## Group Theory in Quantum Mechanics

Lecture $4_{(1.22 .15)}$

## Matrix Eigensolutions and Spectral Decompositions

(Quantum Theory for Computer Age - Ch. 3 of Unit 1)
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1)
Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping (and I'm Ba-aaack!)
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Operator orthonormality and completeness
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Diagonalizing Transformations (D-Ttran) from projectors
Eigensolutions for active analyzers

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune

```
Geometric visualization of real symmetric matrices and eigenvectors
    Circle-to-ellipse mapping
    Ellipse-to-ellipse mapping (Normal space vs. tangent space)
    Eigensolutions as stationary, extreme-values (Lagrange \lambda-multipliers)
    Matrix-algebraic eigensolutions with example M=
    Secular equation
    Hamilton-Cayley equation and projectors
    Idempotent projectors (how eigenvalues }=>\mathrm{ eigenvectors)
    Spectral Decompositions
    Functional spectral decomposition
    Orthonormality vs. Completeness vis-a`-vis Operator vs. State
    Lagrange functional interpolation formula
                Proof that completeness relation is "Truer-than-true"
    Spectral Decompositions with degeneracy
    Functional spectral decomposition
```

Unitary operators and matrices that change state vectors


Unitary operators and matrices that change state vectors...


Fig. 3.1.1 Effect of analyzer represented by ket vector transformation of $|\Psi\rangle$ to new ket vector $T|\Psi\rangle$.

... and eigenstates ("ownstates) that are mostly immune to T...


For Unitary operators $\mathbf{T}=\mathbf{U}$, the eigenvalues must be phase factors $\varepsilon_{k}=e^{i \alpha_{k}}$

Unitary operators and matrices that change state vectors ... and eigenstates ("ownstates) that are mostly immune

Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping (and I'm Ba-aaack!)
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula Proof that completeness relation is "Truer-than-true"

Spectral Decompositions with degeneracy
Functional spectral decomposition

Geometric visualization of real symmetric matrices and eigenvectors


## Circle-to-ellipse mapping

Study a real symmetric matrix $T$ by applying it to a circular array of unit vectors $\mathbf{c}$.
A matrix $T=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$ maps the circular array into an elliptical one.

## Geometric visualization of real symmetric matrices and eigenvectors



## Circle-to-ellipse mapping

Study a real symmetric matrix T by applying it to a circular array of unit vectors $\mathbf{c}$.
A matrix $\mathbf{T}=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$ maps the circular array into an elliptical one.
Two vectors in the upper half plane survive T without changing direction.
These lucky vectors are the eigenvectors of matrix $\mathbf{T}$.

$$
\left|\varepsilon_{1}\right\rangle=\binom{1}{1} / \sqrt{2}, \quad\left|\varepsilon_{2}\right\rangle=\binom{-1}{1} / \sqrt{2}
$$

## Geometric visualization of real symmetric matrices and eigenvectors



## Circle-to-ellipse mapping

Study a real symmetric matrix T by applying it to a circular array of unit vectors $\mathbf{c}$.
A matrix $\mathbf{T}=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$ maps the circular array into an elliptical one.
Two vectors in the upper half plane survive T without changing direction.
These lucky vectors are the eigenvectors of matrix T .

$$
\left|\varepsilon_{1}\right\rangle=\binom{1}{1} / \sqrt{2}, \quad\left|\varepsilon_{2}\right\rangle=\binom{-1}{1} / \sqrt{2}
$$

They transform as follows: $\mathrm{T}\left|\varepsilon_{1}\right\rangle=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle=1.5\left|\varepsilon_{1}\right\rangle$, and $\mathrm{T}\left|\varepsilon_{2}\right\rangle=\varepsilon_{2}\left|\varepsilon_{2}\right\rangle=0.5\left|\varepsilon_{2}\right\rangle$
to only suffer length change given by eigenvalues $\varepsilon_{1}=1.5$ and $\varepsilon_{2}=0.5$

## Geometric visualization of real symmetric matrices and eigenvectors



## Circle-to-ellipse mapping

Study a real symmetric matrix T by applying it to a circular array of unit vectors $\mathbf{c}$.
A matrix $\mathbf{T}=\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right)$ maps the circular array into an elliptical one.
Two vectors in the upper half plane survive T without changing direction.
These lucky vectors are the eigenvectors of matrix T .

$$
\left|\varepsilon_{1}\right\rangle=\binom{1}{1} / \sqrt{2}, \quad\left|\varepsilon_{2}\right\rangle=\binom{-1}{1} / \sqrt{2}
$$

They transform as follows: $\mathrm{T}\left|\varepsilon_{1}\right\rangle=\varepsilon_{1}\left|\varepsilon_{1}\right\rangle=1.5\left|\varepsilon_{1}\right\rangle$, and $\mathrm{T}\left|\varepsilon_{2}\right\rangle=\varepsilon_{2}\left|\varepsilon_{2}\right\rangle=0.5\left|\varepsilon_{2}\right\rangle$
to only suffer length change given by eigenvalues $\varepsilon_{1}=1.5$ and $\varepsilon_{2}=0.5$
Normalization $(\langle\mathbf{c} \mid \mathbf{c}\rangle=1)$ is a condition separate from eigen-relations $\mathbf{T}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle$

Unitary operators and matrices that change state vectors ... and eigenstates ("ownstates) that are mostly immune

Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping (and I'm Ba-aaack!)
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-à-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

## Geometric visualization of real symmetric matrices and eigenvectors



Circle-to-ellipse mapping (and I'm Ba-aaack!)
Each vector $|\mathbf{r}\rangle$ on left ellipse maps back to vector $|\mathbf{c}\rangle=\mathbf{T}^{-1}|\mathbf{r}\rangle$ on right unit circle.
Each $|\mathbf{c}\rangle$ has unit length: $\langle\mathbf{c} \mid \mathbf{c}\rangle=1=\langle\mathbf{r}| \mathbf{T}^{-1} \mathbf{T}^{-1}|\mathbf{r}\rangle=\langle\mathbf{r}| \mathbf{T}^{-2}|\mathbf{r}\rangle$. ( $\mathbf{T}$ is real-symmetric: $\mathbf{T}^{\dagger}=\mathbf{T}=\mathbf{T}^{T}$.)

$$
\mathbf{c} \bullet \mathbf{c}=1=\mathbf{r} \bullet \mathbf{T}^{-2} \cdot \mathbf{r}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
T_{x x} & T_{x y} \\
T_{y x} & T_{y}
\end{array}\right)^{-2}\binom{x}{y}
$$

## Geometric visualization of real symmetric matrices and eigenvectors



## Circle-to-ellipse mapping (and I'm Ba-aaack!)

Each vector $|\mathbf{r}\rangle$ on left ellipse maps back to vector $|\mathbf{c}\rangle=\mathbf{T}^{-1}|\mathbf{r}\rangle$ on right unit circle.
Each $|\mathbf{c}\rangle$ has unit length: $\langle\mathbf{c} \mid \mathbf{c}\rangle=1=\langle\mathbf{r}| \mathbf{T}^{-1} \mathbf{T}^{-1}|\mathbf{r}\rangle=\langle\mathbf{r}| \mathbf{T}^{-2}|\mathbf{r}\rangle$. ( $\mathbf{T}$ is real-symmetric: $\mathbf{T}^{\dagger}=\mathbf{T}=\mathbf{T}^{T}$.)

$$
\mathbf{c} \bullet \mathbf{c}=1=\mathbf{r} \bullet \mathbf{T}^{-2} \cdot \mathbf{r}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
T_{x x} & T_{x y} \\
T_{y x} & T_{y}
\end{array}\right)^{-2}\binom{x}{y}
$$

This simplifies if rewritten in a coordinate system ( $x_{1}, x_{2}$ ) of eigenvectors $\left|\varepsilon_{1}\right\rangle$ and $\left|\varepsilon_{2}\right\rangle$ where $\mathbf{T}^{-2}\left|\varepsilon_{1}\right\rangle=\varepsilon_{1^{-2}}\left|\varepsilon_{1}\right\rangle$ and $\mathbf{T}^{-2}\left|\varepsilon_{2}\right\rangle=\varepsilon_{2}^{2}\left|\varepsilon_{2}\right\rangle$, that is, $\mathbf{T}, \mathbf{T}^{-1}$, and $\mathbf{T}^{-2}$ are each diagonal.

$$
\left(\begin{array}{l}
\left\langle\varepsilon_{1}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle \mathbf{T}\left|\varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right) \text {, and }\left(\begin{array}{ll}
\left\langle\varepsilon_{1}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{T}\left|\varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{2}\right\rangle
\end{array}\right)^{-2}=\left(\begin{array}{cc}
\varepsilon_{1}^{-2} & 0 \\
0 & \varepsilon_{2}^{-2}
\end{array}\right)
$$

## Geometric visualization of real symmetric matrices and eigenvectors



## Circle-to-ellipse mapping (and I'm Ba-aaack!)

Each vector $|\mathbf{r}\rangle$ on left ellipse maps back to vector $|\mathbf{c}\rangle=\mathbf{T}^{-1}|\mathbf{r}\rangle$ on right unit circle.
Each $|\mathbf{c}\rangle$ has unit length: $\langle\mathbf{c} \mid \mathbf{c}\rangle=1=\langle\mathbf{r}| \mathbf{T}^{-1} \mathbf{T}^{-1}|\mathbf{r}\rangle=\langle\mathbf{r}| \mathbf{T}^{-2}|\mathbf{r}\rangle$. ( $\mathbf{T}$ is real-symmetric: $\mathbf{T}^{\dagger}=\mathbf{T}=\mathbf{T}^{T}$.)

$$
\mathbf{c} \bullet \mathbf{c}=1=\mathbf{r} \bullet \mathbf{T}^{-2} \bullet \mathbf{r}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
T_{x x} & T_{x y} \\
T_{y x} & T_{y}
\end{array}\right)^{-2}\binom{x}{y}
$$

This simplifies if rewritten in a coordinate system ( $x_{1, x_{2}}$ ) of eigenvectors $\left|\varepsilon_{1}\right\rangle$ and $\left|\varepsilon_{2}\right\rangle$ where $\mathbf{T}^{-2}\left|\varepsilon_{1}\right\rangle=\varepsilon_{1^{-2}}\left|\varepsilon_{1}\right\rangle$ and $\mathbf{T}^{-2}\left|\varepsilon_{2}\right\rangle=\varepsilon_{2}^{-2}\left|\varepsilon_{2}\right\rangle$, that is, $\mathbf{T}, \mathbf{T}^{-1}$, and $\mathbf{T}^{-2}$ are each diagonal.

$$
\left(\begin{array}{l}
\left\langle\varepsilon_{1}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right| \mathbf{T}\left|\varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle
\end{array}\left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{2}\right\rangle\right)=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right) \text {, and }\left(\begin{array}{ll}
\left\langle\varepsilon_{1}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{T}\left|\varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{T}\left|\varepsilon_{2}\right\rangle
\end{array}\right)^{-2}=\left(\begin{array}{cc}
\varepsilon_{1}^{-2} & 0 \\
0 & \varepsilon_{2}^{-2}
\end{array}\right)
$$

Matrix equation simplifies to an elementary ellipse equation of the form $(x / a) 2+(y / b) 2=1$.

$$
\mathbf{c} \bullet \mathbf{c}=1=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon_{1}^{-2} & 0 \\
0 & \varepsilon_{2}^{-2}
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\frac{x_{1}}{\varepsilon_{1}}\right)^{2}+\left(\frac{x_{2}}{\varepsilon_{2}}\right)^{2}
$$

Unitary operators and matrices that change state vectors ... and eigenstates ("ownstates) that are mostly immune

Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
$\longrightarrow$
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)

```
Matrix-algebraic eigensolutions with example M=
    Secular equation
    Hamilton-Cayley equation and projectors
    Idempotent projectors (how eigenvalues }=>\mathrm{ eigenvectors)
Spectral Decompositions
    Functional spectral decomposition
    Orthonormality vs. Completeness vis-a `-vis Operator vs. State
    Lagrange functional interpolation formula
        Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
    Functional spectral decomposition
```

Geometric visualization of real symmetric matrices and eigenvectors (Previous pages) Matrix T maps vector $|\mathbf{c}\rangle$ from a unit circle $\langle\mathbf{c} \mid \mathbf{c}\rangle=1$ to $\mathrm{T}|\mathbf{c}\rangle=|\mathbf{r}\rangle$ on an ellipse $1=\langle\mathbf{r}| \mathrm{T}^{-2}|\mathbf{r}\rangle$


## Geometric visualization of real symmetric matrices and eigenvectors

 (Previous pages) Matrix T maps vector $|\mathbf{c}\rangle$ from a unit circle $\langle\mathbf{c} \mid \mathbf{c}\rangle=1$ to $\mathrm{T}|\mathbf{c}\rangle=|\mathbf{r}\rangle$ on an ellipse $1=\langle\mathbf{r}| \mathrm{T}^{-2}|\mathbf{r}\rangle$
## Ellipse-to-ellipse mapping (Normal vs. tangent space)



Now $\mathbf{M}$ maps vector $|\mathrm{q}\rangle$ from a quadratic form $1=\langle q| \mathbf{M}|q\rangle$ to vector $|\mathbf{p}\rangle=\mathbf{M}|\mathbf{q}\rangle$ on surface $1=\langle\mathbf{p}| \mathbf{M}^{-1}|\mathbf{p}\rangle$.

$$
l=\langle q| \mathbf{M}|q\rangle=\langle q \mid p\rangle=\langle p| \mathbf{M}^{-1}|\mathrm{p}\rangle
$$



## Geometric visualization of real symmetric matrices and eigenvectors

 (Previous pages) Matrix T maps vector $|\mathbf{c}\rangle$ from a unit circle $\langle\mathbf{c} \mid \mathbf{c}\rangle=1$ to $\mathrm{T}|\mathbf{c}\rangle=|\mathbf{r}\rangle$ on an ellipse $1=\langle\mathbf{r}| \mathrm{T}^{-2}|\mathbf{r}\rangle$
## Ellipse-to-ellipse mapping (Normal vs. tangent space)



Now $\mathbf{M}$ maps vector $|q\rangle$ from a quadratic form $1=\langle q| \mathbf{M}|q|\rangle$ to vector $|p\rangle=\mathbf{M}|q\rangle$ on surface $1=\langle p| \mathbf{M}^{-1}|p\rangle$.

$$
l=\langle q| \mathbf{M}|q\rangle=\langle q \mid p\rangle=\langle p| \mathbf{M}^{-1}|p\rangle
$$

Radii of $|p\rangle$ ellipse are square roots of eigenvalues $\sqrt{ } \varepsilon_{1}$ and $\sqrt{ } \varepsilon_{2}$


Radii of |q〉 ellipse axes are inverse eigenvalue roots $1 / \sqrt{ } \varepsilon 1$ and $1 / \sqrt{ } \varepsilon 2$.

## Geometric visualization of real symmetric matrices and eigenvectors

 (Previous pages) Matrix T maps vector $|\mathbf{c}\rangle$ from a unit circle $\langle\mathbf{c} \mid \mathbf{c}\rangle=1$ to $\mathrm{T}|\mathbf{c}\rangle=|\mathbf{r}\rangle$ on an ellipse $1=\langle\mathbf{r}| \mathrm{T}^{-2}|\mathbf{r}\rangle$
## Ellipse-to-ellipse mapping (Normal vs. tangent space)



Now $\mathbf{M}$ maps vector $|q\rangle$ from a quadratic form $1=\langle q| \mathbf{M}|q\rangle$ to vector $|p\rangle=\mathbf{M}|q\rangle$ on surface $1=\langle p| \mathbf{M}^{-1}|\mathbf{p}\rangle$.

$$
l=\langle q| \mathbf{M}|q\rangle=\langle q \mid p\rangle=\langle p| \mathbf{M}^{-1}|p\rangle
$$

Radii of $|p\rangle$ ellipse are square roots of eigenvalues $\sqrt{ } \varepsilon_{1}$ and $\sqrt{ } \varepsilon_{2}$


Radii of |q〉 ellipse axes are inverse eigenvalue roots $1 / \sqrt{ } \varepsilon 1$ and $1 / \sqrt{ } \varepsilon 2$.

Tangent-normal geometry of mapping is found by using gradient $\nabla$ of quadratic curve $1=\langle\boldsymbol{q}| \mathbf{M}|\mathbf{q}\rangle$.

$$
\nabla(\langle q| \mathbf{M}|q\rangle)=\langle q| \mathbf{M}+\mathbf{M}|\mathbf{q}\rangle=2 \mathbf{M}|\mathbf{q}\rangle=2|p\rangle
$$

## Geometric visualization of real symmetric matrices and eigenvectors

 (Previous pages) Matrix T maps vector $|\mathbf{c}\rangle$ from a unit circle $\langle\mathbf{c} \mid \mathbf{c}\rangle=1$ to $\mathrm{T}|\mathbf{c}\rangle=|\mathbf{r}\rangle$ on an ellipse $1=\langle\mathbf{r}| \mathrm{T}^{-2}|\mathbf{r}\rangle$
## Ellipse-to-ellipse mapping (Normal vs. tangent space)



Now $\mathbf{M}$ maps vector $|q\rangle$ from a quadratic form $1=\langle q| \mathbf{M}|q\rangle$ to vector $|p\rangle=\mathbf{M}|q\rangle$ on surface $1=\langle\mathbf{p}| \mathbf{M}^{-1}|\mathbf{p}\rangle$.

$$
l=\langle q| \mathbf{M}|q\rangle=\langle q \mid p\rangle=\langle p| \mathbf{M}^{-1}|p\rangle
$$

Radii of $|\mathrm{p}\rangle$ ellipse are square roots of eigenvalues $\sqrt{ } \varepsilon_{1}$ and $\sqrt{ } \varepsilon_{2}$


Radii of $|q\rangle$ ellipse axes are inverse eigenvalue roots $1 / \sqrt{ } \varepsilon 1$ and $1 / \sqrt{\varepsilon} 2$.

Tangent-normal geometry of mapping is found by using gradient $\nabla$ of quadratic curve $1=\langle\boldsymbol{q}| \mathbf{M}|\mathbf{q}\rangle$.

$$
\nabla(\langle q| \mathbf{M}|q\rangle)=\langle q| \mathbf{M}+\mathbf{M}|\mathbf{q}\rangle=2 \mathbf{M}|\mathbf{q}\rangle=2|p\rangle
$$



Geometric visualization of real symmetric matrices and eigenvectors (Previous pages) Matrix T maps vector $|\mathbf{c}\rangle$ from a unit circle $\langle\mathbf{c} \mid \mathbf{c}\rangle=1$ to $\mathrm{T}|\mathbf{c}\rangle=|\mathbf{r}\rangle$ on an ellipse $1=\langle\mathbf{r}| \mathrm{T}^{-2}|\mathbf{r}\rangle$

## Ellipse-to-ellipse mapping (Normal vs. tangent space)



Now $\mathbf{M}$ maps vector $|q\rangle$ from a quadratic form $1=\langle q| \mathbf{M}|q\rangle$ to vector $|p\rangle=\mathbf{M}|q\rangle$ on surface $1=\langle\mathbf{p}| \mathbf{M}^{-1}|\mathbf{p}\rangle$.

$$
l=\langle q| \mathbf{M}|q\rangle=\langle q \mid p\rangle=\langle p| \mathbf{M}^{-1}|p\rangle
$$

Radii of $|\mathrm{p}\rangle$ ellipse are square roots of eigenvalues $\sqrt{ } \varepsilon 1$ and $\sqrt{ } \varepsilon 2$


Radii of $|q\rangle$ ellipse axes are inverse eigenvalue roots $1 / \sqrt{ } \varepsilon 1$ and $1 / \sqrt{ } \varepsilon 2$.

Tangent-normal geometry of mapping is found by using gradient $\nabla$ of quadratic curve $1=\langle\boldsymbol{q}| \mathbf{M}|\mathbf{q}\rangle$.

$$
\nabla(\langle q| \mathbf{M}|q\rangle)=\langle q| \mathbf{M}+\mathbf{M}|\mathbf{q}\rangle=2 \mathbf{M}|\mathbf{q}\rangle=2|p\rangle
$$

Mapped vector $|\mathrm{p}\rangle$ lies on gradient $\nabla(\langle q| \mathbf{M}|\mathbf{q}\rangle)$ that is normal to tangent to original curve at $|q\rangle$.


Original vector $|q\rangle$ lies on gradient $\nabla\left(\langle\mathbf{p}| \mathbf{M}^{-1}|\mathbf{p}\rangle\right)$ that is normal to tangent to mapped curve at $|\mathrm{p}\rangle$.

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-à-vis Operator vs. State
Lagrange functional interpolation formula Proof that completeness relation is "Truer-than-true"

Spectral Decompositions with degeneracy
Functional spectral decomposition

## Geometric visualization of real symmetric matrices and eigenvectors

Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$


## Geometric visualization of real symmetric matrices and eigenvectors

Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$
Q: What are min-max values of the function $Q(\mathbf{r})$ subject to the constraint of unit norm: $C(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{r}\rangle=1$.


## Geometric visualization of real symmetric matrices and eigenvectors

 Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$
Q: What are min-max values of the function $Q(\mathbf{r})$ subject to the constraint of unit norm: $C(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{r}\rangle=1$.
A: At those values of $Q_{L}$ and vector $\mathbf{r}$ for which the $Q_{L}(\mathbf{r})$ curve just touches the constraint curve $C(\mathbf{r})$.


## Geometric visualization of real symmetric matrices and eigenvectors

## Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)

Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$
Q: What are min-max values of the function $Q(\mathbf{r})$ subject to the constraint of unit norm: $C(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{r}\rangle=1$.
A: At those values of $Q_{L}$ and vector $\mathbf{r}$ for which the $Q_{L}(\mathbf{r})$ curve just touches the constraint curve $C(\mathbf{r})$.
Lagrange says such points have gradient vectors $\nabla Q_{L}$ and $\nabla C$ proportional to each other.

$$
\nabla Q_{L}=\lambda \nabla C,
$$



## Geometric visualization of real symmetric matrices and eigenvectors

 Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$
Q: What are min-max values of the function $Q(\mathbf{r})$ subject to the constraint of unit norm: $C(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{r}\rangle=1$.
A: At those values of $Q_{L}$ and vector $\mathbf{r}$ for which the $Q_{L}(\mathbf{r})$ curve just touches the constraint curve $C(\mathbf{r})$.
Lagrange says such points have gradient vectors $\nabla Q_{L}$ and $\nabla C$ proportional to each other.

$$
\nabla Q_{L}=\lambda \nabla C,
$$

Proportionality constant $\lambda$ is called a Lagrange Multiplier.


## Geometric visualization of real symmetric matrices and eigenvectors

 Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$
Q: What are min-max values of the function $Q(\mathbf{r})$ subject to the constraint of unit norm: $C(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{r}\rangle=1$.
A: At those values of $Q_{L}$ and vector $\mathbf{r}$ for which the $Q_{L}(\mathbf{r})$ curve just touches the constraint curve $C(\mathbf{r})$.
Lagrange says such points have gradient vectors $\nabla Q_{L}$ and $\nabla C$ proportional to each other.

$$
\nabla Q_{L}=\lambda \nabla C,
$$

Proportionality constant $\lambda$ is called a Lagrange Multiplier.


## Geometric visualization of real symmetric matrices and eigenvectors

 Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$
Q: What are min-max values of the function $Q(\mathbf{r})$ subject to the constraint of unit norm: $C(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{r}\rangle=1$.
A: At those values of $Q_{L}$ and vector $\mathbf{r}$ for which the $Q_{L}(\mathbf{r})$ curve just touches the constraint curve $C(\mathbf{r})$.
Lagrange says such points have gradient vectors $\nabla Q_{L}$ and $\nabla C$ proportional to each other.

$$
\nabla Q_{L}=\lambda \nabla C,
$$

Proportionality constant $\lambda$ is called a Lagrange Multiplier.

At eigen-directions the Lagrange multiplier equals quadratic form: $\lambda=Q_{L}(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$

$$
Q_{L}(\mathbf{r})=\left\langle\varepsilon_{k}\right| \mathbf{L}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k} \text { at }|\mathbf{r}\rangle=\left|\varepsilon_{k}\right\rangle
$$



## Geometric visualization of real symmetric matrices and eigenvectors

 Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)Eigenvalues $\lambda$ of a matrix $\mathbf{L}$ can be viewed as stationary-values of its quadratic form $Q_{L}=L(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$
Q: What are min-max values of the function $Q(\mathbf{r})$ subject to the constraint of unit norm: $C(\mathbf{r})=\langle\mathbf{r} \mid \mathbf{r}\rangle=1$.
A: At those values of $Q_{L}$ and vector $\mathbf{r}$ for which the $Q_{L}(\mathbf{r})$ curve just touches the constraint curve $C(\mathbf{r})$.
Lagrange says such points have gradient vectors $\nabla Q_{L}$ and $\nabla C$ proportional to each other.

$$
\nabla Q_{L}=\lambda \nabla C,
$$

Proportionality constant $\lambda$ is called a Lagrange Multiplier.

At eigen-directions the Lagrange multiplier equals quadratic form: $\lambda=Q_{L}(\mathbf{r})=\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$

$$
Q_{L}(\mathbf{r})=\left\langle\varepsilon_{k}\right| \mathbf{L}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k} \text { at }|\mathbf{r}\rangle=\left|\varepsilon_{k}\right\rangle
$$


$\langle\mathbf{r}| \mathbf{L}|\mathbf{r}\rangle$ is called a quantum expectation value of operator $\mathbf{L}$ at $\mathbf{r}$.
Eigenvalues are extreme expectation values.

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Operator orthonormality and Completeness
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is"Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

Matrix-algebraic method for finding eigenvector and eigenvalues
With example matrix $\mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle, \text { or: }\left(\mathbf{M}-\varepsilon_{k} \mathbf{1}\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0} \quad \mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y} \text { or: }\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

$\varepsilon_{k}$ is eigenvalue associated with each eigenvector $\left|\varepsilon_{k}\right\rangle$ direction.

## Matrix-algebraic method for finding eigenvector and eigenvalues

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle \text {, or: }\left(\mathbf{M}-\varepsilon_{k} \mathbf{1}\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\binom{x}{y}=\binom{0}{0}$
$\varepsilon_{k}$ is eigenvalue associated with each eigenvector $\left|\varepsilon_{k}\right\rangle$ direction.
A change of basis to $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle, \cdots\left|\varepsilon_{n}\right\rangle\right\}$ called diagonalization gives

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle \text {, or: }\left(\mathbf{M}-\varepsilon_{k} \mathbf{1}\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\binom{x}{y}=\binom{0}{0}$
Trying to solve'by Kramer's inversion:

$$
x=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
0 & 1 \\
0 & 2-\varepsilon
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|} \quad \text { and } \quad y=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 0 \\
3 & 0
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|}
$$

## Matrix-algebraic method for finding eigenvector and eigenvalues

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle \text {, or: }\left(\mathbf{M}-\varepsilon_{k} 1\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\varepsilon_{k}$ is eigenvalue associated with eigenvector $\left|\varepsilon_{k}\right\rangle$ direction.
A change of basis to $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle, \cdots\left|\varepsilon_{n}\right\rangle\right\}$ called diagonalization gives

First step in finding eigenvalues: Solve secular equation

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon^{n}+a_{1} \varepsilon^{n-1}+a_{2} \varepsilon^{n-2}+\ldots+a_{n-1} \varepsilon+a_{n}\right)
$$

$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\binom{x}{y}=\binom{0}{0}$
Trying to solvépy Kramer's inversion:

and


Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$
0=\operatorname{det}|\mathbf{M}-\varepsilon \cdot \mathbf{1}|=\operatorname{det}\left|\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)-\varepsilon\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right|=\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|
$$

$$
0=(4-\varepsilon)(2-\varepsilon)-1 \cdot 3=8-6 \varepsilon+\varepsilon^{2}-1 \cdot 3=\varepsilon^{2}-6 \varepsilon+5
$$

## Matrix-algebraic method for finding eigenvector and eigenvalues

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle \text {, or: }\left(\mathbf{M}-\varepsilon_{k} 1\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\binom{x}{y}=\binom{0}{0}$
Trying to solve'by Kramer's inversion:

$$
x=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
0 & 1 \\
0 & 2-\varepsilon
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|} \quad \text { and } \quad y=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 0 \\
3 & 0
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|}
$$

Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$
0=\operatorname{det}|\mathbf{M}-\varepsilon \cdot \mathbf{1}|=\operatorname{det}\left|\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)-\varepsilon\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right|=\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|
$$

where:
$a_{1}=-\operatorname{Trace} \mathbf{M}, \cdots, a_{k}=(-1)^{k} \sum$ diagonal k-by-k minors of $\mathbf{M}, \cdots, a_{n}=(-1)^{n} \operatorname{det}|\mathbf{M}|$

$$
\begin{aligned}
& 0=(4-\varepsilon)(2-\varepsilon)-1 \cdot 3=8-6 \varepsilon+\varepsilon^{2}-1 \cdot 3=\varepsilon^{2}-6 \varepsilon+5 \\
& 0=\varepsilon^{2}-\operatorname{Trace}(\mathbf{M}) \varepsilon+\operatorname{det}(\mathbf{M})
\end{aligned}
$$

## Matrix-algebraic method for finding eigenvector and eigenvalues

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle \text {, or: }\left(\mathbf{M}-\varepsilon_{k}\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\varepsilon_{k}$ is eigenvalue associated with eigenvector $\left|\varepsilon_{k}\right\rangle$ direction.
A change of basis to $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle, \cdots\left|\varepsilon_{n}\right\rangle\right\}$ called diagonalization gives

$$
\left(\begin{array}{cccc}
\left\langle\varepsilon_{\mid}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle
\end{array}\right)=\left(\begin{array}{cccc}
\varepsilon_{1} & 0 & \cdots & 0 \\
0 & \varepsilon_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \varepsilon_{n}
\end{array}\right)
$$

First step in finding eigenvalues: Solve secular equation

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon^{n}+a_{1} \varepsilon^{n-1}+a_{2} \varepsilon^{n-2}+\ldots+a_{n-1} \varepsilon+a_{n}\right)
$$

where:

$$
a_{1}=-\operatorname{Trac} e \mathbf{M}, \cdots, a_{k}=(-1)^{k} \sum \text { diagonal k-by-k minors of } \mathbf{M}, \cdots, a_{n}=(-1)^{n} \operatorname{det} \mid \mathbf{M}
$$

Secular equation has $n$-factors, one for each eigenvalue.

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon-\varepsilon_{1}\right)\left(\varepsilon-\varepsilon_{2}\right) \cdots\left(\varepsilon-\varepsilon_{n}\right)
$$

$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\left(\begin{array}{l}x \\ y \\ y\end{array}\right)=\binom{0}{0}$
Trying to solveéby Kramer's inversion:

$$
x=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
0 & 1 \\
0 & 2-\varepsilon
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|} \quad \text { and } \quad y=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 0 \\
3 & 0
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|}
$$

Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$
\begin{gathered}
0=\operatorname{det}|\mathbf{M}-\varepsilon \cdot \mathbf{1}|=\operatorname{det}\left|\left(\begin{array}{cc}
4 & 1 \\
3 & 2
\end{array}\right)-\varepsilon\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right|=\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right| \\
0=(4-\varepsilon)(2-\varepsilon)-1 \cdot 3=8-6 \varepsilon+\varepsilon^{2}-1 \cdot 3=\varepsilon^{2}-6 \varepsilon+5 \\
0=\varepsilon^{2}-\operatorname{Trace}(\mathbf{M}) \varepsilon+\operatorname{det}(\mathbf{M})=\varepsilon^{2}-6 \varepsilon+5
\end{gathered}
$$

$$
0=(\varepsilon-1)(\varepsilon-5) \text { so let: } \varepsilon_{1}=1 \text { and: } \varepsilon_{2}=5
$$

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary, extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Operator orthonormality and Completeness
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

## Matrix-algebraic method for finding eigenvector and eigenvalues

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle \text {, or: }\left(\mathbf{M}-\varepsilon_{k} 1\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\varepsilon_{k}$ is eigenvalue associated with eigenvector $\left|\varepsilon_{k}\right\rangle$ direction.
A change of basis to $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle, \cdots\left|\varepsilon_{n}\right\rangle\right\}$ called diagonalization gives

$$
\left(\begin{array}{cccc}
\left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle
\end{array}\right)=\left(\begin{array}{cccc}
\varepsilon_{1} & 0 & \cdots & 0 \\
0 & \varepsilon_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \varepsilon_{n}
\end{array}\right)
$$

First step in finding eigenvalues: Solve secular equation

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{\varepsilon}|=0=(-1)^{n}\left(\varepsilon^{n}+a_{1} \varepsilon^{n-1}+a_{2} \varepsilon^{n-2}+\ldots+a_{n-1} \varepsilon+a_{n}\right)
$$

where:

$$
a_{1}=-\operatorname{Trace} \mathbf{M}, \cdots, a_{k}=(-1)^{k} \sum \text { diagonal k-by-k minors of } \mathbf{M}, \cdots, a_{n}=(-1)^{n} \operatorname{det}|\mathbf{M}|
$$

Secular equation has $n$-factors, one for each eigenvalue.

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon-\varepsilon_{1}\right)\left(\varepsilon-\varepsilon_{2}\right) \cdots\left(\varepsilon-\varepsilon_{n}\right)
$$

$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\binom{x}{y}=\binom{0}{0}$
Trying to solve'by Kramer's inversion:

$$
x=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
0 & 1 \\
0 & 2-\varepsilon
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|}
$$

and


Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$
\begin{gathered}
0=\operatorname{det}|\mathbf{M}-\varepsilon \cdot \mathbf{1}|=\operatorname{det}\left|\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)-\varepsilon\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right|=\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right| \\
0=(4-\varepsilon)(2-\varepsilon)-1 \cdot 3=8-6 \varepsilon+\varepsilon^{2}-1 \cdot 3=\varepsilon^{2}-6 \varepsilon+5 \\
0=\varepsilon^{2}-\operatorname{Trace}(\mathbf{M}) \varepsilon+\operatorname{det}(\mathbf{M})=\varepsilon^{2}-6 \varepsilon+5
\end{gathered}
$$

$$
0=(\varepsilon-1)(\varepsilon-5) \text { so let: } \varepsilon_{1}=1 \text { and: } \varepsilon_{2}=5
$$

$$
0=\mathbf{M}^{2}-6 \mathbf{M}+5 \mathbf{1}=(\mathbf{M}-1 \cdot 1)(\mathbf{M}-5 \cdot 1)
$$

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)^{2}-6\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)+5\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle, \text { or: }\left(\mathbf{M}-\varepsilon_{k} \mathbf{1}\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\varepsilon_{k}$ is eigenvalue associated with eigenvector $\left|\varepsilon_{k}\right\rangle$ direction.
A change of basis to $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle, \cdots\left|\varepsilon_{n}\right\rangle\right\}$ called diagonalization gives

$$
\left(\begin{array}{cccc}
\left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle
\end{array}\right)=\left(\begin{array}{cccc}
\varepsilon_{1} & 0 & \cdots & 0 \\
0 & \varepsilon_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \varepsilon_{n}
\end{array}\right)
$$

1 st step in finding eigenvalues: Solve secular equation

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon^{n}+a_{1} \varepsilon^{n-1}+a_{2} \varepsilon^{n-2}+\ldots+a_{n-1} \varepsilon+a_{n}\right)
$$

where:

$$
a_{1}=-\operatorname{Trace} \mathbf{M}, \cdots, a_{k}=(-1)^{k} \sum \text { diagonal k-by-k minors of } \mathbf{M}, \cdots, a_{n}=(-1)^{n} \operatorname{det}|\mathbf{M}|
$$

Secular equation has $n$-factors, one for each eigenvalue.

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon-\varepsilon_{1}\right)\left(\varepsilon-\varepsilon_{2}\right) \cdots\left(\varepsilon-\varepsilon_{n}\right)
$$

$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\binom{x}{y}=\binom{0}{0}$
Trying to solve by Kramer's inversion:

$$
x=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
0 & 1 \\
0 & 2-\varepsilon
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|} \quad \text { and } \quad y=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 0 \\
3 & 0
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|}
$$

Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$
0=\operatorname{det}|\mathbf{M}-\varepsilon \cdot \mathbf{1}|=\operatorname{det}\left|\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)-\varepsilon\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right|=\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|
$$

$$
\begin{aligned}
& 0=(4-\varepsilon)(2-\varepsilon)-1 \cdot 3=8-6 \varepsilon+\varepsilon^{2}-1 \cdot 3=\varepsilon^{2}-6 \varepsilon+5 \\
& 0=\varepsilon^{2}-\operatorname{Trace}(\mathbf{M}) \varepsilon+\operatorname{det}(\mathbf{M})=\varepsilon^{2}-6 \varepsilon+5
\end{aligned}
$$

$$
0=(\varepsilon-1)(\varepsilon-5) \text { so let: } \varepsilon_{1}=1 \text { and: } \varepsilon_{2}=5
$$

$$
0=\mathbf{M}^{2}-6 \mathbf{M}+5 \mathbf{1}=(\mathbf{M}-1 \cdot \mathbf{1})(\mathbf{M}-5 \cdot \mathbf{1})
$$

$$
\mathbf{0}=\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right) \cdots\left(\mathbf{M}-\varepsilon_{n} \mathbf{1}\right)
$$

Obviously true if $\mathbf{M}$ has diagonal form. (But, that's circular logic. Faith needed!)
Replace $j^{\text {th }} \mathrm{HC}$-factor by (1) to make projection operators $\mathbf{p}_{k}=\prod_{j \neq k}\left(\mathbf{M}-\varepsilon_{j} \mathbf{1}\right)$.
$\mathbf{p}_{1}=\left(\begin{array}{l}1\end{array}\right)\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right) \cdots\left(\mathbf{M}-\varepsilon_{n} \mathbf{1}\right)$
$\mathbf{p}_{2}=\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)\left(\begin{array}{ll}1 & ) \cdots\left(\mathbf{M}-\varepsilon_{n} \mathbf{1}\right)\end{array}\right.$
(Assume distinct e-values here: SVon-degeneracy clause)

$$
\varepsilon_{\mathrm{j}} \neq \varepsilon_{\mathrm{k}} \neq \ldots
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)^{2}-6\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)+5\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \mathbf{p}_{1}=(\mathbf{1})(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}
4-5 & 1 \\
3 & 2-5
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right) \\
& \mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})(\mathbf{1})=\left(\begin{array}{cc}
4-1 & 1 \\
3 & 2-1
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
\end{aligned}
$$

$\mathbf{p}_{n}=\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right) \cdots\left(\begin{array}{l}1\end{array}\right)$

An eigenvector $\left|\varepsilon_{k}\right\rangle$ of $\mathbf{M}$ is in a direction that is left unchanged by $\mathbf{M}$.

$$
\mathbf{M}\left|\varepsilon_{k}\right\rangle=\varepsilon_{k}\left|\varepsilon_{k}\right\rangle, \text { or: }\left(\mathbf{M}-\varepsilon_{k} \mathbf{1}\right)\left|\varepsilon_{k}\right\rangle=\mathbf{0}
$$

$\varepsilon_{k}$ is eigenvalue associated with eigenvector $\left|\varepsilon_{k}\right\rangle$ direction.
A change of basis to $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle, \cdots\left|\varepsilon_{n}\right\rangle\right\}$ called diagonalization gives

$$
\left(\begin{array}{cccc}
\left\langle\varepsilon_{1}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{\mid}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{\mid}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{2}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{2}\right\rangle & \cdots & \left\langle\varepsilon_{n}\right| \mathbf{M}\left|\varepsilon_{n}\right\rangle
\end{array}\right)=\left(\begin{array}{ccccc}
\varepsilon_{1} & 0 & \cdots & 0 \\
0 & \varepsilon_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \varepsilon_{n}
\end{array}\right)
$$

1 st step in finding eigenvalues: Solve secular equation

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon^{n}+a_{1} \varepsilon^{n-1}+a_{2} \varepsilon^{n-2}+\ldots+a_{n-1} \varepsilon+a_{n}\right)
$$

where:

$$
a_{1}=-\operatorname{Trace} \mathbf{M}, \cdots, a_{k}=(-1)^{k} \sum \text { diagonal k-by-k minors of } \mathbf{M}, \cdots, a_{n}=(-1)^{n} \operatorname{det}|\mathbf{M}|
$$

Secular equation has $n$-factors, one for each eigenvalue.

$$
\operatorname{det}|\mathbf{M}-\varepsilon \mathbf{1}|=0=(-1)^{n}\left(\varepsilon-\varepsilon_{1}\right)\left(\varepsilon-\varepsilon_{2}\right) \cdots\left(\varepsilon-\varepsilon_{n}\right)
$$

Each $\varepsilon$ replaced by $\mathbf{M}$ and each $\varepsilon_{k}$ by $\varepsilon_{k} \mathbf{1}$ gives Hamilton-Cayley matrix equation.

$$
\mathbf{0}=\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right) \cdots\left(\mathbf{M}-\varepsilon_{n} \mathbf{1}\right)
$$

Obviously true if $\mathbf{M}$ has diagonal form. (But, that's circular logic. Faith needed!)
Replace $j^{\text {th }} \mathbf{H C}$-factor by (1) to make projection operators $\mathbf{p}_{k}=\prod_{i \neq k}\left(\mathbf{M}-\varepsilon_{j} \mathbf{1}\right)$.

$$
\begin{aligned}
& \mathbf{p}_{1}=\left(\begin{array}{c}
\mathbf{1}
\end{array}\right)\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right) \cdots\left(\mathbf{M}-\varepsilon_{n} \mathbf{1}\right) \\
& \mathbf{p}_{2}=\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\mathbf{M}-\varepsilon_{n} \mathbf{1}\right) \\
& \text { (Assume distinct e-values here: Syon-degeneracay clause) } \\
& \varepsilon_{\mathrm{j}} \neq \varepsilon_{\mathrm{k}} \neq \ldots \\
& \mathbf{p}_{n}=\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right) \cdots\left(\begin{array}{l}
\mathbf{1}
\end{array}\right)
\end{aligned}
$$

Each $\mathbf{p}_{k}$ contains eigen-bra-kets since: $\left(\mathbf{M}-\varepsilon_{k} \mathbf{1}\right) \mathbf{p}_{k}=0$ or: $\mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}$.
$\mathbf{M}|\varepsilon\rangle=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\varepsilon\binom{x}{y}$ or: $\left(\begin{array}{cc}4-\varepsilon & 1 \\ 3 & 2-\varepsilon\end{array}\right)\binom{x}{y}=\binom{0}{0}$
Trying to solve by Kramer's inversion:

$$
x=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
0 & 1 \\
0 & 2-\varepsilon
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|} \quad \text { and } \quad y=\frac{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 0 \\
3 & 0
\end{array}\right)\right|}{\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right|}
$$

Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$
\begin{gathered}
0=\operatorname{det}|\mathbf{M}-\varepsilon \cdot \mathbf{1}|=\operatorname{det}\left|\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)-\varepsilon\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right|=\operatorname{det}\left|\left(\begin{array}{cc}
4-\varepsilon & 1 \\
3 & 2-\varepsilon
\end{array}\right)\right| \\
0=(4-\varepsilon)(2-\varepsilon)-1 \cdot 3=8-6 \varepsilon+\varepsilon^{2}-1 \cdot 3=\varepsilon^{2}-6 \varepsilon+5 \\
0=\varepsilon^{2}-\operatorname{Trace}(\mathbf{M}) \varepsilon+\operatorname{det}(\mathbf{M})=\varepsilon^{2}-6 \varepsilon+5
\end{gathered}
$$

$$
0=(\varepsilon-1)(\varepsilon-5) \text { so let: } \varepsilon_{1}=1 \text { and: } \varepsilon_{2}=5
$$

$$
0=\mathbf{M}^{2}-6 \mathbf{M}+5 \mathbf{M}=(\mathbf{M}-1 \cdot 1)(\mathbf{M}-5 \cdot 1)
$$

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)^{2}-6\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)+5\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\mathbf{p}_{1}=(\mathbf{1})(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}
4-5 & 1 \\
3 & 2-5
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right)
$$

$$
\mathbf{p}_{2}=(\mathbf{M}-\mathbf{1} \cdot \mathbf{1})(\mathbf{1})=\left(\begin{array}{cc}
4-1 & 1 \\
3 & 2-1
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

$$
\mathbf{M} \mathbf{p}_{1}=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right)=1 \cdot\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right)=1 \cdot \mathbf{p}_{1}
$$

$$
\mathbf{M} \mathbf{p}_{2}=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=5 \cdot\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=5 \cdot \mathbf{p}_{2}
$$

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Operator orthonormality and Completeness

## Spectral Decompositions

Functional spectral decomposition
Orthonormality vs. Completeness vis-à-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

Matrix-algebraic method for finding eigenvector and eigenvalues

$$
\begin{aligned}
& \mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j}{ }^{1}\right. \\
& \text { lication properties of } \mathbf{p}_{j} \text { : }
\end{aligned}
$$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & i f: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & i f: j=k\end{cases}
$$

Matrix-algebraic method for finding eigenvector and eigenvalues:

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} \quad \vdots \quad \mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right)
$$

Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\boldsymbol{\varepsilon}_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\boldsymbol{\varepsilon}_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ \ddots & \vdots \ldots \ldots \ldots\end{cases}
$$

$$
\mathbf{p}_{2}=(\mathbf{M}-\mathbf{1} \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

Last step: $\begin{aligned} & \text { Last step: } \\ & \text { make Idempotent Projectors: } \mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \vdots \\ & \vdots \\ & \text { (Idempotent means: } \mathbf{P} \cdot \mathbf{P}=\mathbf{P})\end{aligned} \quad \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}1 & -1 \\ -3 & 3\end{array}\right)$

$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

Matrix-algebraic method for finding eigenvector and eigenvalues $\vdots$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} \quad \vdots \quad \mathbf{p}_{1}=(\mathbf{M}-\mathbf{5} \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right)
$$

Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ & \ddots \ldots \ldots \ldots\end{cases}
$$

$$
\mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

Last step: $\begin{aligned} & \text { Last step: } \\ & \text { make Idempotent Projectors: } \mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \vdots \\ & \vdots \\ & \text { (Idempotent means: } \mathbf{P} \cdot \mathbf{P}=\mathbf{P})\end{aligned} \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}1 & -1 \\ -3 & 3\end{array}\right)$

$$
\mathbf{P}_{j} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{m} \neq k \\
\mathbf{M p}_{k}=\boldsymbol{\varepsilon}_{k} \\
\mathbf{p}_{k}
\end{array}=\mathbf{p}_{k} \mathbf{M} \vdots \\
& \text { implies : }
\end{aligned}
$$

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{cc}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors)
Factoring bra-kets Operator orthonormality and Completeness into "Ket-Bras:

Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

Matrix-algebraic method for finding eigenvector and eigenvalues $\vdots$
With example matrix $\quad \mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$

$$
\begin{array}{llll}
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{p}_{j} \mathbf{1}\right) & \mathbf{M} \mathbf{p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} & \vdots & \mathbf{p}_{1}=(\mathbf{M}-\mathbf{5} \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right) \\
\text { location properties of } \mathbf{p}_{j}: & \vdots \\
& \text { if }: j \neq k & \vdots & \mathbf{p}_{2}=(\mathbf{M}-\mathbf{1} \cdot \mathbf{1})=\left(\begin{array}{cc}
3 & 1 \\
3 & 1
\end{array}\right)
\end{array} \quad \begin{aligned}
& \mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ & \vdots \ldots \ldots \ldots\end{cases}
$$

Factoring bra-kets into "Ket-Bras:

Last step: make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m * k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$

$$
\mathbf{P}_{j} \mathbf{P}_{k}=\left\{\begin{array}{lll}
\mathbf{0} & \text { if }: j \neq k & \begin{array}{l}
\mathbf{M p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} \vdots \\
\mathbf{P}_{k}
\end{array} \text { if }: j=k
\end{array} \quad \text { implies: } \quad \mathbf{M P}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M} \vdots \vdots\right.
$$

$$
\left.\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{1}\left(\begin{array}{c}
\frac{1}{2} \\
\uparrow \\
-\frac{3}{2}
\end{array}\right) \otimes \frac{\left(\frac{1}{2}\right.}{\left.-\frac{1}{2}\right)} \\
& \text { "Gauge" scale factors that only affect plots } \\
& k_{1}
\end{aligned}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right| \right\rvert\,
$$

Matrix-algebraic method for finding eigenvector and eigenvalues : With example matrix $\quad \mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \not * k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & i f: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if:j=k} \\ \cdots \cdots \cdots\end{cases}
$$

$\mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}-1 & 1 \\ 3 & -3\end{array}\right)$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

## Last step:

 make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$ !$$
\mathbf{P}_{1}=\frac{(\mathbf{M}-\mathbf{5 \cdot 1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{1}\left(\begin{array}{c}
\frac{1}{2} \\
\uparrow_{\text {Gate }} \\
-\frac{3}{2}
\end{array}\right)
$$

$$
\mathbf{P}_{j} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if:j}=k \\ \mathbf{P}_{k} & i f: j=k\end{cases}
$$

$$
\mathbf{M} \mathbf{p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

$$
\begin{array}{lll}
\text { mplies: } & \vdots
\end{array}
$$

$$
\left.\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{cc}
3 & 1 \\
3 & 1
\end{array}\right)=\stackrel{\downarrow}{k_{2}}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\frac{3}{2}\right.}{\left.\frac{1}{2}\right)} k_{2}\right)=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

$$
\mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M} \vdots
$$

$$
\left.{ }^{2}\right)^{(5-1)} \boldsymbol{4} 4\left(\begin{array}{lll}
\left(\begin{array}{ll}
4 & 1
\end{array}\right)
\end{array}\right.
$$

## Eigen-bra-ket

 projectors of matrix:$\mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$



$$
\vdots
$$

$$
\vdots
$$



$$
\vdots
$$

Matrix-algebraic method for finding eigenvector and eigenvalu
$\mathbf{p}_{\mathbf{p}}=\mathbf{p} \Pi\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)=\prod\left(\mathbf{p} \mathbf{M}-\varepsilon_{\mathbf{p}} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{=}=\varepsilon_{\mathbf{k}} \mathbf{p}_{k}=\mathbf{p}_{\mathbf{k}} \mathbf{M}$

$$
\mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

Factoring bra-kets into "Ket-Bras:

$$
=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
-\frac{3}{4} & \frac{3}{4}
\end{array}\right) \\
& =k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes\left(\frac{1}{2}\right. \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|
\end{aligned}
$$

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors) Factoring bra-kets
Operator orthonormality and Completeness into "Ket-Bras:
$\rightarrow$
Operator orthonormality and Completeness


Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

Matrix-algebraic method for finding eigenvector and eigenvalues : With example matrix $\quad \mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m * k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m * k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ \ddots \because \cdots \cdots\end{cases}
$$

$\mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}-1 & 1 \\ 3 & -3\end{array}\right)$

$$
\mathbf{p}_{2}=(\mathbf{M}-\mathbf{1} \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Factoring bra-kets into "Ket-Bras:

## Last step:

 make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}$(Idempotent means: $\mathbf{P} \cdot \mathbf{P}=\mathbf{P})$

$$
\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=\underset{\substack{\uparrow_{1}}}{k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\frac{1}{2}-\frac{1}{2}\right)}{k_{1}}=}=. \text { Gauge" scale factors that only affect plots }
\end{aligned}
$$

$$
\begin{aligned}
& \text { "Gauge" scale factors that only affect plots' } \\
& \left.\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{cc}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\frac{3}{2}\right.}{\frac{1}{2}}\right) \\
& k_{2}
\end{aligned}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's

Matrix-algebraic method for finding eigenvector and eigenvalues ! With example matrix $\quad \mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m * k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m * k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ \vdots: \ldots \ldots\end{cases}
$$

$\mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}-1 & 1 \\ 3 & -3\end{array}\right)$

$$
\mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

$\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

Factoring bra-kets into "Ket-Bras:

## Last step:

 make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \vdots$$\mathbf{M} \mathbf{p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}$

$$
\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=\underset{\uparrow}{k_{1}}\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{3}{2} \\
\text { "Gauge" scale factors that only affect plots }
\end{array} .\right.
\end{aligned}
$$



$$
\mathbf{P}_{j} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}
$$

$$
\begin{aligned}
& \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} \vdots \\
& \text { imnlios } .
\end{aligned}
$$

implies :

$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=\stackrel{\downarrow}{k_{2}}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\frac{3}{2}\right.}{\left.\frac{1}{2}\right)} k_{2}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's
...and the $\mathbf{P}_{j}$ satisfy a Completeness Relation:
$\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}$
$=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

$$
\mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M} \vdots
$$

$$
\begin{aligned}
& \mathbf{P}_{1}+\mathbf{P}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

Eigen-bra-ket $|y\rangle$
or projectors of matrix:

$$
=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)
$$

$$
\mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot 1)}{(1-5)}
$$

$$
=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
-\frac{3}{4} & \frac{3}{4}
\end{array}\right)
$$

$$
\begin{aligned}
& =k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes\left(\begin{array}{ll}
\frac{1}{2} & \left.-\frac{1}{2}\right) / k_{1} \\
=\left|\begin{array}{ll}
\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|
\end{array}\right| & -1 \\
-3 / 2
\end{array}\left|\varepsilon_{1}\right\rangle=k_{1}\left|\begin{array}{c}
1 / 2 \\
-3 / 2
\end{array}\right|\right.
\end{aligned}
$$

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{cc}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors) $\begin{aligned} & \text { Factoring bra-kets } \\ & \text { into "Ket-Bras: }\end{aligned}$
Operator orthonormality and Completeness
$\square$
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

Matrix-algebraic method for finding eigenvector and eigenvalues
With example matrix $\quad \mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & i f: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & i f: j=k \\ \ddots \cdots \cdots\end{cases}
$$

$$
\begin{aligned}
& \mathbf{p}_{1}=(\mathbf{M}-\mathbf{5} \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right) \\
& \mathbf{p}_{2}=(\mathbf{M}-\mathbf{1} \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Factoring bra-kets into "Ket-Bras:

## Last step:

 make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m * k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \vdots$$$
\mathbf{P}_{j} \mathbf{P}_{k}=\left\{\begin{array}{lll}
\mathbf{0} & \text { if }: j \neq k & \mathbf{M p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} \\
\mathbf{P}_{k} & \text { if }: j=k & \text { implies: } \\
\mathbf{M P}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{\uparrow}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{1}{2} & \left.-\frac{1}{2}\right) \\
k_{1}
\end{array}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|\right.}{} \text { Gauge" scale factors that only affect plots }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{cc}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\frac{3}{2}\right.}{2} \frac{1}{2}\right) \\
& k_{2}
\end{aligned}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's

$$
\left.\begin{array}{ll}
\vdots & \left(\begin{array}{ll}
\left\langle\varepsilon_{1} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1} \mid \varepsilon_{2}\right\rangle \\
\vdots & \left\langle\varepsilon_{2} \mid \varepsilon_{1}\right\rangle
\end{array}\left\langle\varepsilon_{2} \mid \varepsilon_{2}\right\rangle\right.
\end{array}\right)
$$

... and the $\mathbf{P}_{j}$ satisfy a Completeness Relation:
$\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}$
$=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

$$
\begin{aligned}
& \mathbf{P}_{1}+\mathbf{P}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

Eigen-operators $\mathbf{M P}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}$ then give Spectral Decomposition of operator $\mathbf{M}$

$$
\mathbf{M}=\mathbf{M} \mathbf{P}_{1}+\mathbf{M} \mathbf{P}_{2}+\ldots+\mathbf{M} \mathbf{P}_{n}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{n} \mathbf{P}_{n}
$$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m * k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m * k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & i f: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & i f: j=k \\ \hdashline: \cdots \cdots\end{cases}
$$

$$
\mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right)
$$

$$
\mathbf{p}_{2}=(\mathbf{M}-\mathbf{1} \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

## Last step:

 make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \vdots$$\vdots$

$$
\mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)}{k_{1}}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|
$$

$$
\mathbf{P}_{j} \mathbf{P}_{k}=\left\{\begin{array}{lll}
\mathbf{0} & \text { if }: j \neq k & \mathbf{M p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} \\
\mathbf{P}_{k} & \text { if }: j=k & \text { implies: } \\
\mathbf{M P}_{k}=\boldsymbol{E}_{\mathbf{R}_{k}}=\mathbf{P}_{k} \mathbf{M}
\end{array} \vdots\right.
$$

$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right) \underset{\substack{|2\rangle \overline{4}}}{ }=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's

$$
\begin{aligned}
& \vdots\left(\begin{array}{cc}
\left\langle\varepsilon_{1} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1} \mid \varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2} \mid \varepsilon_{2}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

... and the $\mathbf{P}_{j}$ satisfy a Completeness Relation:
$\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}$
$=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

$$
\begin{aligned}
& \mathbf{P}_{1}+\mathbf{P}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

$$
\mathbf{M}=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)=1 \mathbf{P}_{1}+5 \mathbf{P}_{2}=1|1\rangle\langle 1|+5|2\rangle\langle 2|=1\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
-\frac{3}{4} & \frac{3}{4}
\end{array}\right)+5\left(\begin{array}{ll}
\frac{3}{4} & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right)
$$

Eigen-operators $\mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}$ then give Spectral Decomposition of operator $\mathbf{M}$

$$
\mathbf{M}=\mathbf{M} \mathbf{P}_{1}+\mathbf{M} \mathbf{P}_{2}+\ldots+\mathbf{M} \mathbf{P}_{n}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{n} \mathbf{P}_{n}
$$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ \bullet: \ldots\end{cases}
$$

$$
\begin{aligned}
& \mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right) \\
& \mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

## Last step:

make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod\left(\varepsilon_{k} \quad \prod_{m+k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)\right.}$ : (Idempotent means: $\mathbf{P} \cdot \mathbf{P}=\mathbf{P}$ ) $\quad \overline{\prod_{m * k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \vdots$

$$
\mathbf{P}_{j} \mathbf{P}_{k}=\left\{\begin{array}{lll}
\mathbf{0} & \text { if }: j \neq k & \mathbf{M p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M} \\
\mathbf{P}_{k} & \text { if }: j=k & \text { imp plies: } \\
\mathbf{M}_{k} & \ldots \ldots \ldots & \mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)}{k_{1}}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right| \\
& \mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{cc}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle\varepsilon_{1} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1} \mid \varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2} \mid \varepsilon_{2}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

...and the $\mathbf{P}_{j}$ satisfy a Completeness Relation:
$\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}$
$=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

$$
\begin{aligned}
& \mathbf{P}_{1}+\mathbf{P}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

$$
\mathbf{M}=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)=1 \mathbf{P}_{1}+5 \mathbf{P}_{2}=1|1\rangle\langle 1|+5|2\rangle\langle 2|=1\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
-\frac{3}{4} & \frac{3}{4}
\end{array}\right)+5\left(\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right)
$$

Eigen-operators $\mathbf{M} \mathbf{P}_{k}=\varepsilon_{k} \mathbf{P}_{k}$ then give Spectral Decomposition of operator $\mathbf{M}$

$$
\mathbf{M}=\mathbf{M} \mathbf{P}_{1}+\mathbf{M} \mathbf{P}_{2}+\ldots+\mathbf{M} \mathbf{P}_{n}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{n} \mathbf{P}_{n}
$$

...and Functional Spectral Decomposition of any function $f(\mathbf{M})$ of $\mathbf{M}$

$$
f(\mathbf{M})==f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}
$$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ \bullet: \ldots\end{cases}
$$

$$
\begin{aligned}
& \mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right) \\
& \mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

## Last step:

make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod\left(\varepsilon_{k} \quad \prod_{m+k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)\right.}$ : (Idempotent means: $\mathbf{P} \cdot \mathbf{P}=\mathbf{P}) \quad \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)=\frac{\prod \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}{\vdots}$

$$
\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\frac{1}{2}-\frac{1}{2}\right)}{k_{1}}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right| \\
& \mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{cc}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle\varepsilon_{1} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1} \mid \varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2} \mid \varepsilon_{2}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

... and the $\mathbf{P}_{j}$ satisfy a Completeness Relation:
$\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}$
$=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$
Eigen-operators $\mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}$ then give Spectral Decomposition of operator $\mathbf{M}$

$$
\mathbf{M}=\mathbf{M} \mathbf{P}_{1}+\mathbf{M} \mathbf{P}_{2}+\ldots+\mathbf{M} \mathbf{P}_{n}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{n} \mathbf{P}_{n}
$$

...and Functional Spectral Decomposition of any function $f(\mathbf{M})$ of $\mathbf{M}$

$$
f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}
$$

$$
\mathbf{M}=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)=1 \mathbf{P}_{1}+5 \mathbf{P}_{2}=1|1\rangle\langle 1|+5|2\rangle\langle 2|=1\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
-\frac{3}{4} & \frac{3}{4}
\end{array}\right)+5\left(\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right)
$$

$$
\begin{aligned}
& \mathbf{P}_{1}+\mathbf{P}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

$$
\begin{gathered}
\text { Example: } \\
\mathbf{M}^{50}=\left(\begin{array}{cc}
4 & 1 \\
3 & 2
\end{array}\right)=1^{50}\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
-\frac{3}{4} & \frac{3}{4}
\end{array}\right)+5^{50}\left(\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right)=\frac{1}{4}\left(\begin{array}{ll}
1+3 \cdot 5^{50} & 5^{50}-1 \\
3 \cdot 5^{50}-3 & 5^{50}+3
\end{array}\right)
\end{gathered}
$$

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\varepsilon_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\varepsilon_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ \bullet: \ldots\end{cases}
$$

$\mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}-1 & 1 \\ 3 & -3\end{array}\right)$

$$
\mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Factoring bra-kets into "Ket-Bras:

## Last step:

make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod\left(\varepsilon_{k} \quad \prod_{m+k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)\right.}$ : (Idempotent means: $\mathbf{P} \cdot \mathbf{P}=\mathbf{P}) \quad \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)=\frac{\prod \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}{\vdots}$

$$
\mathbf{P}_{j} \mathbf{P}_{k}=\left\{\begin{array}{lll}
\mathbf{0} & \text { if }: j \neq k & \mathbf{M p}_{k}=\boldsymbol{\varepsilon}_{k} \mathbf{P}_{k}=\mathbf{p}_{k} \mathbf{M} \\
\mathbf{P}_{k} & \text { if }: j=k & \text { imp plies: } \\
\mathbf{M}_{k} & \ldots \ldots \ldots & \mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M}
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)}{k_{1}}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right| \\
& \mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{cc}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle\varepsilon_{1} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1} \mid \varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2} \mid \varepsilon_{2}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

... and the $\mathbf{P}_{j}$ satisfy a Completeness Relation:
$\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}$
$=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$

$$
\begin{aligned}
& \mathbf{P}_{1}+\mathbf{P}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

$$
\mathbf{M}=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)=1 \mathbf{P}_{1}+5 \mathbf{P}_{2}=1|1\rangle\langle 1|+5|2\rangle\langle 2|=1\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
-\frac{3}{4} & \frac{3}{4}
\end{array}\right)+5\left(\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right)
$$

Eigen-operators $\mathbf{M} \mathbf{P}_{k}=\varepsilon_{k} \mathbf{P}_{k}$ then give Spectral Decomposition of operator $\mathbf{M}$

$$
\mathbf{M}=\mathbf{M} \mathbf{P}_{1}+\mathbf{M} \mathbf{P}_{2}+\ldots+\mathbf{M} \mathbf{P}_{n}=\varepsilon_{1} \mathbf{P}_{1}+\varepsilon_{2} \mathbf{P}_{2}+\ldots+\varepsilon_{n} \mathbf{P}_{n}
$$

...and Functional Spectral Decomposition of any function $f(\mathbf{M})$ of $\mathbf{M}$

$$
f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}
$$

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{cc}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors) Factoring bra-kets Operator orthonormality and Completeness

Spectral Decompositions
Functional spectral decomposition
1
Orthonormality vs. Completeness vis-a``vis Operator vs. State
Lagrange functional interpolation formula


Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

Orthonormality vs. Completeness

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\mathbf{p}_{j} \prod_{m \neq k}\left(\mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{1}\right)=\prod_{m \neq k}\left(\mathbf{p}_{j} \mathbf{M}-\boldsymbol{\varepsilon}_{m} \mathbf{p}_{j} \mathbf{1}\right) \quad \mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M}
$$

$$
\mathbf{p}_{1}=(\mathbf{M}-5 \cdot \mathbf{1})=\left(\begin{array}{cc}
-1 & 1 \\
3 & -3
\end{array}\right)
$$

## Multiplication properties of $\mathbf{p}_{j}$ :

$$
\mathbf{p}_{j} \mathbf{p}_{k}=\prod_{m \neq k}\left(\varepsilon_{j} \mathbf{p}_{j}-\varepsilon_{m} \mathbf{p}_{j}\right)=\mathbf{p}_{j} \prod_{m \neq k}\left(\varepsilon_{j}-\boldsymbol{\varepsilon}_{m}\right)= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right) & \text { if }: j=k \\ \vdots \ldots \ldots\end{cases}
$$

## Last step:

make Idempotent Projectors: $\mathbf{P}_{k}=\frac{\mathbf{p}_{k}}{\prod_{* k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}=\frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{k \neq k}\left(\varepsilon_{k}-\varepsilon_{n}\right)} \vdots$
(Idempotent means: $\mathbf{P} \cdot \mathbf{P}=\mathbf{P}$ )

$$
\begin{aligned}
& \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}
1 & -1 \\
-3 & 3
\end{array}\right)=k_{\uparrow}\left(\begin{array}{c}
\frac{1}{2} \\
{ }_{\uparrow} \\
-\frac{3}{2}
\end{array}\right) . \text { Gauge" scale factors that only affect plots }
\end{aligned}
$$

$$
\mathbf{P}_{j} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}
$$

Factoring bra-kets into "Ket-Bras:

$$
\mathbf{p}_{2}=(\mathbf{M}-1 \cdot \mathbf{1})=\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)
$$

$$
\mathbf{p}_{1} \mathbf{p}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

$$
\mathbf{M} \mathbf{p}_{k}=\varepsilon_{k} \neq \mathbf{p}_{k}=\mathbf{p}_{k} \mathbf{M} \vdots
$$

$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=\stackrel{\downarrow}{k_{2}}(
$$

The $\mathbf{P}_{j}$ are Mutually Ortho-Normal as are bra-ket $\left\langle\varepsilon_{j}\right|$ and $\left|\varepsilon_{j}\right\rangle$ inside $\mathbf{P}_{j}$ 's
... and the $\mathbf{P}_{j}$ satisfy a Completeness Relation:
$\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}$
$=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|$
$\{|x\rangle,|y\rangle\}$-orthonormality with $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\}$-completeness $\langle x \mid y\rangle=\delta_{x, y}=\langle x| \mathbf{1}|y\rangle=\left\langle x \mid \varepsilon_{1}\right\rangle\left\langle\varepsilon_{1} \mid y\right\rangle+\left\langle x \mid \varepsilon_{2}\right\rangle\left\langle\varepsilon_{2} \mid y\right\rangle$.
$\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\}$-orthonormality with $\{|x\rangle,|y\rangle\}$-completeness $\left\langle\varepsilon_{i} \mid \varepsilon_{j}\right\rangle=\delta_{i, j}=\left\langle\varepsilon_{i}\right| \mathbf{1}\left|\varepsilon_{j}\right\rangle=\left\langle\varepsilon_{i} \mid x\right\rangle\left\langle x \mid \varepsilon_{j}\right\rangle+\left\langle\varepsilon_{i} \mid y\right\rangle\left\langle y \mid \varepsilon_{j}\right\rangle$
implies :

$$
\mathbf{M P}_{k}=\varepsilon_{k} \mathbf{P}_{k}=\mathbf{P}_{k} \mathbf{M} \vdots
$$

$$
\begin{aligned}
& \mathbf{P}_{1}+\mathbf{P}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
\end{aligned}
$$

Eigen-bra-ket

$$
\left(\begin{array}{ll}
\left\langle\varepsilon_{1} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1} \mid \varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2} \mid \varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2} \mid \varepsilon_{2}\right\rangle
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

## Orthonormality vs. Completeness vis-a`-vis Operator vs. State

Operator expressions for orthonormality appear quite different from expressions for completeness.

$$
\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\ \mathbf{P}_{k} & \text { if }: j=k\end{cases}
$$

$$
\mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}
$$

## Orthonormality vs. Completeness vis-a`-vis Operator vs. State

Operator expressions for orthonormality appear quite different from expressions for completeness.

$$
\begin{array}{rc}
\mathbf{P}_{j} \mathbf{P}_{k}=\boldsymbol{\delta}_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if }: j \neq k \\
\mathbf{P}_{k} & \text { if:j=k}\end{cases} & \mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n} \\
\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \text { or: }\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle=\delta_{j k} & \mathbf{1}=\left|\varepsilon_{l}\right\rangle\left\langle\varepsilon_{l}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
\end{array}
$$

## Orthonormality vs. Completeness vis-a`-vis Operator vs. State

Operator expressions for orthonormality appear quite different from expressions for completeness.

$$
\begin{array}{rl}
\mathbf{P}_{j} \mathbf{P}_{k}=\boldsymbol{\delta}_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if: }: j \neq k \\
\mathbf{P}_{k} & \text { if }: j=k\end{cases} & \mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n} \\
\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \text { or: }\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle=\delta_{j k} & \mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{l}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
\end{array}
$$

State vector representations of orthonormality are quite similar to representations of completeness.
Like 2-sides of the same coin.
$\{|x\rangle,|y\rangle\}$-orthonormality with $\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\}$-completeness

$$
\langle x \mid y\rangle=\boldsymbol{\delta}_{x, y}=\langle x| \mathbf{1}|y\rangle=\left\langle x \mid \varepsilon_{1}\right\rangle\left\langle\varepsilon_{1} \mid y\right\rangle+\left\langle x \mid \varepsilon_{2}\right\rangle\left\langle\varepsilon_{2} \mid y\right\rangle .
$$

$\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\}$-orthonormality with $\{|x\rangle,|y\rangle\}$-completeness

$$
\left\langle\varepsilon_{i} \mid \varepsilon_{j}\right\rangle=\delta_{i, j}=\left\langle\varepsilon_{i}\right| \mathbf{1}\left|\varepsilon_{j}\right\rangle=\left\langle\varepsilon_{i} \mid x\right\rangle\left\langle x \mid \varepsilon_{j}\right\rangle+\left\langle\varepsilon_{i} \mid y\right\rangle\left\langle y \mid \varepsilon_{j}\right\rangle
$$

## Orthonormality vs. Completeness vis-a`-vis Operator vs. State

Operator expressions for orthonormality appear quite different from expressions for completeness.

$$
\begin{array}{rl}
\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if: }: j \neq k \\
\mathbf{P}_{k} & \text { if:j=k }\end{cases} & \mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n} \\
\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \text { or: }\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle=\delta_{j k} & \mathbf{1}=\left|\varepsilon_{l}\right\rangle\left\langle\varepsilon_{l}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
\end{array}
$$

State vector representations of orthonormality are quite similar to representations of completeness.
Like 2-sides of the same coin.

$$
\begin{gathered}
\{|x\rangle,|y\rangle\} \text {-orthonormality with }\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\} \text {-completeness } \\
\langle x \mid y\rangle=\delta_{x, y}=\langle x| \mathbf{1}|y\rangle=\left\langle x \mid \varepsilon_{1}\right\rangle\left\langle\varepsilon_{1} \mid y\right\rangle+\left\langle x \mid \varepsilon_{2}\right\rangle\left\langle\varepsilon_{2} \mid y\right\rangle . \\
\langle x \mid y\rangle=\delta(x, y)=\quad \psi_{1}(x) \psi_{1}^{*}(y)+\psi_{2}(x) \psi_{2}^{*}(y)+. .
\end{gathered}
$$

Dirac $\delta$-function
$\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\}$-orthonormality with $\{|x\rangle,|y\rangle\}$-completeness

$$
\left\langle\varepsilon_{i} \mid \varepsilon_{j}\right\rangle=\delta_{i, j}=\left\langle\varepsilon_{i}\right| \mathbf{1}\left|\varepsilon_{j}\right\rangle=\left\langle\varepsilon_{i} \mid x\right\rangle\left\langle x \mid \varepsilon_{j}\right\rangle+\left\langle\varepsilon_{i} \mid y\right\rangle\left\langle y \mid \varepsilon_{j}\right\rangle
$$

However Schrodinger wavefunction notation $\boldsymbol{\psi}(x)=\langle x \mid \boldsymbol{\psi}\rangle$ shows quite a difference...

## Orthonormality vs. Completeness vis-a`-vis Operator vs. State

Operator expressions for orthonormality appear quite different from expressions for completeness.

$$
\begin{array}{rl}
\mathbf{P}_{j} \mathbf{P}_{k}=\boldsymbol{\delta}_{j k} \mathbf{P}_{k}= \begin{cases}\mathbf{0} & \text { if:j}: k \\
\mathbf{P}_{k} & \text { if:j=k}\end{cases} & \mathbf{1}=\mathbf{P}_{1}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n} \\
\left|\varepsilon_{j}\right\rangle\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right|=\delta_{j k}\left|\varepsilon_{k}\right\rangle\left\langle\varepsilon_{k}\right| \text { or: }\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle=\delta_{j k} & \mathbf{1}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{l}\right|+\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|+\ldots+\left|\varepsilon_{n}\right\rangle\left\langle\varepsilon_{n}\right|
\end{array}
$$

State vector representations of orthonormality are quite similar to representations of completeness.
Like 2-sides of the same coin.

$$
\begin{gathered}
\{|x\rangle,|y\rangle\} \text {-orthonormality with }\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\} \text {-completeness } \\
\langle x \mid y\rangle=\delta_{x, y}=\langle x| \mathbf{1}|y\rangle=\left\langle x \mid \varepsilon_{1}\right\rangle\left\langle\varepsilon_{1} \mid y\right\rangle+\left\langle x \mid \varepsilon_{2}\right\rangle\left\langle\varepsilon_{2} \mid y\right\rangle . \\
\langle x \mid y\rangle=\delta(x, y)=\quad \psi_{1}(x) \psi_{1}^{*}(y)+\psi_{2}(x) \psi_{2}^{*}(y)+. .
\end{gathered}
$$

Dirac $\delta$-function
$\left\{\left|\varepsilon_{1}\right\rangle,\left|\varepsilon_{2}\right\rangle\right\}$-orthonormality with $\{|x\rangle,|y\rangle\}$-completeness

$$
\begin{aligned}
\left\langle\varepsilon_{i} \mid \varepsilon_{j}\right\rangle & =\delta_{i, j}=\left\langle\varepsilon_{i}\right| \mathbf{1}\left|\varepsilon_{j}\right\rangle=\left\langle\varepsilon_{i} \mid x\right\rangle\left\langle x \mid \varepsilon_{j}\right\rangle+\left\langle\varepsilon_{i} \mid y\right\rangle\left\langle y \mid \varepsilon_{j}\right\rangle \\
\left\langle\varepsilon_{i} \mid \varepsilon_{j}\right\rangle & =\delta_{i, j}=\quad \ldots+\psi_{i}^{*}(x) \psi_{j}(x)+\psi_{2}(y) \psi_{2}^{*}(y)+\ldots . \rightarrow \int d x \psi_{i}^{*}(x) \psi_{j}(x)
\end{aligned}
$$

However Schrodinger wavefunction notation $\boldsymbol{\psi}(x)=\langle x \mid \boldsymbol{\psi}\rangle$ shows quite a difference... ...particularly in the orthonormality integral.

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors) Factoring bra-kets Operator orthonormality and Completeness

Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
$\longrightarrow$ Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Spectral Decompositions with degeneracy
Functional spectral decomposition

## A Proof of Projector Completeness (Truer-than-true by Lagrange interpolation)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}^{m}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k} \frac{\prod_{k}\left(\mathbf{M}-\mathcal{E}_{n} \mathbf{1}\right)}{\prod_{n \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}\right.
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}^{m}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{n \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k} \frac{\prod_{k} \frac{n \neq k}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}\right.
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$.

## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}^{m}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{n \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k} \frac{\prod_{k} \frac{n \neq k}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}\right.
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.

## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \frac{\prod_{n \neq k}^{m}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{n \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.

If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{n \neq k}^{m}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{n \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\mathcal{\varepsilon}_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k} \frac{\prod_{k} \frac{n \neq k}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{n \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}\right.
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.

If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

One point determines a constant level line,


## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \frac{\prod_{m \neq k}^{m+k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m * k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.

If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

One point determines a constant level line, two separate points uniquely determine a sloping line,


## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}^{m}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{n \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k} \frac{\prod_{k} \frac{n \neq k}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)}\right.
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.
If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

One point determines a constant level line, two separate points uniquely determine a sloping line,


## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \frac{\prod_{m \neq k}^{m \neq k}}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.

If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula $\rightarrow$ Completeness formula as $x \rightarrow \mathbf{M}$ and as $x_{k} \rightarrow \varepsilon_{k}$ and as $P_{k}\left(x_{k}\right) \rightarrow \mathbf{P}_{k}$

## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \frac{\prod_{m \neq k}^{m \neq k}}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.
If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula $\rightarrow$ Completeness formula as $x \rightarrow \mathbf{M}$ and as $x_{k} \rightarrow \varepsilon_{k}$ and as $P_{k}\left(x_{k}\right) \rightarrow \mathbf{P}_{k}$
All distinct values $\varepsilon_{1} \neq \varepsilon_{2} \neq \ldots \neq \varepsilon_{N}$ satisfy $\Sigma \mathbf{P}_{k}=\mathbf{1}$.

## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \frac{\prod_{m \neq k}^{m \neq k}}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$.
So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.
If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula $\rightarrow$ Completeness formula as $x \rightarrow \mathbf{M}$ and as $x_{k} \rightarrow \varepsilon_{k}$ and as $P_{k}\left(x_{k}\right) \rightarrow \mathbf{P}_{k}$
All distinct values $\varepsilon_{l} \neq \varepsilon_{2} \neq \ldots \neq \varepsilon_{N}$ satisfy $\Sigma \mathbf{P}_{k}=\mathbf{1}$. Completeness is truer than true as is seen for $N=2$.

$$
\left.\mathbf{P}_{1}+\mathbf{P}_{2}=\frac{\prod_{j \neq 1}\left(\mathbf{M}-\varepsilon_{j} \mathbf{1}\right)}{\prod_{j \neq 1}\left(\varepsilon_{1}-\varepsilon_{j}\right)}+\frac{\prod_{j \neq 1}\left(\mathbf{M}-\varepsilon_{j} \mathbf{1}\right)}{\prod_{j \neq 1}\left(\varepsilon_{2}-\varepsilon_{j}\right)}=\frac{\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right)}{\left(\varepsilon_{1}-\varepsilon_{2}\right)}+\frac{\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)}{\left(\varepsilon_{2}-\varepsilon_{1}\right)}=\frac{\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right)-\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)}{\left(\varepsilon_{1}-\varepsilon_{2}\right)}=\frac{-\varepsilon_{2} \mathbf{1}+\varepsilon_{1} \mathbf{1}}{\left(\varepsilon_{1}-\varepsilon_{2}\right)}=\mathbf{1} \text { (for all } \varepsilon_{j}\right)
$$

## A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$
\mathbf{1}=\mathbf{P}_{l}+\mathbf{P}_{2}+\ldots+\mathbf{P}_{n}=\sum_{\varepsilon_{k}} \mathbf{P}_{k}=\sum_{\varepsilon_{k}} \frac{\prod_{m \neq k}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)}{\prod_{m \neq k}\left(\varepsilon_{k}-\varepsilon_{m}\right)} \quad f(\mathbf{M})=f\left(\varepsilon_{1}\right) \mathbf{P}_{1}+f\left(\varepsilon_{2}\right) \mathbf{P}_{2}+\ldots+f\left(\varepsilon_{n}\right) \mathbf{P}_{n}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \mathbf{P}_{k}=\sum_{\varepsilon_{k}} f\left(\varepsilon_{k}\right) \frac{\prod_{m \neq k}^{m \neq k}}{}\left(\mathbf{M}-\varepsilon_{m} \mathbf{1}\right)
$$

with Lagrange interpolation formula of function $f(x)$ approximated by its value at $N$ points $x_{1}, x_{2}, \ldots x_{N}$.

$$
L(f(x))=\sum_{k=1}^{N} f\left(x_{k}\right) \cdot P_{k}(x) \quad \text { where: } P_{k}(x)=\frac{\prod_{j \neq k}^{N}\left(x-x_{j}\right)}{\prod_{j \neq k}^{N}\left(x_{k}-x_{j}\right)}
$$

Each polynomial term $P_{m}(x)$ has zeros at each point $x=x_{j}$ except where $x=x_{m}$. Then $P_{m}\left(x_{m}\right)=1$. So at each of these points this L-approximation becomes exact: $L\left(f\left(x_{j}\right)\right)=f\left(x_{j}\right)$.
If $f(x)$ happens to be a polynomial of degree $N-1$ or less, then $L(f(x))=f(x)$ may be exact everywhere.

$$
1=\sum_{m=1}^{N} P_{m}(x) \quad x=\sum_{m=1}^{N} x_{m} P_{m}(x) \quad x^{2}=\sum_{m=1}^{N} x_{m}^{2} P_{m}(x)
$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula $\rightarrow$ Completeness formula as $x \rightarrow \mathbf{M}$ and as $x_{k} \rightarrow \varepsilon_{k}$ and as $P_{k}\left(x_{k}\right) \rightarrow \mathbf{P}_{k}$
All distinct values $\varepsilon_{l} \neq \varepsilon_{2} \neq \ldots \neq \varepsilon_{N}$ satisfy $\Sigma \mathbf{P}_{k}=\mathbf{1}$. Completeness is truer than true as is seen for $N=2$.

$$
\mathbf{P}_{1}+\mathbf{P}_{2}=\frac{\prod_{i \neq 1}\left(\mathbf{M}-\varepsilon_{j} \mathbf{1}\right)}{\prod_{j \neq 1}\left(\varepsilon_{1}-\varepsilon_{j}\right)}+\frac{\prod_{i \neq 1}\left(\mathbf{M}-\varepsilon_{j} \mathbf{1}\right)}{\prod_{j \neq 1}\left(\varepsilon_{2}-\varepsilon_{j}\right)}=\frac{\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right)}{\left(\varepsilon_{1}-\varepsilon_{2}\right)}+\frac{\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)}{\left(\varepsilon_{2}-\varepsilon_{1}\right)}=\frac{\left(\mathbf{M}-\varepsilon_{2} \mathbf{1}\right)-\left(\mathbf{M}-\varepsilon_{1} \mathbf{1}\right)}{\left(\varepsilon_{1}-\varepsilon_{2}\right)}=\frac{-\varepsilon_{2} \mathbf{1}+\varepsilon_{1} \mathbf{1}}{\left(\varepsilon_{1}-\varepsilon_{2}\right)}=\mathbf{1}\left(\text { for all } \varepsilon_{j}\right)
$$

However, only select values $\varepsilon_{k}$ work for eigen-forms $\mathbf{M} \mathbf{P}_{k}=\varepsilon_{k} \mathbf{P}_{k}$ or orthonormality $\mathbf{P}_{j} \mathbf{P}_{k}=\delta_{j k} \mathbf{P}_{k}$.

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{cc}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors) Factoring bra-kets
Operator orthonormality and Completeness
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
$\longrightarrow$ Diagonalizing Transformations (D-Ttran) from projectors


Eigensolutions for active analyzers
Spectral Decompositions with degeneracy
Functional spectral decomposition

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\quad \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}1 & -1 \\ -3 & 3\end{array}\right)=k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\begin{array}{cc}\frac{1}{2} & \left.-\frac{1}{2}\right) \\ k_{1}\end{array}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|, ~(1)\right.}{}$

$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\quad \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}1 & -1 \\ -3 & 3\end{array}\right)=k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\begin{array}{cc}\frac{1}{2} & \left.-\frac{1}{2}\right) \\ k_{1}\end{array}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|, ~(1)\right.}{}$

$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\frac{3}{2} \frac{1}{2}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

Load distinct bras $\left\langle\varepsilon_{1}\right|$ and $\left\langle\varepsilon_{2}\right|$ into d-tran rows, kets $\left|\varepsilon_{1}\right\rangle$ and $\left|\varepsilon_{2}\right\rangle$ into inverse d-tran columns.

Diagonalizing Transformations (D-Ttran) from projectors


$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

Load distinct bras $\left\langle\varepsilon_{1}\right|$ and $\left\langle\varepsilon_{2}\right|$ into d-tran rows, kets $\left|\varepsilon_{1}\right\rangle$ and $\left|\varepsilon_{2}\right\rangle$ into inverse d-tran columns.

$$
\begin{aligned}
& \left\{\left\langle\varepsilon_{1}\right|=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right),\left\langle\varepsilon_{2}\right|=\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)\right\}, \quad\left\{\left|\varepsilon_{1}\right\rangle=\binom{\frac{1}{2}}{-\frac{3}{2}},\left|\varepsilon_{2}\right\rangle=\binom{\frac{1}{2}}{\frac{1}{2}}\right\} \\
& \left(\varepsilon_{1}, \varepsilon_{2}\right) \leftarrow(1,2) d \text {-Tran matrix } \\
& (1,2) \leftarrow\left(\varepsilon_{1}, \varepsilon_{2}\right) \text { INVERSE } d \text {-Tran matrix } \\
& \left(\begin{array}{ll}
\left\langle\varepsilon_{1} \mid x\right\rangle & \left\langle\varepsilon_{1} \mid y\right\rangle \\
\left\langle\varepsilon_{2} \mid x\right\rangle & \left\langle\varepsilon_{2} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right) \quad, \quad\left(\begin{array}{ll}
\left\langle x \mid \varepsilon_{1}\right\rangle & \left\langle x \mid \varepsilon_{2}\right\rangle \\
\left\langle y \mid \varepsilon_{1}\right\rangle & \left\langle y \mid \varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\quad \mathbf{P}_{1}=\frac{(\mathbf{M}-5 \cdot \mathbf{1})}{(1-5)}=\frac{1}{4}\left(\begin{array}{cc}1 & -1 \\ -3 & 3\end{array}\right)=k_{1}\binom{\frac{1}{2}}{-\frac{3}{2}} \otimes \frac{\left(\frac{1}{2}-\frac{1}{2}\right)}{k_{1}}=\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|$

$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

Load distinct bras $\left\langle\varepsilon_{1}\right|$ and $\left\langle\varepsilon_{2}\right|$ into d-tran rows, kets $\left|\varepsilon_{1}\right\rangle$ and $\left|\varepsilon_{2}\right\rangle$ into inverse d-tran columns.

$$
\begin{aligned}
& \left\{\left\langle\varepsilon_{1}\right|=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right),\left\langle\varepsilon_{2}\right|=\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)\right\}, \quad\left\{\left|\varepsilon_{1}\right\rangle=\binom{\frac{1}{2}}{-\frac{3}{2}},\left|\varepsilon_{2}\right\rangle=\binom{\frac{1}{2}}{\frac{1}{2}}\right\} \\
& \left(\varepsilon_{1}, \varepsilon_{2}\right) \leftarrow(1,2) d \text {-Tran matrix } \\
& (1,2) \leftarrow\left(\varepsilon_{1}, \varepsilon_{2}\right) \text { INVERSE } d \text {-Tran matrix } \\
& \left(\begin{array}{cc}
\left\langle\varepsilon_{1} \mid x\right\rangle & \left\langle\varepsilon_{1} \mid y\right\rangle \\
\left\langle\varepsilon_{2} \mid x\right\rangle & \left\langle\varepsilon_{2} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right),\left(\begin{array}{cc}
\left\langle x \mid \varepsilon_{1}\right\rangle & \left\langle x \mid \varepsilon_{2}\right\rangle \\
\left\langle y \mid \varepsilon_{1}\right\rangle & \left\langle y \mid \varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right) \\
& \text { Use Dirac labeling for all components so transformation is OK }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{rr}
\left\langle\varepsilon_{1} \mid x\right\rangle & \left\langle\varepsilon_{1} \mid y\right\rangle \\
\left\langle\varepsilon_{2} \mid x\right\rangle & \left\langle\varepsilon_{2} \mid y\right\rangle
\end{array}\right) \cdot\left(\begin{array}{ll}
\langle x| \mathbf{K}|x\rangle & \langle x| \mathbf{K}|y\rangle \\
\langle y| \mathbf{K}|x\rangle & \langle y| \mathbf{K}|y\rangle
\end{array}\right) \cdot\left(\begin{array}{cc}
\left\langle x \mid \varepsilon_{1}\right\rangle & \left\langle x \mid \varepsilon_{2}\right\rangle \\
\left\langle y \mid \varepsilon_{1}\right\rangle & \left\langle y \mid \varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\left\langle\varepsilon_{1}\right| \mathbf{K}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{K}\left|\varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{K}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{K}\left|\varepsilon_{2}\right\rangle
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right) \cdot\left(\begin{array}{cc}
4 & 1 \\
3 & 2
\end{array}\right) \quad \cdot\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 5
\end{array}\right)
\end{aligned}
$$

Diagonalizing Transformations (D-Ttran) from projectors


$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

Load distinct bras $\left\langle\varepsilon_{1}\right|$ and $\left\langle\varepsilon_{2}\right|$ into d-tran rows, kets $\left|\varepsilon_{1}\right\rangle$ and $\left|\varepsilon_{2}\right\rangle$ into inverse d-tran columns.

$$
\begin{aligned}
& \left\{\left\langle\varepsilon_{1}\right|=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right),\left\langle\varepsilon_{2}\right|=\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)\right\}, \quad\left\{\left|\varepsilon_{1}\right\rangle=\binom{\frac{1}{2}}{-\frac{3}{2}},\left|\varepsilon_{2}\right\rangle=\binom{\frac{1}{2}}{\frac{1}{2}}\right\} \\
& \left(\varepsilon_{1}, \varepsilon_{2}\right) \leftarrow(1,2) d \text {-Tran matrix } \\
& (1,2) \leftarrow\left(\varepsilon_{1}, \varepsilon_{2}\right) \text { INVERSE } d \text {-Tran matrix } \\
& \left(\begin{array}{cc}
\left\langle\varepsilon_{1} \mid x\right\rangle & \left\langle\varepsilon_{1} \mid y\right\rangle \\
\left\langle\varepsilon_{2} \mid x\right\rangle & \left\langle\varepsilon_{2} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right),\left(\begin{array}{cc}
\left\langle x \mid \varepsilon_{1}\right\rangle & \left\langle x \mid \varepsilon_{2}\right\rangle \\
\left\langle y \mid \varepsilon_{1}\right\rangle & \left\langle y \mid \varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right) \\
& \text { Use Dirac labeling for all components so transformation is OK }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left\langle\varepsilon_{1} \mid x\right\rangle & \left\langle\varepsilon_{1} \mid y\right\rangle \\
\left\langle\varepsilon_{2} \mid x\right\rangle & \left\langle\varepsilon_{2} \mid y\right\rangle
\end{array}\right) \cdot\left(\begin{array}{ll}
\langle x| \mathbf{K}|x\rangle & \langle x| \mathbf{K}|y\rangle \\
\langle y| \mathbf{K}|x\rangle & \langle y| \mathbf{K}|y\rangle
\end{array}\right) \cdot\left(\begin{array}{cc}
\left\langle x \mid \varepsilon_{1}\right\rangle & \left\langle x \mid \varepsilon_{2}\right\rangle \\
\left\langle y \mid \varepsilon_{1}\right\rangle & \left\langle y \mid \varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\left\langle\varepsilon_{1}\right| \mathbf{K}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{K}\left|\varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{K}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{K}\left|\varepsilon_{2}\right\rangle
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right) \cdot\left(\begin{array}{cc}
4 & 1 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right)=
\end{aligned}
$$

Check inverse-d-tran is really inverse of your d-tran.
$\left(\begin{array}{ll}\left\langle\varepsilon_{1} \mid 1\right\rangle & \left\langle\varepsilon_{1} \mid 2\right\rangle \\ \left\langle\varepsilon_{2} \mid 1\right\rangle & \left\langle\varepsilon_{2} \mid 2\right\rangle\end{array}\right) \cdot\left(\begin{array}{cc}\left\langle 1 \mid \varepsilon_{1}\right\rangle & \left\langle 1 \mid \varepsilon_{2}\right\rangle \\ \left\langle 2 \mid \varepsilon_{1}\right\rangle & \left\langle 2 \mid \varepsilon_{2}\right\rangle\end{array}\right)=\left(\begin{array}{ll}\left\langle\varepsilon_{1}\right| 1\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| 1\left|\varepsilon_{2}\right\rangle \\ \left\langle\varepsilon_{2}\right| 1\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| 1\left|\varepsilon_{2}\right\rangle\end{array}\right)$
$\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2}\end{array}\right) \cdot\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Diagonalizing Transformations (D-Ttran) from projectors


$$
\mathbf{P}_{2}=\frac{(\mathbf{M}-1 \cdot \mathbf{1})}{(5-1)}=\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)=k_{2}\binom{\frac{1}{2}}{\frac{1}{2}} \otimes \frac{\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)}{k_{2}}=\left|\varepsilon_{2}\right\rangle\left\langle\varepsilon_{2}\right|
$$

Load distinct bras $\left\langle\varepsilon_{1}\right|$ and $\left\langle\varepsilon_{2}\right|$ into d-tran rows, kets $\left|\varepsilon_{1}\right\rangle$ and $\left|\varepsilon_{2}\right\rangle$ into inverse d-tran columns.

$$
\begin{aligned}
& \left\{\left\langle\varepsilon_{1}\right|=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right),\left\langle\varepsilon_{2}\right|=\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2}
\end{array}\right)\right\}, \quad\left\{\left|\varepsilon_{1}\right\rangle=\binom{\frac{1}{2}}{-\frac{3}{2}},\left|\varepsilon_{2}\right\rangle=\binom{\frac{1}{2}}{\frac{1}{2}}\right\} \\
& \left(\varepsilon_{1}, \varepsilon_{2}\right) \leftarrow(1,2) d \text {-Tran matrix } \\
& (1,2) \leftarrow\left(\varepsilon_{1}, \varepsilon_{2}\right) \text { INVERSE } d \text {-Tran matrix } \\
& \left(\begin{array}{cc}
\left\langle\varepsilon_{1} \mid x\right\rangle & \left\langle\varepsilon_{1} \mid y\right\rangle \\
\left\langle\varepsilon_{2} \mid x\right\rangle & \left\langle\varepsilon_{2} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right),\left(\begin{array}{rr}
\left\langle x \mid \varepsilon_{1}\right\rangle & \left\langle x \mid \varepsilon_{2}\right\rangle \\
\left\langle y \mid \varepsilon_{1}\right\rangle & \left\langle y \mid \varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right) \\
& \text { Use Dirac labeling for all components so transformation is OK }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left\langle\varepsilon_{1} \mid x\right\rangle & \left\langle\varepsilon_{1} \mid y\right\rangle \\
\left\langle\varepsilon_{2} \mid x\right\rangle & \left\langle\varepsilon_{2} \mid y\right\rangle
\end{array}\right) \cdot\left(\begin{array}{cc}
\langle x| \mathbf{K}|x\rangle & \langle x| \mathbf{K}|y\rangle \\
\langle y| \mathbf{K}|x\rangle & \langle y| \mathbf{K}|y\rangle
\end{array}\right) \cdot\left(\begin{array}{ll}
\left\langle x \mid \varepsilon_{1}\right\rangle & \left\langle x \mid \varepsilon_{2}\right\rangle \\
\left\langle y \mid \varepsilon_{1}\right\rangle & \left\langle y \mid \varepsilon_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\left\langle\varepsilon_{1}\right| \mathbf{K}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{1}\right| \mathbf{K}\left|\varepsilon_{2}\right\rangle \\
\left\langle\varepsilon_{2}\right| \mathbf{K}\left|\varepsilon_{1}\right\rangle & \left\langle\varepsilon_{2}\right| \mathbf{K}\left|\varepsilon_{2}\right\rangle
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right) \cdot\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)
\end{aligned}
$$

Check inverse-d-tran is really inverse of your d-tran. In standard quantum matrices inverses are "easy"

Unitary operators and matrices that change state vectors
... and eigenstates ("ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors
Circle-to-ellipse mapping
Ellipse-to-ellipse mapping (Normal space vs. tangent space)
Eigensolutions as stationary extreme-values (Lagrange $\lambda$-multipliers)
Matrix-algebraic eigensolutions with example $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
Secular equation
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues $\Rightarrow$ eigenvectors) Factoring bra-kets
Operator orthonormality and Completeness
Spectral Decompositions
Functional spectral decomposition
Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula
Proof that completeness relation is "Truer-than-true"
Diagonalizing Transformations (D-Ttran) from projectors
$\rightarrow$ Eigensolutions for active analyzers
Spectral Decompositions with degeneracy
Functional spectral decomposition

## Matrix products and eigensolutions for active analyzers

Consider a $45^{\circ}$ tilted $\left(\theta 1=\beta 1 / 2=\pi / 4\right.$ or $\left.\beta 1=90^{\circ}\right)$ analyzer followed by a untilted $\left(\beta_{2}=0\right)$ analyzer.
Active analyzers have both paths open and a phase shift $e^{-i \Omega}$ between each path.
Here the first analyzer has $\Omega_{1}=90^{\circ}$. The second has $\Omega_{2}=180^{\circ}$.


The transfer matrix for each analyzer is a sum of projection operators for each open path multiplied by the phase factor that is active at that path. Apply phase factor $e^{-i \Omega 1}=e^{-i \pi / 2}$ to top path in the first analyzer and the factor $e^{-i} \Omega 2=e^{-i \pi}$ to the top path in the second analyzer.
$T(2)=e^{-i \pi}|x\rangle\langle x|+|y\rangle\langle y|=\left(\begin{array}{cc}e^{-i \pi} & 0 \\ 0 & 1\end{array}\right) \quad T(1)=e^{-i \pi / 2}\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right|+\left|y^{\prime}\right\rangle\left\langle y^{\prime}\right|=e^{-i \pi / 2}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)+\left(\begin{array}{cc}\frac{1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{1}{2}\end{array}\right)=\left(\begin{array}{cc}\frac{1-i}{2} & \frac{-1-i}{2} \\ \frac{-1-i}{2} & \frac{1-i}{2}\end{array}\right)$
The matrix product $T($ total $)=T(2) T(1)$ relates input states $|\Psi I N\rangle$ to output states: $|\Psi O U T\rangle=T($ total $)|\Psi I N\rangle$

$$
T(\text { total })=T(2) T(1)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1-i}{2} & \frac{-1-i}{2} \\
\frac{-1-i}{2} & \frac{1-i}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{-1+i}{2} & \frac{1+i}{2} \\
\frac{-1-i}{2} & \frac{1-i}{2}
\end{array}\right)=e^{-i \pi / 4}\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \sim\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

We drop the overall phase $e^{-i \pi / 4}$ since it is unobservable. $T$ (total) yields two eigenvalues and projectors.

$$
\begin{gathered}
\lambda^{2}-0 \lambda-1=0, \text { or: } \lambda=+1,-1 \\
, \text { gives projectors }
\end{gathered} P_{+1}=\frac{\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}}+1 & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}}+1
\end{array}\right)}{1-(-1)}=\frac{\left(\begin{array}{cc}
-1+\sqrt{2} & i \\
-i & 1+\sqrt{2}
\end{array}\right)}{2 \sqrt{2}}, P_{-1}=\frac{\left(\begin{array}{cc}
1+\sqrt{2} & -i \\
i & -1+\sqrt{2}
\end{array}\right)}{2 \sqrt{2}}
$$



