Group Theory in Quantum Mechanics
Lecture 3 12015

Analyzers, operators, and group axioms

(Quantum Theory for Computer Age - Ch. 1-2 of Unit 1 )
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1)

Review: Axioms 1-4 and “Do-Nothing’vs * Do-Something” analyzers
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Non-diagonal projection operators and Kronecker Q@—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices: Sorter-counter, filter
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. . Feynman-Dirac
Feynman amplitude axioms 1-4 Interpretation of

JIK’)

(1) The probability axiom

. . : . - - | =Amplitude of state-j after

The first axiom deals with physical 1n§erpretat1:)n of amplitudes < ]‘ > state-k’ is forced o hoose

Axiom 1: The absolute square ‘< j k'>‘ _ < j‘ kv> < j‘ kv> gives probability for | fiom available m-type states
N Y,

occurrence in state-j of a system that started in state-k'=1",2",..,or n' from one sorter

and then was forced to choose between states j=1,2,...,n by another sorter.

(2) The conjugation or inversion axiom (time reversal symmetry)
The second axiom concerns going backwards through a sorter or the reversal of amplitudes.

k'>*0f an amplitude< j‘ k'> equals its reverse: < j‘ k'>* = <k" j>

Axiom 2: The complex conjugate < Jj

(3) The orthonormality or identity axiom
The third axiom concerns the amplitude for "re measurement" by the same analyzer.
Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one,

and for all others it is zero: L
(HR)=8,=1 (70 h=(f) S
O1if:j#k o T T

(4) The completeness or closure axiom

The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is,
a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above.
Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

(7m)= 2 (5715 )k
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(a) “Do-Nothing "Analyzer Y1 O unatyzer=-30°

| input

O -polarized light | : larizati
ot potarized lig 1o /a’”lZea’ll'gh;: ¥ polarization O
“"“""“-‘-ht.q_ | O. . /2=100

~
~
~

~

out R | N
No change if analyzer | ‘\‘1'1‘-‘,“ R

el A
does nothing "1‘5'1‘-‘;"-‘,‘,‘,’

tilt of analyzer setting of
=0 [ ||B=f60°=30 input
o T B gnglyler] Ll Ll I p

—|.30° polarization

analyzqr
®in :BinZZOOO
analyzer activity angle £ Q- 0°

(b)Simulation

2
A

f=200°

—1 I

(Q2=0 means do-nothing)
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Imagine final xy-sorter analyzes output beam into x and y-components.

(a) “Do-Nothing " Analyzer Yt Ounatyzer=-30°

| input
o . , I , . .
i : - © ot -polarized light X" pol arl'Zedlz’gh;i y : polarization
™ ] k | X 10, >G,,/2=100°
v I} \«\A‘\\ ~° | n
\\\V\"’ "‘ //// :
:@ | ' Au ) : ////
No change if ;Zalyzer ¥ ”,”‘é ‘v “i;‘:\:‘:\:‘:, 41-.:_‘_
- a . Pty

does nothing Y Polari- ed /lgh 5! ST
Amplitude in x or y-channel 1s (b)Simulation = fl'/_f of al/:}a_lyZér setling of
sum over x' and y-amplitudes il | ol Eq_fyfr_yk;g] 219 lml_j “tt

—|_20n° polarization
(x1Oin)=cos(Oin—0) QnalyZﬁOZ(f)? =[;,=200°
(5 1Oiny=sin(n-0) = Vg
with relative angle ©;;—0 ; Nﬂ%%
of Ojn to O-analyzer axes-(x',)") | jZZI/Z{
in products with final xy-sorter: f : ﬁ: EDDi
lab x-axis: {(x]xy=cos© = {y|p) analyzer activity angle €2 >0 00 i F
y-axis: (ylx)=sin®© = -(x]y). (Q2=0 means do-nothing) o

x-Output is: {x|Oout)= {x|x XxOin)+{x|y Y} |Oin)y=cosOcos(Oin-0) - sinOsin(Ojn-0)=cos Oin
y-Output is: (y|Oout)= YxYx10im)+y W Oin)=sin®Ocos(@in-0) - cosOsin(O;n-0)=sin Oin.
(Recall  cos(a+b)=cosa cosb-sina sinb  and sin(a+b)=sina cosb+cosa sinb )

Conclusion:
(X|®out)= cos Oout = cos Ojn or: Oout=in so “Do-Nothing” Analyzer in fact does nothing.
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j"|m"y=>_(j"|k) (k|m’) may be “abstracted"” three different ways
k=1
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Abstraction of Axiom 4 to define projection and unitary operators
Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform:

o-"\iz]v"w (K

Recall bra-ket
Transformation Matrix

Tm,n’:<m| I’l/>
(=) (o) :[ cosd  —sind J
<y|x'> <J’|y'> sin@  cos6
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:

1=3|) (k| = |k) (K| =S &) (K =...
k=1 k=1 k=1

Recall bra-ket
Transformation Matrix
Tonw={m| n'y

)
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
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Pi=[1){1], P2=|2)(2|,.. or Pv=[I"){I"], Por=[2))(2'| etC. pocoit pro-ter

Transformation Matrix
Tonw={m| n'y

)
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=0_|k) (k| =22 &) (K| =2 [ K7) (K | =...
k=1 k=1 k=1
Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

Pi= ‘]><1’7 P2= ‘2><2‘7 or Pr= ’]/><]/’7 Py= ’2/><2/’ etc. Recall bra-ket

Transformation Matrix

Tm,n/:<7’n‘ l/l/>
(x[x) (x]5) :[ cosd  —sing
<y|x> <y|y'> sin@  cos6

0 )
0

x) (B ) (
%) OIR L)

1
0
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=0_|k) (k| =22 &) (K| =2 [ K7) (K | =...
k=1 k=1 k=1
Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

Pi= ‘]><1’7 P2= ‘2><2‘7 or Pr= ’1/><1/’7 Py= ’2/><2/’ etc. Recall bra-ket

---------------------------------------------------------------------------------

. ; , T tion Matri
Projections:of unit vector |x/) onto : mns;()rtc?;)‘nn/> o
unit kets |x):and |y) : g |

<x’x'> <x|y'> :[ cos® —sinf
|«

sin@ cos@

x) (B ) (
%) OIR L)

(L) () ( 0 0 j'_y |
QIR [x) ([P ]) 0 1

Projections of general state |\V) ...

PIT)=1) (19)_
W)

1 0 )
0 0
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=0_|k) (k| =22 &) (K| =2 [ K7) (K | =...
k=1 k=1 k=1
Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

Pi= ‘]><1’7 P2= ‘2><2‘7 or Pr= ’]/><]/’7 Py= ’2/><2/’ etc. Recall bra-ket

Transformation Matrix

: . ’ Lny=(m| 1)
unit kets |x):and b/> ’ (x|x) (x]») =£ c0sO —sind
<y|x> <y|y’> sin@  cos6
(P |x) %) (x[P]) =(1 0
OIP|x) o OBy ) L0000

Projections of general state |\V) ...

..must add up to|\V) o U)=|y) (y|¥
P.|T) + P,|V) =)
(Px + P)’)‘\Ij> :‘\Ij>
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1
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Transformation Matrix

unit kets |x):and \y} [ e Tn:,E/ci;:; n_>Sin9
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(Rl ¢ P19 (RN (10
OIP[x) | Plx) (P[]y) 00

...and so P projectors

must add up to identity operator...
1 =P + P

Projections of general state |\V) ...

..must add up to|\V) o U)=|y) (y|¥
P.|T) + P,|V) =)
(Px + P)’)‘\Ij> :‘\Ij>

Tuesday, January 20, 2015 17



Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=0_|k) (k| =22 &) (K| =2 [ K7) (K | =...
k=1 k=1 k=1
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Transformation Matrix
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<y|x'> <y|y'> | sin® cos6
(P2 | Plx) (x[P]y) =(1 0 )
OIP | x) Plx) (JP[y) 0 0

...and so P projectors
must add up to identity operator...

)=|x) (x| W) P C AN
and identity matrix...( (1) (1) j=( (1) 8 }*( 8 (1) )

Projections of general state |\V) ...

...must add up to|V) Py|\p>:\y><y|\lf>\)
P:|¥) + Py|¥) =)
(Px + P)|V) =)
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=0_|k) (k| =22 &) (K| =2 [ K7) (K | =...
k=1 k=1 k=1
Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

Pi= ‘]><1‘7 P2= ‘2><2‘7 or Pr= ’]/><]/’7 Py= ’2/><2/’ etc. Recall bra-ket

Transformation Matrix

unit kets Miand b’> [ (x|x) (x| Tnj[ Cisg‘ _>Sm9

<y|x'> <y|y'> | sin® cos6
(P2 | Plx) (x[P]y) =(1 0 )
OIP | x) Plx) (JP[y) 0 0

...and so P projectors
must add up to identity operator...

Px\\If> " Py\\If> :‘\m >a1|f1);>’<z);|’ezztzly matrix ( - j=( - }*( X yo )
B 01 0 0 0 1
(Px + P)) W) =) ..as required by Axiom 4.

Projections of general state |\V) ...

...must add up to|V) Py|\p>:\y><y|\lf>\)
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T

First is the “do-nothing” identity ogemtor 1.
1=2 k) (k=) {xl + Doy

and matrix representation. 1 0 1 0 0
o1 ) oo " lo

P, +P,

=)

|
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...

T=X|k)e % (k|= |x)e (x| + [1)eiD(y]| = et P, + i1 P,

and its matrix representation: 0 [ e 0 L0 o
0 ™ 0 0 0 ™
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

*Unitary here means

output state T|V')| analyzer
-

T

inverse-T-/= TT= TT =transpose-conjugate-T
(Time-Reversal-Symmetry)

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...

T=X|k)e % (k|= |x)e (x| + [1)eiD(y]| = et P, + i1 P,

and its matrix representation: 0 [ e 0 L0 o
0 ™ 0 0 0 ™
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Unitary operators and matrices that do something (or “nothing”)

TIV)
V4 T V) Fig. 3.1.1 Effect of
analyzer

represented by ket vector
transformation of |¥)

A

to new ket vector T|V) .

input state V)

*Unitary here means

output state T|V')| analyzer
-

T

inverse-T-/= TT= TT =transpose-conjugate-T
(Time-Reversal-Symmetry)

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...
T:Z| k> e‘iﬁkf(k|: ‘ x> e-ifzxt<x‘ + ’y> e-iQyt<y‘ — oSt P, + e it Py
and its matrix representation. A [ e o N 0 0
0 e—ith 0 0 0 —iQ 1

Most “do-something” operators T' are not diagonal, that is, not just |x){x| and |y){y| combinations.

T =3[k )e Wil |= [x/) et (x| + |\ ey | = et Py + i/ P,
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Unitary operators and matrices that do something (or “nothing”)

TP

IV )4 V) Fig. 3.1.1 Effect of
I \ analyzer
A

represented by ket vector
transformation of |¥)

to new ket vector T|V) .

input state V)

*Unitary here means

output state T|V')| analyzer
-

T

inverse-T-/= TT= TT =transpose-conjugate-T
(Time-Reversal-Symmetry)

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...
T:Z| k> e"'ﬁkf(k|: ‘ x> e_irzxt<x‘ + ’y> e-ifzyt<y‘ — oSt P, + e it Py
and its matrix representation. A [ e o N 0 0
0 e—ith 0 0 0 —iQ 1

Most “do-something” operators T' are not diagonal, that is, not just |x){x| and |y){y| combinations.

T=SR)eiWi(K|= [x)e it (| + )i iy/| = el P + i P
(Matrix representation of T is a little more complicated. See following pages.)
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
» Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Feynman (j|k)-axioms compared 1o Group axioms
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/'|=(¥|UT or (¢/|=(®|U" implying 1=UTU=UUT
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

Iy’_zqu* [y )=Uly)=-sin® Ix) + cos ly) U4 "
\ s | \ X
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

'y’.Zm@_ [y )=Uly)=-sin® Ix) + cos ly) U4 "
\ s 1 \ X

Ket definition: |[x")=Ulx) implies: UT|x")=|x) implies: (x|={('|U implies: (x|U"=(x'|
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)

and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in I |y’>=U|y>=—sin(I) Ix) + cos() |y>
9 X7 V4 U
"\ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: |y/)=Uly) implies: U'|)/)=|y) implies: (y|=(/|U implies: (y|U"=(|

lx
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

| />. | />=U| >=—sin(I) Ix) cos( | >
W ylx’) )’ ) y/I‘J_Iw
O\

sin
cosh | ¢

lx

Ket definition: |[x")=Ulx) implies: UT|x")=|x) implies: (x|={('|U implies: (x|U"=(x'|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...iImplies matrix representation of operator U

[ <x;_vJef_>____<_ec__9_y__>___]_:[___<_ec_fac}f>: (o)) N cosp —sing
Olulx) Ofuly) || Ofx) () ) | sing coso

Tuesday, January 20, 2015 33



Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)

and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/'|=(¥|UT or (¢/|=(®|U" implying 1=UTU=UUT

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(]) Ix) + cos() |y>
9 X7 V4 U
"\~ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...i1mplies matrix representation of operator U in either of the bases 1t connects 1s exactly the same.

[<x;y_es>____<_ac_|_91fv__>___]_;_[ (i} () ][ cosg_—sing [<x'w> (¥]u y'>}

lx

ol G} (O Gy T e e T ol ol
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(®|UT implying 1=UTU=UU"

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(1) |x> + cos() |y>
@ X7 V4 U
W \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...i1mplies matrix representation of operator U in either of the bases 1t connects 1s exactly the same.

lx

(hfe) ) ) Gbd ) ) [.--99?.(?---.—..8.1.1_1_? _______ (]ulx) (149
| (V|Ulx) (U] ») () ) sing~ cosg Qo) (|u)y) )
qoelsols [ vl Gl H (1) (o) H cost sing ” (Ue) (o))
Ut OlUtls) Oty | L 0T O) msing cosp )| (y|UT|x) (v]UT]y)
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(®|UT implying 1=UTU=UU"

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(]) Ix) + cos() |y>
9 X7 V4 U
"\~ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...i1mplies matrix representation of operator U in either of the bases 1t connects 1s exactly the same.

lx

Witk Oty ) Loy O o Lsing - eost LU (U )
i [ VU AU L, e ) [ (01
ut GIUtl) Ofutly) | L ) )i ) L singcoso || (o]} (o))
A Gy | Axiom-3 consistent with
|G )
Y OlyY | inverse U =tranpose-conjugate Ut = UT"
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(®|UT implying 1=UTU=UU"

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(]) Ix) + cos() |y>
9 X7 V4 U
"\~ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|
...iImplies matrix representation of operator U in either of the bases 1t connects is exactly the same.

(0 ) <x;P.ff)-.-ﬂ.%ﬁ!l%?--.]_:[._I_{fc_f%_"}i () ][ cosg_—sing

lx

sing  cos¢@

) )
Soalsois [ {ulls) (xu']y) H (v]x) [ cosp  sing ]( U (T
Ut OIUTl) oty )L )i ) L singeoso 0]y (o))

Axiom-3 consistent with

_ ( Cos¢  sing J: <x‘x> <ny>
~sing  cos¢ (Y () | inverse U =tranpose-conjugate Ut = UT*
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations

»Non—diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Feynman (j|k)-axioms compared 1o Group axioms
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" )=Ulx)= cos® Ix) + sin® ly) (x| U] ) (x]U] ) J_[ (o) (a7} ]

PR — Mw Club )L ) O
cosw§n¢ U\ | [ cos —sing ( cos¢ —sing ]
| Zoct | X =

' singg  cos@ singg  cos@

[ (¥IPl¥) (P ]) ][ (W) () ) ] )

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. { (|ulxy (U] ]

o) o))

IR L) R ) | ) O )
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X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J_[ () (o)) ]

|yf_2in9+ |y’|>TU|y>=—sin(I) |x> + cos() Iy>/|_|y> <y|U‘x> <y\U|y> B <y|x'> <y‘y’>
coswx ) U
Coso |

1 | sino \ Ix [cosd) —sing :( Cos¢ —sin¢J

singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. [ (|ulxy (U] ]

o) o))

N
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X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J:[ () (o)) ]

)] |y’|>fUIy>=-sin¢ bx) + coso W/—m Olulx) Ofuly) | Ol Oly)
coswx> U
Cost |

| < sing \ Ix [cosd) —sin¢ :( CoS¢ —sin¢]

singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

(e le) (R ) IREE
[<y'|1>xx'> (R ][ } (W ]®(

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. [ (|ulxy (U] ]

o) o))

(<']%)

| (lx)
(]x) |

(]x)

Tuesday, January 20, 2015 41



X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J:[ () (o)) ]

)] |y’|>fUIy>=-sin¢ bx) + coso W/—m Olulx) Ofuly) | Ol Oly)
coswx> U
Cost |

| < sing \ Ix [cosd) —sin¢ :( CoS¢ —sin¢]

singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

) ) || ) b)) ®( N
SULAEORNC A ) (]x)

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. [ (|ulxy (U] ]

o) o))

|
(]x) (v
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" )=Ulx)= cos® Ix) + sin® ly) (x| U] ) (x]U] ) J_[ (o) (a7} ]

PR — Mw Club )L ) O
cosw§n¢ U\ | [ cos¢p —sin@ ( cos¢p —sing ]
| Zoct | X =

' singg  cos@ singg  cos@

[ (¥IPl¥) (P ]) ][ (W) () ) ] )

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. [ (|ulxy (U] ]

o) o))

IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

e

al

X))
o)

V' ('] x)
) (]x)

N

() (]
)

) {x AT
) (o ]®( 1) <x‘y>)

P
X

‘P
X
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X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J:[ () (o)) ]

Y, ) |y’|>f>U|y>=-sin(b x) + cos) Iy>/|_|y> (v|ulx) (y|Ul|y) W) 1)
| X
COSMSM U\ |x [ Cos¢ —sing :( cos¢ —sing ]

\
| singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.
EEREIER] :
WIRx) R Y)

The x'y'-representation of Px: P, =|x)(x] ﬁ[

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. { (|ulxy (U] ]

o) o))

SURIEE

Jae) )
(]e)

X))
o)

Yy <x x>
)

) ] ’\
) %)

A0 ]®( () o))

COS(

]@( cCos¢p —sing )

—sing@

B cosqu —sin@cos¢ _( 1 O}
—sin¢coso sin2¢ 00 (for ¢=0)
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X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J:[ () (o)) ]

ly” 1y )=Uly)=-sin0 | cos® |
ot TTRTtY ga, Olul) (e 7 G Gl)
cosvsm U\ I [ cos¢ —sing :( cosp —sing ]

\
| ' singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.
EEREIER] :
WIRx) R Y)

The x'y'-representation of Px: P, =|x)(x] ﬁ[

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. { (|ulxy (U] ]

o) o))

SURIEE

Jae) )
(]e)

X))
o)

Yy <x x>
)

) ] ’\
) %)

A0 ]®( () o))

COS(

]@( cCos¢p —sing )

—sing@

B cosqu —sin@cos¢ _( 1 O}
—sin¢coso sin2¢) 00 (for ¢=0)

The x'y'-representation of Py: P =|3)()] %[ sing ]@)( sing  coso )

4 cos®

_ sin2<p sIn@cos@ :( 0 0}
sinpcosg  cos> ¢ 0 1 (for ¢=0)
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations

Non-diagonal projection operators and Kronecker Q—products

»Axiom# similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Feynman (j|k)-axioms compared 1o Group axioms
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Axiom-4 similarity transformations (Using: 1=X|k){k| )

Axiom-4 1s basically a matrix product as seen by comparing the following.

ERGILY

1"
- (2

(m)y=Cfalm)= £ (i) (k[ m)

(1)) (12) - (17]n) Py (2 -
b ||y @) ) || o) ) -
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Axiom-4 similarity transformations (Using: 1=X|k){k| )

Axiom-4 1s basically a matrix product as seen by comparing the following.

(lmty=(irfalm) = £ (k) k|

) () -
(

(n"|)
prime \

fo

L double — prime )

k=1

- (")
unprimed

fo

L double — prime )

ey Q2 -
ey @2y - @l
(1) (2}
( prime \
Tkm' fo
unprimed)

\

T(b" < b')=T(b" < b)e T(h<b")
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Axiom-4 similarity transformations (Using: 1=X|k){k| )

Axiom-4 1s basically a matrix product as seen by comparing the following.

(lmty=(irfalm) = £ (k) k|

) () -
(

prime

fo

L double — prime )

()
\

o) 2 ()
(

k=1

unprimed

fo

L double — prime )

() Q) = Q)
@) (alz) - Gl

Gl (2 ()
A

g

prime

km' lo
\ unprimed )

T(h" b")=T(b" < b)e T(h<b")

(1) The closure axiom

Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom

Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

(3) The identity axiom

There is a unique element 1 (the identity) such that 1-a = a = a-1
for all elements a in the group ..

4) The inverse axiom

Transformation Group axioms

For all elements a in the group there is an inverse element a-1 such thata-la =1 = a-a-1.
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Axiom-4 1s applied twice to transform operator matrix representation.
Example: Find: Tven: and T-matrix:

(x| P P|)) (xX|P]x) (x[P]y) =[ | oj
OPfx) (Py) 0 0

1) (e
The old “P=1-P-1-trick” where: 1=)_|k){(k|=|x){x| + [»)(y

SUI SESINGU) AF

9

) )
:[ cosp —sing

singg  cos¢

[ (o) ()

|
J
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Axiom-4 1s applied twice to transform operator matrix representation.

Example: Find.: Tven[ and T-matrix:

() (e (xR Jx) (xR ]) {1 oj
(e (e ] IR QIR ]Y) 0 0
The old “P=1-P-1-trick” where: 1=)_|k) (k|=|x){(x| + |[»){}|;
)

(P )= G p ) = () (ol ) O o) ol ) yl)

< <

() )
:[ cos¢p —sing@

singg  cos¢

[ (o) ()

|
J

Tuesday, January 20, 2015

51



Axiom-4 1s applied twice to transform operator matrix representation.
Example: Find: Tven [ and T-matrix:

) ) (dB|x) (xP]y) :[1 oj
<y’|Px‘x’> <y"Px|y'> OPJx) IR |y) 0 0
The old “P=1-P-1-trick” where: 1=)_|k) (k|=|x){(x| + |[»){}|;

(P} = G R o) = (el ) (o] R el y\) = (]l ()

b

1)
cos¢p —sing@
singg  cos¢

)+ )(])

() <x\y> ]
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Axiom-4 1s applied twice to transform operator matrix representation.

Example: Find: iven: and T-matrix:
(P ) (| ]0) (2P fx) (x[P]y) =£ ! 0)
Ry (R ]y) OIRLx) (IRl )7L 0 0
The old “P=1-P-1-trick” where: 1=)_|k){k|= |x)(x| + |v) (V|
+

(1R )= (e ) Y= () e+ AR = () e ()

= (P )+

4

(x]2) <X\y>
(1)

[ cos¢p —sing@

singg  cos¢

5,
J

IS EOR BISIEY)
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Axiom-4 1s applied twice to transform operator matrix representation.
Example: Find: Tven [ and T-matrix:

) ) (dB|x) (xP]y) :[1 oj
OIRLx) GIRLy) ) L0 0
)

R fx) (R y)
(P[5 = (1P A7) = (| (] + ) | A o) o]+ ) y\) ( x|+ (2] )

The old “P=1-P-1-trick” where: 1=)_lk){(k|= |x
= () (P ) el o)+ L) O R {7 -

b

1)
cos¢p —sing@
singg  cos¢

IS EOR BISIEY)

() <x\y> ]
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Axiom-4 1s applied twice to transform operator matrix representation.
Example: Find: Tven [ and T-matrix:

() (Rl | [ GRgY G ) (1 o
OR ) (R ]y) OIPJ2) GIR]y) H 0 0)
The old “P=1-P-1-trick™ where: 1=XJ&) (k= |x)(x| + |y w
()= R} = (o) Gl L R Gl L o)) = (Gl + (K
= () xlB x)(el )+ () O ) (ol )+ () ol ><| > :

b

1)
cos¢p —sing@
singg  cos¢

IS EOR BISIEY)

() <x\y> ]
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Axiom-4 is applied twice to transform operator matrix representation. (x| > <x‘ y >
Example: Find: Tven[ and T-matrix: (] ")

IR J) (xR ]y) (dPlx) (PRI ) (1 o
(e ]y (e |)) IR ]x) - (IR ]Y) ]{ 0 0) [COSfP —Slmb]
The old “P=1-P-1-trick” where: 1=X k) (k= [x)(x| + |y ><y\ necoso
(1) = Grfep ]y = G (o) Gol ) oAb el ) o)) = (G e ol (o o) (o PR ALl o)+ ) 1))
= (o )| e}l 37+ () P )] 37 + () o B ) | > e ><y|Px\ >< )
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Axiom-4 is applied twice to transform operator matrix representation. (x| > <x‘ y >
Example: Find: Tven[ and T-matrix: (] ")

(Rl (R ) 9 6l ) (1o
R L) (R 1) <y|Px|y>] (0 0] [2 ;?:f]
The old “P=1-P-1-trick” where: 1=)_|k) (k|=|x){(x| + |[»){}|;
(PP Loy = O] )= G (o G ) o Rl G+ o) o7 = (e el (o o o el o)+ ) o)
= () (el o) G )+ G [ ) O P (o] 07+ (o e ol B [ ) () ><y|Px\ ><y\ )

More elegant matrix product:

Gy ) ][ ) )
ORIy )L ) )
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Axiom-4 is applied twice to transform operator matrix representation. [ (x| x") <x‘ ) ]

Example: Find: iven: and T-matrix: < y‘
(el (el |Gk e (1o
R L) (e ]) OlRls) Glely) Lo o [¢ ¢]
sing  cos¢

The old “P=1-P-1-trick” where: 1=)_|k){k|= |x)(x| + |v) (V|
([P )= (1P| = (|| ) (o] + ) (o) '(\X><X\+\y><y\)\y’>=(<X'\X><X\+<X’| )2 )+H ) ()
= (| ) (x| P ) (x| )+ () (| ) (] o) (o) P ) () (] ) yIP\y><y\y’>

More elegant matrix product:

<x"Px‘x'> <x"Px|y'> _ x x x y x|P‘ x
VR (R =) () y\P\ ¥¥)

B ( Cos¢  sing < X|P ‘ cosq) —smq)
- L —sing cos¢ ) < . x y‘P ‘ sm(b cos¢
_( cos¢  sing ) cos¢p —sing@
_\ —sing cos@ ) O O sing)  cos¢
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Axiom-4 is applied twice to transform operator matrix representation. [ (x| x") <x‘ ) ]

Example: Find: iven: and T-matrix: < y‘
(el (el |Gk e (1o
R L) (e ]) OlRls) Glely) Lo o [¢ ¢}
sing  cos¢

The old “P=1-P-1-trick” where: 1=)_|k){k|= |x)(x| + |v) (V|
(o) = Gty = (e (o) Gl (o) ol + ) O)l) = (G el G D) (ot )+ ) 17)
= (PP () () (o P (] )+ (e o ) (o] + ><y|Px\ ><\ )

More elegant matrix product:

[<x'rxx'> (v ]} N o) (] ][ (P f2) (P]) ][ () <xy'>]
) (e} )0 () L IR OlRd) ) D) )
_( Cos®  sing \[ <x|Px|x> <X‘Px J/> ][ Cos¢ —sing )

L —sing cos¢ ) <Y‘Px x> <y‘Px y> sing  cos¢

_( Cos®  sing ) 1 0 COs¢® —sing
_\ —sing coso ) sing  cos¢

cos¢p 0 cos¢ —sing | coszq) —Ccos¢sing
—sing 0 sing  cos¢ —singcosy sin2¢
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Axiom-4 1s applied twice to transform operator matrix representation.

Example: Find:
IR ) (]

QR ]r) (0

The old “P=1-P-1-trick” where: 1=)_lk){(k|= |x

(o) = G ep ]y = (e (o) ol ) (o]
Gl B )+ (o P

X
More elegant matrix product:

ven: <y‘
(IPJx) (aIP]y) {1 0]
OIPfx) ([P ]y) 0 0O [COS(]) —sm(p]
sing  cos¢
Yl + )0

(x| <x\y>

4 0,

and T-matrix:

) O)7) = (G el ) O e ) )] o)
)[R )]y ] ><y|Px\ >< )

Al

|
X))

Ry (R | f ) () | Rl L) || ) o)
) Gy | O ) L OIRdx) Gy L O O)
cosp sing || (d[PJx) (xP|y) | cosp —sing

1

This checks with the P =|%){]
previous result 4-pages back:

L —sing cos¢ )

COS(

DR} (R )
s ¢ 1 0 cos¢p —sing@
L —sing coso ) 0 O sing  cos¢

feped

sing  cos¢

cos¢p 0 cos¢ —sing | cos’ 1) —Ccos¢sing
—sing 0 sing  cosg —sin@gcoso sin” 1)
co.sq) ®( cos¢ —sing ): o5’ —singooss :( - ]
—sing —sin@cos @ Sinz(P 00 (for ¢=0)
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Feynman (j|k)-axioms compared 1o Group axioms
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(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking

output of x-high-road and y-low-road with counters

x-counts~‘ (x |x '>‘2

= cos? 0 =0} 75

y-counts~| (ylx '>‘2

=sin? =025

Analyzer matrix.:
Initial polarization angle (x[Tlx) (x| T]y)
1Tl (1T

1t

Fig. 1.3.3 Simulated polarization
— analyzer set up as a sorter-counter
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(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking
output of x-high-road and y-low-road with counters

x-counts~‘ (x Ix '>‘2 _ _ Analyzer matrix.:

Initial polarization angle (x[Tlx) (x| T]y)
1Tl (1T

= cos? 0 =0} 75

B S (o0 o0
o] QRO L Y (o8,
= Sinz e :r:_,li-"rj BEEEAAA r Fig. 1.3.3 Simulated polarization
— analyzer set up as a sorter-counter

Analyzer matrix.:

(2) Optical analyzer in a filter configuration (Polaroid© sunglasses) (P |x) ([P |y)

. . . L OIR LX) OIR]y)
Analyzer blocks one path which may have photon counter without affecting function.

(o0 o0
Initial polarization angle _[ 0 1 )
0=p/2 = 30°

x—countsfv‘ (ylx'}‘2= 075
(Blocked and filtered out) s - Ivrei
_« Xy-analyze

¢¢¢¢¢$¢ ( Banayzer
y-outputfv‘ (ylx')‘ 2 ﬁiii |

=sin2 0= 0,25 oy

Fig. 1.3.4 Simulated polarization
analyzer set up to filter out the

x-polarized photons
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability
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;' ;\
\1 ;i

Initial polarization angle

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates
(a)

Half-wave plate

(2=m)

Final polarization angle

0=[/2 = 150°(or -30°)

. N
vV
// L2

B Analvzer matrix.

Analyzer phase lag

(xulx) () ][1 0 )

(UL} O1UL) 0 -I

(activity angle)
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(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates
P y 2 Y

(a)
Half-wave plate
Q . .§
Final polarization angle

0=[/2 = 150°(or -30°)

\I
\

.\‘

$i¢1¢

Analyzer phase lag [~ _ E[:]':'.
(activity angle) ._.}. NN .|
(b) Quarter-wave Ty
—_—

plate

A WV
N

. @2 @ 6“'#*5&"““ F |
L AR A AL nbt (Banalyzer

xy-analy3

Final polarization is
untilted elliptical \ |(B .
Analyzer phase lag |
(activity angle) |Q . P Ll ‘ l
Analyzer matrix: UL (UL :( ent 0 ]
= ' OlUlx) Oluly) 0 e

Initial polarization angle

_ _ o
0=B/2 = 302
#
- l N
vy
// e

- 2
B_ EID Analyzer matrix:
(U] <x|U|y>]:[1 0

(UL} O1UL) 0 -I

Initial polarization angle

|

0=P/2 = 305
#
/ .
pr /L‘,‘}?}?’

B= 60°
Analyzer matrix:
(x| Ul <x|U|y>H1 0

00l (U] 0 —i

|

N——

Fig. 1.3.5 Polarization control set to shift phase by (a) Half~wave (Q=mn) , (b) Quarter wave (QQ=1/2)
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(a)Analyzer Experiment

Vi
Elliptically I p I i 3/2=0=-30°
polarzzed lzght Zzed liohy | , |
p aSesb | y
// N lalwe-polarz;d light
ﬂ' 'll <, ‘_‘_““ | P
R R h)
- pOde'IZQd /[ o)f “"“1
x!
: : setting o
(b)Simulation o= @mfzy;hﬂﬁ =19, inpgf !
I z )° polarization
' 00
IIIIE\IIlEIL[III'.EIL X%Analmer matrix.
LAY l (WU} (L)
Output polarization ff
changed by analyzer l ﬁ EE]D::' WU} ULy

phase shift

_ e_iQx’t O
O e_iQx’t

Similar to "do-nothing" analyzer but has extra phase factor e’ = ().94-i 0.34 on the x'-path (top).
X-output: <X‘LP0ut> _ <x x,>e—i£2x» <x,

x’> e i <x’

Phase shift — IQ ?D':'

v, )+

y’><y’ ‘Pin> = cos@cos(@m - @) - sin@sin(@m - @)

y-output: <y‘LP0ut> - <y

i)+ () (7 ],,) = e sin@cos(@,, - ©) + cosOsin(©,, —©)
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ReY¥Y

; x-velocity v,/
(c) 2-D Oscillator O X-veqocily vy
Phasor Plot 2 7 2
(x-Phase ) 3 \\ ;
45° behind the ~_
y-Phase) -4 4 x-position
] /
—’S\/ S 5 clockwise
\/ / orbit
- 6 f x is behind
6\ if x i /,,\W y
v 1 _ 8 Left- /
y-position (1.p) @) / /
I o0 Qo (3.5), handed ¥
AL />‘°\ o—Ai—o¢4e
P / L / / /’J
— \ ™~ © / /‘, 0(5,7)
yrvelocity 'I \ < /0 \ counter-clockwise
v/oo = | y = Q —0(6,8) if v is behind x
0 p ) //'
D / / \ \ / o 1 \'/ o7.-7) Right-
(\'I\L \/\jo © — O(8,-6) / handed
= O5—909.-5) 4

Fig. 1.3.6 Polarization states for (a) Half-wave (Q2=m) , (b) Quarter wave (Q=m/2) (c) (Q2=—m/4)
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

»How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Feynman (j|k)-axioms compared 1o Group axioms
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How analyzers may “peek’ and how that changes outcomes

A peeklng eye (Looks for x—photons)

If eye sees no x-photon
then the output particle
is 100% y-polarized
(25% probability.)

(Banazer
||||||||||||7ﬂ ’

xy-analyzer

]] ]11

_ Initial polarization angle
0.7 5 3/2 =30°
If eye sees an x-photon PAd
then the output particle S S R
is 100% x-polarized. —xy-analyzer ."_J__,./" 22
(75% probability for that.) ( Bamlyzer: g
= —— _ #
.25 = 60
| _
11 =]
e | Initial polarization angle
0,75 |

Fig. 1.3.7 Simulated polarization analyzer set up to "

'peek’” if the photon is x-or y-polarized
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How analyzers “peek™ and how that changes outcomes

Simulations

Only
x130°) ]
appears ~

|
Banalyzer:60 )
Q) =30°

analyzer™

No
y(30°) U

(a) =gl =g ]

appear
1 12

(b)

S5 to 8 odds =
for x/(300) [ [ | I:Ir‘:ll

to appear I

D20

=60°
3 to 8 odds

B analyzer™
jor 1300 © =30°
to appear |

G.575 [ 4 5

analyzer

1 12

“Peeking Eye’

Without = ET:'

Initial

. | polarization

Reconstructs

x/(30°) beam

Cancels
y(30°) beam

;. B=PB/2 = 30°

angle

f= 607=26

With
“Peeking Eyel
. . |
.75

Initial
.| polarization
angle
0=B/2 = 30°

: !
‘ SV /‘,-ﬁj///
AT

= 60°

Fig. 1.3.8 Output with (3/2=30° input to: (a) Coherent xy-"Do nothing" or

(b) Incoherent xy-"Peeking" devices
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How analyzers “peek” and how that changes outcomes

G PR A Ty Xy Ix )= x)-beam

"Y-beam
V32312 4172 1)2 = & - '
(a) Without x')-beam

(y XX Y Ty My I')= //ﬁ////ﬁ/zﬁm‘{“king ke’ __

V3/24/3/2 1/2 =0 \_
(K xCxx)= {

N |y)-beam
W%/ N <x'|x>=¢3/2/'¥ |
iy= 1T

e .
I WWMMMW 7
WA (xy)=1 M—

/ Tm PE ,

4e) (o) ]
ly)-beam () (o)

cos¢ —sing cos®) —sing
sing  cos¢ sin¢ c0s¢| '>

Fig. 1.3.9 Beams-amplitudes of (a) xy-"Do nothing" and (b) xy-"Peeking" analyzer each with input

Ty Xyl )=

112172 (b) With

(XX Y= 172 v/3/2 T )=
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Amplitude A(n') and Probability P(n’) at counter n’ WITHOUT “peeking”

A(x’):<x’

x)(x

x’>+<x’

)y

x,> L1 L1 ] L1 L1
1
k

Without
“Peeking Eye’

Do-Nothing-analyzer

e A=

2 + % = IZP(.X/) | ;"'IJ. "' : - Reconstructs
p NI 1
A =) )+ ) ) © Wl
— _f n %5 —0=P(y), W ¥ TH L. B/2
12 =] = | 1730
\xg (']x) 0/ 1x)
=\/3/2|x") Z; =1/2]y")
o) =) )+ O )
<xx> <x Y’> | cos¢ —sing | | cos¢ —sing
<y x'> <y y’> - sing  cos¢ - sing  cos¢
RS NN I N CYD RS TP U NCYP R
() (o) 1/2 3/2 1/2 3/2
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Amplitude A(n’) and Probability P(n') at counter ' WITHOUT “peeking”

x'> I:’h'!'=||:]ﬂ||

()] )+ )y

() o+ b=teRw),

A(x") = <x’

| =F‘ﬂ°.|

I
|
AI&I
_|_
.Nkl
Il
-
2
‘\<\

Do-Nothing-analyzer

Withour 7= [

“Peeking Eye’

Amplitude A(n') and Probability P(n') at counter n’ WITH “peeking”
Suppose "x-eye' puts phase e/ on each x-photon with random ¢ distributed over unit circle (-< ¢ <m).

Yy

X

A(x") = <x’ x>(ei¢)<x x’>+<x’

3 1
—z(e) T 7

B analyzer™
Q) =30°

analyzer™

So ei? averages to zero!

With

“Peeking Eye’|m= i

—r

.70

U Lol g
| 12 el
R IR ERYEYF I VR N R E YRR T
/ 172 ~f3/2 172 ~J3/2
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Amplitude A(n’) and Probability P(n') at counter ' WITHOUT “peeking”

x'> I:’h'!'=||:]ﬂ||

()] )+ )y

() o+ b=teRw),

A(x") = <x’

| =F‘ﬂ°.|

I
|
AI&I
_|_
.Nkl
Il
-
2
‘\<\

Do-Nothing-analyzer

Withour 7= [

“Peeking Eye’

Amplitude A(n') and Probability P(n') at counter n’ WITH “peeking”
Suppose "x-eye' puts phase e/ on each x-photon with random ¢ distributed over unit circle (-< ¢ <m).

Yy

X

A(x") = <x’ x>(ei¢)<x x’>+<x’

3 1
—z(e) T 7

B analyzer™
Q) =30°

analyzer™

So ei? averages to zero!

With

“Peeking Eye’|m= i

—r

.70

U Lol g
| 12 el
R IR ERYEYF I VR N R E YRR T
/ 172 ~f3/2 172 ~J3/2
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Amplitude A(n’) and Probability P(n') at counter ' WITHOUT “peeking” I l
o-iNolning-anatiyzer
x>(1)<xx'>+<x’y><yx'> I::'!'=|I“P'T:l|| |3=F'OFI||| Without I:'!'=|':]':'I| |3=::FI|I

“Peeking Eye’
)+ derew
=609

B analyzer
X ’> ?analyzer:SO

A(x") = <x’

Reconstructs

I
|
-N&I
_|_
-N&I
I
-}
||
iy
‘\<\
=
=

Amplitude A(n') and Probability P(n') at counter n’ WITH “peeking”
Suppose "x-eye' puts phase e/ on each x-photon with random ¢ distributed over unit circle (-< ¢ <m).

- So € averages to zero!
A =) o) + (e ) o) .
B 3( io 1
- Z(e ) T3 With
- * - = [F = “Peeking Eye’|m= cr
o) EELOEELI g
! 7y (.73

:§+i(8_,¢+e,¢):5+3cos¢ |

_60°f | IRESI . | (W
g8 16 8 B analyzer ] 5 . . - f %1.]{
®analyzer:30 ‘:ﬂ ‘T

{w () ]_[m 12 Hm /]
(V) (]y) 1/2 372 1/2 372
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Amplitude A(n') and Probability P(n’) at counter n’ WITHOUT “peeking” - l
o-INotning-analtyzer

A(x’):<x’x>(1)<x x'>+<x’y><y x'> I:’h'!'=||:]ﬂ|| =F‘T| | Pe%fnggye’ﬂf‘:"@'l"l" |3=:T||
)+ dern,
A = (1) )+ () o)
= PO) + P=0-=ro)

Amplitude A(n') and Probability P(n') at counter n’ WITH “peeking”
Suppose "x-eye' puts phase e/ on each x-photon with random ¢ distributed over unit circle (-< ¢ <m).

. y '
A(x')=<x' x>(e’¢)<x x'>+<x’ y><y x'> So ¢/ averages to zero!
i g(eifl’) " With
A= (2(8@)4_% *(2(6@)4_%) |DL= L bl ﬁ-=- ﬁl:r:ll II , I'“Peeki.ng Ej)e"?*F e
! 25 .75
i : i ®anal;zer_3 0° T 1(%1 Tﬁ
A(y’)=<y’ x>(el¢)<x x’>+<y’ y><y x’> | . { (o

I
ad
(BN

—_
+
AI&I
-
k.
7]
2|
|—
——
k-
7]
—3
T
L
-]

{w () ]_[m 12 Hm /]
(V) (]y) 1/2 372 1/2 372
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A(x") = <x’

(1)

x'>+<x’

)y

)

+

Amplitude A(n’) and Probability P(n') at counter ' WITHOUT “peeking”
AP=er 1

Do-Nothing-analyzer

Without I:'!'=||:T:'I| |3=|E:|I:I||
“Peeking Eye’

Amplitude A(n') and Probability P(n') at counter n’ WITH “peeking”
Suppose "x-eye' puts phase e/ on each x-photon with random ¢ distributed over unit circle (-< ¢ <m).

“Peeking Eye’|m= i

=Yl o
B §(€i¢) + %

oy B

A= () )l )+ () 1) 4

So ei? averages to zero!

With

—r

.70

U Lol g

| 12 el
R IR ERYEYF I VR N R E YRR T
/ 172 ~f3/2 172 ~J3/2
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

» Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

Feynman (j|k)-axioms compared 1o Group axioms
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Classical Bayesian probability vs. Quantum probability
Probability that

photon in x'-input
becomes

photon in x'-counter
classical

probability that probability that probability that probability that
photon in x-beam | | photon in x'-input photon in y-beam | | photon in x'-input

becomes becomes becomes becomes

photon in x'-counter photon in x-beam photon in x'-counter photon in y-beam

o Yl o

Probability that

X

X

photon in x'-input U <x’

becomes

photon in x'-counter
classical
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Classical Bayesian probability vs. Quantum probability

Probability that ’ ’
. Y (d2) (2) B2 12 Bz —1/2
oton in x'-input , AT =
P g = (]x) () 1/2 372 1/2 372
becomes
photon in x'-counter
classical
probability that probability that probability that probability that
photon in x-beam | | photon in x'-input N photon in y-beam | | photon in x'-input
becomes becomes becomes becomes
photon in x'-counter photon in x-beam photon in x'-counter photon in y-beam
Probability that , ,
2 2
photon in x'-input _ el A2 1o\? ) Nl \/5 . \/5 =1 (1] |5
, —(Kx J )U<H> )+O<x ») j(\<yX>| j— 21 = =L R 173
ecomes
photon in x'-counter .
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Classical Bayesian probability vs. Quantum probability

Probability that ’ ’
. . (e (2) B2 -1/ Bz -1/2
oton 1n x'-mput , AT =
! g = (]x) (3]5) 1/2 372 1/2 372
becomes
photon in x'-counter
classical
probability that probability that probability that probability that
photon in x-beam | | photon in x'-input N photon in y-beam | | photon in x'-input
becomes becomes becomes becomes
photon in x'-counter photon in x-beam photon in x'-counter photon in y-beam
Probability that , ,
2 2
photon in x'-input _ el A2 1o\? ) Nl \/5 . \/5 =1 (1] |5
, —(Kx J )U<H> )+O<x ») j(\<yX>| j— 21 = =L R 173
ecomes
photon in x'-counter .

Quantum probability

& Aol

x>(el¢)<x‘x’>+ <x’

at x'-counter
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Classical Bayesian probability vs. Quantum probability

Probability that [ (x| (x]57) ][ J3/2 —1/2 ]:[ 372 —1/2 J

photzzci;l;;input O) (5] 1/2 372 1/2 372

photon in x'-counter
classical

probability that probability that probability that probability that
photon in x-beam | | photon in x'-input N photon in y-beam | | photon in x'-input
becomes becomes becomes becomes
photon in x'-counter photon in x-beam photon in x'-counter photon in y-beam
Probability that , ,
2 2
photon in x'-input _ el A2 1o\? ) Nl \/5 . \/5 =1 (1] |5
, —(Kx ) )U<X|x ) )+O<x 7 j(wx ) j[z =1 =l 1 173
ecomes
photon in x'-counter

classical

2

<x’ x>(ei¢)<x x’>+<x’ x’>

L I I N x) (el (o) e (el ) e ) (o] ) =

=( classical probability ) +( Phase-sensitive or quantum interference terms )

)y

[ Quantum probability ]_

at x'-counter

+e @ <x’
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes
Peeking polarizers and coherence loss

» Classical Bayesian probability vs. Quantum probability

Feynman (j|k)-axioms compared 1o Group axioms
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Classical Bayesian probability vs. Quantum probability

Probability that [ (x| (x]57) ][ J3/2 —1/2 ]:[ 372 —1/2 J

photzricij;;input O) (5] 1/2 372 1/2 372

photon in x'-counter
classical

probability that probability that probability that probability that
photon in x-beam || photon in x’-input N photon in y-beam || photon in x'-input
becomes becomes becomes becomes
photon in x'-counter photon in x-beam photon in x'-counter photon in y-beam
Probability that , ,
2 2
photon in x'-input B 1 \12 A2 112 A \/5 \/g —1 1| 5
; = (He (et 0 (0 )[2 W ST 1S
ecomes
photon in x'-counter

classical

<x’ x>(el¢)<x x’>+<x’ x’>

L I I N x) (el (o) e (el ) e ) (o] ) =

=( classical probability ) +( Phase-sensitive or quantum interference terms )

)y

at x'-counter

[ Quantum probability ]_

+e @ <x’

2

NG ) )

Square of sum

+‘<x’

[ Quantum probability ]z‘ <x"x> <x

at x'-counter

Tuesday, January 20, 2015 85



Classical Bayesian probability vs. Quantum probability

Probability that
photon in x'-input
becomes
photon in x'-counter

probability that
photon in x-beam

becomes

photon in x'-counter

Probability that
photon in x'-input

becomes

photon in x'-counter
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability

»F eynman (j|k)-axioms compared o Group axioms
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Feynman (j

k> ~AX10MS compared to Group axioms

Axiom 1: j'"<=m’ probability
equals |(j"|m") | = [(m'] /)|

(Probability)

Axiom 2:
<]°//’m/>~k:<m/’ j//>

(T-reversal Conjugation)

Axiom 3:

(1K) == (7K = ("] K)

(Orthonormality)

Axiom 4:
g//‘m/> :ZU//VC> <k\m’>
|(Completeness) k=1

Group axioms

(1) The closure axiom

Products ab = c are defined between any two group elements a and b,
and the result c is contained in the group.

(2) The associativity axiom

Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

(3) The identity axiom

There is a unique element 1 (the identity) such that I-a =a = a-1

for all elements a in the group ..

4) The inverse axiom

For all elements a in the group there is an inverse element a-1 such that a-la =1 = a-a-1.
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Feynman (j

k> ~AX10MS compared to Group axioms

Axiom 1: j'"<=m’ probability
equals |(j"|m") | = [(m'] /)|

(Probability)

Axiom 2:
<]°//’m/>~k:<m/‘ j//>

(T-reversal Conjugation)

Axiom 3:

(1K) == (7K = ("] K)

(Orthonormality)

Axiom 4.
U//‘m,> :ZU”VC> <k‘m’>
|(Completeness) k=1

Group axioms

(1) The closure axiom

Products ab = c are defined between any two group elements a and b,
and the result c is contained in the group.

(2) The associativity axiom

Feynman Axiom-4 consistent with group axiom 1

since analyzer-A following analyzer-B is analyzer-AB =C
and analyzer-B following analyzer-A is analyzer-BA =D

Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

(3) The identity axiom

There is a unique element 1 (the identity) such that I-a =a = a-1

for all elements a in the group ..

4) The inverse axiom

For all elements a in the group there is an inverse element a-1 such that a-la =1 = a-a-1.
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Feynman (j|k)-axioms compared 1o Group axioms

Axiom 1: j'"<<m’ probability | Axiom 2: Axiom 3: Axiom 4:
equals K]-//‘m/HQ _ |<m’\j”>\2 <]-//’m/>~k:<m/‘j//> <]‘k> :6jk:<]./‘k/>:<j”‘ k//> <f”‘Wl’> :zgll‘k> <k\m’>
(Probability) (T-reversal Conjugation) (Orthonormality) |(Completeness) =1

Group axioms

(1) The closure axiom
Products ab = c are defined between any two group elements a and b,
and the result c is contained in the group. Feynman Axiom-4 consistent with group axiom 1

since analyzer-A following analyzer-B is analyzer-AB =C
and analyzer-B following analyzer-A is analyzer-BA =D

(2) The associativity axiom
Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .
Feynman Axiom-4 consistent with group axiom 2

since analyzer matrix multiplication is associative
(3) The identity axiom

There is a unique element 1 (the identity) such that I-a =a = a-1
for all elements a in the group ..

4) The inverse axiom

For all elements a in the group there is an inverse element a-1 such that a-la =1 = a-a-1.
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Feynman (j|k)-axioms compared 1o Group axioms

Axiom 1: j'"<<m’ probability | Axiom 2: Axiom 3: Axiom 4:
equals K]-//‘m/HQ _ |<m’\j”>\2 g//’m/>~k:<ml‘j//> <]‘k> :6jk:<]./‘k/>:<j”‘ k//> <f”‘Wl’> :zgll‘k> <k\m’>
(Probability) (T-reversal Conjugation) (Orthonormality) |(Completeness) =1

Group axioms

(1) The closure axiom
Products ab = c are defined between any two group elements a and b,
and the result c is contained in the group. Feynman Axiom-4 consistent with group axiom 1

since analyzer-A following analyzer-B is analyzer-AB =C
and analyzer-B following analyzer-A is analyzer-BA =D

(2) The associativity axiom
Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .
Feynman Axiom-4 consistent with group axiom 2

since analyzer matrix multiplication is associative
(3) The identity axiom

There is a unique element 1 (the identity) such that I-a =a = a-1

for all elements a in the group .. . ) ' .
Feynman Axiom-2 consistent with group axiom 3

since “Do Nothing” analyzer =identity operator=1

4) The inverse axiom

For all elements a in the group there is an inverse element a-1 such that a-la =1 = a-a-1.
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Feynman (j|k)-axioms compared 1o Group axioms

Axiom 1: j'"<<m’ probability | Axiom 2: Axiom 3: Axiom 4:
equals K]-//‘m/HQ _ |<m’\j”>\2 g//’m/>~k:<ml‘j//> <]‘k> :6jk:<]./‘k/>:<j”‘ k//> <f”‘Wl’> :zgll‘k> <k\m’>
(Probability) (T-reversal Conjugation) (Orthonormality) |(Completeness) =1

Group axioms

(1) The closure axiom
Products ab = c are defined between any two group elements a and b,
and the result c is contained in the group. Feynman Axiom-4 consistent with group axiom 1

since analyzer-A following analyzer-B is analyzer-AB =C
and analyzer-B following analyzer-A is analyzer-BA =D

(2) The associativity axiom
Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Feynman Axiom-4 consistent with group axiom 2

since analyzer matrix multiplication is associative
(3) The identity axiom

There is a unique element 1 (the identity) such that I-a =a = a-1

for all elements a in the group .. . ) ' .
Feynman Axiom-2 consistent with group axiom 3

since “Do Nothing” analyzer =identity operator=1

4) The inverse axiom

For all elements a in the group there is an inverse element a-1 such that a-la =1 = a-a-1.

Feynman Axiom-3 consistent with group axiom 4

since inverse U =tranpose-conjugate UT = UT"
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Feynman (j|k)-axioms compared 1o Group axioms

Axiom 1: j'"<<m’ probability | Axiom 2: Axiom 3: Axiom 4:
equals K]-//‘m/HQ _ |<m’\j”>\2 <]-//’m/>~k:<m/‘j//> <]‘k> :6jk:<]./‘k/>:<].//‘ k//> U//‘m/> :Zgll‘k> <k\m’>
(Probability) (T-reversal Conjugation) (Orthonormality) |(Completeness) =1

Group axioms

(1) The closure axiom
Products ab = c are defined between any two group elements a and b,
and the result c is contained in the group. Feynman Axiom-4 consistent with group axiom 1

since analyzer-A following analyzer-B is analyzer-AB =C
and analyzer-B following analyzer-A is analyzer-BA =D

(2) The associativity axiom
Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Feynman Axiom-4 consistent with group axiom 2

since analyzer matrix multiplication is associative
(3) The identity axiom

There is a unique element 1 (the identity) such that I-a =a = a-1

for all elements a in the group .. . ) ' .
Feynman Axiom-2 consistent with group axiom 3

since “Do Nothing” analyzer =identity operator=1

4) The inverse axiom

For all elements a in the group there is an inverse element a-1 such that a-la =1 = a-a-1.

Feynman Axiom-3 consistent with group axiom 4

since inverse U =tranpose-conjugate UT = UT"

(5) The commutative axiom (Abelian groups only) Most analyzer sets ( and most groups)
All elements a in an Abelian group are mutually commuting: a-b = b-a. are not Abelian (commutative)
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