
Group Theory in Quantum Mechanics
Lecture 3 (1.20.15) 

Analyzers, operators, and group axioms 
(Quantum Theory for Computer Age - Ch. 1-2 of Unit 1 )

(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 )
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(1)  The probability axiom
The first axiom deals with physical interpretation of amplitudes          .	

Axiom 1: The absolute square                                          gives probability for 
occurrence in state-j of a system that started in state-k'=1',2',..,or n' from one sorter 
and then was forced to choose between states j=1,2,...,n by another sorter.

(3)  The orthonormality or identity axiom
     The third axiom concerns the amplitude for "re measurement" by the same analyzer.	

      Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one,
         and for all others it is zero: 	
	


(2)  The conjugation or inversion axiom (time reversal symmetry)
	
 The second axiom concerns going backwards through a sorter or the reversal of amplitudes.	

	
 Axiom 2: The complex conjugate           of an amplitude          equals its reverse:   

  
j k ' *

Feynman amplitude axioms 1-4
Feynman-Dirac 
Interpretation of

〈j⏐k′ 〉
=Amplitude of state-j after
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j k '
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(4)  The completeness or closure axiom
The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is, 
a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above.
Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:
    	
 	
 	
 	
 	


  
j" m ' =

k=1

n
∑ j" k k m '
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x'-polarized light

y'-polarized light x'

y

x
y'Θout -polarized light

(a)“Do-Nothing”Analyzer

(b)Simulation setting of
input

polarization
2Θin =βin=200°

tilt of analyzer

analyzer activity angle Ω
(Ω=0 means do-nothing)

Ω

input
polarization

Θin =βin/2=100°

Θanalyzer=-30°

Θout =Θin

in

No change if analyzer
does nothing

analyzerβ

analyzerΘ = -30°

=2Θ

Θin=100°

4Tuesday, January 20, 2015



x'-polarized light

y'-polarized light x'

y

x
y'Θout -polarized light

(a)“Do-Nothing”Analyzer

(b)Simulation setting of
input

polarization
2Θin =βin=200°

tilt of analyzer

analyzer activity angle Ω
(Ω=0 means do-nothing)

Ω

input
polarization

Θin =βin/2=100°

Θanalyzer=-30°

Θout =Θin

in

No change if analyzer
does nothing

analyzerβ
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Imagine final xy-sorter analyzes output beam into x and y-components.

x-Output is: 〈x|Θout〉= 〈x|x'〉〈x'|Θin〉+〈x|y'〉〈y'|Θin〉=cosΘcos(Θin-Θ) - sinΘsin(Θin-Θ)=cos Θin  
y-Output is: 〈y|Θout〉= 〈y|x'〉〈x'|Θin〉+〈y|y'〉〈y'|Θin〉=sinΘcos(Θin-Θ) - cosΘsin(Θin-Θ)=sin Θin.  
  (Recall       cos(a+b)=cosa cosb-sina sinb     and         sin(a+b)=sina cosb+cosa sinb ) 

Amplitude in x or y-channel is
 sum over x' and y'-amplitudes 
〈x'|Θin〉=cos(Θin−Θ) 
〈y'|Θin〉=sin(Θin−Θ) 
with relative angle Θin−Θ 
of Θin to Θ-analyzer axes-(x',y')
in products with final xy-sorter: 
lab x-axis:  〈x|x'〉 = cosΘ = 〈y|y'〉 
      y-axis:  〈y|x'〉 = sinΘ = -〈x|y'〉. 

Conclusion:
         〈x|Θout〉 = cos Θout = cos Θin or: Θout= Θin so “Do-Nothing” Analyzer in fact does nothing.
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                   Axiom 4:    〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n
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Abstraction of Axiom 4 to define projection and unitary operators
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x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟

Recall bra-ket 
Transformation Matrix 

Tm,n′=〈m⏐ n′〉
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!x#
$y!x"#

$x!x"# !x"#

!

...and so Pm projectors 
must add up to identity operator... 
                       1    =   Px       +   Py

  

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟

Recall bra-ket 
Transformation Matrix 

Tm,n′=〈m⏐ n′〉
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                   Axiom 4:    〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform:                                     Right abstraction gives ket-transform:

                 〈j′′⏐=∑〈j′′⏐k〉〈k⏐                                                                      ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

                                          Center abstraction gives ket-bra identity operator:

                                                     1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

                                                P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or  P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

Projections of unit vector ⏐x′〉 onto
unit kets ⏐x〉 and ⏐y〉  

Py!"#=!y#$y!"# Px!"#=!x#$x!"#

!y#

!x#$y!"#

$x!"#

!"#
Projections of general state ⏐Ψ〉 ...  

x Py x x Py y

y Py x y Py y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 0

0 1
⎛
⎝⎜

⎞
⎠⎟

...must add up to⏐Ψ〉
Px⏐Ψ〉 + Py⏐Ψ〉 =⏐Ψ〉
(Px + Py)⏐Ψ〉 =⏐Ψ〉 

Py!x"#=!y#$y!x"#
          =!y#sin !

Px!x"#=!x#$x!x"#
          =!x#cos !

!y#

!x#
$y!x"#

$x!x"# !x"#

!

...and so Pm projectors 
must add up to identity operator... 
                       1    =   Px       +   Py

and identity matrix... 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟
+ 0 0

0 1
⎛
⎝⎜

⎞
⎠⎟

  

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟

Recall bra-ket 
Transformation Matrix 

Tm,n′=〈m⏐ n′〉
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                   Axiom 4:    〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform:                                     Right abstraction gives ket-transform:

                 〈j′′⏐=∑〈j′′⏐k〉〈k⏐                                                                      ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

                                          Center abstraction gives ket-bra identity operator:

                                                     1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

                                                P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or  P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

Projections of unit vector ⏐x′〉 onto
unit kets ⏐x〉 and ⏐y〉  

Py!"#=!y#$y!"# Px!"#=!x#$x!"#

!y#

!x#$y!"#

$x!"#

!"#
Projections of general state ⏐Ψ〉 ...  

x Py x x Py y

y Py x y Py y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 0

0 1
⎛
⎝⎜

⎞
⎠⎟

...must add up to⏐Ψ〉
Px⏐Ψ〉 + Py⏐Ψ〉 =⏐Ψ〉
(Px + Py)⏐Ψ〉 =⏐Ψ〉 

Py!x"#=!y#$y!x"#
          =!y#sin !

Px!x"#=!x#$x!x"#
          =!x#cos !

!y#

!x#
$y!x"#

$x!x"# !x"#

!

...and so Pm projectors 
must add up to identity operator... 
                       1    =   Px       +   Py

and identity matrix... 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟
+ 0 0

0 1
⎛
⎝⎜

⎞
⎠⎟

..as required by Axiom 4:

  

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟

Recall bra-ket 
Transformation Matrix 

Tm,n′=〈m⏐ n′〉
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators 
      Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)      
      Diagonal unitary operators
      Non-diagonal unitary operators and †-conjugation relations
      Non-diagonal projection operators and Kronecker ⊗-products
      Axiom-4 similarity transformation

Matrix representation of beam analyzers      
      Non-unitary “killer” devices: Sorter-counter, filter
      Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes 
      Peeking polarizers and coherence loss
            Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms 
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|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT
Unitary operators and matrices that do something (or “nothing”)

Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .
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|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT
Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1...
                                                   1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐  =  Px   + Py 

k=1

2

Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .
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|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT
Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1...
                                                   1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐  =  Px   + Py 
and matrix representation: 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

= 1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

+ 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

k=1

2

Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .
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|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1...
                                                   1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐  =  Px   + Py 
and matrix representation: 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

= 1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

+ 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T...
                                               T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px  + e-iΩyt Py 
and its matrix representation: e− iΩxt 0

0 e− iΩxt

⎛

⎝
⎜

⎞

⎠
⎟ =

e− iΩxt 0
0 0

⎛

⎝⎜
⎞

⎠⎟
+ 0 0

0 e− iΩxt

⎛

⎝⎜
⎞

⎠⎟

24Tuesday, January 20, 2015



|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1...
                                                   1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐  =  Px   + Py 
and matrix representation: 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

= 1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

+ 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T...
                                               T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px  + e-iΩyt Py 
and its matrix representation: e− iΩxt 0

0 e− iΩxt

⎛

⎝
⎜

⎞

⎠
⎟ =

e− iΩxt 0
0 0

⎛

⎝⎜
⎞

⎠⎟
+ 0 0

0 e− iΩxt

⎛

⎝⎜
⎞

⎠⎟

*Unitary here means
inverse-T-1= T†= TT*=transpose-conjugate-T

(Time-Reversal-Symmetry) 
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|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1...
                                                   1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐  =  Px   + Py 
and matrix representation: 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

= 1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

+ 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T...
                                               T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px  + e-iΩyt Py 
and its matrix representation:

Most “do-something” operators T′ are not diagonal, that is, not just ⏐x〉〈x⏐ and ⏐y〉〈y⏐ combinations.
                                               T′=∑⏐k′〉e-iΩk′t〈k′⏐= ⏐x′〉e-iΩx′t〈x′⏐ + ⏐y′〉e-iΩy′t〈y′⏐ = e-iΩx′t Px′  + e-iΩy′t Py′ 

e− iΩxt 0
0 e− iΩxt

⎛

⎝
⎜

⎞

⎠
⎟ =

e− iΩxt 0
0 0

⎛

⎝⎜
⎞

⎠⎟
+ 0 0

0 e− iΩxt

⎛

⎝⎜
⎞

⎠⎟

*Unitary here means
inverse-T-1= T†= TT*=transpose-conjugate-T

(Time-Reversal-Symmetry) 
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(Matrix representation of T′ is a little more complicated. See following pages.)

|Ψ〉
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|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1...
                                                   1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐  =  Px   + Py 
and matrix representation: 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

= 1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

+ 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T...
                                               T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px  + e-iΩyt Py 
and its matrix representation:

Most “do-something” operators T′ are not diagonal, that is, not just ⏐x〉〈x⏐ and ⏐y〉〈y⏐ combinations.
                                               T′=∑⏐k′〉e-iΩk′t〈k′⏐= ⏐x′〉e-iΩx′t〈x′⏐ + ⏐y′〉e-iΩy′t〈y′⏐ = e-iΩx′t Px′  + e-iΩy′t Py′ 

e− iΩxt 0
0 e− iΩxt

⎛

⎝
⎜

⎞

⎠
⎟ =

e− iΩxt 0
0 0

⎛

⎝⎜
⎞

⎠⎟
+ 0 0

0 e− iΩxt

⎛

⎝⎜
⎞

⎠⎟

*Unitary here means
inverse-T-1= T†= TT*=transpose-conjugate-T

(Time-Reversal-Symmetry) 
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators 
      Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)      
      Diagonal unitary operators
      Non-diagonal unitary operators and †-conjugation relations
      Non-diagonal projection operators and Kronecker ⊗-products
      Axiom-4 similarity transformation

Matrix representation of beam analyzers      
      Non-unitary “killer” devices: Sorter-counter, filter
      Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes 
      Peeking polarizers and coherence loss
            Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms 
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

Ket definition: ⏐x′〉=U⏐x〉   implies:    U†⏐x′〉=⏐x〉    implies:   〈x⏐=〈x′⏐U   implies:   〈x⏐U† =〈x′⏐ 
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

Ket definition: ⏐x′〉=U⏐x〉   implies:    U†⏐x′〉=⏐x〉    implies:   〈x⏐=〈x′⏐U   implies:   〈x⏐U† =〈x′⏐ 
Ket definition: ⏐y′〉=U⏐y〉   implies:    U†⏐y′〉=⏐y〉    implies:   〈y⏐=〈y′⏐U   implies:   〈y⏐U† =〈y′⏐
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

Ket definition: ⏐x′〉=U⏐x〉   implies:    U†⏐x′〉=⏐x〉    implies:   〈x⏐=〈x′⏐U   implies:   〈x⏐U† =〈x′⏐ 
Ket definition: ⏐y′〉=U⏐y〉   implies:    U†⏐y′〉=⏐y〉    implies:   〈y⏐=〈y′⏐U   implies:   〈y⏐U† =〈y′⏐

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

...implies matrix representation of operator U 
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

Ket definition: ⏐x′〉=U⏐x〉   implies:    U†⏐x′〉=⏐x〉    implies:   〈x⏐=〈x′⏐U   implies:   〈x⏐U† =〈x′⏐ 
Ket definition: ⏐y′〉=U⏐y〉   implies:    U†⏐y′〉=⏐y〉    implies:   〈y⏐=〈y′⏐U   implies:   〈y⏐U† =〈y′⏐

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

Ket definition: ⏐x′〉=U⏐x〉   implies:    U†⏐x′〉=⏐x〉    implies:   〈x⏐=〈x′⏐U   implies:   〈x⏐U† =〈x′⏐ 
Ket definition: ⏐y′〉=U⏐y〉   implies:    U†⏐y′〉=⏐y〉    implies:   〈y⏐=〈y′⏐U   implies:   〈y⏐U† =〈y′⏐

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

   

x U† x x U† y

y U† x y U† y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

′x x ′x y

′y x ′y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=  

cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 =
′x U† ′x ′x U† ′y

′y U† ′x ′y U† ′y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

So also is 
the inverse
       U†
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

Ket definition: ⏐x′〉=U⏐x〉   implies:    U†⏐x′〉=⏐x〉    implies:   〈x⏐=〈x′⏐U   implies:   〈x⏐U† =〈x′⏐ 
Ket definition: ⏐y′〉=U⏐y〉   implies:    U†⏐y′〉=⏐y〉    implies:   〈y⏐=〈y′⏐U   implies:   〈y⏐U† =〈y′⏐

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

   

x U† x x U† y

y U† x y U† y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

′x x ′x y

′y x ′y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=  

cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 =
′x U† ′x ′x U† ′y

′y U† ′x ′y U† ′y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  

=
x ′x * y ′x *

x ′y * y ′y *

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Axiom-3 consistent with 
inverse U =tranpose-conjugate U† = UT*

So also is 
the inverse
       U†
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Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* 
They are “designed” to conserve probability and overlap  
so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉
and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap    〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉
where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

Ket definition: ⏐x′〉=U⏐x〉   implies:    U†⏐x′〉=⏐x〉    implies:   〈x⏐=〈x′⏐U   implies:   〈x⏐U† =〈x′⏐ 
Ket definition: ⏐y′〉=U⏐y〉   implies:    U†⏐y′〉=⏐y〉    implies:   〈y⏐=〈y′⏐U   implies:   〈y⏐U† =〈y′⏐

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

   

x U† x x U† y

y U† x y U† y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

′x x ′x y

′y x ′y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=  

cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 =
′x U† ′x ′x U† ′y

′y U† ′x ′y U† ′y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  

=  
cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

x ′x * y ′x *

x ′y * y ′y *

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Axiom-3 consistent with 
inverse U =tranpose-conjugate U† = UT*

So also is 
the inverse
       U†

 
 

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators 
      Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)      
      Diagonal unitary operators
      Non-diagonal unitary operators and †-conjugation relations
      Non-diagonal projection operators and Kronecker ⊗-products
      Axiom-4 similarity transformation

Matrix representation of beam analyzers      
      Non-unitary “killer” devices: Sorter-counter, filter
      Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes 
      Peeking polarizers and coherence loss
            Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms 
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′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.
   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

         
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

=
′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`
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′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.
   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

         
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

=
′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

   Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.
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′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 =
′x x

′y x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ x ′x x ′y( )

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

         
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

=
′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

   Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.
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′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

   Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 =
′x x

′y x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ x ′x x ′y( )

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

         
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

=
′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`
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′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

   Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 =
′x x

′y x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ x ′x x ′y( )

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

         
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

=
′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`
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′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 =
′x x

′y x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ x ′x x ′y( )

   

Px = x x →
cosφ
−sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⊗ cosφ −sinφ( )    

=
cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛

⎝⎜
⎞

⎠⎟ for φ=0( )

The x'y'-representation of Px:

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

         
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

=
′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

   Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.
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′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 =
′x x

′y x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ x ′x x ′y( )

   

Px = x x →
cosφ
−sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⊗ cosφ −sinφ( )    

=
cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛

⎝⎜
⎞

⎠⎟ for φ=0( )

The x'y'-representation of Px:

   

x U x x U y

y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

         
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

 Py = y y →
sinφ
cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⊗ sinφ cosφ( )

==
sin2φ sinφ cosφ

sinφ cosφ cos2φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 0

0 1
⎛

⎝⎜
⎞

⎠⎟ for φ=0( )

The x'y'-representation of Py:

  

=
′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UU
|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉
|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφ
cosφ

|x〉

|y〉|x 〉
|y 〉

`
`
`

`

   Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators 
      Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)      
      Diagonal unitary operators
      Non-diagonal unitary operators and †-conjugation relations
      Non-diagonal projection operators and Kronecker ⊗-products
      Axiom-4 similarity transformation

Matrix representation of beam analyzers      
      Non-unitary “killer” devices: Sorter-counter, filter
      Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes 
      Peeking polarizers and coherence loss
            Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms 
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Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑⏐k〉〈k⏐ )

   
j" m ' = j" 1 m ' =

k=1

n
∑ j" k k m '

   

1" 1 ' 1" 2 '  1" n '

2" 1' 2" 2 '  2" n '

   
n" 1' n" 2 '  n" n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1" 1 1" 2  1" n

2" 1 2" 2  2" n

   
n" 1 n" 2  n" n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

•

1 1 ' 1 2 '  1 n '

2 1' 2 2 '  2 n '

   
n 1' n 2 '  n n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟
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Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑⏐k〉〈k⏐ )

   
j" m ' = j" 1 m ' =

k=1

n
∑ j" k k m '

   

1" 1 ' 1" 2 '  1" n '

2" 1' 2" 2 '  2" n '

   
n" 1' n" 2 '  n" n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1" 1 1" 2  1" n

2" 1 2" 2  2" n

   
n" 1 n" 2  n" n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

•

1 1 ' 1 2 '  1 n '

2 1' 2 2 '  2 n '

   
n 1' n 2 '  n n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

  

Tj " m '

prime
to

double − prime

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

k=1

n
∑ Tj " k

unprimed
to

double − prime

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Tk m '

prime
to

unprimed

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   T(b"← b ') = T(b"← b ) •T(b← b ')
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Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑⏐k〉〈k⏐ )

   
j" m ' = j" 1 m ' =

k=1

n
∑ j" k k m '

   

1" 1 ' 1" 2 '  1" n '

2" 1' 2" 2 '  2" n '

   
n" 1' n" 2 '  n" n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1" 1 1" 2  1" n

2" 1 2" 2  2" n

   
n" 1 n" 2  n" n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

•

1 1 ' 1 2 '  1 n '

2 1' 2 2 '  2 n '

   
n 1' n 2 '  n n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

  

Tj " m '

prime
to

double − prime

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

k=1

n
∑ Tj " k

unprimed
to

double − prime

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Tk m '

prime
to

unprimed

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   T(b"← b ') = T(b"← b ) •T(b← b ')
(1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

(2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Transformation Group axioms
(3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y

                 

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ...

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ′x y y Px x x ′y + ...

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ...

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x ′x y

′y x ′y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y

y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x ′x y

′y x ′y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y

y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                                =
cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x Px x x Px y

y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                =
cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

        1 0
0 0

⎛

⎝⎜
⎞

⎠⎟
                 

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x ′x y

′y x ′y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y

y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                                =
cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x Px x x Px y

y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                =
cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

        1 0
0 0

⎛

⎝⎜
⎞

⎠⎟
                 

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                               =                  
cosφ 0
−sinφ 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cos2φ −cosφ sinφ

−sinφ cosφ sin2φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                                

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Axiom-4 is applied twice to transform operator matrix representation.
Example: Find:                              given:                                 and T-matrix:  

  

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y
y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟

   

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )
                 = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

  

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x x ′x y

′y x ′y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Px x x Px y

y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                                =
cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x Px x x Px y

y Px x y Px y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                =
cosφ sinφ
−sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

        1 0
0 0

⎛

⎝⎜
⎞

⎠⎟
                 

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                               =                  
cosφ 0
−sinφ 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cos2φ −cosφ sinφ

−sinφ cosφ sin2φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                                

   

Px = x x →
cosφ
−sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⊗ cosφ −sinφ( ) = cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0
⎛

⎝⎜
⎞

⎠⎟ for φ=0( )
This checks with the 
previous result 4-pages back:

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐=   ⏐x〉〈x⏐  +  ⏐y〉〈y⏐;
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators 
      Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)      
      Diagonal unitary operators
      Non-diagonal unitary operators and †-conjugation relations
      Non-diagonal projection operators and Kronecker ⊗-products
      Axiom-4 similarity transformation

Matrix representation of beam analyzers      
      Non-unitary “killer” devices: Sorter-counter, filter
      Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes 
      Peeking polarizers and coherence loss
            Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms 
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(1) Optical analyzer in sorter-counter configuration

Initial polarization angle
θ=β/2 = 30°

θ

x-counts~| 〈x|x'〉|2
= cos2 θ =

y-counts~| 〈y|x'〉|2
= sin2 θ=

xy-analyzer
( βanalyzer =0°)

Analyzer reduced to a simple sorter-counter by blocking 
output of x-high-road and y-low-road with counters 

Fig. 1.3.3 Simulated polarization
 analyzer set up as a sorter-counter

x T x x T y
y T x y T y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      = 0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Analyzer matrix:
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(1) Optical analyzer in sorter-counter configuration

Initial polarization angle
θ=β/2 = 30°

θ

x-counts~| 〈x|x'〉|2
= cos2 θ =

y-counts~| 〈y|x'〉|2
= sin2 θ=

xy-analyzer
( βanalyzer =0°)

Analyzer reduced to a simple sorter-counter by blocking 
output of x-high-road and y-low-road with counters 

Fig. 1.3.3 Simulated polarization
 analyzer set up as a sorter-counter

y-output~| 〈y|x'〉|2
= sin2 θ=

x-counts~| 〈y|x'〉|2=
(Blocked and filtered out)

Initial polarization angle
θ=β/2 = 30°

θxy-analyzer
( βanalyzer =0°)

Analyzer blocks one path which may have photon counter without affecting function.	


(2) Optical analyzer in a filter configuration (Polaroid© sunglasses)

Fig. 1.3.4 Simulated polarization
 analyzer set up to filter out the 
x-polarized photons

x Py x x Py y

y Py x y Py y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

              = 0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

x T x x T y
y T x y T y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      = 0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Analyzer matrix:

Analyzer matrix:
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators 
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Unitary operators and matrices that do something (or “nothing”)      
      Diagonal unitary operators
      Non-diagonal unitary operators and †-conjugation relations
      Non-diagonal projection operators and Kronecker ⊗-products
      Axiom-4 similarity transformation

Matrix representation of beam analyzers      
      Non-unitary “killer” devices: Sorter-counter, filter
      Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate
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      Peeking polarizers and coherence loss
            Classical Bayesian probability vs. Quantum probability
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(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

θ

Initial polarization angle

θ=β/2 = 30°
(a)

Half-wave plate

(Ω=π)
Final polarization angle

θ=β/2 = 150°(or -30°)

(b) Quarter-wave

plate

(Ω=π/2)
Final polarization is

untilted elliptical

θ

Initial polarization angle

θ=β/2 = 30°

Ω

Ω

Analyzer phase lag

(activity angle)

Analyzer phase lag

(activity angle)

xy-analyzer

(β
analyzer

=0°)

xy-analyzer

(β
analyzer

=0°)

x U x x U y
y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

Analyzer matrix:
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(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

θ

Initial polarization angle

θ=β/2 = 30°
(a)

Half-wave plate

(Ω=π)
Final polarization angle

θ=β/2 = 150°(or -30°)

(b) Quarter-wave

plate

(Ω=π/2)
Final polarization is

untilted elliptical

θ

Initial polarization angle

θ=β/2 = 30°

Ω

Ω

Analyzer phase lag

(activity angle)

Analyzer phase lag

(activity angle)

xy-analyzer

(β
analyzer

=0°)

xy-analyzer

(β
analyzer

=0°)

Fig. 1.3.5 Polarization control set to shift phase by (a) Half-wave (Ω = π)  , (b) Quarter wave (Ω= π/2)

x U x x U y
y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

x U x x U y
y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 −i
⎛
⎝⎜

⎞
⎠⎟

x U x x U y
y U x y U y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= e− iΩxt 0

0 e− iΩxt

⎛

⎝
⎜

⎞

⎠
⎟

Analyzer matrix:

Analyzer matrix:

Analyzer matrix:
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Similar to "do-nothing" analyzer but has extra phase factor e-iΩx′ = 0.94-i 0.34 on the x'-path (top).
x-output: 
    
y-output: 

(b)Simulation

x'-polarized light

y'-polarized light

β/2=Θ= -30°

Θin =βin/2=100°
plane-polarized light

x'

y

x

y'

Elliptically

polarized light ω=20°phase shift

(a)Analyzer Experiment

Phase shift→ Ω

Output polarization

changed by analyzer

phase shift

setting of

input

polarization

2Θin =βin=200°
Θ
in
=100°

Θ=-30°

=2Θ
analyzer
β

  
x Ψout = x ′x e−iΩ ′x ′x Ψin + x ′y ′y Ψin = e−iΩ ′x cosΘcos Θin −Θ( )− sinΘsin Θin −Θ( )

  
y Ψout = y ′x e−iΩ ′x ′x Ψin + x ′y ′y Ψin = e−iΩ ′x sinΘcos Θin −Θ( ) + cosΘsin Θin −Θ( )

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  = e− iΩ ′x t 0
0 e− iΩ ′x t

⎛

⎝
⎜

⎞

⎠
⎟

Analyzer matrix:
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ReΨy

ReΨx

ReΨy

ReΨx
-√3/2

1/2

-30°

1/2
√3/2

θ=

ω t = 0ω t = 0

ω t = πω t = π

0 1
2

3

4

5

6

78-7
-6

-5

-4

-3

-2
-1

0
1

2

3 4 5

6

7
8

-7
-6

-5

-4-3

-2
-1

(2,4)
(3,5)
(4,6)

(5,7)

(6,8)

(7,-7)

x-position

x-velocity vx/ω(c) 2-D Oscillator

Phasor Plot

(8,-6)
(9,-5)

y-velocity

v
y
/ω

(x-Phase

45° behind the

y-Phase)

y-position

φ counter-clockwise

if y is behind x

clockwise

orbit

if x is behind y

(1,3) Left-

handed

Right-

handed

(0,2)

Fig. 1.3.6 Polarization states for (a) Half-wave (Ω = π)  , (b) Quarter wave (Ω= π/2) (c) (Ω=−π/4)
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers
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A "peeking" eye

If eye sees an x-photon
then the output particle
is 100% x-polarized.
(75% probability for that.)

If eye sees no x-photon
then the output particle
is 100% y-polarized
(25% probability.)

θ

θ=β/2 = 30°

θ

θ=β/2 = 30°

(Looks for x-photons)

xy-analyzer
(βanalyzer=0°)

xy-analyzer
(βanalyzer=0°)

Initial polarization angle

Initial polarization angle

Fig. 1.3.7 Simulated polarization analyzer set up to "peek" if the photon is x-or y-polarized

How analyzers may “peek” and how that changes outcomes 
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Initial

Without

“Peeking Eye” angle

θ=β/2 = 30°

Initial

polarization

angle

θ=β/2 = 30°

With

“Peeking Eye”

polarization(a)

(b)

xy-analyzer

(β
analyzer

=0°)

xy-analyzer

(β
analyzer

=0°)

β
analyzer

=60°

Θ
analyzer

=30°

β
analyzer

=60°

Θ
analyzer

=30°

Reconstructs

x (30°) beam

Cancels

y (30°) beam
No

y (30°)

appear

Only

x (30°)

appears

=2θ

5 to 8 odds

for x (30°)

to appear

3 to 8 odds

for y (30°)

to appear

30°

30°

(empty path)

Fig. 1.3.8 Output with β/2=30° input to: (a) Coherent xy-"Do nothing" or 
                                                                  (b) Incoherent xy-"Peeking" devices
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Fig. 1.3.9 Beams-amplitudes of  (a) xy-"Do nothing" and (b) xy-"Peeking" analyzer each with  input
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Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π).
                                                                                                                        So eiφ averages to zero!  	
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Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π).
                                                                                                                        So eiφ averages to zero!  	
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Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π).
                                                                                                                        So eiφ averages to zero!  	
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Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π).
                                                                                                                        So eiφ averages to zero!  	
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Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π).
                                                                                                                        So eiφ averages to zero!  	
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators 
      Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)      
      Diagonal unitary operators
      Non-diagonal unitary operators and †-conjugation relations
      Non-diagonal projection operators and Kronecker ⊗-products
      Axiom-4 similarity transformation

Matrix representation of beam analyzers      
      Non-unitary “killer” devices: Sorter-counter, filter
      Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes 
      Peeking polarizers and coherence loss
            Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms 
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⎠
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= x' x eiφ( ) x x' + x' y y x'

2

   = x' x x x'
2
+ x' y y x'

2
+ e−iφ x' x * x x' * x' y y x' + eiφ x' x x x' x' y * y x' *

=1

   =(         classical probability      )  + (            Phase-sensitive or quantum interference terms             )
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Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers
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Quantum probability
at x'-counter
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=1

   =(         classical probability      )  + (            Phase-sensitive or quantum interference terms             )
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at x'-counter
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(1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

(2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

   Axiom 4:    
     〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3:    
〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2:    
〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability   
equals |〈j′′⏐m′〉|2  = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms 

(Probability)                                     (T-reversal Conjugation)                                 (Orthonormality)                         (Completeness)
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(1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

(2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

               Feynman Axiom-4 consistent with group axiom 1 
since analyzer-A  following analyzer-B is analyzer-AB =C
  and analyzer-B  following analyzer-A is analyzer-BA =D

   Axiom 4:    
     〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3:    
〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2:    
〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability   
equals |〈j′′⏐m′〉|2  = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms 

(Probability)                                     (T-reversal Conjugation)                                 (Orthonormality)                         (Completeness)
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(1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

(2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

               Feynman Axiom-4 consistent with group axiom 1 
since analyzer-A  following analyzer-B is analyzer-AB =C
  and analyzer-B  following analyzer-A is analyzer-BA =D

   Axiom 4:    
     〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3:    
〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2:    
〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability   
equals |〈j′′⏐m′〉|2  = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms 

Feynman Axiom-4 consistent with group axiom 2 
since analyzer matrix multiplication is associative

(Probability)                                     (T-reversal Conjugation)                                 (Orthonormality)                         (Completeness)
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(1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

(2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-2 consistent with group axiom 3 
since “Do Nothing” analyzer =identity operator=1

               Feynman Axiom-4 consistent with group axiom 1 
since analyzer-A  following analyzer-B is analyzer-AB =C
  and analyzer-B  following analyzer-A is analyzer-BA =D

   Axiom 4:    
     〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3:    
〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2:    
〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability   
equals |〈j′′⏐m′〉|2  = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms 

Feynman Axiom-4 consistent with group axiom 2 
since analyzer matrix multiplication is associative

(Probability)                                     (T-reversal Conjugation)                                 (Orthonormality)                         (Completeness)
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(1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

(2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-3 consistent with group axiom 4 
since inverse U =tranpose-conjugate U† = UT*

Feynman Axiom-2 consistent with group axiom 3 
since “Do Nothing” analyzer =identity operator=1

               Feynman Axiom-4 consistent with group axiom 1 
since analyzer-A  following analyzer-B is analyzer-AB =C
  and analyzer-B  following analyzer-A is analyzer-BA =D

   Axiom 4:    
     〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3:    
〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2:    
〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability   
equals |〈j′′⏐m′〉|2  = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms 

Feynman Axiom-4 consistent with group axiom 2 
since analyzer matrix multiplication is associative

(Probability)                                     (T-reversal Conjugation)                                 (Orthonormality)                         (Completeness)
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(1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

(2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-3 consistent with group axiom 4 
since inverse U =tranpose-conjugate U† = UT*

Feynman Axiom-2 consistent with group axiom 3 
since “Do Nothing” analyzer =identity operator=1

               Feynman Axiom-4 consistent with group axiom 1 
since analyzer-A  following analyzer-B is analyzer-AB =C
  and analyzer-B  following analyzer-A is analyzer-BA =D

   Axiom 4:    
     〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3:    
〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2:    
〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability   
equals |〈j′′⏐m′〉|2  = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms 

Feynman Axiom-4 consistent with group axiom 2 
since analyzer matrix multiplication is associative

(5) The commutative axiom (Abelian groups only)
	
 All elements a in an Abelian group are mutually commuting: a.b = b.a.

Most analyzer sets (and most groups)
are not Abelian (commutative)

(Probability)                                     (T-reversal Conjugation)                                 (Orthonormality)                         (Completeness)
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