell_{1}}\left(\varepsilon-\varepsilon_{2}\right)^{\ell} \ldots\left(\varepsilon-\varepsilon_{p}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{1}\right|-0\right)$ of N-by-N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{l}}, \varepsilon_{1_{2} \ldots}, \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ε_{j} is ℓ_{j}-fold degenerate so secular equation (SEq) factors as follows:

$$
S(\varepsilon)=0=(-1)^{N}\left(\varepsilon-\varepsilon_{1}\right)^{\ell_{1}}\left(\varepsilon-\varepsilon_{2}\right)^{\ell} \ldots\left(\varepsilon-\varepsilon_{p}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Then the $H C$ equation $(H C e q)$ is a matrix equation of degree N with \mathbb{H} replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathbb{H})$

$$
S(\mathbf{H})=\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\ell_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\ell_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{1}\right|-0\right)$ of N-by- N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{1}}, \varepsilon_{1_{2}} \ldots \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ε_{j} is ℓ_{j}-fold degenerate so secular equation (SEq) factors as follows:

$$
S(\varepsilon)=0=(-1)^{N}\left(\varepsilon-\varepsilon_{1}\right)^{\ell_{1}}\left(\varepsilon-\varepsilon_{2}\right)^{\ell_{2}} \ldots\left(\varepsilon-\varepsilon_{p}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Then the $H C$ equation $(H C e q)$ is a matrix equation of degree N with \mathbb{H} replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathbb{H})$

$$
S(\mathbf{H})=\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\ell_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\ell_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

The number ℓ_{k} is called the degree of degeneracy of eigenvalue ε_{k}.

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{1}\right|-0\right)$ of N-by-N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{l}}, \varepsilon_{1_{2} \ldots}, \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ε_{j} is ℓ_{j}-fold degenerate so secular equation (SEq) factors as follows:

$$
S(\varepsilon)=0=(-1)^{N}\left(\varepsilon-\varepsilon_{1}\right)^{\ell_{1}}\left(\varepsilon-\varepsilon_{2}\right)^{\ell_{2}} \ldots\left(\varepsilon-\varepsilon_{p}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Then the $H C$ equation $(H C e q)$ is a matrix equation of degree N with \mathbb{H} replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathbb{H})$

$$
S(\mathbf{H})=\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\ell_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\ell_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

The number ℓ_{k} is called the degree of degeneracy of eigenvalue ε_{k}.
The minimum power integers $\mu_{k} \leq \ell_{k}$, that still make $S(\mathbb{H})=\mathbf{0}$, form the minimal equation (MEq) of \mathbf{H}.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\mu_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\mu_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\mu_{p}} \quad \text { where: } \quad \mu_{1}+\mu_{2}+\ldots+\mu_{p}=N_{M I N} \leq N
$$

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{1}\right|-0\right)$ of N-by-N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{l}}, \varepsilon_{1_{2} \ldots}, \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ε_{j} is ℓ_{j}-fold degenerate so secular equation (SEq) factors as follows:

$$
S(\varepsilon)=0=(-1)^{N}\left(\varepsilon-\varepsilon_{1}\right)^{\ell_{1}}\left(\varepsilon-\varepsilon_{2}\right)^{\ell_{2}} \ldots\left(\varepsilon-\varepsilon_{p}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Then the $H C$ equation $(H C e q)$ is a matrix equation of degree N with \mathbb{H} replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathbb{H})$

$$
S(\mathbf{H})=\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\ell_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\ell_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

The number ℓ_{k} is called the degree of degeneracy of eigenvalue ε_{k}.
The minimum power integers $\mu_{k} \leq \ell_{k}$, that still make $S(\mathbb{H})=\mathbf{0}$, form the minimal equation (MEq) of \mathbf{H}.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\mu_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\mu_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\mu_{p}} \quad \text { where: } \quad \mu_{1}+\mu_{2}+\ldots+\mu_{p}=N_{M I N} \leq N
$$

If (and only if) just one ($\mu_{k}=1$) of each distinct factor is needed, then \mathbb{H} is diagonalizable.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{1} \quad \text { where: } \quad p=N_{\text {MIN }} \leq N
$$

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{1}\right|-0\right)$ of N-by- N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{l}}, \varepsilon_{1_{2} \ldots}, \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ε_{j} is ℓ_{j}-fold degenerate so secular equation (SEq) factors as follows:

$$
S(\varepsilon)=0=(-1)^{N}\left(\varepsilon-\varepsilon_{1}\right)^{\ell_{1}}\left(\varepsilon-\varepsilon_{2}\right)^{\ell_{2}} \ldots\left(\varepsilon-\varepsilon_{p}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Then the $H C$ equation $(H C e q)$ is a matrix equation of degree N with \mathbb{H} replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathbb{H})$

$$
S(\mathbf{H})=\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\ell_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\ell_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

The number ℓ_{k} is called the degree of degeneracy of eigenvalue ε_{k}.
The minimum power integers $\mu_{k} \leq \ell_{k}$, that still make $S(\mathbb{H})=\mathbf{0}$, form the minimal equation (MEq) of \mathbf{H}.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\mu_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\mu_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\mu_{p}} \quad \text { where: } \quad \mu_{1}+\mu_{2}+\ldots+\mu_{p}=N_{M I N} \leq N
$$

If (and only if) just one ($\mu_{k}=1$) of each distinct factor is needed, then \mathbb{H} is diagonalizable.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{1} \quad \text { where: } \quad p=N_{M I N} \leq N
$$

This is true since this p-th degree equation spectrally decomposes \mathbb{H} into p operators: $\mathbf{P}_{\varepsilon_{k}}=\frac{\varepsilon_{n} \not \varepsilon_{k}}{\prod_{\varepsilon_{m} \neq \varepsilon_{k}}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$

Eigensolutions with degenerate eigenvalues (Possible?... or not?)

What if secular equation $\left(\operatorname{det}\left|\mathbf{M}-\varepsilon_{j} \mathbf{1}\right|-0\right)$ of N-by- N matrix \mathbb{H} has ℓ-repeated ε_{1}-roots $\left\{\varepsilon_{1_{l}}, \varepsilon_{1_{2} \ldots}, \varepsilon_{1_{\ell}}\right\}$?
If so, it's possible H can't be completely diagonalized, though this is rarely the case. It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ε_{j} is ℓ_{j}-fold degenerate so secular equation (SEq) factors as follows:

$$
S(\varepsilon)=0=(-1)^{N}\left(\varepsilon-\varepsilon_{1}\right)^{\ell_{1}}\left(\varepsilon-\varepsilon_{2}\right)^{\ell_{2}} \ldots\left(\varepsilon-\varepsilon_{p}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

Then the $H C$ equation $(H C e q)$ is a matrix equation of degree N with \mathbb{H} replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathbb{H})$

$$
S(\mathbf{H})=\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\ell_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\ell_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\ell} p \text { where: } \ell_{1}+\ell_{2}+\ldots+\ell_{p}=N
$$

The number ℓ_{k} is called the degree of degeneracy of eigenvalue ε_{k}.
The minimum power integers $\mu_{k} \leq \ell_{k}$, that still make $S(\mathbb{H})=\mathbf{0}$, form the minimal equation (MEq) of \mathbf{H}.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{\mu_{1}}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{\mu_{2}} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{\mu_{p}} \quad \text { where: } \quad \mu_{1}+\mu_{2}+\ldots+\mu_{p}=N_{M I N} \leq N
$$

If (and only if) just one ($\mu_{k}=1$) of each distinct factor is needed, then \mathbb{H} is diagonalizable.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{1} \quad \text { where: } \quad p=N_{M I N} \leq N
$$

This is true since this p-th degree equation spectrally decomposes \mathbb{H} into p operators: $\mathbf{P}_{\varepsilon_{k}}=\frac{\varepsilon_{n} \varepsilon_{\varepsilon_{k}}}{\prod_{\varepsilon_{m} \neq \varepsilon_{k}}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$

$$
\mathbf{H}=\varepsilon_{1} \mathbf{P}_{\varepsilon_{1}}+\varepsilon_{2} \mathbf{P}_{\varepsilon_{2}}+\ldots+\varepsilon_{p} \mathbf{P}_{\varepsilon_{p}} \text { that are ortho-complete: } \mathbf{P}_{\varepsilon_{j}} \mathbf{P}_{\varepsilon_{k}}=\delta_{j k} \mathbf{P}_{\varepsilon_{k}}
$$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (O)egeneracy case) Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations

Diagonalizability criterion

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathbf{G}=$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $G=$
The old "1=1.1 trick"-Spectral decomposition by projector sptitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$

A diagonalizability criterion has just been proved:

In general, matrix \mathbf{H} can make an ortho-complete set of $\mathbf{P}_{\varepsilon_{j}}$ if and only if, the \mathbb{H} minimal equation has no repeated factors. Then and only then is matrix \mathbf{H} fully diagonalizable.

A diagonalizability criterion has just been proved:

In general, matrix \mathbf{H} can make an ortho-complete set of $\mathbf{P}_{\varepsilon_{j}}$ if and only if, the H minimal equation has no repeated factors. Then and only then is matrix \mathbb{H} fully diagonalizable.

If (and only if) just one ($\mu_{k}=1$) of each distinct factor is needed, then \mathbb{H} is diagonalizable.

$$
\mathbf{0}=(-1)^{N}\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots\left(\mathbf{H}-\varepsilon_{p} \mathbf{1}\right)^{1} \quad \text { where: } \quad p=N_{M I N} \leq N
$$

$$
\prod\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

since this p-th degree equation spectrally decomposes \mathbb{H} into p operators: $\mathbf{P}_{\varepsilon_{k}}=\frac{\prod_{n} \varepsilon_{\varepsilon_{k}}}{\prod_{\varepsilon_{m} \neq \varepsilon_{k}}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$

$$
\begin{array}{r}
\mathbb{H}=\varepsilon_{1} \mathbf{P}_{\varepsilon_{1}}+\varepsilon_{2} \mathbf{P}_{\varepsilon_{2}}+\ldots+\varepsilon_{p} \mathbf{P}_{\varepsilon_{p}} \text { that are orthonormal: } \mathbf{P}_{\varepsilon_{j}} \mathbf{P}_{\varepsilon_{k}}=\delta_{j k} \mathbf{P}_{\varepsilon_{k}} \\
\text { and complete: } \mathbf{1}=\mathbf{P}_{\varepsilon_{1}}+\mathbf{P}_{\varepsilon_{2}}+\ldots+\mathbf{P}_{\varepsilon_{p}}
\end{array}
$$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (ODegeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
\longrightarrow Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ Applications of Nilpotent operators later on

Idempotents and "Good degeneracy" example: $G=$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $\mathrm{G}=$
The old "1=1.1 trick"-Spectral decomposition by projector sptitting:
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P}_{\mathbf{j}}$. Even:one repeat is fatal...
$-----=-=-($ like this $\downarrow)$

$$
\mathbf{0}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(H-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots,
$$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P}_{\mathbf{j}}$.
Even:one repeat is fatal... when removal of repeated ($\mathbf{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\vec{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \text {, but: } \mathbf{N}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(H-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\underset{H}{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(H-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(H-\varepsilon_{1} \mathbf{1}\right)^{1}\left(H-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}:\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\mathrm{H}-\varepsilon_{2} \mathbf{1}$)... factors cannot keep \mathbf{N}^{2} from being zero.)

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\left.\mathbf{H}-\varepsilon_{2} \mathbf{1}\right) \ldots$ factors cannot keep \mathbf{N}^{2} from being zero.)

Such an operator is called a nilpotent operator or, simply a nilpotent.

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}:\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\left.\mathbf{H}-\varepsilon_{2} \mathbf{1}\right) \ldots$ factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent.

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$. Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\frac{H-\varepsilon_{1} \mathbf{1}}{}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(H-\varepsilon_{1} \mathbf{1}\right)^{1}\left(H-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\mathrm{H}-\varepsilon_{2} \mathbf{1}$)... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\left.\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)$... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

$$
\mathbf{B}=\left(\begin{array}{ll}
b & 1 \\
0 & b
\end{array}\right)
$$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\left.\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)$... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

$$
\mathbf{B}=\left(\begin{array}{ll}
b & 1 \\
0 & b
\end{array}\right)
$$

$$
S(\varepsilon)=\varepsilon^{2}-\begin{gathered}
-\operatorname{Trace}(\mathbf{B}) \quad+\operatorname{Det}|\mathbf{B}| \\
\downarrow \\
-2 b c+b^{2}=(\varepsilon-b)^{2}=0
\end{gathered}
$$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathbf{N}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\left.\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)$... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)
$\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$

$$
\begin{gathered}
-\operatorname{Trace}(\mathbf{B}) \quad+\quad+\operatorname{Det}|\mathbf{B}| \\
S(\varepsilon)=\varepsilon^{2}-2 b \varepsilon+b^{2}=(\varepsilon-b)^{2}=0
\end{gathered}
$$

$$
\begin{array}{cl}
\text { o equal roots }(\varepsilon=b \text { twice }): & S(\varepsilon)=\varepsilon^{-2}-2 b \varepsilon+b^{2}=(\varepsilon-b)=0 \\
\text { This gives HC equation: } & S(\mathbf{B})=\mathbf{B}^{2}-2 b \mathbf{B}+b^{2} \mathbf{1}=(\mathbf{B}-b \mathbf{1})^{2}=\mathbf{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)^{2}
\end{array}
$$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon_{1} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathrm{H}-\varepsilon_{1} \mathbf{1}\right)^{2}:\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathrm{N}=\left(\mathrm{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\mathrm{H}-\varepsilon_{2} \mathbf{1}$)... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

$$
\mathbf{B}=\left(\begin{array}{ll}
b & 1 \\
0 & b
\end{array}\right)
$$

$$
-\operatorname{Trage}(\mathbf{B}) \quad+\operatorname{Det}_{\downarrow}|\mathbf{B}|
$$

Secular equation has two equal roots ($\varepsilon=b$ twice): $\quad S(\varepsilon)=\varepsilon^{2}-2 b \varepsilon+b^{2}=(\varepsilon-b)^{2}=0$
$\begin{array}{ll}\text { This gives HC equation: } & S(\mathbf{B})=\mathbf{B}^{2}-2 b \mathbf{B}+b^{2} \mathbf{1}=(\mathbf{B}-b \mathbf{1})^{2}=\mathbf{0}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2} \\ \text { This in turn gives a } & \end{array}$
This in turn gives a
nilpotent eigen-projector: $\mathbf{N}=\mathbf{B}-b \mathbf{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon \mathbf{\varepsilon} \mathbf{1}$) gives a non-zero operator \mathbf{N}.

$$
\mathbf{0}=\left(\mathrm{H}-\varepsilon_{1} \mathbf{1}\right)^{2}:\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathrm{N}=\left(\mathrm{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots \ldots \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\mathrm{H}-\varepsilon_{2} \mathbf{1}$)... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

$$
\mathbf{B}=\left(\begin{array}{ll}
b & 1 \\
0 & b
\end{array}\right)
$$

$$
-\operatorname{Trage}(\mathbf{B}) \quad+\mathrm{Dett}_{\downarrow}|\mathbf{B}|
$$

Secular equation has two equal roots ($\varepsilon=b$ twice): $\quad S(\varepsilon)=\varepsilon^{2}-2 b \varepsilon+b^{2}=(\varepsilon-b)^{2}=0$
$\begin{array}{ll}\text { This gives HC equation: } & S(\mathbf{B})=\mathbf{B}^{2}-2 b \mathbf{B}+b^{2} \mathbf{1}=(\mathbf{B}-b \mathbf{1})^{2}=\mathbf{0}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2} \\ \text { This in turn gives a }\end{array}$
This in turn gives a
nilpotent eigen-projector: $\mathbf{N}=\mathbf{B}-b \mathbf{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
...which satisfies: $\mathbf{N}^{2}=\mathbf{0}($ but $\mathbf{N} \neq \mathbf{0})$ and: $\mathbf{B N}=b \mathbf{N}=\mathbf{N B}$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$.
Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon \mathbf{\varepsilon} \mathbf{1}$) gives a non-zero operator N .

$$
\mathbf{0}=\left(\mathrm{H}-\varepsilon_{1}\right)^{2}:\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathrm{N}=\left(\mathrm{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots . . . \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\mathrm{H}-\varepsilon_{2} \mathbf{1}$)... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

$$
\mathbf{B}=\left(\begin{array}{ll}
b & 1 \\
0 & b
\end{array}\right)
$$

$$
-\operatorname{Trage}(\mathbf{B}) \quad+\operatorname{Det}|\mathbf{B}|
$$

Secular equation has two equal roots ($\varepsilon=b$ twice): $\quad S(\varepsilon)=\varepsilon^{2}-2 b \varepsilon+b^{2}=(\varepsilon-b)^{2}=0$
$\begin{array}{ll}\text { This gives HC equation: } & S(\mathbf{B})=\mathbf{B}^{2}-2 b \mathbf{B}+b^{2} \mathbf{1}=(\mathbf{B}-b \mathbf{1})^{2}=\mathbf{0}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2} \\ \text { This in turn gives a }\end{array}$
This in turn gives a
nilpotent eigen-projector: $\mathbf{N}=\mathbf{B}-b \mathbf{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
...which satisfies: $\mathbf{N}^{2}=\mathbf{0}($ but $\mathbf{N} \neq \mathbf{0})$ and: $\mathbf{B N}=b \mathbf{N}=\mathbf{N B}$
This nilpotent \mathbf{N} contains only one non-zero eigenket and one eigenbra. $|b\rangle=\binom{1}{0}, \quad\langle b|=\left(\begin{array}{ll}0 & 1\end{array}\right)$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$. Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon \mathbf{\varepsilon} \mathbf{1}$) gives a non-zero operator N .

$$
\mathbf{0}=\left(\mathrm{H}-\varepsilon_{1}\right)^{2}:\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathrm{N}=\left(\mathrm{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots . . . \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\mathrm{H}-\varepsilon_{2} \mathbf{1}$)... factors cannot keep \mathbf{N}^{2} from being zero.)

Order-2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

$$
\mathbf{B}=\left(\begin{array}{ll}
b & 1 \\
0 & b
\end{array}\right)
$$

$$
-\operatorname{Trage}(\mathbf{B}) \quad+\operatorname{Det}|\mathbf{B}|
$$

Secular equation has two equal roots ($\varepsilon=b$ twice): $\quad S(\varepsilon)=\varepsilon^{2}-2 b \varepsilon+b^{2}=(\varepsilon-b)^{2}=0$
$\begin{array}{ll}\text { This gives HC equation: } & S(\mathbf{B})=\mathbf{B}^{2}-2 b \mathbf{B}+b^{2} \mathbf{1}=(\mathbf{B}-b \mathbf{1})^{2}=\mathbf{0}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2} \\ \text { This in turn gives a } & \end{array}$
This in turn gives a
nilpotent eigen-projector: $\mathbf{N}=\mathbf{B}-b \mathbf{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
...which satisfies: $\mathbf{N}^{2}=\mathbf{0}($ but $\mathbf{N} \neq \mathbf{0})$ and: $\mathbf{B N}=b \mathbf{N}=\mathbf{N B}$
This nilpotent \mathbf{N} contains only one non-zero eigenket and one eigenbra. $|b\rangle=\binom{1}{0}, \quad\langle b|=\left(\begin{array}{ll}0 & 1\end{array}\right)$
These two have zero-norm! $(\langle b \mid b\rangle=0)$

Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Repeated minimal equation factors means you will not get an ortho-complete set of $\mathbf{P} \mathbf{j}$. Even:one repeat is fatal... when removal of repeated ($\mathrm{H}-\varepsilon \mathbf{\varepsilon} \mathbf{1}$) gives a non-zero operator N .

$$
\mathbf{0}=\left(\mathrm{H}-\varepsilon_{1}\right)^{2}:\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots, \text { but: } \mathrm{N}=\left(\mathrm{H}-\varepsilon_{1} \mathbf{1}\right)^{1}\left(\mathrm{H}-\varepsilon_{2} \mathbf{1}\right)^{1} \ldots . . . \neq \mathbf{0}
$$

Then squaring \mathbf{N} puts back the missing ($\left.\mathrm{H}-\varepsilon_{\boldsymbol{\varepsilon}} \mathbf{1}\right)$-factor that completes the zero minimal equation.

$$
\mathbf{N}^{2}=\left(\mathbf{H}-\varepsilon_{1} \mathbf{1}\right)^{2}\left(\mathbf{H}-\varepsilon_{2} \mathbf{1}\right)^{2} \ldots \ldots=\mathbf{0}
$$

(The other extra ($\mathrm{H}-\varepsilon_{2} \mathbf{1}$)... factors cannot keep \mathbf{N}^{2} from being zero.)

Order- 2 Nilpotent: Non-zero \mathbf{N} whose square \mathbf{N}^{2} is zero.
Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

$$
\mathbf{B}=\left(\begin{array}{ll}
b & 1 \\
0 & b
\end{array}\right)
$$

$$
-\operatorname{Trage}(\mathbf{B}) \quad+\underset{\downarrow}{ } \quad \begin{aligned}
& \mathrm{Det}|\mathbf{B}|
\end{aligned}
$$

Secular equation has two equal roots ($\varepsilon=b$ twice): $\quad S(\varepsilon)=\varepsilon^{2}-2 b \varepsilon+b^{2}=(\varepsilon-b)^{2}=0$
$\begin{array}{ll}\text { This gives HC equation: } & S(\mathbf{B})=\mathbf{B}^{2}-2 b \mathbf{B}+b^{2} \mathbf{1}=(\mathbf{B}-b \mathbf{1})^{2}=\mathbf{0}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2} \\ \text { This in turn gives a } & \end{array}$
This in turn gives a
nilpotent eigen-projector: $\mathbf{N}=\mathbf{B}-b \mathbf{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
...which satisfies: $\mathbf{N}^{2}=\mathbf{0}($ but $\mathbf{N} \neq \mathbf{0})$ and: $\mathbf{B N}=b \mathbf{N}=\mathbf{N B}$
This nilpotent \mathbf{N} contains only one non-zero eigenket and one eigenbra. $|b\rangle=\binom{1}{0}, \quad\langle b|=\left(\begin{array}{ll}0 & 1\end{array}\right)$
These two have zero-norm! $(\langle b \mid b\rangle=0)$ The usual idempotent spectral resolution is no-go.

Review: matrix eigenstates ("ownstates) and Idempotent projectors (ODegeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
\longrightarrow Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection $\mathbf{P}_{j \text {-matrix }}$ anatomy (Gramian matrices)
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $\mathbf{G}=$
The old "1=1.1 trick"-Spectral decomposition by projector sptitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$

As shown later, nilpotents or other "bad" matrices are valuable for quantum theory. $\mathbf{N}=|1\rangle\langle 2|$ is an example of an elementary operator $\mathbf{e}_{a b}=|a\rangle\langle b|$

As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

$$
\mathbf{N}=|1\rangle\langle 2| \text { is an example of an elementary operator } \mathbf{e}_{a b}=|a\rangle\langle b|
$$

\mathbf{N} and its partners comprise a 4-dimensional $U(2)$ unit tensor operator space

$$
\begin{aligned}
& U(2) \text { op-space }=\left\{\mathbf{e}_{11}=|1\rangle\langle 1|, \quad \mathbf{e}_{12}=|1\rangle\langle 2|, \quad \mathbf{e}_{21}=|2\rangle\langle 1|, \quad \mathbf{e}_{22}=|2\rangle\langle 2|\right\} \\
& \left\langle\mathbf{e}_{11}\right\rangle=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left\langle\mathbf{e}_{12}\right\rangle=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left\langle\mathbf{e}_{21}\right\rangle=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left\langle\mathbf{e}_{22}\right\rangle=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

They form an elementary matrix algebra $\mathbf{e}_{i j} \mathbf{e}_{k m}=\delta_{j k} \mathbf{e}_{i m}$ of unit tensor operators.
The non-diagonal ones are non-diagonalizable nilpotent operators

As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

$$
\mathbf{N}=|1\rangle\langle 2| \text { is an example of an elementary operator } \mathbf{e}_{a b}=|a\rangle\langle b|
$$

\mathbf{N} and its partners comprise a 4-dimensional $U(2)$ unit tensor operator space

$$
\begin{aligned}
& U(2) \text { op-space }=\left\{\mathbf{e}_{11}=|1\rangle\langle 1|, \quad \mathbf{e}_{12}=|1\rangle\langle 2|, \quad \mathbf{e}_{21}=|2\rangle\langle 1|, \quad \mathbf{e}_{22}=|2\rangle\langle 2|\right\} \\
& \left\langle\mathbf{e}_{11}\right\rangle=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left\langle\mathbf{e}_{12}\right\rangle=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left\langle\mathbf{e}_{21}\right\rangle=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad\left\langle\mathbf{e}_{22}\right\rangle=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

They form an elementary matrix algebra $\mathbf{e}_{i j} \mathbf{e}_{k m}=\delta_{j k} \mathbf{e}_{i m}$ of unit tensor operators.
The non-diagonal ones are non-diagonalizable nilpotent operators

Their ∞-Dimensional cousins are the creation-destruction $\mathbf{a}_{i}{ }^{\dagger} \mathbf{a}_{j}$ operators.

Review: matrix eigenstates ("ownstates) and Idempotent projectors (O)egeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=\left(\begin{array}{lll}\therefore & 1 & 1 \\ \hdashline & 1 & 1 \\ \ddots & 1 & \vdots \\ 1 & \ddots & .\end{array}\right)$ Example of minimal equation projection

Orthonormalization of degenerate eigensolutions

Projection $\mathbf{P}_{j \text {-matrix anatomy (Gramian matrices) }}$
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $\mathbf{G}=$
The old "1=1.1 trick"-Spectral decomposition by projector sptitting:
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{ll}\because & . \\ \vdots & 1\end{array}\right)$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{ll}\therefore & . \\ \vdots & 1\end{array}\right.$.

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq)
$\varepsilon^{4}-\left(\sum 1 \times 1\right.$ diag of $\left.\mathbf{G}\right) \varepsilon^{3}+\left(\sum 2 \times 2\right.$ diag minors of $\left.\mathbf{G}\right) \varepsilon^{2}-\left(\sum 3 \times 3\right.$ diag minors of $\left.\mathbf{G}\right) \varepsilon^{1}+(4 \times 4$ determinant of $\mathbf{G}) \varepsilon^{1}=0$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{ll}\therefore & . \\ \vdots & 1\end{array}\right.$.

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq)
$\varepsilon^{4}-(\underbrace{\sum 1 \times 1 \text { diag of } \mathbf{G}}_{0}) \varepsilon^{3}+\left(\sum 2 \times 2\right.$ diag minors of $\left.\mathbf{G}\right) \varepsilon^{2}-\left(\sum 3 \times 3\right.$ diag minors of $\left.\mathbf{G}\right) \varepsilon^{1}+(4 \times 4$ determinant of $\mathbf{G}) \varepsilon^{1}=0$
Trace of $\mathrm{G}=0$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{l}\vdots \\ \vdots\end{array}\right.$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq)

Trace of $\mathrm{G}=0$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{l}\vdots \\ \vdots\end{array}\right.$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq)

Trace of $\mathrm{G}=0$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{l}\square \\ i \\ \vdots\end{array}\right]$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq)

$$
\begin{aligned}
& \varepsilon^{4}-(\underbrace{\sum 1 \times 1 \text { diag of } G}_{0}) \varepsilon^{3}+(\underbrace{\sum 2 \times 2 \text { diag minors of } G}_{-2}) \varepsilon^{2}-(\underbrace{\sum 3 \times 3 \text { diag minors of } G}_{0}) \varepsilon^{1}+(\underbrace{4 \times 4 \text { determinant of } G}_{-1}) \varepsilon^{1}=0 \\
& \text { Trace of } \mathrm{G}=0 \\
& M(124)=0 \\
& M(134)=0 \\
& \left|\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right| \\
& \operatorname{det} G= \\
& =(-1)\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right| \\
& =(-1)(1)\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right| \\
& =(-1)(1)(-1) \\
& =+1
\end{aligned}
$$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (O)egeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbb{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{lll}\therefore & \ddots & 1 \\ \vdots & 1 & 1 \\ \vdots & 1 & . \\ 1 & \ddots & .\end{array}\right)$
Secular equation by minor expansion

Orthonormalization of degenerate eigensolutions
Projection $\mathbf{P}_{j \text {-matrix anatomy (Gramian matrices) }}$
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $G=$
The old "1=1.1 trick"-Spectral decomposition by projector sptitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{l}\because . \\ , 1\end{array}\right.$.

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

Idempotents and "Good degeneracy" example: $G=\left(\begin{array}{ll}\because & 1 \\ 1 & \cdots\end{array}\right.$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

G has a $4^{\text {th }}$ degree $H C$ equation (HCeq) with G replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathrm{G})$

$$
S(\mathbf{G})=0=\mathbf{G}^{4}-2 \mathbf{G}^{2}+\mathbf{1}=(\mathbf{G}-\mathbf{1})^{2}(\mathbf{G}+\mathbf{1})^{2}
$$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{l}\because \\ \because \\ 1\end{array}\right.$.

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

G has a $4^{\text {th }}$ degree $H C$ equation (HCeq) with G replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathrm{G})$

$$
S(\mathbf{G})=0=\mathrm{G}^{4}-2 \mathrm{G}^{2}+\mathbf{1}=(\mathbf{G}-\mathbf{1})^{2}(\mathbf{G}+\mathbf{1})^{2}
$$

Yet G satisfies Minimal Equation (MinEq) of only $2^{\text {nd }}$ degree with no repeats.

$$
\mathbf{0}=(\mathrm{G}-\mathbf{1})(\mathrm{G}+\mathbf{1})
$$

Idempotents and "Good degeneracy" example: $\mathbf{G}=\left(\begin{array}{l}\because \\ \because \\ 1\end{array}\right.$.

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

G has a $4^{\text {th }}$ degree $H C$ equation (HCeq) with G replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathrm{G})$

$$
S(\mathbf{G})=0=\mathbf{G}^{4}-2 \mathrm{G}^{2}+\mathbf{1}=(\mathbf{G}-\mathbf{1})^{2}(\mathbf{G}+\mathbf{1})^{2}
$$

Yet \mathbf{G} satisfies Minimal Equation (MinEq) of only $2^{\text {nd }}$ degree with no repeats. So $\mathbf{P}_{\varepsilon_{k}}$ formulae work!

$$
\mathbf{0}=(\mathrm{G}-\mathbf{1})(\mathrm{G}+\mathbf{1})
$$

$$
\mathbf{P}_{\varepsilon_{k}}=\frac{\prod_{\varepsilon_{n} \neq \varepsilon_{k}}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{\varepsilon_{m} \neq \varepsilon_{k}}\left(\varepsilon_{k}-\varepsilon_{m}\right)}
$$

Idempotents and "Good degeneracy" example: $\mathbf{G}=$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

G has a $4^{\text {th }}$ degree $H C$ equation (HCeq) with G replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathrm{G})$

$$
S(\mathbf{G})=0=\mathbf{G}^{4}-2 \mathbf{G}^{2}+\mathbf{1}=(\mathbf{G}-\mathbf{1})^{2}(\mathbf{G}+\mathbf{1})^{2}
$$

Yet \mathbf{G} satisfies Minimal Equation (MinEq) of only $2^{\text {nd }}$ degree with no repeats. So $\mathbf{P}_{\varepsilon_{k}}$ formulae work!

$$
\mathbf{0}=(\mathrm{G}-\mathbf{1})(\mathrm{G}+\mathbf{1}) \quad \prod\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

Two ortho-complete projection operators are derived by Projection formula: $\mathbf{P}_{\varepsilon_{k}}=\frac{\sum_{\varepsilon_{n} \neq \varepsilon_{k}}}{\prod_{\varepsilon_{n} \neq \varepsilon_{k}}}\left(\varepsilon_{k}-\dot{\varepsilon}_{m}\right)$

$$
\mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Idempotents and "Good degeneracy" example: $\mathbf{G}=$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

G has a $4^{\text {th }}$ degree $H C$ equation (HCeq) with G replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathrm{G})$

$$
S(\mathrm{G})=0=\mathrm{G}^{4}-2 \mathrm{G}^{2}+\mathbf{1}=(\mathrm{G}-\mathbf{1})^{2}(\mathrm{G}+\mathbf{1})^{2}
$$

Yet G satisfies Minimal Equation (MinEq) of only $2^{\text {nd }}$ degree with no repeats. So $\mathbf{P}_{\varepsilon_{k}}$ formulae work!

$$
\mathbf{0}=(\mathrm{G}-\mathbf{1})(\mathrm{G}+\mathbf{1}) \quad \prod\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

Two ortho-complete projection operators are derived by Projection formula: $\mathbf{P}_{\varepsilon_{k}}=\frac{\varepsilon_{n} \not \varepsilon_{k}}{\prod_{\varepsilon_{t}}\left(\varepsilon_{k}-\dot{\varepsilon}_{m}\right)}$

$$
\mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Each of these projectors contains two linearly independent ket or bectors:

$$
\left|1_{1}\right\rangle=\frac{\left|1_{1}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
\vdots \\
1 \\
0 \\
0 \\
1
\end{array}\right)\left|1_{2}\right\rangle=\frac{\left|1_{2}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)\left|-1_{1}\right\rangle=\frac{\left.\mid-1_{1}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \quad\left|-1_{2}\right\rangle=\frac{\left.\mid-1_{2}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
$$

Idempotents and "Good degeneracy" example: $\mathbf{G}=$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

G has a $4^{\text {th }}$ degree $H C$ equation (HCeq) with G replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathrm{G})$

$$
S(\mathrm{G})=0=\mathrm{G}^{4}-2 \mathrm{G}^{2}+\mathbf{1}=(\mathrm{G}-\mathbf{1})^{2}(\mathrm{G}+\mathbf{1})^{2}
$$

Yet G satisfies Minimal Equation (MinEq) of only $2^{\text {nd }}$ degree with no repeats. So $\mathbf{P}_{\varepsilon_{k}}$ formulae work!

$$
\mathbf{0}=(\mathrm{G}-\mathbf{1})(\mathrm{G}+\mathbf{1}) \quad \prod\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

Two ortho-complete projection operators are derived by Projection formula: $\mathbf{P}_{\varepsilon_{k}}=\frac{\varepsilon_{n} \not \varepsilon_{k}}{\prod_{\varepsilon_{1}}\left(\varepsilon_{k}-\dot{\varepsilon}_{m}\right)}$

$$
\mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Each of these projectors contains two linearly independent ket or bectors:

$$
\left.\left|1_{1}\right\rangle=\frac{\left|1_{1}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)| |_{2}\right\rangle=\frac{\left|1_{2}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)\left|-1_{1}\right\rangle=\frac{\left.\mid-1_{1}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)\left|-1_{2}\right\rangle=\frac{\left.\mid-1_{2}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) \begin{aligned}
& \text { These } 4 \text { are more than } \\
& \text { linearly independent.... } \\
& \text {..they are } \text { orthogonal. } .
\end{aligned}
$$

An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

$$
\mathbf{G}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad S E q: \quad S(\varepsilon)=\operatorname{det}|\mathbf{G}-\varepsilon \mathbf{1}|=\operatorname{det}\left|\begin{array}{cccc}
-\varepsilon & 0 & 0 & 1 \\
0 & -\varepsilon & 1 & 0 \\
0 & 1 & -\varepsilon & 0 \\
1 & 0 & 0 & -\varepsilon
\end{array}\right|
$$

ε has a $4^{\text {th }}$ degree Secular Equation (SEq) with repeat pairs of degenerate roots $\left(\varepsilon_{k}= \pm 1\right)$

$$
S(\varepsilon)=0=\varepsilon^{4}-2 \varepsilon^{2}+1=(\varepsilon-1)^{2}(\varepsilon+1)^{2}
$$

G has a $4^{\text {th }}$ degree $H C$ equation (HCeq) with G replacing ε in $S E q: S(\varepsilon) \rightarrow S(\mathrm{G})$

$$
S(\mathbf{G})=0=\mathbf{G}^{4}-2 \mathbf{G}^{2}+\mathbf{1}=(\mathbf{G}-\mathbf{1})^{2}(\mathbf{G}+\mathbf{1})^{2}
$$

Yet G satisfies Minimal Equation (MinEq) of only $2^{\text {nd }}$ degree with no repeats. So $\mathbf{P}_{\varepsilon_{k}}$ formulae work!

$$
\mathbf{0}=(\mathrm{G}-\mathbf{1})(\mathrm{G}+\mathbf{1}) \quad \prod\left(\mathrm{M}-\varepsilon_{m} \mathbf{1}\right)
$$

Two ortho-complete projection operators are derived by Projection formula: $\mathbf{P}_{\varepsilon_{k}}=\frac{\varepsilon_{n} \neq \varepsilon_{k}}{\prod_{\varepsilon_{1}}}\left(\varepsilon_{k}-\dot{\varepsilon}_{m}\right)$

$$
\mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Each of these projectors contains two linearly independent ket or bra vectors:

Review: matrix eigenstates ("ownstates) and Idempotent projectors (O)egeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=\left(\begin{array}{lll}\therefore & \cdots & 1 \\ \vdots & 1 & 1 \\ \vdots & 1 & . \\ 1 & . & .\end{array}\right)$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $\mathrm{G}=$ and: $\mathbf{H}=$
The old "1=1.1 trick"-Spectral decomposition by projector sptitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{l 2}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{l 2}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Projection $\mathbf{P}_{j-\text {-matrix anatomy }}{ }^{(G r a m i a n ~ m a t r i c e s) ~}$
If projector \mathbf{P}_{j} is idempotent $\left(\mathbf{P}_{j} \mathbf{P}_{j}=\mathbf{P}_{j}\right)$, all matrix elements $\left(\mathbf{P}_{j}\right)_{b k}$ are row $_{b}$-column ${ }_{k}-$-products $\left(j_{b} \mid j_{k}\right)$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row-1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right): \quad\left(j_{1} \mid j_{2}\right)=0$ Projection $\mathbf{P}_{j \text {-matrix anatomy }}$ (Gramian matrices)
If projector \mathbf{P}_{j} is idempotent $\left(\mathbf{P}_{j} \mathbf{P}_{j}=\mathbf{P}_{j}\right)$, all matrix elements $\left(\mathbf{P}_{j}\right)_{b k}$ are row $_{b}$-column ${ }_{k}-\bullet$-products $\left(j_{b} \mid j_{k}\right)$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Projection $\mathbf{P}_{j \text {-matrix anatomy }}$ (Gramian matrices)
If projector \mathbf{P}_{j} is idempotent $\left(\mathbf{P}_{j} \mathbf{P}_{j}=\mathbf{P}_{j}\right)$, all matrix elements $\left(\mathbf{P}_{j}\right)_{b k}$ are row ${ }_{b}$-column $k_{k} \cdot$-products $\left(j_{b} \mid j_{k}\right)$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right): \quad\left(j_{1} \mid j_{2}\right)=0$ Projection $\mathbf{P}_{j \text {-matrix anatomy }}$ (Gramian matrices)
If projector \mathbf{P}_{j} is idempotent $\left(\mathbf{P}_{j} \mathbf{P}_{j}=\mathbf{P}_{j}\right)$, all matrix elements $\left(\mathbf{P}_{j}\right)_{b k}$ are row $_{b}$-column $k_{k} \bullet$-products $\left(j_{b} \mid j_{k}\right)$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Projection $\mathbf{P}_{j \text {-matrix anatomy }}$ (Gramian matrices)
If projector \mathbf{P}_{j} is idempotent $\left(\mathbf{P}_{j} \mathbf{P}_{j}=\mathbf{P}_{j}\right)$, all matrix elements $\left(\mathbf{P}_{j}\right)_{b k}$ are row ${ }_{b}$-column $k_{k} \bullet$-products $\left(j_{b} \mid j_{k}\right)$

Quasi-Dirac notation shows vector relations

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right): \quad\left(j_{1} \mid j_{2}\right)=0$ Projection $\mathbf{P}_{j \text {-matrix anatomy }}$ (Gramian matrices)
If projector \mathbf{P}_{j} is idempotent $\left(\mathbf{P}_{j} \mathbf{P}_{j}=\mathbf{P}_{j}\right)$, all matrix elements $\left(\mathbf{P}_{j}\right)_{b k}$ are row $_{b}$-column $k_{k} \bullet$-products $\left(j_{b} \mid j_{k}\right)$

Quasi-Dirac notation shows vector relations

Diagonal matrix elements $\left(\mathbf{P}_{j}\right)_{k k}=\operatorname{row}_{k}$-column $k_{k}-\bullet$-product $\left(j_{k} \mid j_{k}\right)=(k \mid k)$ is $k^{h-n o r m ~ v a l u e ~(u s u a l l y ~ r e a l) ~}$
$\left(\begin{array}{llllll} & & & \\ \hline(b \mid 1) & (b \mid 2) & (b \mid 3) & (b \mid 4) & (b \mid 5) & (b \mid 6) \\ \hline(k \mid 1) & (k \mid 2) & (k \mid 3) & (k \mid 4) & (k \mid 5) & (k \mid 6)\end{array}\right) \cdot$

(11b)	(11k)									
(2lb)	(21k)									
(31b)	(31k)									
(4\|b)	(41k)									
(5lb)	(51k)									
(61b)	(61k)									

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector ($j_{1} \mid$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Projection $\mathbf{P}_{j \text {-matrix anatomy }}$ (Gramian matrices)
If projector \mathbf{P}_{j} is idempotent $\left(\mathbf{P}_{j} \mathbf{P}_{j}=\mathbf{P}_{j}\right)$, all matrix elements $\left(\mathbf{P}_{j}\right)_{b k}$ are row $_{b}$-column ${ }_{k} \bullet$-products $\left(j_{b} \mid j_{k}\right)$

Quasi-Dirac notation shows vector relations

Diagonal matrix elements $\left(\mathbf{P}_{j}\right)_{k k}=\operatorname{row}_{k}$-column $k_{k}-\bullet-\operatorname{product}\left(j_{k} \mid j_{k}\right)=(k \mid k)$ is $k^{\text {th}}$-norm value (usually real)
$\left(\begin{array}{llllll} & & & \\ \hline(b \mid 1) & (b \mid 2) & (b \mid 3) & (b \mid 4) & (b \mid 5) & (b \mid 6) \\ \hline(k \mid 1) & (k \mid 2) & (k \mid 3) & (k \mid 4) & (k \mid 5) & (k \mid 6)\end{array}\right) \cdot$

b)	$(11 k)$ $(21 k)$									
(31b)	(31k)									
(4\|b)	(41k)									
(51b)	(51k)									
(61b)	(61k)									

$k^{\text {hh }}$ normalized vectors ket $\left.=\left|j_{k}\right\rangle=\mid j_{k}\right) / \sqrt{ }(k \mid k)$
bra $=\left\langle j_{k}\right|=\left(j_{k} \mid / \sqrt{ }(k \mid k)\right.$
so: $\left\langle j_{k} \mid j_{k}\right\rangle=1$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (O)ereneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbb{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=\left(\begin{array}{lll}\therefore & \cdots & 1 \\ \vdots & 1 & 1 \\ \vdots & 1 & . \\ 1 & \ddots & .\end{array}\right)$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection $\mathbf{P}_{j \text {-matrix }}$ anatomy (Gramian matrices)
Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: $G=$ and: $\mathbf{H}=$
The old "1=1.1 trick"-Spectral decomposition by projector sptitting
Irreducible projectors and representations (Trace checks)

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector $\left(j_{1} \mid\right.$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Gram-Schmidt procedure
Suppose a non-zero scalar product $\left(j_{l} \mid j_{2}\right) \neq 0$. Replace vector $\left.\mid j_{2}\right)$ with a vector $\left.\left|j_{2}\right\rangle=\mid j_{-1}\right)$ normal to $\left(j_{l} \mid\right.$?

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector $\left(j_{1} \mid\right.$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Gram-Schmidt procedure
Suppose a non-zero scalar product $\left(j_{l} \mid j_{2}\right) \neq 0$. Replace vector $\left.\mid j_{2}\right)$ with a vector $\left.\left|j_{2}\right\rangle=\mid j_{-1}\right)$ normal to $\left(j_{l} \mid\right.$?
Define: $\left.\left.\left|j_{2}\right\rangle=N_{l} \mid j_{l}\right)+N_{2} \mid j_{2}\right)$ such that: $\left(j_{l}\left|j_{2}\right\rangle=0=N_{l}\left(j_{l} \mid j_{l}\right)+N_{2}\left(j_{l} \mid j_{2}\right)\right.$
...and normalized so that: $\left\langle j_{2} \mid j_{2}\right\rangle=1=N_{1}{ }^{2}\left(j_{1} \mid j_{1}\right)+N_{1} N_{2}\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{1}\right)\right]+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right)$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector $\left(j_{1} \mid\right.$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Gram-Schmidt procedure
Suppose a non-zero scalar product $\left(j_{l} \mid j_{2}\right) \neq 0$. Replace vector $\left.\mid j_{2}\right)$ with a vector $\left.\left|j_{2}\right\rangle=\mid j_{-1}\right)$ normal to $\left(j_{l} \mid\right.$?
Define: $\left.\left.\left|j_{2}\right\rangle=N_{l} \mid j_{l}\right)+N_{2} \mid j_{2}\right)$ such that: $\left(j_{l}\left|j_{2}\right\rangle=0=N_{l}\left(j_{l} \mid j_{l}\right)+N_{2}\left(j_{1} \mid j_{2}\right)\right.$...and normalized so that: $\left\langle j_{2} \mid j_{2}\right\rangle=1=N_{1}^{2}\left(j_{1} \mid j_{1}\right)+N_{1} N_{2}\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{1}\right)\right]+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right)$

Solve these by substituting: $\quad N_{1}=-N_{2}\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{l}\right)$

$$
\begin{aligned}
& \text { to give: } \quad 1=N_{2}{ }^{2}\left(j_{l} \mid j_{2}\right)^{2} /\left(j_{l} \mid j_{l}\right)-N_{2}{ }^{2}\left[\left(j_{l} \mid j_{2}\right)+\left(j_{2} \mid j_{l}\right)\right]\left(j_{1} \mid j_{2}\right) /\left(j_{l} \mid j_{l}\right)+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right) \\
& 1 / N_{2}{ }^{2}=\left(j_{2} \mid j_{2}\right)+\left(j_{1} \mid j_{2}\right)^{2}\left(j_{j}+j_{1}\right)-\left(j_{1} \mid j_{2}\right)^{2}+\left(j_{j} \mid j_{j}\right)-\left(j_{2} \mid j_{l}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right) \\
& 1 / N_{2}^{2}=\left(j_{2} \mid j_{2}\right)-\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right)
\end{aligned}
$$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- 1 vector $\left(j_{1} \mid\right.$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right)$: $\quad\left(j_{1} \mid j_{2}\right)=0$ Gram-Schmidt procedure
Suppose a non-zero scalar product $\left(j_{l} \mid j_{2}\right) \neq 0$. Replace vector $\left.\mid j_{2}\right)$ with a vector $\left.\left|j_{2}\right\rangle=\mid j_{-1}\right)$ normal to $\left(j_{l} \mid\right.$?
Define: $\left.\left.\left|j_{2}\right\rangle=N_{l} \mid j_{l}\right)+N_{2} \mid j_{2}\right)$ such that: $\left(j_{l}\left|j_{2}\right\rangle=0=N_{l}\left(j_{l} \mid j_{l}\right)+N_{2}\left(j_{1} \mid j_{2}\right)\right.$...and normalized so that: $\left\langle j_{2} \mid j_{2}\right\rangle=1=N_{1}^{2}\left(j_{1} \mid j_{1}\right)+N_{1} N_{2}\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{1}\right)\right]+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right)$

Solve these by substituting: $\quad N_{1}=-N_{2}\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{l}\right)$

$$
\begin{aligned}
& \text { to give: } \quad 1=N_{2}{ }^{2}\left(j_{1} \mid j_{2}\right)^{2} /\left(j_{1} \mid j_{1}\right)-N_{2}{ }^{2}\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{l}\right)\right]\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right)+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right) \\
& 1 / N_{2}{ }^{2}=\left(j_{2} \mid j_{2}\right)+\left(j_{1} \mid j_{2}\right)^{2}\left(j_{j}+j_{j}\right)-\left(j_{1} \mid j_{2}\right)^{2}+\left(j_{1}+j_{1}\right)-\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right) \\
& 1 / N_{2}^{2}=\left(j_{2} \mid j_{2}\right)-\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right)
\end{aligned}
$$

So the new orthonormal pair is:

$$
\begin{aligned}
\left|j_{1}\right\rangle & =\frac{\left.\mid j_{1}\right)}{\sqrt{\left(j_{1} \mid j_{1}\right)}} \\
\left|j_{2}\right\rangle & \left.\left.\left.\left.=N_{1} \mid j_{1}\right)+N_{2} \mid j_{2}\right) \left.=-\frac{N_{2}\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)+N_{2} \mid j_{2}\right) \\
& \left.\left.\left.\left.\left.=N_{2}\left(\mid j_{2}\right)-\frac{\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)\right) \left.=\sqrt{\frac{1}{\left(j_{2} \mid j_{2}\right)-\frac{\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)}}}\left(\mid j_{2}\right)-\frac{\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)\right)
\end{aligned}
$$

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- l vector $\left(j_{1} \mid\right.$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right): \quad\left(j_{1} \mid j_{2}\right)=0$ Gram-Schmidt procedure
Suppose a non-zero scalar product $\left(j_{l} \mid j_{2}\right) \neq 0$. Replace vector $\left.\mid j_{2}\right)$ with a vector $\left.\left|j_{2}\right\rangle=\mid j_{-1}\right)$ normal to $\left(j_{l} \mid\right.$?
Define: $\left.\left.\left|j_{2}\right\rangle=N_{l} \mid j_{l}\right)+N_{2} \mid j_{2}\right)$ such that: $\left(j_{l}\left|j_{2}\right\rangle=0=N_{l}\left(j_{l} \mid j_{l}\right)+N_{2}\left(j_{1} \mid j_{2}\right)\right.$...and normalized so that: $\left\langle j_{2} \mid j_{2}\right\rangle=1=N_{1}^{2}\left(j_{1} \mid j_{1}\right)+N_{1} N_{2}\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{1}\right)\right]+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right)$

Solve these by substituting: $\quad N_{1}=-N_{2}\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{l}\right)$

$$
\text { to give: } \begin{aligned}
1 & =N_{2}{ }^{2}\left(j_{1} \mid j_{2}\right)^{2} /\left(j_{1} \mid j_{1}\right)-N_{2} 2\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{1}\right)\right]\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right)+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right) \\
1 / N_{2^{2}} & =\left(j_{2} \mid j_{2}\right)+\left(j_{1} \mid j_{2}^{2}\right) /\left(j_{1} \mid j_{1}\right)-\left(\left(j_{1} \mid j_{2}\right)^{2} /\left(j_{1}+j_{1}\right)\right)-\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right) \\
1 / N_{2}{ }^{2} & =\left(j_{2} \mid j_{2}\right)-\left(j_{2} \mid j_{l}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right)
\end{aligned}
$$

So the new orthonormal pair is:

$$
\begin{aligned}
\left|j_{1}\right\rangle & =\frac{\left.\mid j_{1}\right)}{\sqrt{\left(j_{1} \mid j_{1}\right)}} \\
\left|j_{2}\right\rangle & \left.\left.\left.\left.=N_{1} \mid j_{1}\right)+N_{2} \mid j_{2}\right) \left.=-\frac{N_{2}\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)+N_{2} \mid j_{2}\right) \\
& \left.\left.\left.\left.\left.=N_{2}\left(\mid j_{2}\right)-\frac{\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)\right) \left.=\sqrt{\frac{1}{\left(j_{2} \mid j_{2}\right)-\frac{\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)}}}\left(\mid j_{2}\right)-\frac{\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)\right)
\end{aligned}
$$

OK. That's for 2 vectors. Like to try for 3 ?

Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components $\left(\mathbf{P}_{j}\right)_{12}$ of projectors \mathbf{P}_{j} happen to be zero, and this means row- l vector $\left(j_{1} \mid\right.$ is already orthogonal to row-2 vector $\left.\mid j_{2}\right): \quad\left(j_{1} \mid j_{2}\right)=0$ Gram-Schmidt procedure
Suppose a non-zero scalar product $\left(j_{l} \mid j_{2}\right) \neq 0$. Replace vector $\left.\mid j_{2}\right)$ with a vector $\left.\left|j_{2}\right\rangle=\mid j_{-1}\right)$ normal to $\left(j_{l} \mid\right.$?
Define: $\left.\left.\left|j_{2}\right\rangle=N_{l} \mid j_{l}\right)+N_{2} \mid j_{2}\right)$ such that: $\left(j_{l}\left|j_{2}\right\rangle=0=N_{l}\left(j_{1} \mid j_{l}\right)+N_{2}\left(j_{1} \mid j_{2}\right)\right.$...and normalized so that: $\left\langle j_{2} \mid j_{2}\right\rangle=1=N_{1}^{2}\left(j_{1} \mid j_{1}\right)+N_{1} N_{2}\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{1}\right)\right]+N_{2}^{2}\left(j_{2} \mid j_{2}\right)$

Solve these by substituting: $\quad N_{1}=-N_{2}\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{l}\right)$

$$
\begin{aligned}
& \text { to give: } \quad 1=N_{2}{ }^{2}\left(j_{1} \mid j_{2}\right)^{2} /\left(j_{l} \mid j_{l}\right)-N_{2}{ }^{2}\left[\left(j_{1} \mid j_{2}\right)+\left(j_{2} \mid j_{l}\right)\right]\left(j_{1} \mid j_{2}\right) /\left(j_{l} \mid j_{l}\right)+N_{2}{ }^{2}\left(j_{2} \mid j_{2}\right) \\
& 1 / N_{2}{ }^{2}=\left(j_{2} \mid j_{2}\right)+\left(\bar{j}_{1} \mid j_{2}\right)^{2} /\left(j_{1} \mid j_{i}\right)-\left(j_{\eta_{1}} \mid j_{2}\right)^{2}+\left(j_{i} \mid j_{j}\right)-\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{1}\right) \\
& 1 / N_{2}{ }^{2}=\left(j_{2} \mid j_{2}\right)-\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right) /\left(j_{1} \mid j_{l}\right)
\end{aligned}
$$

So the new orthonormal pair is:

$$
\begin{aligned}
\left|j_{1}\right\rangle & =\frac{\left.\mid j_{1}\right)}{\sqrt{\left(j_{1} \mid j_{1}\right)}} \\
\left|j_{2}\right\rangle & \left.\left.\left.\left.=N_{1} \mid j_{1}\right)+N_{2} \mid j_{2}\right) \left.=-\frac{N_{2}\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)+N_{2} \mid j_{2}\right) \\
& \left.\left.\left.\left.\left.=N_{2}\left(\mid j_{2}\right)-\frac{\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)\right) \left.=\sqrt{\frac{1}{\left(j_{2} \mid j_{2}\right)-\frac{\left(j_{2} \mid j_{1}\right)\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)}}}\left(\mid j_{2}\right)-\frac{\left(j_{1} \mid j_{2}\right)}{\left(j_{1} \mid j_{1}\right)} \right\rvert\, j_{1}\right)\right)
\end{aligned}
$$

OK. That's for 2 vectors. Like to try for 3 ?
Instead, let' try another way to "orthogonalize" that might be more elegante.

Review: matrix eigenstates ("ownstates) and Idempotent projectors (ODegeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbb{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=\left(\begin{array}{lll}\cdots & 1 & 1 \\ \vdots & 1 & 1 \\ \vdots & 1 & . \\ 1 & . & .\end{array}\right)$
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure

Orthonormalization by commuting projector splitting
The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

$$
\begin{aligned}
& \mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
& \left|1_{1}\right\rangle=\frac{\left.\mid 1_{1}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad\left|1_{2}\right\rangle=\frac{\left.\mid 1_{2}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right) \quad\left|-1_{1}\right\rangle=\frac{\left.\mid-1_{1}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \quad\left|-1_{2}\right\rangle=\frac{\left.\mid-1_{2}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

$$
\begin{aligned}
& \mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
&\left|1_{1}\right\rangle=\frac{\left|1_{1}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad\left|1_{2}\right\rangle=\frac{\left|\left.\right|_{2}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)\left|-1_{1}\right\rangle=\frac{\left.\mid-1_{1}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)\left|-1_{2}\right\rangle=\frac{\left.\mid-1_{2}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

Dirac notation for G -split:completeness relation using eigenvectors is the following:

$$
\begin{aligned}
1=\mathbf{P}_{1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}} & = \\
& \left.=\begin{array}{|cccccc}
\left|1_{1}\right\rangle\left\langle 1_{1}\right| & + & \left|1_{2}\right\rangle\left\langle 1_{2}\right| & + & \left|-1_{1}\right\rangle\left\langle-1_{1}\right| & + \\
\mathbf{P}_{1_{1}} & + & \mathbf{P}_{1_{2}} & + & \left.\mathbf{P}_{-1_{2}}\right\rangle\left\langle\left\langle-1_{2}\right|\right. \\
\hline
\end{array}\right) \quad \mathbf{P}_{-1_{2}}
\end{aligned}
$$

Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

$$
\begin{array}{r}
\mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
\left|1_{1}\right\rangle=\frac{\left|1_{1}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right) \quad\left|1_{2}\right\rangle=\frac{\left|\left.\right|_{2}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right)\left|-1_{1}\right\rangle=\frac{\left.\mid-1_{1}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)\left|--_{2}\right\rangle=\frac{\left|-1_{2}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
\end{array}
$$

Dirac notation for G -split:completeness relation using eigenvectors is the following:

$$
\begin{aligned}
& 1=\mathbf{P}_{1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}=\left|1_{1}\right\rangle\left\langle 1_{1}\right| \\
&+\quad\left|1_{2}\right\rangle\left\langle 1_{2}\right| \\
& \mathbf{P}_{11}+ \\
& \mathbf{P}_{1_{2}}+ \\
&\left.+1_{1}\right\rangle\left\langle-1_{1}\right| \\
& \mathbf{P}_{-l_{1}}+ \\
&+\left|-1_{2}\right\rangle\left\langle\left\langle-1_{2}\right|\right. \\
& \mathbf{P}_{-1_{2}}
\end{aligned}
$$

Each of the original G projectors are split in two parts with one ket-bra in each.

$$
\begin{array}{rl}
\mathbf{P}_{1}^{\mathrm{G}}=\mathbf{P}_{1_{1}}+\mathbf{P}_{1_{2}} & =\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
0 & 0
\end{array} 0
$$

Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

$$
\begin{aligned}
& \mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
& \left|1_{1}\right\rangle=\frac{\left|1_{1}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right)\left|1_{2}\right\rangle=\frac{\left|\left.\right|_{2}\right|}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)\left|-1_{1}\right\rangle=\frac{\left.\mid-1_{1}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)\left|-1_{2}\right\rangle=\frac{\left.\mid-1_{2}\right)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

Dirac notation for G -split:completeness relation using eigenvectors is the following:

$$
\begin{aligned}
& 1=\mathbf{P}_{1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}=\left|1_{1}\right\rangle\left\langle 1_{1}\right|+\left|1_{2}\right\rangle\left\langle 1_{2}\right|+\left|-1_{1}\right\rangle\left\langle-1_{1}\right|+\left|-1_{2}\right\rangle\left\langle-1_{2}\right| \\
& =\mathbf{P}_{1_{1}}+\quad \mathbf{P}_{1_{2}}+\quad \mathbf{P}_{-1_{1}}+\quad \mathbf{P}_{-1_{2}}
\end{aligned}
$$

Each of the original G projectors are splitin two parts with one ket-bra in each.

$$
\begin{aligned}
\mathbf{P}_{1}^{\mathrm{G}}=\mathbf{P}_{1_{1}}+\mathbf{P}_{1_{2}} & =\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \mathbf{P}_{-1}^{\mathrm{G}}=\mathbf{P}_{-1_{1}}+\mathbf{P}_{-1_{2}}
\end{aligned}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

There are ∞-ly many ways to split \mathbf{G} projectors. Now we let another operator \mathbb{H} do the final splitting.

Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$
the $\mathrm{G}=\left(\begin{array}{cccc}\cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot\end{array}\right)$ from before, and new operator $\mathbf{H}=\left(\begin{array}{llll} & . & 2 & . \\ \cdot & \cdot & \cdot & 2 \\ 2 & \cdot & \cdot & \cdot \\ \cdot & 2 & \cdot & \cdot\end{array}\right)$.

Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$
the $\mathrm{G}=\left(\begin{array}{cccc}\cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot\end{array}\right)$ from before, and new operator $\mathbf{H}=\left(\begin{array}{llll} & . & 2 & \cdot \\ \cdot & \cdot & \cdot & 2 \\ 2 & \cdot & \cdot & \cdot \\ \cdot & 2 & \cdot & \cdot\end{array}\right)$.
(First, it is important to verify that they do, in fact, commute.)

$$
\mathbf{G H}=\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llll}
\cdot & \cdot & 2 & \cdot \\
\cdot & \cdot & \cdot & 2 \\
2 & \cdot & \cdot & \cdot \\
\cdot & 2 & \cdot & \cdot
\end{array}\right)=\left(\begin{array}{llll}
0 & 2 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 2 & 0
\end{array}\right)=\left(\begin{array}{llll}
\cdot & \cdot & 2 & \cdot \\
\cdot & \cdot & \cdot & 2 \\
2 & \cdot & \cdot & \cdot \\
\cdot & 2 & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llll}
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot
\end{array}\right)=\mathbf{H G}
$$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbf{H}.

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbf{H}.
Previous completeness for G :

$$
\begin{aligned}
& \mathbf{1}=\mathbf{P}_{+1}^{\mathrm{G}} \\
& =\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
& =\mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)} \quad+\mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)}
\end{aligned}
$$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathbf{G H}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbf{H}.

Previous completeness for G :
Current completeness for \mathbb{H} :

$$
\begin{aligned}
& \mathbf{1}=\quad \mathbf{P}_{+1}^{\mathrm{G}} \quad+\quad \mathbf{P}_{-1}^{\mathrm{G}} \\
& =\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
& =\mathbf{P}_{+1}^{G}=\frac{\mathbf{G}-(-1) \mathbf{1}}{+1-(-1)} \quad+\mathbf{P}_{-1}^{G}=\frac{\mathbf{G}-(1) \mathbf{1}}{-1-(1)} \\
& \begin{array}{l}
\mathbf{1}=\begin{array}{lll}
\mathbf{P}_{+2}^{\mathrm{H}} & + & \mathbf{P}_{-2}^{\mathrm{H}} \\
=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)
\end{array},
\end{array} \\
& \text { (Left as an exercise) }
\end{aligned}
$$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (ODegeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=\left(\begin{array}{lll}\therefore & \cdots & 1 \\ \vdots & 1 & 1 \\ \vdots & 1 & . \\ 1 & . & .\end{array}\right)$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure
\rightarrow
Orthonormalization of commuting eigensolutions. Examples: $\mathbf{G}=\left(\begin{array}{lll}\therefore & 1 & 1 \\ \cdots & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ and: $\mathbf{H}=\left(\begin{array}{lll}0 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$
The old "1=1.1 trick"-Spectral decomposition by projector splitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$
How symmetry groups become eigen-solvers

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathbf{G H}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbb{H}.
Previous completeness for G : Current completeness for \mathbb{H} :

$$
\begin{array}{lll}
\mathbf{1}= & \mathbf{P}_{+1}^{\mathrm{G}} & \mathbf{\mathbf { P } _ { - 1 } ^ { \mathrm { G } }}
\end{array} \begin{aligned}
& \mathbf{1}=\mathbf{P}_{+2}^{\mathrm{H}} \\
& =\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The old "1=1.1 trick"-Spectral decomposition by projector splitting Multiplying G and H completeness relations
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbb{H}.
Previous completeness for G : Current completeness for H :

$$
\begin{array}{ll}
\mathbf{1}=\begin{array}{lll}
\mathbf{P}_{+1}^{\mathrm{G}} & + & \mathbf{P}_{-1}^{\mathrm{G}}
\end{array} \\
=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)
\end{array}
$$

The old "1=1.1 trick"-Spectral decomposition by projector splitting
Multiplying G and H completeness relations gives a set of projectors
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{1}_{+2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbb{H}.
Previous completeness for G : Current completeness for \mathbb{H} :

$$
\begin{aligned}
& \mathbf{1}=\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}} \quad \mathbf{1}=\mathbf{P}_{+2}^{\mathrm{H}}+\quad \mathbf{P}_{-2}^{\mathrm{H}} \quad \text { (Left as an exercise) }
\end{aligned}
$$

> The old "1=1.1 trick"-Spectreat decomposition by projector splitting
> Multiplying G and H^{\prime} completeness relations gives a set of projectors
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\stackrel{\mathbf{P}}{+1}_{\mathbf{~}}^{\mathbf{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathbf{4}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathbf{G H}} \equiv{ }^{\boldsymbol{*}} \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathbf{P}^{\boldsymbol{H}^{\prime}}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbb{H}.
Previous completeness for G : Current completeness for \mathbb{H} :

$$
\begin{aligned}
& \mathbf{1}=\quad \mathbf{P}_{+1}^{\mathrm{G}} \quad+\quad \mathbf{P}_{-1}^{\mathrm{G}} \\
& =\frac{1}{2}\left(\begin{array}{l:lll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The old "1=1.1 trick"-Spectral decominosition by projector splitting
Multiplying G and H completeness relations gives a set of projectors
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+\mathrm{r}}^{\mathbf{G}}+\mathbf{P}_{-2}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathbf{H}}\right)^{-\cdots}=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbb{H}.
Previous completeness for G : Current completeness for \mathbb{H} :

The old "1=1.1 trick"-Spectral decomposition by projector splitting
Multiplying G and H completeness relations gives a set of projectors
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{1}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\stackrel{\mathbf{P}}{-1}_{\mathrm{G}}^{\mathrm{P}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{1-1}^{G} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=\quad \quad \mathbf{P}_{-1,+2}^{\mathrm{GH}} \equiv \overrightarrow{\mathbf{P}}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right) \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1\end{array}\right)$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$
the $\mathrm{G}=\cdots 1$ from before, and new operator $\mathrm{H}=$

Problem:

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbf{H}.
Previous completeness for G : Current completeness for H :

$$
\begin{aligned}
& \mathbf{1}=\mathbf{P}_{+1}^{\mathrm{G}}+\underset{-1}{\mathbf{P}_{-1}^{\mathrm{G}}} \quad \mathbf{1}=\mathbf{P}_{+2}^{\mathrm{H}}+\underset{\mathbf{P}_{-2}}{\mathrm{H}} \quad \text { (Left as an exercise) } \\
& =\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & \ddots & \cdots & 0 \\
0 & 1 & -1 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \because \ddots \ddots \quad=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
\hdashline 1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Solution:

The old "1=1.1 trick"-Spectral decomposition"ty projector splitting

Multiplying G and H completeness relations givè̀s a set of projectors

$$
\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)
$$

$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=\quad \mathbf{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=$

$$
\mathbf{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathbf{G}} \mathbf{P}_{-2}^{\mathrm{H}}=
$$

$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1\end{array}\right) \frac{1}{4}\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1\end{array}\right)$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathrm{GH}=\mathrm{HG}$
the $\mathrm{G}=1 \cdot 1$ from before, and new operator $\mathbb{H}=$

Problem:

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbb{H}.
Previous completeness for G :

Current completeness for H :

$$
\begin{aligned}
& \mathbf{1}=\quad \mathbf{P}_{+1}^{\mathrm{G}} \quad+\quad \mathbf{P}_{-1}^{\mathrm{G}} \\
& =\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
& 1= \\
& =\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Solution:

The old "1=1.1 trick"-Spectral decomposition by projector splitting

Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=\quad \mathbf{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1\end{array}\right) \frac{1}{4}\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1\end{array}\right)$

$$
\begin{aligned}
& \mathbf{G} \mathbf{P}_{g, h}^{\mathrm{GH}}=\mathbf{G} \mathbf{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{g}^{\mathrm{G}} \mathbf{P}_{g, h}^{\mathrm{GH}} \\
& \left.\mathbf{H} \mathbf{P}_{g, h}^{\mathrm{GH}}=\boldsymbol{H} \mathbf{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\mathbf{P}_{g}^{\mathrm{G}} \mathbf{H} \mathbf{P}_{h}^{\mathrm{H}}=\boldsymbol{\varepsilon}_{h}^{\mathrm{H}} \mathbf{P}_{g, h}^{\mathrm{GH}}\right)
\end{aligned}
$$

Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: $\mathbf{G H}=\mathrm{HG}$
the $\mathrm{G}=\cdots$ from before, and new operator $\mathrm{H}=$

Problem:

Find an ortho-complete projector set that spectrally resolves both \mathbf{G} and \mathbb{H}.
Previous completeness for G :

Current completeness for H :

$1=$
$=\frac{1}{2}\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
& 1= \\
& =\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Solution:

The old "1=1.1 trick"-Spectral decomposition by projector splitting

Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=\quad \mathbf{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1\end{array}\right) \frac{1}{4}\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1\end{array}\right)$

$$
\left.\begin{array}{rl}
\mathbf{G} \mathbf{P}_{g, h}^{\mathrm{GH}} & =\mathbf{G} \mathbf{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}
\end{array}=\boldsymbol{\varepsilon}_{g}^{\mathrm{G}} \mathbf{P}_{g, h}^{\mathrm{GH}}, ~ \$ \mathbf{H P}_{g, h}^{\mathrm{GH}}=\mathbf{H P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\mathbf{P}_{g}^{\mathrm{G}} \mathbf{H} \mathbf{P}_{h}^{\mathrm{H}}=\boldsymbol{\varepsilon}_{h}^{\mathrm{H}} \mathbf{P}_{g, h}^{\mathrm{GH}}\right)
$$

...and a the same $\mathbf{P}_{g, h}^{\mathrm{GH}}$ projectors spectrally resolve both G and \mathbf{H}.

$$
\mathbf{G}=(+1) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(+1) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,-2}^{\mathrm{GH}} \quad \mathbf{H}=(+2) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(+2) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{-1,-2}^{\mathrm{GH}}
$$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (ODegeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbf{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $G=\left(\begin{array}{lll}\therefore & 1 & 1 \\ \vdots & 1 & 1 \\ 1 & \ddots & \vdots\end{array}\right)$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure

The old "1=1.1 trick"-Spectral decomposition by projector splitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$
How symmetry groups become eigen-solvers

Irreducible projectors and representations (Trace checks)
Another Problem: How do you tell when a Projector $\mathbf{P}_{g}^{\mathrm{G}}$ or $\mathbf{P}_{g, h}^{\mathrm{GH}}$ is 'splittable' (Correct term is reducible.)

$1=$			$\mathbf{p}_{+1}^{\mathrm{G}}$		+		P				1 =			$\mathbf{P}_{+2}^{\mathrm{H}}$		+							
	$\frac{1}{2}($		0 1 1 1 0	0	+ $+\frac{1}{2}$	$\left(\frac{1}{2}\right.$	1 0 0 -1	0 1 -1 0	0 -1 1 0	0 0 1	$=\frac{1}{2}$		1 1 1 0 0	0	0 1 0 1)			1	0	-1 0 1 0	0 -1 0 1	

The old "1=1.1 trick"

Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$

$\mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$

$$
\mathbf{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=
$$

$$
\mathbf{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=
$$

$$
\binom{\mathrm{GP}_{g, h}^{\mathrm{GH}}=\mathrm{GP}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{g}^{\mathrm{G}} \mathbf{P}_{g, h}^{\mathrm{GH}}}{\boldsymbol{H} \mathbf{P}_{g, h}^{\mathrm{GH}}=\boldsymbol{H} \mathbf{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{HI}}=\mathbb{P}_{g}^{\mathrm{G}} \boldsymbol{H} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{h}^{\mathrm{H}} \mathbf{P}_{g, h}^{\mathrm{GH}}}
$$

...and a the same $\mathbf{P}_{g, h}^{\mathrm{GH}}$ projectors spectrally resolve both G and H .

$$
\mathbf{G}=(+1) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(+1) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,-2}^{\mathrm{GH}} \quad \mathbf{H}=(+2) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(+2) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{-1,-2}^{\mathrm{GH}}
$$

Irreducible projectors and representations (Trace checks)
Another Problem: How do you tell when a Projector $\mathbf{P}_{g}^{\mathrm{G}}$ or $\mathbf{P}_{g, h}^{\mathrm{GH}}$ is 'splittable' (Correct term is reducible.) Solution: It's all in the matrix Trace $=$ sum of its diagonal elements.

The old "1=1.1 trick"
Multiplying G and \mathbb{H} completeness relations gives a set of projectors and eigen-relations for both:
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$

$$
\mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=
$$

$$
\mathbf{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=
$$

$$
\mathbf{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=
$$

\square
$\frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$

$$
\binom{\mathrm{GP}_{g, h}^{\mathrm{GH}}=\mathrm{GP}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{g}^{\mathrm{G}} \mathbf{P}_{g, h}^{\mathrm{GH}}}{\mathbb{H} \mathbf{P}_{g, h}^{\mathrm{GH}}=\mathbb{H} \mathbf{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\mathbb{P}_{g}^{\mathrm{G}} \boldsymbol{H} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{h}^{\mathrm{H}} \mathbf{P}_{g, h}^{\mathrm{GH}}}
$$

...and a the same $\mathbf{P}_{g, h}^{\mathrm{GH}}$ projectors spectrally resolve both G and \mathbb{H}.

$$
\mathbf{G}=(+1) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(+1) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,-2}^{\mathrm{GH}} \quad \mathbf{H}=(+2) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(+2) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{-1,-2}^{\mathrm{GH}}
$$

Irreducible projectors and representations (Trace checks)
Another Problem: How do you tell when a Projector $\mathbf{P}_{g}^{\mathrm{G}}$ or $\mathbf{P}_{g, h}^{\mathrm{GH}}$ is 'splittable' (Correct term is reducible.) Solution: It's all in the matrix Trace $=$ sum of its diagonal elements.
Trace $\left(\mathbf{P}_{+1}^{\mathrm{G}}\right)=2$ so that projector is reducible to 2 irreducible projectors. (In this case: $\left.\mathbf{P}_{+1}^{\mathrm{G}}=\mathbf{P}_{+1,+2}^{\mathrm{GH}}+\mathbf{P}_{+1,-2}^{\mathrm{GH}}\right)$

...and a the same $\mathbf{P}_{g, h}^{\mathrm{GH}}$ projectors spectrally resolve both G and H .

$$
\mathbf{G}=(+1) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(+1) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,-2}^{\mathrm{GH}} \quad \mathbf{H}=(+2) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(+2) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{-1,-2}^{\mathrm{GH}}
$$

Irreducible projectors and representations (Trace checks)
Another Problem: How do you tell when a Projector $\mathbf{P}_{g}^{\mathrm{G}}$ or $\mathbf{P}_{g, h}^{\mathrm{GH}}$ is 'splittable' (Correct term is reducible.)
Solution: It's all in the matrix Trace $=$ sum of its diagonal elements.
Trace $\left(\mathbf{P}_{+1}^{\mathrm{G}}\right)=2$ so that projector is reducible to 2 irreducible projectors. (In this case: $\mathbf{P}_{+1}^{\mathrm{G}}=\mathbf{P}_{+1,+2}^{\mathrm{GH}}+\mathbf{P}_{+1,-2}^{\mathrm{GH}}$) $\operatorname{Trace}\left(\mathbf{P}_{+1,+2}^{\mathrm{GH}}\right)=1$ so that projector is irreducible.

The old "1=1.1 trick"
Multiplying G and \mathbb{H} completeness relations gives a set of projectors and eigen-relations for both:
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=\quad \mathbb{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbb{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbb{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbb{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
...and a the same $\mathbf{P}_{g, h}^{\mathrm{GH}}$ projectors spectrally resolve both G and \mathbf{H}.

$\mathbf{G} \mathbf{P}_{g, h}^{\mathrm{GH}}=\mathbf{G P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{g}^{\mathrm{G}} \mathbf{P}_{g, h}^{\mathrm{GH}}$
$\mathbb{H P}_{g, h}^{\mathrm{GH}}=\boldsymbol{H} \mathbb{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\mathbb{P}_{g}^{\mathrm{G}} \boldsymbol{H} \mathbb{P}_{h}^{\mathrm{H}}=\varepsilon_{h}^{\mathrm{H}} \mathbf{P}_{g, h}^{\mathrm{GH}}$

$$
\mathbf{H}=(+2) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(+2) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{-1,-2}^{\mathrm{GH}}
$$

Irreducible projectors and representations (Trace checks)
Another Problem: How do you tell when a Projector $\mathbf{P}_{g}^{\mathrm{G}}$ or $\mathbf{P}_{g, h}^{\mathrm{GH}}$ is 'splittable' (Correct term is reducible.)
Solution: It's all in the matrix Trace $=$ sum of its diagonal elements.
Trace $\left(\mathbf{P}_{+1}^{\mathrm{G}}\right)=2$ so that projector is reducible to 2 irreducible projectors. (In this case: $\mathbf{P}_{+1}^{\mathrm{G}}=\mathbf{P}_{+1,+2}^{\mathrm{GH}}+\mathbf{P}_{+1,-2}^{\mathrm{GH}}$) Trace $\left(\mathbf{P}_{+1,+2}^{\mathrm{GH}}\right)=1$ so that projector is irreducible.
Trace $(\mathbf{1})=4$ so that is reducible to 4 irreducible projectors.

The old "1=1.1 trick"
Multiplying G and \mathbb{H} completeness relations gives a set of projectors and eigen-relations for both:
$\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$
$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=\quad \mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=\quad \quad \mathbb{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbb{P}_{-1}^{\mathrm{G}} \mathbb{P}_{+2}^{\mathrm{H}}=\quad \mathbb{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbb{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
$\mathbf{G} \mathbf{P}_{g, h}^{\mathrm{GH}}=\mathbf{G P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{HI}}=\varepsilon_{g}^{\mathrm{G}} \mathbf{P}_{g, h}^{\mathrm{GH}}$
$\mathbb{H} \mathbf{P}_{g, h}^{\mathrm{GH}}=\boldsymbol{H} \mathbf{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\mathbf{P}_{g}^{\mathrm{G}} \boldsymbol{H} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{h}^{\mathrm{H}} \mathbf{P}_{g, h}^{\mathrm{GH}}$
...and a the same $\mathbf{P}_{g, h}^{\mathrm{GH}}$ projectors spectrally resolve both G and \mathbf{H}.

$$
\mathbf{G}=(+1) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(+1) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,-2}^{\mathrm{GH}} \quad \mathbf{H}=(+2) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(+2) \mathbf{P}_{-1,2}^{\mathrm{GH}}+(-2) \mathbf{P}_{-1,-2}^{\mathrm{GH}}
$$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (ODegeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbb{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=\left(\begin{array}{lll}\cdots & \cdots & 1 \\ \vdots & 1 & 1 \\ \vdots & 1 & . \\ 1 & . & .\end{array}\right)$
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure

The old "1=1.1 trick"-Spectral decomposition by projector splitting Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$
How symmetry groups become eigen-solvers

Irreducible projectors and representations (Trace checks)

Another Problem: How do you tell when a Projector $\mathbf{P}_{g}^{\mathrm{G}}$ or $\mathbf{P}_{g, h}^{\mathrm{GH}}$ is 'splittable' (Correct term is reducible.)
Solution: It's all in the matrix Trace:
Trace $\left(\mathbf{P}_{+1}^{\mathrm{G}}\right)=2$ so that projector is reducible to 2 irreducible projectors. (In this case: $\mathbf{P}_{+1}^{\mathrm{G}}=\mathbf{P}_{+1,+2}^{\mathrm{GH}}+\mathbf{P}_{+1,-2}^{\mathrm{GH}}$) Trace $\left(\mathbf{P}_{+1,2}^{\mathrm{GH}}\right)=1$ so that projector is irreducible.
Trace $(\mathbf{1})=4$ so that is reducible to 4 irreducible projectors.

Minimal equation for an idempotent projector is: $\mathbf{P}^{2}=\mathbf{P}$ or: $\mathbf{P}^{2}-\mathbf{P}=(\mathbf{P}-0 \cdot \mathbf{1})(\mathbf{P}-1 \cdot \mathbf{1})=\mathbf{0}$
So projector eigenvalues are limited to repeated O 's and l 's. Trace counts the latter.

The old "1=1.1 trick"
Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both: $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}}+\mathbf{P}_{-1}^{\mathrm{G}}\right)\left(\mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-2}^{\mathrm{H}}\right)=\mathbf{1}=\left(\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}+\mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}\right)$

$\mathbf{P}_{+1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=$	$\mathbf{P}_{+1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{+1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$	$\mathbf{P}_{-1,+2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{+2}^{\mathrm{H}}=$	$\mathbf{P}_{-1,-2}^{\mathrm{GH}} \equiv \mathbf{P}_{-1}^{\mathrm{G}} \mathbf{P}_{-2}^{\mathrm{H}}=$
$\frac{1}{4}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$	$\frac{1}{4}\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$	$\frac{1}{4}\left(\begin{array}{cccc}1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1\end{array}\right)$	$\frac{1}{4}\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1\end{array}\right)$

$$
\binom{\mathbf{G P}_{g, h}^{\mathrm{GH}}=\mathrm{GP}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{g}^{\mathrm{G}} \mathbf{P}_{g, h}^{\mathrm{GH}}}{\mathbb{H}_{g, h}^{\mathrm{GH}}=\boldsymbol{H} \mathbf{P}_{g}^{\mathrm{G}} \mathbf{P}_{h}^{\mathrm{H}}=\mathbf{P}_{g}^{\mathrm{G}} \mathrm{H} \mathbf{P}_{h}^{\mathrm{H}}=\varepsilon_{h}^{\mathrm{H}} \mathbf{P}_{g, h}^{\mathrm{GH}}}
$$

...and a the same $\mathbf{P}_{g, h}^{\mathrm{GH}}$ projectors spectrally resolve both G and \mathbf{H}.
$\left(\mathrm{G}=(+1) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(+1) \mathbf{P}_{+1,-2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-1) \mathbf{P}_{-1,-2}^{\mathrm{GH}} \quad \mathbf{H}=(+2) \mathbf{P}_{+1,+2}^{\mathrm{GH}}+(-2) \mathbb{P}_{+1,-2}^{\mathrm{GH}}+(+2) \mathbf{P}_{-1,+2}^{\mathrm{GH}}+(-2) \mathbf{P}_{-1,-2}^{\mathrm{GH}}\right.$

Review: matrix eigenstates ("ownstates) and Idempotent projectors (ODegeneracy case)
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values)
Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular \rightarrow Hamilton-Cayley \rightarrow Minimal equations
Diagonalizability criterion
Nilpotents and "Bad degeneracy" examples: $\mathbb{B}=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$, and: $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
Applications of Nilpotent operators later on
Idempotents and "Good degeneracy" example: $\mathrm{G}=\left(\begin{array}{lll}\therefore & \cdots & 1 \\ \vdots & 1 & 1 \\ \vdots & 1 & . \\ 1 & . & .\end{array}\right)$
Secular equation by minor expansion
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection \mathbf{P}_{j}-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure

The old "1=1.1 trick"-Spectral decomposition by projector splitting
Irreducible projectors and representations (Trace checks)
Minimal equation for projector $\mathbf{P}=\mathbf{P}^{2}$
\rightarrow
How symmetry groups become eigen-solvers

How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator \mathbf{K} and knew that \mathbf{K} commutes with some other operators \mathbf{G} and \mathbf{H} for which irreducible projectors are more easily found.

$$
\begin{array}{llll}
\mathbf{K G}=\mathbf{G K} \text { or } & \mathbf{G}^{\dagger} \mathbf{K G}=\mathbf{K} & \text { or } & \mathbf{G K G}^{\dagger}=\mathbf{K}
\end{array} \quad \text { (Here assuming unitary } \text { (H) }
$$

How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator \mathbf{K} and knew that \mathbf{K} commutes with some other operators \mathbf{G} and \mathbf{H} for which irreducible projectors are more easily found.

$$
\left.\begin{array}{llll}
\mathbf{K G}=\mathbf{G K} \text { or } & \mathbf{G}^{\dagger} \mathbf{K G}=\mathbf{K} & \text { or } & \mathbf{G K G}^{\dagger}=\mathbf{K}
\end{array}\right) \text { (Here assuming unitary } \text { (H) }
$$

This means \mathbf{K} is invariant to the transformation by \mathbf{G} and \mathbf{H} and all their products $\mathrm{GH}, \mathrm{GH}^{2}, \mathrm{G}^{2} \mathrm{H}, .$. etc. and all their inverses $\mathrm{G}^{\dagger}, \mathrm{H}^{\dagger}, .$. etc.

How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator \mathbf{K} and knew that \mathbf{K} commutes with some other operators \mathbf{G} and \mathbf{H} for which irreducible projectors are more easily found.

$$
\begin{aligned}
& \mathbf{K G}=\mathbf{G K} \text { or } \quad \mathrm{G}^{\dagger} \mathbf{K G}=\mathbf{K} \text { or } \quad \mathrm{GKG}^{\dagger}=\mathbf{K} \\
& \mathbf{K H}=\mathbf{H K} \text { or } \mathbf{H}^{\dagger} \mathbf{K H}=\mathbf{K} \text { or } \mathbf{H K H}^{\dagger}=\mathbf{K} \quad \mathbf{G}^{\dagger}=\mathrm{G}^{-1} \text { and } \mathbf{H}^{\dagger}=\mathbb{H}^{-1} \text {.) }
\end{aligned}
$$

This means \mathbf{K} is invariant to the transformation by \mathbf{G} and \mathbf{H} and all their products $\mathrm{GH}, \mathrm{GH}^{2}, \mathrm{G}^{2} \mathrm{H}, .$. etc. and all their inverses $\mathrm{G}^{\dagger}, \mathrm{H}^{\dagger}, .$. etc.

The group $\mathscr{G} \mathbf{K}=\{\mathbf{1}, \mathbf{G}, \mathbf{H}, .$.$\} so formed by such operators is called a symmetry group for \mathbf{K}$.

How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator \mathbf{K} and knew that \mathbf{K} commutes with some other operators \mathbf{G} and \mathbf{H} for which irreducible projectors are more easily found.

$$
\begin{array}{lllll}
\mathbf{K G}=\mathbf{G K} \text { or } & \mathrm{G}^{\dagger} \mathbf{K G}=\mathbf{K} & \text { or } & \mathrm{GKG}^{\dagger}=\mathbf{K} & \text { (Here assuming unitary } \\
\mathbf{K H}=\boldsymbol{H K} \text { or } & \mathbf{H}^{\dagger} \mathbf{K H}=\mathbf{K} & \text { or } & \mathbf{H K} \mathbf{H}^{\dagger}=\mathbf{K} & \left.\mathbf{G}^{\dagger}=\mathrm{G}^{-1} \text { and } \mathrm{H}^{\dagger}=\mathrm{H}^{-1} .\right)
\end{array}
$$

This means \mathbf{K} is invariant to the transformation by \mathbf{G} and \mathbf{H} and all their products $\mathrm{GH}, \mathrm{GH}^{2}, \mathrm{G}^{2} \mathrm{H}, .$. etc. and all their inverses $\mathrm{G}^{\dagger}, \mathrm{H}^{\dagger}, .$. etc.

The group $\mathscr{G} \mathbf{K}=\{\mathbf{1}, \mathbf{G}, \mathbf{H}, .$.$\} so formed by such operators is called a symmetry group for \mathbf{K}$.
In certain ideal cases a \mathbf{K}-matrix $\langle\mathbf{K}\rangle$ is a linear combination of matrices $\langle\mathbf{1}\rangle,\langle\mathbf{G}\rangle,\langle\mathbf{H}\rangle, \ldots$ from \mathscr{G}. Then spectral resolution of $\{\langle\mathbf{1}\rangle,\langle\mathbf{G}\rangle,\langle\mathbf{H}\rangle, .$.$\} also resolves \langle\mathbf{K}\rangle$.

How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator \mathbf{K} and knew that \mathbf{K} commutes with some other operators \mathbf{G} and \mathbf{H} for which irreducible projectors are more easily found.

$$
\begin{array}{lllll}
\mathbf{K G}=\mathbf{G K} \text { or } & \mathrm{G}^{\dagger} \mathbf{K G}=\mathbf{K} & \text { or } & \mathrm{GKG}^{\dagger}=\mathbf{K} & \text { (Here assuming unitary } \\
\mathbf{K H}=\boldsymbol{H K} \text { or } & \mathbf{H}^{\dagger} \mathbf{K H}=\mathbf{K} & \text { or } & \mathbf{H K} \mathbf{H}^{\dagger}=\mathbf{K} & \left.\mathbf{G}^{\dagger}=\mathrm{G}^{-1} \text { and } \mathrm{H}^{\dagger}=\mathrm{H}^{-1} .\right)
\end{array}
$$

This means \mathbf{K} is invariant to the transformation by \mathbf{G} and \mathbf{H} and all their products $\mathrm{GH}, \mathrm{GH}^{2}, \mathrm{G}^{2} \mathrm{H}, .$. etc. and all their inverses $\mathrm{G}^{\dagger}, \mathrm{H}^{\dagger}, .$. etc.

The group $\mathscr{G} \mathbf{K}=\{\mathbf{1}, \mathbf{G}, \mathbf{H}, .$.$\} so formed by such operators is called a symmetry group for \mathbf{K}$.
In certain ideal cases a \mathbf{K}-matrix $\langle\mathbf{K}\rangle$ is a linear combination of matrices $\langle\mathbf{1}\rangle,\langle\mathbf{G}\rangle,\langle\mathbf{H}\rangle, \ldots$ from \mathscr{G}. Then spectral resolution of $\{\langle\mathbf{1}\rangle,\langle\mathbf{G}\rangle,\langle\mathbf{H}\rangle, .$.$\} also resolves \langle\mathbf{K}\rangle$.

We will study ideal cases first. More general cases are built from these.

Eigensolutions for active analyzers

Matrix products and eigensolutions for active analyzers

Consider a 45° tilted $\left(\theta 1=\beta 1 / 2=\pi / 4\right.$ or $\left.\beta 1=90^{\circ}\right)$ analyzer followed by a untilted $\left(\beta_{2}=0\right)$ analyzer.
Active analyzers have both paths open and a phase shift $e^{-i \Omega}$ between each path.
Here the first analyzer has $\Omega 1=90^{\circ}$. The second has $\Omega_{2}=180^{\circ}$.

The transfer matrix for each analyzer is a sum of projection operators for each open path multiplied by the phase factor that is active at that path. Apply phase factor $e^{-i \Omega 1}=e^{-i \pi / 2}$ to top path in the first analyzer and the factor $e^{-i \Omega 2}=e^{-i \pi}$ to the top path in the second analyzer.
$T(2)=e^{-i \pi}|x\rangle\langle x|+|y\rangle\langle y|=\left(\begin{array}{cc}e^{-i \pi} & 0 \\ 0 & 1\end{array}\right) \quad T(1)=e^{-i \pi / 2}\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right|+\left|y^{\prime}\right\rangle\left\langle y^{\prime}\right|=e^{-i \pi / 2}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)+\left(\begin{array}{cc}\frac{1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{1}{2}\end{array}\right)=\left(\begin{array}{cc}\frac{1-i}{2} & \frac{-1-i}{2} \\ \frac{-1-i}{2} & \frac{1-i}{2}\end{array}\right)$
The matrix product $T($ total $)=T(2) T(1)$ relates input states $|\Psi I N\rangle$ to output states: $|\Psi O U T\rangle=T($ total $)|\Psi I N\rangle$

$$
T(\text { total })=T(2) T(1)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1-i}{2} & \frac{-1-i}{2} \\
\frac{-1-i}{2} & \frac{1-i}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{-1+i}{2} & \frac{1+i}{2} \\
\frac{-1-i}{2} & \frac{1-i}{2}
\end{array}\right)=e^{-i \pi / 4}\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \sim\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

We drop the overall phase $e^{-i \pi / 4}$ since it is unobservable. T (total) yields two eigenvalues and projectors.

$$
\begin{gathered}
\lambda^{2}-0 \lambda-1=0, \text { or: } \lambda=+1,-1 \\
, \text { gives projectors }
\end{gathered} P_{+1}=\frac{\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}}+1 & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}}+1
\end{array}\right)}{1-(-1)}=\frac{\left(\begin{array}{cc}
-1+\sqrt{2} & i \\
-i & 1+\sqrt{2}
\end{array}\right)}{2 \sqrt{2}}, P_{-1}=\frac{\left(\begin{array}{cc}
1+\sqrt{2} & -i \\
i & -1+\sqrt{2}
\end{array}\right)}{2 \sqrt{2}}
$$

