
Group Theory in Quantum Mechanics
Lecture 5 (1.27.15) 

Spectral Decomposition with Repeated Eigenvalues 
(Quantum Theory for Computer Age - Ch. 3 of Unit 1 )

(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 )

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Non-degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)
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Minimal equation for projector P=P2 

(Preparing for:Degenerate eigenvalues )

How symmetry groups become eigen-solvers
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How symmetry groups become eigen-solvers
Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Non-degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)
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T
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|Ψ〉T|Ψ〉 input stateoutput state

TT
Unitary operators and matrices that change state vectors...

Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .

...and eigenstates (“ownstates) that are mostly immune to T...
          

T|ej〉=εj|ej〉

|ej〉

analyzer

T
analyzer

T
eigenstate |ej〉 in

|ej〉

eigenstate |ej〉 out
(multiplied by εj )

T
Fig. 3.1.2 Effect of analyzer 

on eigenket | εj 〉
 is only to multiply by 

eigenvalue εj 
( T| εj 〉  = εj | εj 〉 ).

For Unitary operators T=U, the eigenvalues must be phase factors εk=eiαk
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Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues )
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Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Dirac notation form:
M⏐εj〉〈εj⏐=εk ⏐εk〉〈εk⏐= ⏐εk〉〈εk⏐M

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues )
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Eigen-Operator-Pk -Orthonormality Relations

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Dirac notation form:
 ⏐εj〉〈εj⏐·⏐εk〉〈εk⏐=δjk ⏐εk〉〈εk⏐

Dirac notation form:
M⏐εj〉〈εj⏐=εk ⏐εk〉〈εk⏐= ⏐εk〉〈εk⏐M

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues )
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 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Eigen-Operator-Pj -Completeness Relations 
                   1=     P1    +     P2     +...+    Pn  

Dirac notation form:
                  1= ⏐ε1〉〈ε1⏐+ ⏐ε2〉〈ε2⏐ +...+  ⏐εn〉〈εn⏐

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Dirac notation form:
 ⏐εj〉〈εj⏐·⏐εk〉〈εk⏐=δjk ⏐εk〉〈εk⏐

Dirac notation form:
M⏐εj〉〈εj⏐=εk ⏐εk〉〈εk⏐= ⏐εk〉〈εk⏐M

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues )
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Eigen-Operator-Pk -Orthonormality Relations

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪
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MPk =ε kPk = PkM

Eigen-Operator-Pj -Completeness Relations 
                   1=     P1    +     P2     +...+    Pn  

Dirac notation form:
                  1= ⏐ε1〉〈ε1⏐+ ⏐ε2〉〈ε2⏐ +...+  ⏐εn〉〈εn⏐

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Eigen-operators have Spectral Decomposition 
of operator M=   ε1P1     +      ε2P2    +...+   εNPN

...and operator Functional Spectral Decomposition 
   of a function f(M)=    f(ε1)P1       + f(ε2) P2        +...+   f(εN)PN 

Dirac notation form:
 ⏐εj〉〈εj⏐·⏐εk〉〈εk⏐=δjk ⏐εk〉〈εk⏐

Dirac notation form:
M⏐εj〉〈εj⏐=εk ⏐εk〉〈εk⏐= ⏐εk〉〈εk⏐M

Dirac notation form:
M=ε1⏐ε1〉〈ε1⏐+ε2⏐ε2〉〈ε2⏐+...+εn⏐εn〉〈εn⏐

Dirac notation form:
f(M) = f(ε1)⏐ε1〉〈ε1⏐+f(ε2)⏐ε2〉〈ε2⏐+...+ f(εn)⏐εn〉〈εn⏐

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues )
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Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )
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Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

Eigen-Operator-Pk -Orthonormality Relations

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Eigen-Operator-Pj -Completeness Relations 
                   1=     P1    +     P2     +...+    Pn  

Dirac notation form:
                  1= ⏐ε1〉〈ε1⏐+ ⏐ε2〉〈ε2⏐ +...+  ⏐εn〉〈εn⏐

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Eigen-operators have Spectral Decomposition 
of operator M=   ε1P1     +      ε2P2    +...+   εNPN

...and operator Functional Spectral Decomposition 
   of a function f(M)=    f(ε1)P1       + f(ε2) P2        +...+   f(εN)PN 

Dirac notation form:
 ⏐εj〉〈εj⏐·⏐εk〉〈εk⏐=δjk ⏐εk〉〈εk⏐

Dirac notation form:
M⏐εj〉〈εj⏐=εk ⏐εk〉〈εk⏐= ⏐εk〉〈εk⏐M

Dirac notation form:
M=ε1⏐ε1〉〈ε1⏐+ε2⏐ε2〉〈ε2⏐+...+εn⏐εn〉〈εn⏐

Dirac notation form:
f(M) = f(ε1)⏐ε1〉〈ε1⏐+f(ε2)⏐ε2〉〈ε2⏐+...+ f(εn)⏐εn〉〈εn⏐

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues ) (For:Degenerate eigenvalues )

10Thursday, January 22, 2015
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εm≠εk
∏

ε k − εm( )
εm≠εk
∏

Eigen-Operator-Pk -Orthonormality Relations

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Eigen-Operator-Pj -Completeness Relations 
                   1=     P1    +     P2     +...+    Pn  

Dirac notation form:
                  1= ⏐ε1〉〈ε1⏐+ ⏐ε2〉〈ε2⏐ +...+  ⏐εn〉〈εn⏐

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Eigen-operators have Spectral Decomposition 
of operator M=   ε1P1     +      ε2P2    +...+   εNPN

...and operator Functional Spectral Decomposition 
   of a function f(M)=    f(ε1)P1       + f(ε2) P2        +...+   f(εN)PN 

Dirac notation form:
 ⏐εj〉〈εj⏐·⏐εk〉〈εk⏐=δjk ⏐εk〉〈εk⏐

Dirac notation form:
M⏐εj〉〈εj⏐=εk ⏐εk〉〈εk⏐= ⏐εk〉〈εk⏐M

Dirac notation form:
M=ε1⏐ε1〉〈ε1⏐+ε2⏐ε2〉〈ε2⏐+...+εn⏐εn〉〈εn⏐

Dirac notation form:
f(M) = f(ε1)⏐ε1〉〈ε1⏐+f(ε2)⏐ε2〉〈ε2⏐+...+ f(εn)⏐εn〉〈εn⏐

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues ) (For:Degenerate eigenvalues )

MPεk =ε kPεk=PεkM
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Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

Eigen-Operator-Pk -Orthonormality Relations

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Eigen-Operator-Pj -Completeness Relations 
                   1=     P1    +     P2     +...+    Pn  

Dirac notation form:
                  1= ⏐ε1〉〈ε1⏐+ ⏐ε2〉〈ε2⏐ +...+  ⏐εn〉〈εn⏐

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Eigen-operators have Spectral Decomposition 
of operator M=   ε1P1     +      ε2P2    +...+   εNPN

...and operator Functional Spectral Decomposition 
   of a function f(M)=    f(ε1)P1       + f(ε2) P2        +...+   f(εN)PN 

Dirac notation form:
 ⏐εj〉〈εj⏐·⏐εk〉〈εk⏐=δjk ⏐εk〉〈εk⏐

Dirac notation form:
M⏐εj〉〈εj⏐=εk ⏐εk〉〈εk⏐= ⏐εk〉〈εk⏐M (Dirac notation form is more complicated.)

Dirac notation form:
M=ε1⏐ε1〉〈ε1⏐+ε2⏐ε2〉〈ε2⏐+...+εn⏐εn〉〈εn⏐

Dirac notation form:
f(M) = f(ε1)⏐ε1〉〈ε1⏐+f(ε2)⏐ε2〉〈ε2⏐+...+ f(εn)⏐εn〉〈εn⏐

Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues ) (For:Degenerate eigenvalues )

MPεk =ε kPεk=PεkM

To be discussed  in this lecture.
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(Dirac notation form is more complicated.)

(Dirac notation form is more complicated.)

Dirac notation form:
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MPεk =ε kPεk=PεkM
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m≠k
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 1 = Pε1
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 + ...+   Pεn

...and operator Functional Spectral Decomposition 
   of a function f(M)=    f(ε1)P1       + f(ε2) P2        +...+   f(εN)PN 
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(Dirac notation form is more complicated.)
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Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues ) (For:Degenerate eigenvalues )

MPεk =ε kPεk=PεkM

To be discussed  in this lecture.

To be discussed  in this lecture.

To be discussed  in this lecture.
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Pεk =
M − εm1( )

εm≠εk
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ε k − εm( )
εm≠εk
∏

Eigen-Operator-Pk -Orthonormality Relations

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Eigen-Operator-Projectors Pk :
MPk =ε kPk = PkM

Eigen-Operator-Pj -Completeness Relations 
                   1=     P1    +     P2     +...+    Pn  

Dirac notation form:
                  1= ⏐ε1〉〈ε1⏐+ ⏐ε2〉〈ε2⏐ +...+  ⏐εn〉〈εn⏐

Pk =
M − εm1( )

m≠k
∏

ε k − εm( )
m≠k
∏

Eigen-operators have Spectral Decomposition 
of operator M=   ε1P1     +      ε2P2    +...+   εNPN

 1 = Pε1
 +   Pε2

 + ...+   Pεn

...and operator Functional Spectral Decomposition 
   of a function f(M)=    f(ε1)P1       + f(ε2) P2        +...+   f(εN)PN  f (M) = f (ε1)Pε1

+ f (ε2 )Pε2
+ ...+ f (εn )Pεn

Dirac notation form:
 ⏐εj〉〈εj⏐·⏐εk〉〈εk⏐=δjk ⏐εk〉〈εk⏐

Dirac notation form:
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⎩⎪

(Dirac notation form is more complicated.)

(Dirac notation form is more complicated.)

(Dirac notation form is more complicated.)

Dirac notation form:
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 M = ε1Pε1
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+ ...+ εnPεn
(Dirac notation form is more complicated.)

(Dirac notation form is more complicated.)
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Operator ortho-completeness, and spectral decomposition

(For: Non-Degenerate eigenvalues ) (For:Degenerate eigenvalues )

MPεk =ε kPεk=PεkM

To be discussed  in this lecture.

To be discussed  in this lecture.

To be discussed  in this lecture.
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How symmetry groups become eigen-solvers
Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det⏐M-εj1⏐-0) of N-by-N matrix H has -repeated ε1-roots {ε11, ε12... ε1} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
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What if secular equation (det⏐M-εj1⏐-0) of N-by-N matrix H has -repeated ε1-roots {ε11, ε12... ε1} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det⏐M-εj1⏐-0) of N-by-N matrix H has -repeated ε1-roots {ε11, ε12... ε1} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue εj is j-fold degenerate so secular equation (SEq) factors as follows:

   

S ε( ) = 0 = −1( )N ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p  where:    1+2+…+ p=N
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If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue εj is j-fold degenerate so secular equation (SEq) factors as follows:

    

S ε( ) = 0 = −1( )N ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p  where:    1+2+…+ p=N

S H( ) = 0 = −1( )N H − ε11( )1 H − ε21( )2… H − ε p1( ) p where:    1+2+…+ p=N

Then the HC equation (HCeq) is a matrix equation of degree N with H replacing ε in SEq: S(ε) → S(H) 
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What if secular equation (det⏐M-εj1⏐-0) of N-by-N matrix H has -repeated ε1-roots {ε11, ε12... ε1} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue εj is j-fold degenerate so secular equation (SEq) factors as follows:

The number k is called the degree of degeneracy of eigenvalue εk.    

S ε( ) = 0 = −1( )N ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p  where:    1+2+…+ p=N
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If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue εj is j-fold degenerate so secular equation (SEq) factors as follows:

The number k is called the degree of degeneracy of eigenvalue εk.

The minimum power integers µk ≤k, that still make S(H)= 0, form the minimal equation (MEq) of H.  
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Then the HC equation (HCeq) is a matrix equation of degree N with H replacing ε in SEq: S(ε) → S(H) 

22Thursday, January 22, 2015
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What if secular equation (det⏐M-εj1⏐-0) of N-by-N matrix H has -repeated ε1-roots {ε11, ε12... ε1} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue εj is j-fold degenerate so secular equation (SEq) factors as follows:

The number k is called the degree of degeneracy of eigenvalue εk.

If (and only if) just one (µk =1) of each distinct factor is needed, then H is diagonalizable. 
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S ε( ) = 0 = −1( )N ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p  where:    1+2+…+ p=N

S H( ) = 0 = −1( )N H − ε11( )1 H − ε21( )2… H − ε p1( ) p where:    1+2+…+ p=N

Then the HC equation (HCeq) is a matrix equation of degree N with H replacing ε in SEq: S(ε) → S(H) 

The minimum power integers µk ≤k, that still make S(H)= 0, form the minimal equation (MEq) of H.  
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det⏐M-εj1⏐-0) of N-by-N matrix H has -repeated ε1-roots {ε11, ε12... ε1} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue εj is j-fold degenerate so secular equation (SEq) factors as follows:

The number k is called the degree of degeneracy of eigenvalue εk.

If (and only if) just one (µk =1) of each distinct factor is needed, then H is diagonalizable. 

This is true since this p-th degree equation spectrally decomposes H into p operators:

    
0 = −1( )N H − ε11( )µ1 H − ε21( )µ2 … H − ε p1( )µp    where:    µ1+µ2+…+µp=N MIN ≤ N

    
0 = −1( )N H − ε11( )1 H − ε21( )1… H − ε p1( )1    where:    p =N MIN ≤ N

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

    

S ε( ) = 0 = −1( )N ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p  where:    1+2+…+ p=N

S H( ) = 0 = −1( )N H − ε11( )1 H − ε21( )2… H − ε p1( ) p where:    1+2+…+ p=N

Then the HC equation (HCeq) is a matrix equation of degree N with H replacing ε in SEq: S(ε) → S(H) 

The minimum power integers µk ≤k, that still make S(H)= 0, form the minimal equation (MEq) of H.  
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det⏐M-εj1⏐-0) of N-by-N matrix H has -repeated ε1-roots {ε11, ε12... ε1} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case. 
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue εj is j-fold degenerate so secular equation (SEq) factors as follows:

The number k is called the degree of degeneracy of eigenvalue εk.

If (and only if) just one (µk =1) of each distinct factor is needed, then H is diagonalizable. 

This is true since this p-th degree equation spectrally decomposes H into p operators:

    
0 = −1( )N H − ε11( )µ1 H − ε21( )µ2 … H − ε p1( )µp    where:    µ1+µ2+…+µp=N MIN ≤ N

    
0 = −1( )N H − ε11( )1 H − ε21( )1… H − ε p1( )1    where:    p =N MIN ≤ N

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

H =  ε1Pε1  +  ε2Pε2  +...+ εpPεp  that are ortho-complete: Pεj Pεk = δjk Pεk

    

S ε( ) = 0 = −1( )N ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p  where:    1+2+…+ p=N

S H( ) = 0 = −1( )N H − ε11( )1 H − ε21( )2… H − ε p1( ) p where:    1+2+…+ p=N

Then the HC equation (HCeq) is a matrix equation of degree N with H replacing ε in SEq: S(ε) → S(H) 

The minimum power integers µk ≤k, that still make S(H)= 0, form the minimal equation (MEq) of H.  
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Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )
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⎟
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A diagonalizability criterion has just been proved:

In general, matrix H can make an ortho-complete set of  Pεj if
and only if, the H minimal equation has no repeated factors. 
Then and only then is matrix H fully diagonalizable.
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A diagonalizability criterion has just been proved:

In general, matrix H can make an ortho-complete set of  Pεj if
and only if, the H minimal equation has no repeated factors. 
Then and only then is matrix H fully diagonalizable.

If (and only if) just one (µk =1) of each distinct factor is needed, then H is diagonalizable. 

since this p-th degree equation spectrally decomposes H into p operators:

    
0 = −1( )N H − ε11( )1 H − ε21( )1… H − ε p1( )1    where:    p =N MIN ≤ N

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

H =  ε1Pε1  +  ε2Pε2  +...+ εpPεp  that are orthonormal: Pεj Pεk = δjk Pεk 
                                                           and complete: 1 = Pε1 + Pε2 +...+ Pεp
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Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )
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(like this ↓)

Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal...   
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

   
0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

0 1
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⎝⎜
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b 1
0 b

⎛

⎝⎜
⎞

⎠⎟

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

  

b 1
0 b

⎛

⎝⎜
⎞

⎠⎟

   
0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    0 1
0 0
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0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

33Thursday, January 22, 2015



Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. 
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0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. 
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0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.

35Thursday, January 22, 2015



Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.
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Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)
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Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

   
B = b 1

0 b
⎛

⎝⎜
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Secular equation has two equal roots (ε=b twice):
  
S ε( ) = ε 2 − 2bε + b2 = ε − b( )2 = 0

-Trace(B) +Det|B|
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(like this ↓)
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Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟

Secular equation has two equal roots (ε=b twice):
  
S ε( ) = ε 2 − 2bε + b2 = ε − b( )2 = 0

-Trace(B) +Det|B|

This gives HC equation:
   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0
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 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟

Secular equation has two equal roots (ε=b twice):
  
S ε( ) = ε 2 − 2bε + b2 = ε − b( )2 = 0

-Trace(B) +Det|B|

This gives HC equation:
   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0

   
N = B − b1 = 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

 
= 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

2

This in turn gives a 
nilpotent eigen-projector: 

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

  

b 1
0 b

⎛

⎝⎜
⎞

⎠⎟

   
0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟

Secular equation has two equal roots (ε=b twice):
  
S ε( ) = ε 2 − 2bε + b2 = ε − b( )2 = 0

-Trace(B) +Det|B|

This gives HC equation:
   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0

   
N = B − b1 = 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

 
= 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

2

This in turn gives a 
nilpotent eigen-projector: 

...which satisfies:
   
N2 = 0 but N ≠ 0( )  and:  BN = bN = NB

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

  

b 1
0 b

⎛

⎝⎜
⎞

⎠⎟

   
0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟

Secular equation has two equal roots (ε=b twice):
  
S ε( ) = ε 2 − 2bε + b2 = ε − b( )2 = 0

-Trace(B) +Det|B|

This gives HC equation:
   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0

   
N = B − b1 = 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

 
= 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

2

This in turn gives a 
nilpotent eigen-projector: 

...which satisfies:
   
N2 = 0 but N ≠ 0( )  and:  BN = bN = NB

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

  

b 1
0 b

⎛

⎝⎜
⎞

⎠⎟

This nilpotent N contains only one non-zero eigenket and one eigenbra. 
  
b = 1

0
⎛

⎝⎜
⎞

⎠⎟
,     b = 0 1( )  

   
0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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These two have zero-norm!  (             )

Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟

Secular equation has two equal roots (ε=b twice):
  
S ε( ) = ε 2 − 2bε + b2 = ε − b( )2 = 0

-Trace(B) +Det|B|

This gives HC equation:
   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0

   
N = B − b1 = 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

 
= 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

2

This in turn gives a 
nilpotent eigen-projector: 

...which satisfies:
   
N2 = 0 but N ≠ 0( )  and:  BN = bN = NB

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

  

b 1
0 b

⎛

⎝⎜
⎞

⎠⎟

This nilpotent N contains only one non-zero eigenket and one eigenbra. 
  
b = 1

0
⎛

⎝⎜
⎞

⎠⎟
,     b = 0 1( )  

 
b b = 0

   
0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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These two have zero-norm!  (             )

Nilpotents and “Bad degeneracy” examples: B=           , and:  N=    

Then squaring N puts back the missing (H-ε11)-factor that completes the zero minimal equation.

   
  N2= H − ε11( )2 H − ε21( )2 ……= 0

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome 
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟

Secular equation has two equal roots (ε=b twice):
  
S ε( ) = ε 2 − 2bε + b2 = ε − b( )2 = 0

-Trace(B) +Det|B|

This gives HC equation:
   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0

   
N = B − b1 = 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

 
= 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟

2

This in turn gives a 
nilpotent eigen-projector: 

...which satisfies:
   
N2 = 0 but N ≠ 0( )  and:  BN = bN = NB

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

  

b 1
0 b

⎛

⎝⎜
⎞

⎠⎟

This nilpotent N contains only one non-zero eigenket and one eigenbra. 
  
b = 1

0
⎛

⎝⎜
⎞

⎠⎟
,     b = 0 1( )  

 
b b = 0 The usual idempotent spectral resolution is no-go. 

   
0 = H − ε11( )2 H − ε21( )1…,  but:  N= H − ε11( )1 H − ε21( )1……≠ 0

(like this ↓)

   
0 = H − ε11( )2 H − ε21( )1…,  

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.  
Even one repeat is fatal... when removal of repeated (H-ε11) gives a non-zero operator N.   
	
 	


(The other extra (H-ε21)... factors 
cannot keep N2 from being zero.)

 Order-2 Nilpotent: Non-zero N whose square N2 is zero.
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Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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 As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N = ⏐1〉〈2⏐ is an example of an elementary operator eab = ⏐a〉〈b⏐
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 As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N = ⏐1〉〈2⏐ is an example of an elementary operator eab = ⏐a〉〈b⏐

N and its partners comprise a 4-dimensional U(2) unit tensor operator space

U(2) op-space= {e11=⏐1〉〈1⏐,         e12=⏐1〉〈2⏐,          e21=⏐2〉〈1⏐,            e22=⏐2〉〈2⏐ }

They form an elementary matrix algebra eij ekm = δjk eim  of unit tensor operators. 
The non-diagonal ones are non-diagonalizable nilpotent operators                             

e11 = 1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

 ,   e12 = 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 ,   e21 = 0 0
1 0

⎛
⎝⎜

⎞
⎠⎟

 ,   e22 = 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

 ,    
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 As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N = ⏐1〉〈2⏐ is an example of an elementary operator eab = ⏐a〉〈b⏐

N and its partners comprise a 4-dimensional U(2) unit tensor operator space

U(2) op-space= {e11=⏐1〉〈1⏐,         e12=⏐1〉〈2⏐,          e21=⏐2〉〈1⏐,            e22=⏐2〉〈2⏐ }

They form an elementary matrix algebra eij ekm = δjk eim  of unit tensor operators. 
The non-diagonal ones are non-diagonalizable nilpotent operators                             

Their ∞-Dimensional cousins are the creation-destruction ai†aj operators.                              

e11 = 1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

 ,   e12 = 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 ,   e21 = 0 0
1 0

⎛
⎝⎜

⎞
⎠⎟

 ,   e22 = 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

 ,    
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Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

49Thursday, January 22, 2015



Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ε has a 4th degree Secular Equation (SEq) 
  ε4 − (∑1x1 diag of G) ε3 +  (∑2x2 diag minors of G) ε2 −  (∑3x3 diag minors of G) ε1 +  (4x4 determinant of G) ε1=0

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ε has a 4th degree Secular Equation (SEq) 
  ε4 − (∑1x1 diag of G) ε3 +  (∑2x2 diag minors of G) ε2 −  (∑3x3 diag minors of G) ε1 +  (4x4 determinant of G) ε1=0

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Trace of G=0

     0                                                                                                      

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ε has a 4th degree Secular Equation (SEq) 
  ε4 − (∑1x1 diag of G) ε3 +  (∑2x2 diag minors of G) ε2 −  (∑3x3 diag minors of G) ε1 +  (4x4 determinant of G) ε1=0

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Trace of G=0

  

M (12) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (13) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (14) = −1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (23) = −1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (24) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0   

M (34) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

     0                               -2                                                                       

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ε has a 4th degree Secular Equation (SEq) 
  ε4 − (∑1x1 diag of G) ε3 +  (∑2x2 diag minors of G) ε2 −  (∑3x3 diag minors of G) ε1 +  (4x4 determinant of G) ε1=0

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Trace of G=0

  

M (12) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (13) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (14) = −1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (23) = −1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (24) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0   

M (34) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (123) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (124) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (134) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (234) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

     0                               -2                                      0                                  

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ε has a 4th degree Secular Equation (SEq) 
  ε4 − (∑1x1 diag of G) ε3 +  (∑2x2 diag minors of G) ε2 −  (∑3x3 diag minors of G) ε1 +  (4x4 determinant of G) ε1=0

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Trace of G=0

  

M (12) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (13) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (14) = −1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (23) = −1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (24) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0   

M (34) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (123) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (124) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (134) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

M (234) = 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

detG =

= (−1)
0 0 1
0 1 0
1 0 0

= (−1)(1) 0 1
1 0

= (−1)(1)(−1)
= +1

     0                               -2                                      0                                   +1

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

   +  −   +   −

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

G has a 4th degree HC equation (HCeq) with G replacing ε in SEq: S(ε) → S(G) 

   
S G( ) = 0 = G4 − 2G2 +1 = G −1( )2 G +1( )2

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

 Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. 
0 = (G - 1) (G + 1)

G has a 4th degree HC equation (HCeq) with G replacing ε in SEq: S(ε) → S(G) 

   
S G( ) = 0 = G4 − 2G2 +1 = G −1( )2 G +1( )2

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

 Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So Pεk formulae work!
0 = (G - 1) (G + 1)

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

G has a 4th degree HC equation (HCeq) with G replacing ε in SEq: S(ε) → S(G) 

   
S G( ) = 0 = G4 − 2G2 +1 = G −1( )2 G +1( )2

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

 Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So Pεk formulae work!
0 = (G - 1) (G + 1)

Two ortho-complete projection operators are derived by Projection formula:                        .

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

G has a 4th degree HC equation (HCeq) with G replacing ε in SEq: S(ε) → S(G) 

   
S G( ) = 0 = G4 − 2G2 +1 = G −1( )2 G +1( )2

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

 Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So Pεk formulae work!
0 = (G - 1) (G + 1)

Two ortho-complete projection operators are derived by Projection formula:                        .

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

Each of these projectors contains two linearly independent ket or bra vectors: 

 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

G has a 4th degree HC equation (HCeq) with G replacing ε in SEq: S(ε) → S(G) 

   
S G( ) = 0 = G4 − 2G2 +1 = G −1( )2 G +1( )2

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

 Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So Pεk formulae work!
0 = (G - 1) (G + 1)

Two ortho-complete projection operators are derived by Projection formula:                        .

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

Each of these projectors contains two linearly independent ket or bra vectors: 

 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

These 4 are more than
linearly independent...
...they are orthogonal.

G has a 4th degree HC equation (HCeq) with G replacing ε in SEq: S(ε) → S(G) 

   
S G( ) = 0 = G4 − 2G2 +1 = G −1( )2 G +1( )2

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Idempotents and “Good degeneracy” example: G=               
 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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     An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  
S ε( ) = 0 = ε 4 − 2ε 2 +1= ε −1( )2 ε +1( )2

ε has a 4th degree Secular Equation (SEq) with repeat pairs of degenerate roots (εk=±1)

 Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So Pεk formulae work!
0 = (G - 1) (G + 1)

Two ortho-complete projection operators are derived by Projection formula:                        .

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pεk =
M − εm1( )

εm≠εk
∏

ε k − εm( )
εm≠εk
∏

Each of these projectors contains two linearly independent ket or bra vectors: 

 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

These 4 are more than
linearly independent...
...they are orthogonal.

G has a 4th degree HC equation (HCeq) with G replacing ε in SEq: S(ε) → S(G) 

   
S G( ) = 0 = G4 − 2G2 +1 = G −1( )2 G +1( )2

SEq:

   

S ε( ) = det G − ε1 = det

−ε 0 0 1
0 −ε 1 0
0 1 −ε 0
1 0 0 −ε

Bra-Ket repeats may need to be made orthogonal. Two methods shown next:
1: Gram-Schmidt orthogonalization (harder)     2: Commuting projectors (easier)
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Minimal equation for projector P=P2 

Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0

Orthonormalization of degenerate eigensolutions 

Bra-Ket repeats may need to be made orthogonal. Two methods shown next:
1: Gram-Schmidt orthogonalization (harder)     2: Commuting projectors (easier)
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Projection Pj-matrix anatomy (Gramian matrices)
If projector Pj is idempotent (Pj Pj = Pj), all matrix elements (Pj)bk are rowb-columnk-•-products (jb⏐jk)     

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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.   .   .       .   . 

.   .   .       .   . 

.   .   .       .   .

.   .   .       .   . 

.   .   .       .   . 

.   .   .       .   . 

.   .   .   .   .   . 

.   .   .   .   .   . 

.   .   .   .   .   . 

.   .   .   .   .   . 

.   .   .   .   .   . 
 

                     Pj( )                   i                  Pj( )                 =                  Pj( )                         

b1 b2 b3 b4 b5 b6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅

k1

k2

k3

k4

k5

k6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
(b|k)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

.   .   .   .   .   . 

.   .   .   .   .   . 

.   .   .       .   .

.   .   .   .   .   . 

.   .   .   .   .   . 

.   .   .   .   .   . 

Projection Pj-matrix anatomy (Gramian matrices)
If projector Pj is idempotent (Pj Pj = Pj), all matrix elements (Pj)bk are rowb-columnk-•-products (jb⏐jk)     

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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(Pj)34 = b4 = k3 =  (j3⏐j4)   =  

Projection Pj-matrix anatomy (Gramian matrices)
If projector Pj is idempotent (Pj Pj = Pj), all matrix elements (Pj)bk are rowb-columnk-•-products (jb⏐jk)     

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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(Pj)34 = b4 = k3 =  (j3⏐j4)   =   (b⏐k) = b•k  =    b1k1+b2k2+b3k3+b4k4+b5k5+b6k6

Projection Pj-matrix anatomy (Gramian matrices)
If projector Pj is idempotent (Pj Pj = Pj), all matrix elements (Pj)bk are rowb-columnk-•-products (jb⏐jk)     

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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(Pj)34 = b4 = k3 =  (j3⏐j4)   =   (b⏐k) = b•k  =    b1k1+b2k2+b3k3+b4k4+b5k5+b6k6                         
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Quasi-Dirac notation
shows vector relations

Projection Pj-matrix anatomy (Gramian matrices)
If projector Pj is idempotent (Pj Pj = Pj), all matrix elements (Pj)bk are rowb-columnk-•-products (jb⏐jk)     

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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(Pj)34 = b4 = k3 =  (j3⏐j4)   =   (b⏐k) = b•k  =    b1k1+b2k2+b3k3+b4k4+b5k5+b6k6                         

(b|1) (b|2) (b|3) (b|4) (b|5) (b|6)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅

(1|k)
(2|k)
(3|k)
(4|k)
(5|k)
(6|k)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
(b|k)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 bra row b=3rd

ke
t c

ol
um

n 
k=

4t
h

                         

(b|1) (b|2) (b|3) (b|4) (b|5) (b|6)
(k|1) (k|2) (k|3) (k|4) (k|5) (k|6)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅

(1|b) (1|k)
(2|b) (2|k)
(3|b) (3|k)
(4|b) (4|k)
(5|b) (5|k)
(6|b) (6|k)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
(b|b) (b|k)

(k|k)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

 .   .   .    .     .   . 
 .   .   .    .     .   . 
 .   .              .   .
 .   .   .          .   . 
 .   .   .    .     .   . 
 .   .   .    .     .   . 

Diagonal matrix elements (Pj)kk = rowk-columnk-•-product (jk⏐jk)= (k⏐k) is kth-norm value (usually real) 

Quasi-Dirac notation
shows vector relations

Projection Pj-matrix anatomy (Gramian matrices)
If projector Pj is idempotent (Pj Pj = Pj), all matrix elements (Pj)bk are rowb-columnk-•-products (jb⏐jk)     

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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Diagonal matrix elements (Pj)kk = rowk-columnk-•-product (jk⏐jk)= (k⏐k) is kth-norm value (usually real) 

ket= ⏐jk〉=⏐jk)/√(k⏐k)
bra=〈jk⏐=(jk⏐/√(k⏐k)
      so:〈jk⏐jk〉=1

kth normalized vectors

Quasi-Dirac notation
shows vector relations

Projection Pj-matrix anatomy (Gramian matrices)
If projector Pj is idempotent (Pj Pj = Pj), all matrix elements (Pj)bk are rowb-columnk-•-products (jb⏐jk)     

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )
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⋅ ⋅ 1 ⋅
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1 ⋅ ⋅ ⋅
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⎜
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⎠

⎟
⎟
⎟
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⋅ ⋅ 1 ⋅
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⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
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⋅ 2 ⋅ ⋅
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⎜
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⎟
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Gram-Schmidt procedure
Suppose a non-zero scalar product (j1⏐j2)≠0. Replace vector ⏐j2) with a vector ⏐j2〉=⏐j1) normal to (j1⏐ ?       

Orthonormalization of degenerate eigensolutions 
The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0
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The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j1⏐j2)≠0. Replace vector ⏐j2) with a vector ⏐j2〉=⏐j1) normal to (j1⏐ ?       

Define: ⏐j2〉= N1⏐j1) + N2⏐j2) such that:  (j1⏐j2〉=0= N1 (j1⏐j1) + N2 (j1⏐j2) 
                   ...and normalized so that:   〈j2⏐j2〉=1= N12(j1⏐j1)+ N1 N2[(j1⏐j2)+ (j2⏐j1)]+ N22(j2⏐j2) 

Orthonormalization of degenerate eigensolutions 
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The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j1⏐j2)≠0. Replace vector ⏐j2) with a vector ⏐j2〉=⏐j1) normal to (j1⏐ ?       

Define: ⏐j2〉= N1⏐j1) + N2⏐j2) such that:  (j1⏐j2〉=0= N1 (j1⏐j1) + N2 (j1⏐j2) 
                   ...and normalized so that:   〈j2⏐j2〉=1= N12(j1⏐j1)+ N1 N2[(j1⏐j2)+ (j2⏐j1)]+ N22(j2⏐j2) 

Solve these by substituting:     N1  =- N2 (j1⏐j2)/(j1⏐j1)
                                 to give:     1= N22 (j1⏐j2)2/(j1⏐j1) - N22[(j1⏐j2)+ (j2⏐j1)](j1⏐j2)/(j1⏐j1) + N22(j2⏐j2)
                                           1/N22 = (j2⏐j2) + (j1⏐j2)2/(j1⏐j1) - (j1⏐j2)2/(j1⏐j1) - (j2⏐j1)(j1⏐j2)/(j1⏐j1)
                                           1/N22 = (j2⏐j2)  - (j2⏐j1)(j1⏐j2)/(j1⏐j1)

Orthonormalization of degenerate eigensolutions 
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The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j1⏐j2)≠0. Replace vector ⏐j2) with a vector ⏐j2〉=⏐j1) normal to (j1⏐ ?       

Define: ⏐j2〉= N1⏐j1) + N2⏐j2) such that:  (j1⏐j2〉=0= N1 (j1⏐j1) + N2 (j1⏐j2) 
                   ...and normalized so that:   〈j2⏐j2〉=1= N12(j1⏐j1)+ N1 N2[(j1⏐j2)+ (j2⏐j1)]+ N22(j2⏐j2) 

Solve these by substituting:     N1  =- N2 (j1⏐j2)/(j1⏐j1)
                                 to give:     1= N22 (j1⏐j2)2/(j1⏐j1) - N22[(j1⏐j2)+ (j2⏐j1)](j1⏐j2)/(j1⏐j1) + N22(j2⏐j2)
                                           1/N22 = (j2⏐j2) + (j1⏐j2)2/(j1⏐j1) - (j1⏐j2)2/(j1⏐j1) - (j2⏐j1)(j1⏐j2)/(j1⏐j1)
                                           1/N22 = (j2⏐j2)  - (j2⏐j1)(j1⏐j2)/(j1⏐j1)

So the new orthonormal pair is: j1 =
j1)

( j1 j1)

j2 = N1 j1)+ N2 j2 ) = −
N2 ( j1 j2 )

( j1 j1)
j1)+ N2 j2 )

     = N2 j2 )−
( j1 j2 )
( j1 j1)

j1)
⎛

⎝⎜
⎞

⎠⎟
= 1

( j2 j2 )−
( j2 j1)( j1 j2 )

( j1 j1)

j2 )−
( j1 j2 )
( j1 j1)

j1)
⎛

⎝⎜
⎞

⎠⎟

Orthonormalization of degenerate eigensolutions 

78Thursday, January 22, 2015



The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j1⏐j2)≠0. Replace vector ⏐j2) with a vector ⏐j2〉=⏐j1) normal to (j1⏐ ?       

Define: ⏐j2〉= N1⏐j1) + N2⏐j2) such that:  (j1⏐j2〉=0= N1 (j1⏐j1) + N2 (j1⏐j2) 
                   ...and normalized so that:   〈j2⏐j2〉=1= N12(j1⏐j1)+ N1 N2[(j1⏐j2)+ (j2⏐j1)]+ N22(j2⏐j2) 

Solve these by substituting:     N1  =- N2 (j1⏐j2)/(j1⏐j1)
                                 to give:     1= N22 (j1⏐j2)2/(j1⏐j1) - N22[(j1⏐j2)+ (j2⏐j1)](j1⏐j2)/(j1⏐j1) + N22(j2⏐j2)
                                           1/N22 = (j2⏐j2) + (j1⏐j2)2/(j1⏐j1) - (j1⏐j2)2/(j1⏐j1) - (j2⏐j1)(j1⏐j2)/(j1⏐j1)
                                           1/N22 = (j2⏐j2)  - (j2⏐j1)(j1⏐j2)/(j1⏐j1)

So the new orthonormal pair is: j1 =
j1)

( j1 j1)

j2 = N1 j1)+ N2 j2 ) = −
N2 ( j1 j2 )

( j1 j1)
j1)+ N2 j2 )

     = N2 j2 )−
( j1 j2 )
( j1 j1)

j1)
⎛

⎝⎜
⎞

⎠⎟
= 1

( j2 j2 )−
( j2 j1)( j1 j2 )

( j1 j1)

j2 )−
( j1 j2 )
( j1 j1)

j1)
⎛

⎝⎜
⎞

⎠⎟

OK. That’s for 2 vectors. Like to try for 3?  

Orthonormalization of degenerate eigensolutions 
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The G example is unusually convenient since components (Pj)12 of projectors Pj happen to 
be zero, and this means row-1 vector (j1⏐ is already orthogonal to row-2 vector ⏐j2):    (j1⏐j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j1⏐j2)≠0. Replace vector ⏐j2) with a vector ⏐j2〉=⏐j1) normal to (j1⏐ ?       

Define: ⏐j2〉= N1⏐j1) + N2⏐j2) such that:  (j1⏐j2〉=0= N1 (j1⏐j1) + N2 (j1⏐j2) 
                   ...and normalized so that:   〈j2⏐j2〉=1= N12(j1⏐j1)+ N1 N2[(j1⏐j2)+ (j2⏐j1)]+ N22(j2⏐j2) 

Solve these by substituting:     N1  =- N2 (j1⏐j2)/(j1⏐j1)
                                 to give:     1= N22 (j1⏐j2)2/(j1⏐j1) - N22[(j1⏐j2)+ (j2⏐j1)](j1⏐j2)/(j1⏐j1) + N22(j2⏐j2)
                                           1/N22 = (j2⏐j2) + (j1⏐j2)2/(j1⏐j1) - (j1⏐j2)2/(j1⏐j1) - (j2⏐j1)(j1⏐j2)/(j1⏐j1)
                                           1/N22 = (j2⏐j2)  - (j2⏐j1)(j1⏐j2)/(j1⏐j1)

So the new orthonormal pair is: j1 =
j1)

( j1 j1)

j2 = N1 j1)+ N2 j2 ) = −
N2 ( j1 j2 )

( j1 j1)
j1)+ N2 j2 )

     = N2 j2 )−
( j1 j2 )
( j1 j1)

j1)
⎛

⎝⎜
⎞

⎠⎟
= 1

( j2 j2 )−
( j2 j1)( j1 j2 )

( j1 j1)

j2 )−
( j1 j2 )
( j1 j1)

j1)
⎛

⎝⎜
⎞

⎠⎟

OK. That’s for 2 vectors. Like to try for 3?  
Instead, let’ try another way to “orthogonalize” that might be more elegante.  

Orthonormalization of degenerate eigensolutions 

80Thursday, January 22, 2015



Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Minimal equation for projector P=P2 
How symmetry groups become eigen-solvers
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Orthonormalization by commuting projector splitting 

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)
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Orthonormalization by commuting projector splitting 

  

1= P1
G + P−1

G =    11 11          +          12 12          +          −11 −11          +          −12 −12

                    =        P11
            +              P12

          +                  P−11
            +                  P−12

      

Dirac notation for G-split completeness relation using eigenvectors is the following:

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)
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Orthonormalization by commuting projector splitting 

  

1= P1
G + P−1

G =    11 11          +          12 12          +          −11 −11          +          −12 −12

                    =        P11
            +              P12

          +                  P−11
            +                  P−12

      

Dirac notation for G-split completeness relation using eigenvectors is the following:

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The G projectors and eigenvectors were derived several pages back:

  

P1
G = P11

+ P12
= 1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                        =            11 11        +            12 12      

P−1
G = P−11

+ P−12
= 1

2

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                             =         −11 −11        +          −12 −12      

Each of the original G projectors are split in two parts with one ket-bra in each.

(And, we got a lucky orthogonality)
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Orthonormalization by commuting projector splitting 

  

1= P1
G + P−1

G =    11 11          +          12 12          +          −11 −11          +          −12 −12

                    =        P11
            +              P12

          +                  P−11
            +                  P−12

      

Dirac notation for G-split completeness relation using eigenvectors is the following:

   

P+1
G =

G − −1( )1
+1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The G projectors and eigenvectors were derived several pages back:

  

P1
G = P11

+ P12
= 1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                        =            11 11        +            12 12      

P−1
G = P−11

+ P−12
= 1

2

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                             =         −11 −11        +          −12 −12      

Each of the original G projectors are split in two parts with one ket-bra in each.

There are ∞-ly many ways to split G projectors. Now we let another operator H do the final splitting. 

(And, we got a lucky orthogonality)
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(First, it is important to verify that they do, in fact, commute.)

  

GH =

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 2 0 0
2 0 0 0
0 0 0 2
0 0 2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= HG

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
                            

Problem:Problem:

Orthonormalization of commuting eigensolutions.

88Thursday, January 22, 2015



Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                             

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
= P+1

G =
G − −1( )1
+1− −1( )    

+P−1
G =

G − 1( )1
−1− 1( )

Problem:Problem:

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(Left as an exercise)
   
= P+1

G =
G − −1( )1
+1− −1( )    

+P−1
G =

G − 1( )1
−1− 1( )

Problem:Problem:

Orthonormalization of commuting eigensolutions.
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Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Minimal equation for projector P=P2 
How symmetry groups become eigen-solvers
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The old "1=1.1 trick"-Spectral decomposition by projector splitting

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )

(Left as an exercise)

Multiplying G and H completeness relations 

Problem:Problem:

Solution:Solution:

Orthonormalization of commuting eigensolutions.

92Thursday, January 22, 2015



Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(Left as an exercise)

Multiplying G and H completeness relations gives a set of projectors 

Problem:Problem:

Solution:Solution:
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(Left as an exercise)

Multiplying G and H completeness relations gives a set of projectors 

Problem:Problem:

Solution:Solution:
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(Left as an exercise)

Multiplying G and H completeness relations gives a set of projectors 

Problem:Problem:

Solution:Solution:
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(Left as an exercise)

Multiplying G and H completeness relations gives a set of projectors 

Problem:Problem:

Solution:Solution:
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Multiplying G and H completeness relations gives a set of projectors 

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(Left as an exercise)

Problem:Problem:

Solution:Solution:
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

(Left as an exercise)

Problem:Problem:

Solution:Solution:
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Orthonormalization of commuting eigensolutions.
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Suppose we have two mutually commuting matrix operators: GH=HG  

the G=                      from before, and new operator  H=                       .

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:                              Current completeness for H:

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

  
G = +1( )P+1,+2

GH + +1( )P+1,−2
GH + −1( )P−1,+2

GH + −1( )P−1,−2
GH

  
H = +2( )P+1,+2

GH + −2( )P+1,−2
GH + +2( )P−1,+2

GH + −2( )P−1,−2
GH

 ...and a the same       projectors spectrally resolve both G and H. 
   
Pg ,h

GH

(Left as an exercise)

Problem:Problem:

Solution:Solution:
The old "1=1.1 trick"-Spectral decomposition by projector splitting

Orthonormalization of commuting eigensolutions.
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Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Minimal equation for projector P=P2 
How symmetry groups become eigen-solvers
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Irreducible projectors and representations (Trace checks) 

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The old "1=1.1 trick"
Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

  
G = +1( )P+1,+2

GH + +1( )P+1,−2
GH + −1( )P−1,+2

GH + −1( )P−1,−2
GH

  
H = +2( )P+1,+2

GH + −2( )P+1,−2
GH + +2( )P−1,+2

GH + −2( )P−1,−2
GH

 ...and a the same       projectors spectrally resolve both G and H. 
   
Pg ,h

GH

(Left as an exercise)

How do you tell when a Projector                  is ‘splittable’ (Correct term is reducible.)   
Pg

G  or Pg ,h
GHAnother Problem:Another Problem:
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Irreducible projectors and representations (Trace checks) 

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The old "1=1.1 trick"
Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

  
G = +1( )P+1,+2

GH + +1( )P+1,−2
GH + −1( )P−1,+2

GH + −1( )P−1,−2
GH

  
H = +2( )P+1,+2

GH + −2( )P+1,−2
GH + +2( )P−1,+2

GH + −2( )P−1,−2
GH

 ...and a the same       projectors spectrally resolve both G and H. 
   
Pg ,h

GH

(Left as an exercise)

How do you tell when a Projector                  is ‘splittable’ (Correct term is reducible.)   
Pg

G  or Pg ,h
GHAnother Problem:Another Problem:

Solution:Solution:            It’s all in the matrix Trace = sum of its diagonal elements. 
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Irreducible projectors and representations (Trace checks) 

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The old "1=1.1 trick"
Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

  
G = +1( )P+1,+2

GH + +1( )P+1,−2
GH + −1( )P−1,+2

GH + −1( )P−1,−2
GH

  
H = +2( )P+1,+2

GH + −2( )P+1,−2
GH + +2( )P−1,+2

GH + −2( )P−1,−2
GH

 ...and a the same       projectors spectrally resolve both G and H. 
   
Pg ,h

GH

(Left as an exercise)

How do you tell when a Projector                  is ‘splittable’ (Correct term is reducible.)   
Pg

G  or Pg ,h
GHAnother Problem:Another Problem:

Solution:Solution:            It’s all in the matrix Trace = sum of its diagonal elements. 
Trace (      )=2 so that projector is reducible to 2 irreducible projectors. (In this case:                          )

  
P+1

G = P+1,+2
GH + P+1,−2

GH
  P+1

G
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Irreducible projectors and representations (Trace checks) 

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The old "1=1.1 trick"
Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

  
G = +1( )P+1,+2

GH + +1( )P+1,−2
GH + −1( )P−1,+2

GH + −1( )P−1,−2
GH

  
H = +2( )P+1,+2

GH + −2( )P+1,−2
GH + +2( )P−1,+2

GH + −2( )P−1,−2
GH

 ...and a the same       projectors spectrally resolve both G and H. 
   
Pg ,h

GH

(Left as an exercise)

How do you tell when a Projector                  is ‘splittable’ (Correct term is reducible.)   
Pg

G  or Pg ,h
GHAnother Problem:Another Problem:

Solution:Solution:            It’s all in the matrix Trace = sum of its diagonal elements. 
Trace (      )=2 so that projector is reducible to 2 irreducible projectors. (In this case:                          )
Trace (        )=1 so that projector is irreducible.   

P+1
G = P+1,+2

GH + P+1,−2
GH

  P+1
G

  
P+1,+2

GH
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Irreducible projectors and representations (Trace checks) 

  

1 =           P+1
G           +               P−1

G

= 1
2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

1 =           P+2
H           +               P−2

H

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The old "1=1.1 trick"
Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

  
G = +1( )P+1,+2

GH + +1( )P+1,−2
GH + −1( )P−1,+2

GH + −1( )P−1,−2
GH

  
H = +2( )P+1,+2

GH + −2( )P+1,−2
GH + +2( )P−1,+2

GH + −2( )P−1,−2
GH

 ...and a the same       projectors spectrally resolve both G and H. 
   
Pg ,h

GH

(Left as an exercise)

How do you tell when a Projector                  is ‘splittable’ (Correct term is reducible.)   
Pg

G  or Pg ,h
GHAnother Problem:Another Problem:

Solution:Solution:            It’s all in the matrix Trace = sum of its diagonal elements. 
Trace (      )=2 so that projector is reducible to 2 irreducible projectors. (In this case:                          )
Trace (        )=1 so that projector is irreducible. 
Trace (1)=4 so that is reducible to 4 irreducible projectors. 

  
P+1

G = P+1,+2
GH + P+1,−2

GH
  P+1

G

  
P+1,+2

GH
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Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )

b 1
0 b

⎛
⎝⎜

⎞
⎠⎟

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Minimal equation for projector P=P2 
How symmetry groups become eigen-solvers
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Irreducible projectors and representations (Trace checks) 

The old "1=1.1 trick"
Multiplying G and H completeness relations gives a set of projectors and eigen-relations for both:

  

1=1 ⋅1 = P+1
G + P−1

G( ) P+2
H + P−2

H( ) = 1 = P+1
GP+2

H + P+1
GP−2

H + P−1
GP+2

H + P−1
GP−2

H( )
P+1,+2

GH ≡ P+1
GP+2

H = P+1,−2
GH ≡ P+1

GP−2
H = P−1,+2

GH ≡ P−1
GP+2

H = P−1,−2
GH ≡ P−1

GP−2
H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
HPg ,h

GH

  
G = +1( )P+1,+2

GH + +1( )P+1,−2
GH + −1( )P−1,+2

GH + −1( )P−1,−2
GH

  
H = +2( )P+1,+2

GH + −2( )P+1,−2
GH + +2( )P−1,+2

GH + −2( )P−1,−2
GH

 ...and a the same       projectors spectrally resolve both G and H. 
   
Pg ,h

GH

How do you tell when a Projector                  is ‘splittable’ (Correct term is reducible.)   
Pg

G  or Pg ,h
GHAnother Problem:Another Problem:

Solution:Solution:            It’s all in the matrix Trace:   
Trace (      )=2 so that projector is reducible to 2 irreducible projectors. (In this case:                          )
Trace (        )=1 so that projector is irreducible. 
Trace (1)=4 so that is reducible to 4 irreducible projectors. 

  
P+1

G = P+1,+2
GH + P+1,−2

GH
  P+1

G

  
P+1,+2

GH

Minimal equation for an idempotent projector is: P2=P or: P2-P = (P-0·1)(P-1·1) = 0
So projector eigenvalues are limited to repeated 0’s and 1’s. Trace counts the latter.
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Review: matrix eigenstates (“ownstates) and Idempotent projectors ( Degeneracy case )
      Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
      Secular→ Hamilton-Cayley→Minimal equations
      Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=        , and: N=      
      Applications of Nilpotent operators later on      
Idempotents and “Good degeneracy” example: G=      
      Secular equation by minor expansion
      Example of minimal equation projection
Orthonormalization of degenerate eigensolutions 
      Projection Pj-matrix anatomy (Gramian matrices)
      Gram-Schmidt procedure
Orthonormalization of commuting eigensolutions. Examples: G=              and: H= 
      The old "1=1.1 trick"-Spectral decomposition by projector splitting
      Irreducible projectors and representations (Trace checks)

(Preparing for:Degenerate eigenvalues )
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⎠⎟
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0 0

⎛
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⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

⋅ ⋅ 2 ⋅
⋅ ⋅ ⋅ 2
2 ⋅ ⋅ ⋅
⋅ 2 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Minimal equation for projector P=P2 
How symmetry groups become eigen-solvers
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How symmetry groups become eigen-solvers
Suppose you need to diagonalize a complicated operator K and knew that K commutes 
with some other operators G and H for which irreducible projectors are more easily found. 

KG = GK 	
or    G†KG = K   or   GKG† = K  
KH = HK 	
or    H†KH = K   or   HKH† = K  

(Here assuming unitary
 G†=G-1  and  H†= H-1.)
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How symmetry groups become eigen-solvers
Suppose you need to diagonalize a complicated operator K and knew that K commutes 
with some other operators G and H for which irreducible projectors are more easily found. 

KG = GK 	
or    G†KG = K   or   GKG† = K  

This means K is invariant to the transformation by G and H 
and all their products GH, GH2, G2H,.. etc. and all their inverses G†,H†,.. etc.

KH = HK 	
or    H†KH = K   or   HKH† = K  
(Here assuming unitary
 G†=G-1  and  H†= H-1.)
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How symmetry groups become eigen-solvers
Suppose you need to diagonalize a complicated operator K and knew that K commutes 
with some other operators G and H for which irreducible projectors are more easily found. 

KG = GK 	
or    G†KG = K   or   GKG† = K  

This means K is invariant to the transformation by G and H 
and all their products GH, GH2, G2H,.. etc. and all their inverses G†,H†,.. etc.

The group G K = {1, G, H,.. }so formed by such operators is called a symmetry group for K.

KH = HK 	
or    H†KH = K   or   HKH† = K  
(Here assuming unitary
 G†=G-1  and  H†= H-1.)
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How symmetry groups become eigen-solvers
Suppose you need to diagonalize a complicated operator K and knew that K commutes 
with some other operators G and H for which irreducible projectors are more easily found. 

KG = GK 	
or    G†KG = K   or   GKG† = K  

This means K is invariant to the transformation by G and H 
and all their products GH, GH2, G2H,.. etc. and all their inverses G†,H†,.. etc.

The group G K = {1, G, H,.. }so formed by such operators is called a symmetry group for K.

KH = HK 	
or    H†KH = K   or   HKH† = K  

In certain ideal cases a K-matrix 〈K〉 is a linear combination of matrices 〈1〉,〈G〉,〈H〉,... from G K. 
Then spectral resolution of {〈1〉,〈G〉,〈H〉,.. } also resolves 〈K〉. 

(Here assuming unitary
 G†=G-1  and  H†= H-1.)
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How symmetry groups become eigen-solvers
Suppose you need to diagonalize a complicated operator K and knew that K commutes 
with some other operators G and H for which irreducible projectors are more easily found. 

KG = GK 	
or    G†KG = K   or   GKG† = K  

This means K is invariant to the transformation by G and H 
and all their products GH, GH2, G2H,.. etc. and all their inverses G†,H†,.. etc.

The group G K = {1, G, H,.. }so formed by such operators is called a symmetry group for K.

KH = HK 	
or    H†KH = K   or   HKH† = K  

In certain ideal cases a K-matrix 〈K〉 is a linear combination of matrices 〈1〉,〈G〉,〈H〉,... from G K. 
Then spectral resolution of {〈1〉,〈G〉,〈H〉,.. } also resolves 〈K〉. 

We will study ideal cases first. More general cases are built from these.

(Here assuming unitary
 G†=G-1  and  H†= H-1.)
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      Eigensolutions for active analyzers
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Matrix products and eigensolutions for active analyzers
Consider a 45° tilted (θ1=β1/2=π/4 or β1=90°) analyzer followed by a untilted (β2=0) analyzer. 
Active analyzers have both paths open and a phase shift e-iΩ between each path. 
Here the first analyzer has Ω1=90°. The second has Ω2=180°. 
	


The transfer matrix for each analyzer is a sum of projection operators for each open path 
multiplied by the phase factor that is active at that path. Apply phase factor e-iΩ1 =e-iπ/2 to 
top path in the first analyzer and the factor e-iΩ2 =e-iπ to the top path in the second analyzer.

      

The matrix product T(total)=T(2)T(1) relates input states |ΨIN〉 to output states: |ΨOUT〉 =T(total)|ΨIN〉
 

	


We drop the overall phase e-iπ/4  since it is unobservable. T(total) yields two eigenvalues and projectors.
	


|ΨΙΝ〉|ΨOUT〉
|ΨΙΝ〉=|y〉

2Θin =

β
in
=180°

  
T 2( ) = e−iπ x x + y y = e−iπ 0

0 1

⎛

⎝
⎜

⎞

⎠
⎟

  

T 1( ) = e−iπ / 2 ′x ′x + ′y ′y = e−iπ / 2
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⎜
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λ2 − 0λ −1= 0, or: λ=+1, −1
,  gives projectors    P+1 =

−1
2
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