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U(2) and U(3) tensor expansions
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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Same spin-1/2 representation applies to either proton or electron kets.
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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electron-proton spin-spin interaction gives a simple example of hyperfine spectra
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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Spin-spin interaction reduces symmetry U(2)proton×U(2)electron to U(2)e+p 

Interaction reduces symmetry:

(Only (αe,βe,γe)= (αp,βp,γp)

is allowed!
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..

1
0

⎛
⎝⎜

⎞
⎠⎟
⊗

1
0

⎛
⎝⎜

⎞
⎠⎟
=

1
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,        
1
0

⎛
⎝⎜

⎞
⎠⎟
⊗

0
1

⎛
⎝⎜

⎞
⎠⎟
=

0
1
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,           
0
1

⎛
⎝⎜

⎞
⎠⎟
⊗

1
0

⎛
⎝⎜

⎞
⎠⎟
=

0
0
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,          
0
1

⎛
⎝⎜

⎞
⎠⎟
⊗

0
1

⎛
⎝⎜

⎞
⎠⎟
=

0
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

↑ ↑ =
1
2

1
2

proton 1
2

1
2

electron

, ↑ ↓ =
1
2

1
2

proton 1
2

− 1
2

electron

, ↓ ↑ =
1
2

− 1
2

proton 1
2

1
2

electron

, ↓ ↓ =
1
2

− 1
2

proton 1
2

− 1
2

electron

electron-proton spin-spin interaction gives a simple example of hyperfine spectra
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Same spin-1/2 representation applies to either proton or electron kets.
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Applies to  outer product symmetry U(2)proton×U(2)electron for NO interaction. 
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Interaction reduces symmetry:

(Only (αe,βe,γe)= (αp,βp,γp)

is allowed!

...and “irreducible” becomes “reducible”...
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Hydrogen hyperfine structure: Fermi-contact interaction
Racah’s trick for energy eigenvalues
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g − factor Bohr − magneton gyromagnetic factor

electron
ge

= 2.0023

µe =
e
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= 9.27401⋅10−24 J
T

ae = geµe

= 1.8570 ⋅10−23 J
T

proton
gp

= 5.585

µp =
e

2mp

= 5.05078 ⋅10−27 J
T

ap = gpµp

= 2.8209 ⋅10−26 J
T

     Magnetic constant :  µ0 / 4π = 10−7 N / A2

Hydrogen hyperfine structure: Fermi-contact interaction + B-field
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electron + aepJ
proton • Jelectron

Fermi − contact factor

aep = µ0
2
3

1
πa0

3 aeap = 9.427 ⋅10−25 J

µ0
2
3

1
πa0

3

aeap
h

= 1.4227 ⋅109Hz

µ0
2
3

1
πa0

3

aeap
hc

= 4.746m−1

                      = 1
21.1

cm−1

10Thursday, April 30, 2015



 

g − factor Bohr − magneton gyromagnetic factor

electron
ge

= 2.0023

µe =
e

2me

= 9.27401 ⋅10−24 J
T

ae = geµe

= 1.8570 ⋅10−23 J
T

proton
gp

= 5.585

µp =
e

2mp

= 5.05078 ⋅10−27 J
T

ap = gpµp

= 2.8209 ⋅10−26 J
T

     Magnetic constant :  µ0 / 4π = 10−7 N / A2

H1s−B− field = −apBzJz
proton + aeBzJz

electron + aepJ
proton • Jelectron

−apBzJz
proton + aeBzJz

electron =

↑p↑e ↑p↓e ↓p↑e ↓p↓e

↑p↑e 1
2
ae − ap( )Bz ⋅ ⋅ ⋅

↑p↓e ⋅ −1
2

ae + ap( )Bz 0 ⋅

↓p↑e ⋅ 0 1
2
ae + ap( )Bz ⋅

↓p↓e ⋅ ⋅ ⋅ −1
2

ae − ap( )Bz
aepJ

proton • Jelectron =

1
1

0
1

0
0

−1
1

1
1 aep

4
⋅ ⋅ ⋅

0
1 ⋅

aep
4

0 ⋅

0
0 ⋅ 0

−3aep
4

⋅

−1
1 ⋅ ⋅ ⋅

aep
4

Fermi − contact factor

aep = µ0
2
3

1
πa0

3 aeap = 9.427 ⋅10−25 J

µ0
2
3

1
πa0

3

aeap
h

= 1.4227 ⋅109Hz

µ0
2
3

1
πa0

3

aeap
hc

= 4.746m−1

                      = 1
21.1

cm−1

11Thursday, April 30, 2015



 

g − factor Bohr − magneton gyromagnetic factor

electron
ge

= 2.0023

µe =
e

2me

= 9.27401 ⋅10−24 J
T

ae = geµe

= 1.8570 ⋅10−23 J
T

proton
gp

= 5.585

µp =
e

2mp

= 5.05078 ⋅10−27 J
T

ap = gpµp

= 2.8209 ⋅10−26 J
T

     Magnetic constant :  µ0 / 4π = 10−7 N / A2

Fermi − contact factor

aep = µ0
2
3

1
πa0

3 aeap = 9.427 ⋅10−25 J

µ0
2
3

1
πa0

3

aeap
h

= 1.4227 ⋅109Hz

µ0
2
3

1
πa0

3

aeap
hc

= 4.746m−1

                      = 1
21.1

cm−1

H1s−B− field = −apBzJz
proton + aeBzJz

electron + aepJ
proton • Jelectron

−apBzJz
proton + aeBzJz

electron =

↑p↑e ↑p↓e ↓p↑e ↓p↓e

↑p↑e 1
2
ae − ap( )Bz ⋅ ⋅ ⋅

↑p↓e ⋅ −1
2

ae + ap( )Bz 0 ⋅

↓p↑e ⋅ 0 1
2
ae + ap( )Bz ⋅

↓p↓e ⋅ ⋅ ⋅ −1
2

ae − ap( )Bz
aepJ

proton • Jelectron =

1
1

0
1

0
0

−1
1

1
1 aep

4
⋅ ⋅ ⋅

0
1 ⋅

aep
4

0 ⋅

0
0 ⋅ 0

−3aep
4

⋅

−1
1 ⋅ ⋅ ⋅

aep
4

1
2⊗1

2
J=1

M=1

1

0

1

−1

0

0

1
2 , 1

2 1 0 0 0
1
2 , -1

2 0 √2
 1 0 √2

 1

-1
2 , 1

2 0 √2
 1 0 √2

-1

-1
2 , -1

2 0 0 1 0

= Cmp

1
2

me

1
2

M
J

12Thursday, April 30, 2015



H1s−B− field = −apBzJz
proton + aeBzJz

electron + aepJ
proton • Jelectron

 

g − factor Bohr − magneton gyromagnetic factor

electron
ge

= 2.0023

µe =
e

2me

= 9.27401 ⋅10−24 J
T

ae = geµe

= 1.8570 ⋅10−23 J
T

proton
gp

= 5.585

µp =
e

2mp

= 5.05078 ⋅10−27 J
T

ap = gpµp

= 2.8209 ⋅10−26 J
T

     Magnetic constant :  µ0 / 4π = 10−7 N / A2

−apBzJz
proton + aeBzJz

electron =

↑p↑e ↑p↓e ↓p↑e ↓p↓e

↑p↑e 1
2
ae − ap( )Bz ⋅ ⋅ ⋅

↑p↓e ⋅ −1
2

ae + ap( )Bz 0 ⋅

↓p↑e ⋅ 0 1
2
ae + ap( )Bz ⋅

↓p↓e ⋅ ⋅ ⋅ −1
2

ae − ap( )Bz

aepJ
proton • Jelectron =

↑p↑e ↑p↓e ↓p↑e ↓p↓e

↑p↑e aep
4

⋅ ⋅ ⋅

↑p↓e ⋅
−aep
4

aep
2

⋅

↓p↑e ⋅
aep
2

−aep
4

⋅

↓p↓e ⋅ ⋅ ⋅
aep
4

−apBzJz
proton + aeBzJz

electron =

1
1

0
1

0
0

−1
1

1
1 1

2
ae − ap( )Bz ⋅ ⋅ ⋅

0
1 ⋅ 0 −1

2
ae + ap( )Bz ⋅

0
0 ⋅ −1

2
ae + ap( )Bz 0 ⋅

−1
1 ⋅ ⋅ ⋅ −1

2
ae − ap( )Bz

aepJ
proton • Jelectron =

1
1

0
1

0
0

−1
1

1
1 aep

4
⋅ ⋅ ⋅

0
1 ⋅

aep
4

0 ⋅

0
0 ⋅ 0

−3aep
4

⋅

−1
1 ⋅ ⋅ ⋅

aep
4

        

Fermi − contact factor

aep = µ0
2
3

1
πa0

3 aeap = 9.427 ⋅10−25 J

µ0
2
3

1
πa0

3

aeap
h

= 1.4227 ⋅109Hz

µ0
2
3

1
πa0

3

aeap
hc

= 4.746m−1

                      = 1
21.1

cm−1

1
2⊗1

2
J=1

M=1

1

0

1

−1

0

0

1
2 , 1

2 1 0 0 0
1
2 , -1

2 0 √2
 1 0 √2

 1

-1
2 , 1

2 0 √2
 1 0 √2

-1

-1
2 , -1

2 0 0 1 0

= Cmp

1
2

me

1
2

M
J

13Thursday, April 30, 2015



          

1.0 Ghz

2.0 Ghz

3.0 Ghz

Tesla (Tesla)

↓
p
↑

e

↑
p
↑

e

↓ p↓e

↑
p
↓

e

Bz field

ESR
transitions

NMR
transition

NMR
transition↓

p
↑

e
↑

p
↑

e

↓ p↓e

↑
p
↓

e

1
1

1
0

1
−1+

1
0

J=1 triplet

J=0 singlet

(a)
Weak
Proton
Moment

14Thursday, April 30, 2015



          

1.0 Ghz

2.0 Ghz

3.0 Ghz

Tesla (Tesla)

↓
p
↑

e

↑
p
↑

e

↓ p↓e

↑
p
↓

e

Bz field

ESR
transitions

NMR
transition

NMR
transition↓

p
↑

e
↑

p
↑

e

↓ p↓e

↑
p
↓

e

1
1

1
0

1
−1+

1
0

J=1 triplet

J=0 singlet

(a)
Weak
Proton
Moment

        

Tesla (Tesla)

↓
p
↑

e

↑
p
↑

e

↓p↓e

↑
p
↓

e

Bz field

ESR
transitions

NMR
transition

NMR
transition

(b)
Medium
p-Moment

Level crossings

15Thursday, April 30, 2015



C m1
1

m2
1

M
L =

2 2 2 2 2 1 1 1 0
1 ⊗ 1 2 1 0 −1 −2 1 0 −1 0
1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 0 ⋅ 1
2

⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅

1 −1 ⋅ ⋅ 1
6

⋅ ⋅ ⋅ 1
2

⋅ 1
3

0 1 ⋅ 1
2

⋅ ⋅ ⋅ − 1
2

⋅ ⋅ ⋅

0 0 ⋅ ⋅ 2
3 ⋅ ⋅ ⋅ ⋅ ⋅ − 1

3

0 −1 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅ 1
2

⋅

−1 1 ⋅ ⋅ 1
6

⋅ ⋅ ⋅ − 1
2

⋅ 1
3

−1 0 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅ − 1
2

⋅

−1 −1 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅⋅

Higher-J product states

(J=1)⊗(J=1)=2⊕1⊕0 case

16Thursday, April 30, 2015



C m1
1

m2
1

M
L =

2 2 2 2 2 1 1 1 0
1 ⊗ 1 2 1 0 −1 −2 1 0 −1 0
1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 0 ⋅ 1
2

⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅

1 −1 ⋅ ⋅ 1
6

⋅ ⋅ ⋅ 1
2

⋅ 1
3

0 1 ⋅ 1
2

⋅ ⋅ ⋅ − 1
2

⋅ ⋅ ⋅

0 0 ⋅ ⋅ 2
3 ⋅ ⋅ ⋅ ⋅ ⋅ − 1

3

0 −1 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅ 1
2

⋅

−1 1 ⋅ ⋅ 1
6

⋅ ⋅ ⋅ − 1
2

⋅ 1
3

−1 0 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅ − 1
2

⋅

−1 −1 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅⋅

Higher-J product states

(J=1)⊗(J=1)=2⊕1⊕0 case   

-8

-9

-10

-11

-12

(2p)2

1S

1D

3P

(eV)(a) Carbon (2p)2

(2p3p)

1S

1D

3P

(b) Mixed Configuration

1P

3S

3D
Figure 24.1.3   Atomic 2S+1L multiplet levels for two (l = 1) p electrons. 
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Figure 24.1.6  Level-splitting and vector-addition picture of angular-momentum coupling.
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Figure 24.1.7   Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.
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Figure 24.1.7   Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Figure 24.1.8   Clebsch-Gordan coefficients plotted next to their angular-momentum cones.

Higher-J product states
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Figure 24.1.7   Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Figure 24.1.8   Clebsch-Gordan coefficients plotted next to their angular-momentum cones.
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CG-Products of spin-1/2 ket-bras{           } give scalar/vector operators

Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors
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1/2
1/2analogous to: 

analogous to: ket-kets

1st three operators are a vector set with following Cartesian combinations:

  

Tx ≡ −
T−1

1 −T1
1

2
     Ty ≡ −i

T−1
1 +T1

1

2
     Tz ≡ −T0

1

=
1

2

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

=
1

2

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

=
1

2

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

≡
1

2
σ x ≡

1

2
σ y ≡

1

2
σ z

≡ 2Jx ≡ 2J y ≡ 2Jz

σ X → 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
, σY → 0 −i

i 0
⎛
⎝⎜

⎞
⎠⎟
, σ Z →

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
,

(Some old friends!)

  
T−1

1 = J− 2 = Jx − iJ y( ) 2 , T0
1 = Jz 2 , T−1

1 = J+ 2 = Jx + iJ y( ) 2.

Spherical  vs.  Cartesian operators
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CG-Products of spin-1/2 ket-bras{           } give scalar/vector operators

Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors

  m1

1/2 , m2

1/2

  
Tq

k = ∑
m1

Cm1

1/2
m2

1/2
q
k

m1

1/2
−m2

1/2 −1( )1
2−m2

  

       T−1
1 = 0 0

−1 0
⎛

⎝⎜
⎞

⎠⎟
                  T0

1 = 1
2

−1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
                             T1

1 = 0 1
0 0

⎛

⎝⎜
⎞

⎠⎟

  = − 1/ 2
−1/ 2

1/ 2
1/ 2

, = − 1
2

1/ 2
1/ 2

1/ 2
1/ 2

− 1/ 2
−1/ 2

1/ 2
−1/ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, = 1/ 2

1/ 2
1/ 2

−1/ 2
,

                           T0
0 = − 1

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

           = − 1
2

1/ 2
1/ 2

1/ 2
1/ 2

+ 1/ 2
−1/ 2

1/ 2
−1/ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

analogous to: M
J (1/2⊗1/2) = ∑

m1,m2
Cm1
1/2

m2
1/2

M
J

m1
1/2

m2
1/2

analogous to: 

1
1(1/2⊗1/2) = 1/2

1/2
1/2
1/2

-1
 1 (1/2⊗1/2) = -1/2

 1/2
-1/2
 1/2

0
1 (1/2⊗1/2) = 2

  1
1/2
1/2

-1/2
 1/2 + 2

  1
-1/2
 1/2

1/2
1/2

0
0 (1/2⊗1/2) = 2

  1
1/2
1/2

-1/2
 1/2 + 2

 -1
-1/2
 1/2

1/2
1/2analogous to: 

analogous to: ket-kets

1st three operators are a vector set that transform like a vector set

  

R 0β0( ) T0
1 R† 0β0( ) = ′T0

↓ ↓ ↓ ↓

cos
β
2

− sin
β
2

sin
β
2

cos
β
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−1 2 0

0 1 2

⎛

⎝
⎜

⎞

⎠
⎟

cos
β
2

sin
β
2

− sin
β
2

cos
β
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
−

1

2

cosβ sinβ
sinβ −cosβ

⎛
⎝⎜

⎞
⎠⎟

= D10
1 0β0( )T1

1 +D00
1 0β0( )T0

1 +D−10
1 0β0( )T−1

1

↓ ↓ ↓

=
− sinβ

2

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

+cosβ
−1 2 0

0 1 2

⎛

⎝
⎜

⎞

⎠
⎟ +

sinβ
2

0 0
−1 0

⎛
⎝⎜

⎞
⎠⎟
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CG-Products of spin-1/2 ket-bras{           } give scalar/vector operators

Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors

  m1

1/2 , m2

1/2

  
Tq

k = ∑
m1

Cm1

1/2
m2

1/2
q
k

m1

1/2
−m2

1/2 −1( )1
2−m2

  

       T−1
1 = 0 0

−1 0
⎛

⎝⎜
⎞

⎠⎟
                  T0

1 = 1
2

−1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
                             T1

1 = 0 1
0 0

⎛

⎝⎜
⎞

⎠⎟

  = − 1/ 2
−1/ 2

1/ 2
1/ 2

, = − 1
2

1/ 2
1/ 2

1/ 2
1/ 2

− 1/ 2
−1/ 2

1/ 2
−1/ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, = 1/ 2

1/ 2
1/ 2

−1/ 2
,

                           T0
0 = − 1

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

           = − 1
2

1/ 2
1/ 2

1/ 2
1/ 2

+ 1/ 2
−1/ 2

1/ 2
−1/ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

analogous to: M
J (1/2⊗1/2) = ∑

m1,m2
Cm1
1/2

m2
1/2

M
J

m1
1/2

m2
1/2

analogous to: 

1
1(1/2⊗1/2) = 1/2

1/2
1/2
1/2

-1
 1 (1/2⊗1/2) = -1/2

 1/2
-1/2
 1/2

0
1 (1/2⊗1/2) = 2

  1
1/2
1/2

-1/2
 1/2 + 2

  1
-1/2
 1/2

1/2
1/2

0
0 (1/2⊗1/2) = 2

  1
1/2
1/2

-1/2
 1/2 + 2

 -1
-1/2
 1/2

1/2
1/2analogous to: 

analogous to: ket-kets

1st three operators are a vector set that transform like a vector set

  

R 0β0( ) T0
1 R† 0β0( ) = ′T0

↓ ↓ ↓ ↓

cos
β
2

− sin
β
2

sin
β
2

cos
β
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−1 2 0

0 1 2

⎛

⎝
⎜

⎞

⎠
⎟

cos
β
2

sin
β
2

− sin
β
2

cos
β
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
−

1

2

cosβ sinβ
sinβ −cosβ

⎛
⎝⎜

⎞
⎠⎟

= D10
1 0β0( )T1

1 +D00
1 0β0( )T0

1 +D−10
1 0β0( )T−1

1

↓ ↓ ↓

=
− sinβ

2

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

+cosβ
−1 2 0

0 1 2

⎛

⎝
⎜

⎞

⎠
⎟ +

sinβ
2

0 0
−1 0

⎛
⎝⎜

⎞
⎠⎟

              

Jz


J

Jx
Jy

z(β−rotated )

Jz (β− rotated) = Jx sinβ + Jz cosβ

Jz

β
β

x
y

z

so do 
expectation 
values
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Tensor operators for spin-1 states: U(1) generalization of Pauli spinors

  

T−2
2 = −1

1
1
1 , T−1

2 =
0
1

1
1 − −1

1
0
1

2
, T0

2 =
1
1

1
1 − 2 0

1
0
1 + −1

1

6
, T1

2 =
− 1

1
0
1 + 0

1
−1
1

2
, T2

2 = 1
1

−1
1

→
0 0 0
0 0 0
1 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→

0 0 0

1 2 0 0

0 −1 2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→

1 6 0 0

0 −2 6 0

0 0 1 6

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

→

0 −1 2 0

0 0 1 2
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

→
0 0 1
0 0 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T−1
1 =

0
1

1
1 + −1

1
0
1

2
, T0

1 =
1
1

1
1 − −1

1
−1
1

2
, T1

1 =
− 1

1
0
1 − 0

1
−1
1

2

→

0 0 0

1 2 0 0

0 1 2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→
1 2 0 0

0 0 0

0 0 −1 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→

0 −1 2 0

0 0 −1 2
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T0
0 =

1
1

1
1 + 0

1
0
1 + −1

1
−1
1

2

→

1 3 0 0

0 1 3 0

0 0 1 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   
vq

k = ∑
m, ′m

Cm
j
− ′m
j

q
k −1( ) j−m ' j

m
j
′m
= −1( )2 j

Tq
k .

   
vq

k = ∑
m, ′m

−1( ) j−m
2k +1

k j j
q ′m −m

⎛
⎝⎜

⎞
⎠⎟

j
m

j
′m

CGC definition: Wigner 3jm definition:
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vq
k = ∑

m, ′m
−1( ) j−m

2k +1
k j j
q ′m −m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

j
m

j
′m

for j = 1,2,3.

Tensor operators for spin-J states: U(2J+1) generalization of Pauli spinors
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vq
k = ∑

m, ′m
−1( ) j−m

2k +1
k j j
q ′m −m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

j
m

j
′m

for j = 1,2,3.

Tensor operators for spin-J states: U(2J+1) generalization of Pauli spinors
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V 4( ) = D x4 + y4 + z4 − 3

4
r4⎡

⎣
⎤
⎦ = D 2

70
X4

4 + X−4
4( ) + 2

5
X0

4⎡

⎣
⎢

⎤

⎦
⎥

Tensor operators for spin-J states: Application to splitting

  
V 4( )

j=2
= D 2

70
v4

4 + v−4
4( ) + 2

5
v0

4

j=2

5
3

2 X 4 2 .

  

V 4( )
j=2

= D
70

2
5 ⋅ ⋅ ⋅ ⋅ 2

⋅ − 8
5 ⋅ ⋅ ⋅

⋅ ⋅ 12
5 ⋅ ⋅

⋅ ⋅ ⋅ − 8
5 ⋅

2 ⋅ ⋅ ⋅ 2
5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

5
3

2 X 4 2 .
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