Group Theory in Quantum Mechanics
 Lecture 2 (1.19.2017)

Quantum amplitudes, analyzers, and axioms

(Quantum Theory for Computer Age - Ch. 1 of Unit 1)
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-2 of Ch. 1)

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer
Feynman amplitude axiom 4
Some "Do-Something" analyzers
Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate
Quantum Theory for Computer Age
http://www.uark.edu/ua/modphys/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA Unit_I_Ch._I_2013.pdf
http://www.uark.edu/ua/modphys/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_7_Ch._22_2005.pdf
See also the 2005 Pirelli Challenge Relativity Site:
http://www.uark.edu/ua/pirelli/html/light_energy_flux_I.html
http://www.uark.edu/ua/pirelli/html/amplitude_probability_I.html

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers

Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate
"Abstraction" of bra and ket vectors from a Transformation Matrix
Ket or column vectors
Bra or row vectors

| Given |
| :---: | :---: |
| Transformation |
| Matrix $T_{m, n^{\prime}}:$ |\(\left(\begin{array}{cc}\left\langle x \mid x^{\prime}\right\rangle \& \left\langle x \mid y^{\prime}\right\rangle

\left\langle y \mid x^{\prime}\right\rangle \& \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left($$
\begin{array}{cc}\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\end{array}
$$\right)\)
"Abstraction" of bra and ket vectors from a Transformation Matrix
Ket or column vectors
Bra or row vectors

$$
\begin{array}{r}
\begin{array}{l}
\text { Given } \\
\text { Transformation } \\
\text { Matrix } T_{m, n^{\prime}}:
\end{array}\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
\vdots \\
\left|x^{\prime}\right\rangle=\binom{\left\langle x \mid x^{\prime}\right\rangle}{\left\langle y \mid x^{\prime}\right\rangle}=\left(\begin{array}{c}
\vdots \\
\vdots \\
\cos \theta \\
\sin \theta
\end{array}\right) \\
\text { Abstracting ket }\left|n^{\prime}\right\rangle \text { state vectors } \\
\text { from } \\
\text { Transformation Matrix } \\
T_{m, n^{\prime}}=\left\langle m \mid n^{\prime}\right\rangle
\end{array}
$$

"Abstraction" of bra and ket vectors from a Transformation Matrix
Ket or column vectors
Given

\quad Given
Transformation Matrix $T_{m, h^{\prime}}:$

\left\langle y \mid x^{\prime}\right\rangle \& \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left($$
\begin{array}{cc}\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\vdots & \vdots\end{array}
$$\right)\)

Matrix $T_{m, h^{\prime}}$:

$\left|x^{\prime}\right\rangle=\binom{\left\langle x \mid x^{\prime}\right\rangle}{\left\langle y \mid x^{\prime}\right\rangle}=\left(\begin{array}{c}\vdots \\ \cos \theta \\ \vdots \\ \vdots \\ \vdots \\ \sin \theta\end{array}\right),\left|y^{\prime}\right\rangle=\binom{\left\langle x \mid y^{\prime}\right\rangle}{\left\langle y \mid y^{\prime}\right\rangle}=\left(\begin{array}{c}\vdots \\ -\sin \theta^{\prime} \cdots \\ \cos \theta \cdots\end{array}\right)$.
Abstracting ket $\left|n^{\prime}\right\rangle$ state vectors from
Transformation Matrix

$$
T_{m, n^{\prime}}=\left\langle m \mid n^{\prime}\right\rangle
$$

$$
\left.x^{\prime}\right\rangle=|x\rangle\left\langle x \mid x^{\prime}\right\rangle+|y\rangle\left\langle y \mid x^{\prime}\right\rangle
$$

$$
=|x\rangle(\cos \theta)+|y\rangle(\sin \theta)
$$

$$
\left|y^{\prime}\right\rangle=|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle
$$

$$
=|x\rangle(-\sin \theta)+|y\rangle(\cos \theta)
$$

$\left(\theta=+30^{\circ}\right)$-Rotated kets $\left\{\left|\mathbf{x}^{\prime}\right\rangle,\left|y^{\prime}\right\rangle\right\}$ or $\left\{\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right\}$ represented in page-aligned $\{|\mathbf{x}\rangle,|\mathrm{y}\rangle\}$ basis.

Ket vector algebra has the order of $T_{m, n^{\prime}}$ transposed
$\left|x^{\prime}\right\rangle=|x\rangle\left\langle x \mid x^{\prime}\right\rangle+|y\rangle\left\langle y \mid x^{\prime}\right\rangle=|x\rangle(\cos \theta)+|y\rangle(\sin \theta)$
$\left|y^{\prime}\right\rangle=|x\rangle\left\langle x \mid y^{\prime}\right\rangle+|y\rangle\left\langle y \mid y^{\prime}\right\rangle=|x\rangle(-\sin \theta)+|y\rangle(\cos \theta)$

Bra or row vectors

$$
\begin{array}{cc}
\Rightarrow & \ddots\langle x|=\left(\left\langle x \mid x^{\prime}\right\rangle\left\langle x \mid y^{\prime}\right\rangle\right)=\left(\begin{array}{ll}
\cos \theta & -\sin \theta
\end{array}\right) \\
\Rightarrow & \langle y|=\left(\left\langle y \mid x^{\prime}\right\rangle\left\langle y \mid y^{\prime}\right\rangle\right)=\left(\begin{array}{cc}
\sin \theta & \cos \theta
\end{array}\right) \\
& \text { Abstracting bra }\langle m| \text { state vectors } \\
\text { from }
\end{array}
$$

Transformation Matrix

$$
T_{m, n^{\prime}}=\left\langle m \mid n^{\prime}\right\rangle
$$

$$
\begin{aligned}
&\langle y|=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right|+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime}\right|\left\langle y^{\prime}\right| \\
&=(\sin \theta)\left\langle x^{\prime}\right|+(\cos \theta)\left\langle y^{\prime}\right|
\end{aligned}
$$

$\left(\theta=-30^{\circ}\right)$-Rotated bras $\{\langle x|,\langle y|\}$ or $\{\mathbf{x}, \mathbf{y}\}$ represented in page-aligned $\left\{\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle\right\}$ basis.

Bra vector algebra has the same order as $T_{m, n^{\prime}}$

$$
\begin{aligned}
& \langle x|=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right|+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime}\right|=(\cos \theta)\left\langle x^{\prime}\right|+(-\sin \theta)\left\langle y^{\prime}\right| \\
& \langle y|=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right|+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime}\right|=(\sin \theta)\left\langle x^{\prime}\right|+(\cos \theta)\left\langle y^{\prime}\right|
\end{aligned}
$$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products
Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer
Feynman amplitude axiom 4
Some "Do-Something" analyzers
Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Transformation matrix $T_{m, n^{\prime}}=\left\langle m \mid n^{\prime}\right\rangle$ is array of dot or scalar products (dot products) of unit vectors or direction cosines.

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) & \left(\mathbf{x} \cdot \mathbf{y}^{\prime}\right) \\
\left(\mathrm{y} \cdot \mathbf{x}^{\prime}\right) & \left(\mathrm{y} \cdot \mathrm{y}^{\prime}\right)
\end{array}\right)
$$

Any state $|\Psi\rangle$ can be expanded in any basis $\{\langle x|,\langle\hat{j}|\}$, or $\left\{\left\langle x^{\prime}\right|,\left\langle y^{\prime}\right|\right\}, \ldots$ etc.

$$
|\Psi\rangle=|x\rangle\langle x \mid \Psi\rangle+|y\rangle\left\langle y^{\mid} \mid \Psi\right\rangle=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Psi\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi\right\rangle
$$

$$
\binom{\langle x \mid \Psi\rangle}{\langle y \mid \Psi\rangle}=\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)\binom{\left\langle x^{\prime} \mid \Psi\right\rangle}{\left\langle y^{\prime} \mid \Psi\right\rangle} \quad \text { or: } \quad\binom{\Psi_{x}}{\Psi_{y}}=\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)\binom{\Psi_{x^{\prime}}}{\Psi_{y^{\prime}}}
$$

Proof: $\langle x|=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right|+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime}\right|$ implies: $\langle x \mid \Psi\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Psi\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi\right\rangle$

$$
\langle y|=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right|+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime}\right| \text { implies: }\langle y \mid \Psi\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Psi\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi\right\rangle
$$

Transformation matrix $T_{m, n^{\prime}}=\left\langle m \mid n^{\prime}\right\rangle$ is array of dot or scalar products (dot products) of unit vectors or direction cosines.

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) & \left(\mathbf{x} \cdot \mathbf{y}^{\prime}\right) \\
\left(\mathrm{y} \cdot \mathbf{x}^{\prime}\right) & \left(\mathrm{y} \cdot \mathrm{y}^{\prime}\right)
\end{array}\right)
$$

Any state $|\Psi\rangle$ can be expanded in any basis $\{\langle x|,\langle\hat{j}|\}$, or $\left\{\left\langle x^{\prime}\right|,\left\langle y^{\prime}\right|\right\}, \ldots$ etc.

$$
|\Psi\rangle=|x\rangle\langle x \mid \Psi\rangle+|y\rangle\left\langle y^{\mid} \mid \Psi\right\rangle=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Psi\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi\right\rangle
$$

$$
\binom{\langle x \mid \Psi\rangle}{\langle y \mid \Psi\rangle}=\left(\begin{array}{c}
\left\langle x \mid x^{\prime}\right\rangle \\
\left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle \\
\left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)\binom{\left\langle x^{\prime} \mid \Psi\right\rangle}{\left\langle y^{\prime} \mid \Psi\right\rangle} \quad \text { or: } \quad\binom{\Psi_{x}}{\Psi_{y}}=\left(\begin{array}{c}
\left\langle x \mid x^{\prime}\right\rangle \\
\left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle
\end{array}\left\langle\begin{array}{l|l|}
& \left.y^{\prime}\right\rangle
\end{array}\right)\binom{\Psi_{x^{\prime}}}{\Psi_{y^{\prime}}}\right.
$$

Inverse ($\dagger=T^{*}=-1$) matrix $T_{n^{\prime}, m}$ relates $\left\{\left\langle x^{\prime} \mid \Psi\right\rangle,\left\langle y^{\prime} \mid \Psi\right\rangle\right\}$ amplitudes to $\{\langle x \mid \Psi\rangle,\langle y \mid \Psi\rangle\}$.

$$
\binom{\left\langle x^{\prime} \mid \Psi\right\rangle}{\left\langle y^{\prime} \mid \Psi\right\rangle}=\left(\begin{array}{cc}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)\binom{\langle x \mid \Psi\rangle}{\langle y \mid \Psi\rangle} \quad \text { or: } \quad\binom{\Psi_{x^{\prime}}}{\Psi_{y^{\prime}}}=\left(\begin{array}{cc}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)\binom{\Psi_{x}}{\Psi_{y}}
$$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products
Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers

Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$) Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons")

$$
h=2 \pi \hbar=6.6310^{-34} \mathrm{~J} S \quad \text { Planck constant }
$$

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$) Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons")

$$
h=2 \pi \hbar=6.63 \cdot 10^{-34} \mathrm{JS}
$$

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$) Planck axiom: \boldsymbol{E}-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is f.

$$
h=2 \pi \hbar=6.63 \cdot 10^{-34} \mathrm{JS} \quad \text { Planck constant }
$$

x-photon counter

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$) Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is f.

$$
\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}} \begin{aligned}
& \text { Planck constant }
\end{aligned}
$$

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)
Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.

$$
\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}} \begin{aligned}
& h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS} \\
& \hline \text { Planck constant } \\
& c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \\
& \text { Light speed } \\
& \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \text { Electrostatic constant }
\end{aligned}
$$

Coulomb constant: $k=1 / 4 \pi \varepsilon_{0}$

| Ψ-amplitude-squares sum to exciton-number N. | (...or photon-number N) | Quantum
 em wave
 theory |
| ---: | ---: | ---: |$\quad=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}$

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)
Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.

$\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}}$| $h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS}$ |
| :--- |
| Planck constant
 $c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1}$
 $\varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} N^{-1} m^{-2}$ Electrostatic constant |

Coulomb constant: $k=1 / 4 \pi \varepsilon_{0}$

| T-amplitude-squares sum to exciton-number N. | (...or photon-number N) | Quantum
 em wave
 theory |
| ---: | ---: | ---: | ---: |$\quad=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}$

See also the 2005 Pirelli Challenge Relativity Site:
http://www.uark.edu/ua/pirelli/html/light energy flux_I.html http://www.uark.edu/ua/pirelli/html/amplitude_probability_I.html

Fig. 1.2.3 Photon $x-y$ photon counting x '-state

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)
Planck axiom: \boldsymbol{E}-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.

$\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}}$| $h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS}$ |
| :--- |
| Planck constant
 $c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1}$
 Light speed
 $\varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} N^{-1} \mathrm{~m}^{-2}$ Electrostatic constant |

Coulomb constant: $k=1 / 4 \pi \varepsilon_{0}$

T-amplitude-squares sum to exciton-number N.	(...or photon-number N)	Quantum em wave theory	$=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}$
$N=\left\|\Psi_{x}\right\|^{2}+\left\|\Psi_{y}\right\|^{2}=\langle x \mid \Psi\rangle^{*}\langle x \mid \Psi\rangle+\langle y \mid \Psi\rangle^{*}\langle y \mid \Psi\rangle$	Classical em wave theory		
Poynting energy flux $S\left(J / m^{2} s\right)$ or energy density $U\left(J / m^{3}\right)$ of light beam.			
$S=c U$, where: $U=\varepsilon_{0}\left(\left\|E_{x}\right\|^{2}+\left\|E_{y}\right\|^{2}\right)=\varepsilon_{0}\left(E_{x}^{*} E_{x}+E_{y}^{*} E_{y}\right)=\varepsilon_{0}\left(E_{x}(0)^{2}+E_{y}(0)^{2}\right)$			

Equate U to Planck's N - "photon" quantum energy density $N \hbar \omega / V$

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)

Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.

$\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}}$| $h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS}$ |
| :--- |
| Planck constant
 $c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1}$
 Light speed
 $\varepsilon_{0}=8.854 \cdot 10^{-12} C^{2} N^{-1} m^{-2}$ Electrostatic constant |

Coulomb constant: $k=1 / 4 \pi \varepsilon_{0}$

$$
\begin{array}{rrr}
\hline \Psi \text {-amplitude-squares sum to exciton-number } N . & \text { (...or photon-number } N \text {) } & \begin{array}{c}
\text { Quantum } \\
\text { em wave } \\
\text { theory }
\end{array} \\
\qquad N=\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}=\langle x \mid \Psi\rangle^{*}\langle x \mid \Psi\rangle+\langle y \mid \Psi\rangle^{*}\langle y \mid \Psi\rangle & =9 \cdot 10^{9} \mathrm{~J} / \mathrm{C} \\
\hline
\end{array}
$$

Poynting energy flux $S\left(J / m^{2} s\right)$ or energy density $U\left(J / m^{3}\right)$ of light beam.
$S=c U$, where: $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}\left(E_{x}^{*} E_{x}+E_{y}^{*} E_{y}\right)=\varepsilon_{0}\left(E_{x}(0)^{2}+E_{y}(0)^{2}\right)$

Classical em wave theory

Equate U to Planck's N - "photon" quantum energy density $N \hbar \omega / V$

$$
\frac{N \hbar \omega}{V}=U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0} f^{2}(\underbrace{\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}}_{N})
$$

Fig. 1.2.3 Photon $x-y$ photon counting x^{\prime}-state

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)
Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.

$\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}}$| $h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS}$ |
| :--- |
| Planck constant
 $c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1}$
 Light speed
 $\varepsilon_{0}=8.854 \cdot 10^{-12} C^{2} N^{-1} m^{-2}$ Electrostatic constant |

Coulomb constant: $k=1 / 4 \pi \varepsilon_{0}$
Ψ-amplitude-squares sum to exciton-number N.
$N=\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}=\langle x \mid \Psi\rangle^{*}\langle x \mid \Psi\rangle+\langle y \mid \Psi\rangle^{*}\langle y \mid \Psi\rangle$
Quantum
em wave
theory
$=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}$

Poynting energy flux $S\left(J / m^{2} s\right)$ or energy density $U\left(J / m^{3}\right)$ of light beam.
$S=c U$, where: $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}\left(E_{x}^{*} E_{x}+E_{y}^{*} E_{y}\right)=\varepsilon_{0}\left(E_{x}(0)^{2}+E_{y}(0)^{2}\right)$

Classical em wave theory

Equate U to Planck's N - "photon" quantum energy density $N \hbar \omega / V$

$$
\begin{aligned}
& \frac{N \hbar \omega}{V}=U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0} f^{2}(\underbrace{\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}}_{N}) \\
& \text { Photon number } N \text { for beam is: }
\end{aligned}
$$

$$
N=\frac{U \cdot V}{\hbar \omega}=\frac{\varepsilon_{0} V}{\hbar \omega}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\frac{\varepsilon_{0} V}{\hbar \omega} f^{2} \overbrace{\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}})
$$

(divide by N)

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)
Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.

$\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}}$| $h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS}$ |
| :--- |
| Planck constant
 $c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1}$
 Light speed
 $\varepsilon_{0}=8.854 \cdot 10^{-12} C^{2} N^{-1} m^{-2}$ Electrostatic constant |

Coulomb constant: $k=1 / 4 \pi \varepsilon_{0}$
Ψ-amplitude-squares sum to exciton-number N.
$N=\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}=\langle x \mid \Psi\rangle^{*}\langle x \mid \Psi\rangle+\langle y \mid \Psi\rangle^{*}\langle y \mid \Psi\rangle$
Quantum em wave
theory
$=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}$

Poynting energy flux $S\left(J / m^{2} s\right)$ or energy density $U\left(J / m^{3}\right)$ of light beam.
$S=c U$, where: $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}\left(E_{x}^{*} E_{x}+E_{y}^{*} E_{y}\right)=\varepsilon_{0}\left(E_{x}(0)^{2}+E_{y}(0)^{2}\right)$

Classical em wave theory

Equate U to Planck's N - "photon" quantum energy density $N \hbar \omega / V$

$$
\begin{aligned}
& \frac{N \hbar \omega}{V}=U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0} f^{2}(\underbrace{\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}}_{N}) \\
& \text { Photon number } N \text { for beam is: }
\end{aligned}
$$

$$
\begin{aligned}
& N=\frac{U \cdot V}{\hbar \omega}=\frac{\varepsilon_{0} V}{\hbar \omega}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\frac{\varepsilon_{0} V}{\hbar \omega} f^{2} \overbrace{\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}}) \\
& 1=\frac{U \cdot V}{N \hbar \omega}=\frac{\varepsilon_{0} V}{N \hbar \omega}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\frac{\varepsilon_{0} V}{\hbar \omega} f^{2} \leftarrow \ldots \ldots .
\end{aligned}
$$

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)

Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.
$\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}}$

$$
\begin{aligned}
& h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS} \\
& c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \\
& \text { Planck constant } \\
& \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \text { Electrostatic constant }
\end{aligned}
$$

$$
\begin{aligned}
& \text { T-amplitude-squares sum to exciton-number } N \text {. } \\
& \qquad N=\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}=\langle x \mid \Psi\rangle^{*}\langle x \mid \Psi\rangle+\langle y \mid \Psi\rangle^{*}\langle y \mid \Psi\rangle
\end{aligned}
$$

Quantum

$$
=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}
$$

Poynting energy flux $S\left(J / m^{2} s\right)$ or energy density $U\left(J / m^{3}\right)$ of light beam.
$S=c U$, where: $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}\left(E_{x}^{*} E_{x}+E_{y}^{*} E_{y}\right)=\varepsilon_{0}\left(E_{x}(0)^{2}+E_{y}(0)^{2}\right)$

Classical em wave theory

Equate U to Planck's N - "photon" quantum energy density $N \hbar \omega / V$

$$
\frac{N \hbar \omega}{V}=U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0} f^{2}(\underbrace{\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}})
$$

Photon number N for beam is:

$$
\begin{aligned}
& N=\frac{U \cdot V}{\hbar \omega}=\frac{\varepsilon_{0} V}{\hbar \omega}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\frac{\varepsilon_{0} V}{\hbar \omega} f^{2}\left(\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}\right) \\
& 1=\frac{U \cdot V}{N \hbar \omega}=\frac{\varepsilon_{0} V}{N \hbar \omega}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\frac{\varepsilon_{0} V}{\hbar \omega} f^{2} \leftarrow \text { (divided:by } N \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quantum field } \\
& \text { constant } f \quad f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}
\end{aligned}
$$

Fig. 1.2.3 Photon $x-y$ photon counting x^{\prime}-state

Planck's energy and N-quanta (Cavity/Beam of volume V with wave mode of frequency $\omega=2 \pi \nu$)

Planck axiom: $\quad \boldsymbol{E}$-field energy density U in cavity/beam mode- ω is: $U=N \hbar \omega / V=N h \nu / V \quad$ (N "photons") \boldsymbol{E}-field vector $\left(E_{x}, E_{y}\right)=f \cdot\left(\Psi_{x}, \Psi_{y}\right)$ where quantum field proportionality constant is $f=f\left(\hbar, \omega, V, \varepsilon_{0}\right)$.
$\binom{E_{x}}{E_{y}}=\binom{E_{x}(0) e^{i k z-i \omega t}}{E_{y}(0) e^{i k z-i \omega t}} \cong\binom{E_{x}(0) e^{-i \omega t}}{E_{y}(0) e^{-i \omega t}}=f\binom{\Psi_{x}}{\Psi_{y}}$

$$
\begin{aligned}
& \hline h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{Js} \quad \text { Planck constant } \\
& c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \text { Light speed } \\
& \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \text { Electrostatic constant }
\end{aligned}
$$

Ψ-amplitude-squares sum to exciton-number N. (...or photon-number N)

$$
N=\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}=\langle x \mid \Psi\rangle^{*}\langle x \mid \Psi\rangle+\langle y \mid \Psi\rangle^{*}\langle y \mid \Psi\rangle
$$

$=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}$
Quantum

$$
=9 \cdot 10^{9} \mathrm{~J} / \mathrm{C}
$$

Poynting energy flux $S\left(J / m^{2} s\right)$ or energy density $U\left(J / m^{3}\right)$ of light beam.
$S=c U$, where: $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}\left(E_{x}^{*} E_{x}+E_{y}^{*} E_{y}\right)=\varepsilon_{0}\left(E_{x}(0)^{2}+E_{y}(0)^{2}\right)$

Classical em wave theory

Equate U to Planck's N - "photon" quantum energy density $N \hbar \omega / V$

$$
\begin{aligned}
& \frac{N \hbar \omega}{V}=U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0} f^{2}(\underbrace{\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}}_{N}) \\
& \text { Photon number } N \text { for beam is: }
\end{aligned}
$$

$$
\begin{aligned}
& N=\frac{U \cdot V}{\hbar \omega}=\frac{\varepsilon_{0} V}{\hbar \omega}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\frac{\varepsilon_{0} V}{\hbar \omega} f^{2}\left(\left|\Psi_{x}\right|^{2}+\left|\Psi_{y}\right|^{2}\right) \\
& \left.1=\frac{U \cdot V}{N \hbar \omega}=\frac{\varepsilon_{0} V}{N \hbar \omega}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\frac{\varepsilon_{0} V}{\hbar \omega} f^{2} \leftarrow-\ldots \text { (divided!by } N\right)
\end{aligned}
$$

$\begin{gathered}\text { quantum field } \\ \text { constant } f \quad f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}\end{gathered}=\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N} \text { for } N \text {-photons } . ~}$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products
Planck's energy and N-quanta (Cavity/Beam wave mode)
\geq Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers

Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Did Max Planck Goof? After his 1900 (U= $\hbar \omega N$)-axiom paper, Max Planck felt despondent and that his $(U=\hbar \omega N)$-axiom was a career-ending goof. Here is one paradox (and its resolution): Paradox: We know...
Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}.

$$
U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad \text { where: } \mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}
$$

But:...
Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad$ ($V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma$ ($\sigma=$ beam area)

Did Max Planck Goof? After his 1900 (U=ћ 1 N)-axiom paper, Max Planck felt despondent

 and that his $(U=\hbar \omega N)$-axiom was a career-ending goof. Here is one paradox (and its resolution):
Paradox: We know...

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}.

$$
U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad \text { where: } \mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}
$$

But:...
Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode- ω is: $U=\hbar \omega N / V \quad$ ($V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)

Quick Resolution:

Given constant ($N=1$)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$
quantum field
constant f

$$
\text { const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}=\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons }
$$

$$
\begin{aligned}
& \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
& \varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{aligned}
$$

Did Max Planck Goof?
After his $1900(U=\hbar \omega N)$-axiom paper, Max Planck felt despondent and that his $(U=\hbar \omega N)$-axiom was a career-ending goof. Here is one paradox (and its resolution):

Paradox: We know...

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}.

$$
U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad \text { where: } \mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}
$$

But:...
Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad$ ($V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)

Quick Resolution:

Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$
quantum field constant f

$$
\text { const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}=\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons }
$$

$$
\begin{aligned}
& \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
& \varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{aligned}
$$

Formal Resolution:

Harmonic Oscillator Hamiltonian:

$$
H=\left(\mathbf{p}^{2}+\omega^{2} \mathbf{x}^{2}\right) / 2
$$

Did Max Planck Goof?
After his $1900(U=\hbar \omega N)$-axiom paper, Max Planck felt despondent and that his $(U=\hbar \omega N)$-axiom was a career-ending goof. Here is one paradox (and its resolution):

Paradox: We know...

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}. $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad$ where: $\mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}$
But:...
Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad$ ($V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)

Quick Resolution:

Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$
quantum field
constant f

$$
\text { const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}=\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons }
$$

$$
\begin{aligned}
& \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
& \varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{aligned}
$$

Formal Resolution:

Harmonic Oscillator Hamiltonian:

$$
H=\left(\mathbf{p}^{2}+\omega^{2} \mathbf{x}^{2}\right) / 2
$$

Did Max Planck Goof?
After his $1900(U=\hbar \omega N)$-axiom paper, Max Planck felt despondent and that his $(U=\hbar \omega N)$-axiom was a career-ending goof. Here is one paradox (and its resolution):

Paradox: We know...

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=(\text { const. }) \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}. $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad$ where: $\mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}$
But:...
Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad$ ($V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)

Quick Resolution:

Given constant (N=1)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$
quantum field
constant f

$$
\text { const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}=\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons }
$$

$$
\begin{aligned}
& \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
& \varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{aligned}
$$

Formal Resolution:

Harmonic Oscillator Hamiltonian:

$$
H=\left(\mathbf{p}^{2}+\omega^{2} \mathbf{x}^{2}\right) / 2
$$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer
Feynman amplitude axiom 4
Some "Do-Something" analyzers
Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

What's a photon worth? What field is there for $N=1$ in a cavity of energy $(U=\hbar \omega N)$?

Classical:
 $$
c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.842 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{2} \quad e=1.602177 \cdot 10^{-19} \mathrm{Coul}
$$

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}. $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad$ where: $\mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}$
Quantum: $\quad h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS} \quad c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad(V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)

Quantum field: H.O. quantum energy eigenvalues: $\omega_{N}=\hbar \omega(N+1 / 2)$
Given constant ($N=1$)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$
quantum field
constant $f$$\quad$ const. $=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}=\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}}$ for N-photons

$$
\begin{aligned}
& \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
& \varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{aligned}
$$

Example: $V=(1 / 4 \text { micron })^{3}$ cubic cavity fundamental (1/2-wave for 600 THz green) with $N=10^{6}$ photons

What's a photon worth? What field is there for $N=1$ in a cavity of energy $(U=\hbar \omega N)$?

Classical:
 $$
c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \varepsilon_{0}=8.842 \cdot 10^{-12} C^{2} N^{-1} m^{2}
$$
 $$
e=1.602177 \cdot 10^{-19} \mathrm{Coul}
$$

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=(\text { const. }) \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}. $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad$ where: $\mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}$
Quantum: $\quad h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS} \quad c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω.
\boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad(V=$ cavity volume)
\boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)
Quantum field: H.O. quantum energy eigenvalues: $\omega_{N}=\hbar \omega(N+1 / 2)$
Given constant ($N=1$)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$

$$
\begin{array}{rlrl}
\begin{array}{c}
\text { quantum field } \\
\text { constant } f
\end{array} \quad \text { const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}} & =\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons } & & \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{array}
$$

Example: $V=(1 / 4 \text { micron })^{3}$ cubic cavity fundamental (1/2-wave for 600 THz green) with $N=10^{6}$ photons

What's a photon worth? What field is there for $N=1$ in a cavity of energy $(U=\hbar \omega N)$?

Classical: $\quad c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.842 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{2} \quad e=1.602177 \cdot 10^{-19} \mathrm{Coul}$

 Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}. $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad$ where: $\mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}$
Quantum: $\quad h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS} \quad c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad(V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)

Quantum field: H.O. quantum energy eigenvalues: $\omega_{N}=\hbar \omega(N+1 / 2)$
Given constant ($N=1$)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$

$$
\begin{aligned}
\begin{aligned}
& \text { quantum field const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}}=\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons } \\
& \text { constant } f
\end{aligned} & \begin{aligned}
\varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{aligned} \\
& =\sqrt{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}=|\mathbf{E}| \text { for 1-photon }
\end{aligned}
$$

Example: $V=(1 / 4 \text { micron })^{3}$ cubic cavity fundamental (1/2-wave for 600 THz green) with $N=10^{6}$ photons Energy per $N=1$ photon $=h v=6.63 \cdot 10^{-34} \mathrm{Js} \cdot 600 \cdot 10^{12} / \mathrm{s}=4.0 \cdot 10^{-19} \mathrm{~J}=2.5 \mathrm{e} \mathrm{V}$

What's a photon worth? What field is there for $N=1$ in a cavity of energy $(U=\hbar \omega N)$?
or $n=1$ in a beam of Poynting flux ($S=\hbar \omega n / \sigma$)?

Classical:
 $$
c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.842 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{2}
$$
 $$
e=1.602177 \cdot 10^{-19} \mathrm{Coul}
$$

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}. $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad$ where: $\mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}$
Quantum: $h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{JS} \quad c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω. \boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad(V=$ cavity volume) \boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)

Quantum field: H.O. quantum energy eigenvalues: $\omega_{N}=\hbar \omega(N+1 / 2)$
Given constant ($N=1$)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$

$$
\begin{array}{rlrl}
\begin{array}{c}
\text { quantum field } \\
\text { constant } f
\end{array} \quad \text { const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}} & =\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons } & & \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V
\end{array}
$$

Example: $V=(1 / 4 \text { micron })^{3}$ cubic cavity fundamental (1/2-wave for 600 THz green) with $N=10^{6}$ photons Energy per $N=1$ photon $=h v=6.63 \cdot 10^{-34} \mathrm{Js} \cdot 600 \cdot 10^{12} / \mathrm{s}=4.0 \cdot 10^{-19} \mathrm{~J}=2.5 \mathrm{eV}$ E-field for $N=1$ photon $=|\mathbb{E}|=\sqrt{ }\left(h v / V \varepsilon_{0}\right)=1.7 \cdot 10^{6}$ Volts $/ m$

What's a photon worth? What field is there for $N=1$ in a cavity of energy $(U=\hbar \omega N)$?
or $n=1$ in a beam of Poynting flux ($S=\hbar \omega n / \sigma$)?

Classical:
 $$
c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.842 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{2}
$$
 $$
e=1.602177 \cdot 10^{-19} \mathrm{Coul}
$$

Energy ε for classical harmonic oscillation is quadratic in frequency ω and amplitude A.

$$
\varepsilon=\left(\text { const.) } \omega^{2} A^{2}=1 / 2 m \omega^{2} A^{2}\right.
$$

Energy U for classical electromagnetic cavity mode is quadratic in frequency ω and vector potential \mathbf{A}. $U=\varepsilon_{0}\left(\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}\right)=\varepsilon_{0}|\mathbf{E}|^{2}=\varepsilon_{0} \omega^{2}|\mathbf{A}|^{2} \quad$ where: $\mathbf{E}=-\partial_{t} \mathbf{A}=i \omega \mathbf{A}$

Quantum: $h=2 \pi \hbar=6.626075 \cdot 10^{-34} \mathrm{Js} \quad c=2.99792458 \cdot 10^{8} \mathrm{~ms}^{-1} \quad \varepsilon_{0}=8.854187817 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ Planck's quantum axioms gives field energy and flux that appear to be linear in its frequency ω.
\boldsymbol{E}-field energy density U in cavity mode $-\omega$ is: $U=\hbar \omega N / V \quad(V=$ cavity volume)
\boldsymbol{E}-field Poynting flux $S=c U$ in beam mode- ω is: $S=\hbar \omega n / \sigma \quad$ ($\sigma=$ beam area)
Quantum field: H.O. quantum energy eigenvalues: $\omega_{N}=\hbar \omega(N+1 / 2)$
Given constant ($N=1$)-quantum field factor f, squared $|\mathbf{E}|=f \sqrt{ } N$ is linear in $\omega:|\mathbf{E}|^{2}=f^{2} N=\hbar \omega N / V \varepsilon_{0}$

$$
\begin{array}{rlrl}
\begin{array}{c}
\text { quantum field } \\
\text { constant } f
\end{array} \quad \text { const. }=f=\sqrt{\frac{\hbar \omega}{V \varepsilon_{0}}} & =\sqrt{\frac{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}{N}}=\frac{|\mathbf{E}|}{\sqrt{N}} \text { for } N \text {-photons } & & \varepsilon_{0}|\mathbf{E}|^{2}=\hbar \omega N / V=U \\
& \varepsilon_{0} \omega^{2}|\mathbf{A}|^{2}=\hbar \omega N / V \\
& =\sqrt{\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2}}=|\mathbf{E}| \text { for 1-photon } &
\end{array}
$$

Example: $V=(1 / 4 m i c r o n)^{3}$ cubic cavity fundamental (1/2-wave for 600 THz green) with $N=10^{6}$ photons
Energy per $N=1$ photon $=h v=6.63 \cdot 10^{-34} \mathrm{Js} \cdot 600 \cdot 10^{12} / \mathrm{s}=4.0 \cdot 10^{-19} \mathrm{~J}=2.5 \mathrm{eV}$
E-field for $N=1$ photon $=|\mathbb{E}|=\sqrt{ }\left(\mathrm{hv} / V \varepsilon_{0}\right)=1.7 \cdot 10^{6} \mathrm{Volts} / \mathrm{m}$
Energy per $N=10^{6}$ photons $=10^{6} \mathrm{hv}=10^{6} 6.63 \cdot 10^{-34} \mathrm{Js} \cdot 600 \cdot 10^{12} / \mathrm{s}=4.0 \cdot 10^{-13} \mathrm{~J}=2.5 \mathrm{MeV}$

Was Planck's linear-in-frequency-v energy axiom a Goof?
Not at all. It's really not linear-in-frequency after all.
The $\varepsilon_{0}|\mathbf{E}|^{2}=h N \cdot v$ axiom IS in fact a product of TWO frequencies!
The 2nd "frequency" is COUNT RATE N.
As shown later: Both frequencies transform by Relativistic Doppler factor $e^{ \pm p}$:
Coherent frequency is light quality: $v^{\prime}=e^{ \pm \rho} v$. Incoherent frequency is light quantity: $N^{\prime}=e^{ \pm \rho} N$.

This would imply that the $|\mathbf{E}|$-field also transforms like a frequency: $|\mathbf{E}|^{\prime}==e^{ \pm p}|\mathbf{E}|$.

Indeed, E-field amplitude is a frequency, too!

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer
Feynman amplitude axiom 4
Some "Do-Something" analyzers
Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Feynman amplitude axiom 1

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\left\langle j \mid k^{\prime}\right\rangle$.

Feynman-Dirac Interpretation of

$$
\left\langle j \mid k^{\prime}\right\rangle
$$

= Amplitude of state-j after state- k ' is forced to choose from available m-type states

Axiom 1: The absolute square $\left|\left\langle j \mid k^{\prime}\right\rangle\right|^{2}=\left\langle j \mid k^{\prime}\right\rangle^{*}\left\langle j \mid k^{\prime}\right\rangle$ gives probability for occurrence in state-j of a system that started in state- $k^{\prime}=1^{\prime}, 2^{\prime}, . .$, or n^{\prime} from one sorter and then was forced to choose between states $j=1,2, \ldots, n$ by another sorter.

Amplitude axioms apply to all intensity $\begin{gathered}\text { prabability } \\ \text { conserving systems }\end{gathered}$ This includes, first of all, spin-1/2 electron, proton,..., ${ }^{13} \mathrm{C}, \ldots$ particles (Fermions)

Fig. 1.2.4 Electron up-dn-spin counting of a tilted spin-up (\uparrow ()-state

A miew probability
Amplitude axioms apply to all intensity-conserving systems This includes, first of all, spin-1/2 electron, proton,..., ${ }^{13} \mathrm{C}, \ldots$ particles (Fermions)

Fig. 1.2.4 Electron up-dn-spin counting of a tilted spin-up (\uparrow ()-state

Amplitude axioms apply to all intensity prabability conserving systems This includes, first of all, spin-1/2 electron, proton, ..., ${ }^{13} \mathrm{C}, \ldots$ particles (Fermions)

Fig. 1.2.4 Electron up-dn-spin counting of a tilted spin-up (\uparrow ()-state

Amplitude axioms apply to all intensity $\begin{gathered}\text { prabability } \\ \text { conserving systems }\end{gathered}$ This includes, first of all, spin-1/2 electron, proton, ..., ${ }^{13} \mathrm{C}, \ldots$ particles (Fermions)

Fig. 1.2.4 Electron up-dn-spin counting of a tilted spin-up (\uparrow ()-state

Amplitude axioms apply to all intensity $\begin{gathered}\text { prabability } \\ \text { conserving systems }\end{gathered}$ This includes, first of all, spin-1/2 electron, proton,..., ${ }^{13} \mathrm{C}, \ldots$ particles (Fermions)

Fig. 1.2.4 Electron up-dn-spin counting of a tilted spin-up (\uparrow)-state

Amplitude axioms apply to all intensity $\begin{gathered}\text { prabability } \\ \text { conserving systems }\end{gathered}$ This includes, first of all, spin-1/2 electron, proton, ... ${ }^{13} \mathrm{C}, \ldots$ particles (Fermions)

Fig. 1.2.4 Electron up-dn-spin counting of a tilted spin-up (\uparrow)-state

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer
Feynman amplitude axiom 4 Some "Do-Something" analyzers

Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Q:What comes out of an analyzer channel or branch-b?

A: Want to determine or calculate:
its base state $|b\rangle$, its amplitude $\langle b \mid \Psi\rangle$, and its probability $|\langle b \mid \Psi\rangle|^{2} \quad$ using T-matrices

Q:What comes out of an analyzer channel or branch-b?

A: Want to determine or calculate: its base state $|b\rangle$, its amplitude $\langle b \mid \Psi\rangle$, and its probability $|\langle b \mid \Psi\rangle|^{2} \quad$ using T-matrices

Q:What comes out of an analyzer channel or branch-b?

A: Want to determine or calculate:
its base state $|b\rangle$, its amplitude $\langle b \mid \Psi\rangle$, and its probability $|\langle b \mid \Psi\rangle|^{2} \quad$ using T-matrices

Base
State
$|\mathrm{x}\rangle$
Amplitude $=$
$\frac{1.0}{\text { Probability }=}$
1.0

Q:What comes out of an analyzer channel or branch-b?

A: Want to determine or calculate:
its base state $|b\rangle$, its amplitude $\langle b \mid \Psi\rangle$, and its probability $|\langle b \mid \Psi\rangle|^{2} \quad$ using T-matrices

State

$$
\begin{gathered}
\text { Amplitude }= \\
\frac{1.0}{\text { Probability }=} \\
1.0
\end{gathered}
$$

Q:What comes out of an analyzer channel or branch-b?

A: Want to determine or calculate:
its base state $|b\rangle$, its amplitude $\langle b \mid \Psi\rangle$, and its probability $|\langle b \mid \Psi\rangle|^{2} \quad$ using T-matrices

Q:What comes out of an analyzer channel or branch-b?

A: Want to determine or calculate:
its base state $|b\rangle$, its amplitude $\langle b \mid \Psi\rangle$, and its probability $|\langle b \mid \Psi\rangle|^{2} \quad$ using T-matrices

Q:What comes out of an analyzer channel or branch-b?

A. Want to determine or calculate:
its base state $|b\rangle$, its amplitude $\langle b \mid \Psi\rangle$, and its probability $|\langle b \mid \Psi\rangle|^{2} \quad$ using T-matrices

$$
\left\langle e_{p}\right| D_{o} C_{n} B_{m}|\Psi\rangle=\left\langle e_{p} \mid d_{o}\right\rangle\left\langle d_{o} \mid c_{n}\right\rangle\left\langle c_{n} \mid b_{m}\right\rangle\left\langle b_{m} \mid \Psi\right\rangle
$$

Fig. 1.3.10 Beams-amplitude products for successive beam sorting

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth? Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b? Sample calculations
\longrightarrow Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers

Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\left\langle j \mid k^{\prime}\right\rangle$. Axiom 1: The absolute square $\left|\left\langle j \mid k^{\prime}\right\rangle\right|^{2}=\left\langle j \mid k^{\prime}\right\rangle^{*}\left\langle j \mid k^{\prime}\right\rangle$ gives probability for

Feynman-Dirac Interpretation of

$$
\left\langle j \mid k^{\prime}\right\rangle
$$

=Amplitude of state-j after state- k ' is forced to choose from available m-type states occurrence in state-j of a system that started in state- $k^{\prime}=1^{\prime}, 2^{\prime}, . .$, or n^{\prime} from one sorter and then was forced to choose between states $j=1,2, \ldots, n$ by another sorter.

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\left\langle j \mid k^{\prime}\right\rangle$. Axiom 1: The absolute square $\left|\left\langle j \mid k^{\prime}\right\rangle\right|^{2}=\left\langle j \mid k^{\prime}\right\rangle^{*}\left\langle j \mid k^{\prime}\right\rangle$ gives probability for occurrence in state-j of a system that started in state- $k^{\prime}=1^{\prime}, 2^{\prime}, .$, or n^{\prime} from one sorter and then was forced to choose between states $j=1,2, \ldots, n$ by another sorter.
(2) The conjugation or inversion axiom (time reversal symmetry)

The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate $\left\langle j \mid k^{\prime}\right\rangle^{*}$ of an amplitude $\left\langle j \mid k^{\prime}\right\rangle$ equals its reverse: $\left\langle j \mid k^{\prime}\right\rangle^{*}=\left\langle k^{\prime} \mid j\right\rangle$

Feynman amplitude axioms 1-3

(1) The probability axiom

The first axiom deals with physical interpretation of amplitudes $\left\langle j \mid k^{\prime}\right\rangle$. Axiom 1: The absolute square $\left|\left\langle j \mid k^{\prime}\right\rangle\right|^{2}=\left\langle j \mid k^{\prime}\right\rangle^{*}\left\langle j \mid k^{\prime}\right\rangle$ gives probability for occurrence in state-j of a system that started in state- $k^{\prime}=1^{\prime}, 2^{\prime}, . .$, or n^{\prime} from one sorter and then was forced to choose between states $j=1,2, \ldots, n$ by another sorter.
(2) The conjugation or inversion axiom (time reversal symmetry)

The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate $\left\langle j \mid k^{\prime}\right\rangle^{*}$ of an amplitude $\left\langle j \mid k^{\prime}\right\rangle$ equals its reverse: $\left\langle j \mid k^{\prime}\right\rangle^{*}=\left\langle k^{\prime} \mid j\right\rangle$

(3) The orthonormality or identity axiom

The third axiom concerns the amplitude for "re measurement" by the same analyzer.
Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one, and for all others it is zero:

$$
\langle j \mid k\rangle=\delta_{j k}=\left\{\begin{array}{c}
1 \text { if: } j=k \\
0 \text { if: } j \neq k
\end{array}\right\}=\left\langle j^{\prime} \mid k^{\prime}\right\rangle
$$

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
1 Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer Feynman amplitude axiom 4 Some "Do-Something" analyzers

Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

Fig. 1.3.2 Computer sketch of simulated polarization analyzer in "do-nothing" mode

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters The "Do-Nothing" analyzer
Feynman amplitude axiom 4
Some "Do-Something" analyzers
Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

Feynman amplitude axiom 4

(4) The completeness or closure axiom

The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above.
Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

$$
\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

Beam Analyzers: Fundamental Quantum Processes (Sorter-Unsorter pairs)

Fig. 1.3.1 Anatomy of ideal optical polarization analyzer in its "Do nothing" mode

Feynman amplitude axiom 4

(4) The completeness or closure axiom

The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is,

$$
\mathbb{I}_{\text {by } 1}
$$ a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above. Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

$$
\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

May use axioms 1-3 to prove special case:

$$
1=\left\langle m^{\prime} \mid m^{\prime}\right\rangle \text { by } 3
$$

$$
1=\sum_{k=1}^{n}\left|\left\langle k \mid m^{\prime}\right\rangle\right|^{2}
$$

$$
\mathbb{1}_{\text {by } 1}
$$

$$
1=\sum_{k=1}^{n}\left\langle k \mid m^{\prime}\right\rangle^{*}\left\langle k \mid m^{\prime}\right\rangle
$$

$$
\mathbb{\|}_{\text {by } 2}
$$

$$
\begin{gathered}
\sum_{k=1}^{n}\left\langle m^{\prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle \\
=\left\langle m^{\prime} \mid m^{\prime}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& \left.\left.\left.\right|_{i=1} ^{2}\left\langle\left.\right|^{2} \mid j\right\rangle\langle j|\right|^{\prime}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Feynman amplitude axioms 1-4

(1) The probability axiom
 (Go to Lect. 3 p.3-5)

The first axiom deals with physical interpretation of amplitudes $\left\langle j \mid k^{\prime}\right\rangle$. Axiom 1: The absolute square $\left|\left\langle j \mid k^{\prime}\right\rangle\right|^{2}=\left\langle j \mid k^{\prime}\right\rangle^{*}\left\langle j \mid k^{\prime}\right\rangle$ gives probability for occurrence in state-j of a system that started in state- $k^{\prime}=1^{\prime}, 2^{\prime}, . .$, or n^{\prime} from one sorter and then was forced to choose between states $j=1,2, \ldots, n$ by another sorter.
(2) The conjugation or inversion axiom (time reversal symmetry)

The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate $\left\langle j \mid k^{\prime}\right\rangle^{*}$ of an amplitude $\left\langle j \mid k^{\prime}\right\rangle$ equals its reverse: $\left\langle j \mid k^{\prime}\right\rangle^{*}=\left\langle k^{\prime} \mid j\right\rangle$

(3) The orthonormality or identity axiom

The third axiom concerns the amplitude for "re measurement" by the same analyzer.
Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one,
and for all others it is zero:

$$
\begin{aligned}
& \text { is zero: } \\
& \langle j \mid k\rangle=\delta_{j k}
\end{aligned}=\left\{\begin{array}{c}
1 \text { if: } j=k \\
0 \text { if: } j \neq k
\end{array}\right\}=\left\langle j^{\prime} \mid k\right\rangle
$$

(4) The completeness or closure axiom

The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above. Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

$$
\left\langle j^{\prime \prime} \mid m^{\prime}\right\rangle=\sum_{k=1}^{n}\left\langle j^{\prime \prime} \mid k\right\rangle\left\langle k \mid m^{\prime}\right\rangle
$$

(a)"Do-Nothing"Analyzer $\Theta_{\text {out }}$-polarized light

$\Theta_{o u t}=\Theta_{i n}$
No change if analyzer does nothing

> tilt of analyzer

(b)Simulation
setting of input
 -30° polarization

$$
2 \Theta_{i n}=\beta_{\text {in }}=200^{\circ}
$$

Imagine final $x y$-sorter analyzes output beam into x and y-components.

Imagine final $x y_{\downarrow}$-sorter analyzes output beam into x and y-components.

Imagine final $x y_{\downarrow}$-sorter analyzes output beam into x and y-components.
 $\left\langle x^{\prime} \mid \Theta i n\right\rangle=\cos \left(\Theta_{i n}-\Theta\right)$ $\left\langle y^{\prime} \mid \Theta i n\right\rangle=\sin (\Theta i n-\Theta)$
x-Output is: $\langle x \mid \Theta o u t\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Theta i n\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Theta i n\right\rangle=\cos \Theta \cos (\Theta i n-\Theta)-\sin \Theta \sin (\Theta i n-\Theta)=\cos \Theta$ in y-Output is: $\langle y \mid \Theta o u t\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Theta i n\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Theta i n\right\rangle=\sin \Theta \cos (\Theta i n-\Theta)-\cos \Theta \sin (\Theta i n-\Theta)=\sin \Theta i n$.
(Recall $\cos (a+b)=\cos a \cos b-\sin a \sin b$ and $\sin (a+b)=\sin a \cos b+\cos a \sin b)$

Imagine final $x y$-sorter analyzes output beam into x and y-components.
 $\left\langle x^{\prime} \mid \Theta_{i n}\right\rangle=\cos \left(\Theta_{i n}-\Theta\right)$ $\left\langle y^{\prime} \mid \Theta i n\right\rangle=\sin (\Theta i n-\Theta)$
x-Output is: $\left\langle x \mid \Theta_{o u t}\right\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Theta i n\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Theta i n\right\rangle=\cos \Theta \cos (\Theta i n-\Theta)-\sin \Theta \sin (\Theta i n-\Theta)=\cos \Theta$ in y-Output is: $\langle y \mid \Theta o u t\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \Theta i n\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Theta i n\right\rangle=\sin \Theta \cos (\Theta i n-\Theta)-\cos \Theta \sin (\Theta i n-\Theta)=\sin \Theta i n$.
(Recall $\cos (a+b)=\cos a \cos b-\sin a \sin b$ and $\sin (a+b)=\sin a \cos b+\cos a \sin b)$

Conclusion:

$\left\langle x \mid \Theta_{o u t}\right\rangle=\cos \Theta_{o u t}=\cos \Theta_{\text {in }}$ or: $\Theta_{o u t}=\Theta_{\text {in }}$ so "Do-Nothing" Analyzer in fact does nothing.

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer
Feynman amplitude axiom 4
Some "Do-Something" analyzers
\Longrightarrow Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters x-counts $\sim\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2}$
$=\cos ^{2} \theta=0.75$
y-counts $\sim\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2}$
$=\sin ^{2} \theta=0.25$

Initial polarization angle $\theta=\beta / 2=30^{\circ}$
$\beta=60^{\circ} \quad$ Fit
Fig. 1.3.3 Simulated polarization analyzer set up as a sorter-counter

(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters

$$
\begin{aligned}
& x \text {-counts } \sim\left|\left\langle x \mid x^{\prime}\right\rangle\right|^{2} \\
& =\cos ^{2} \theta=0.75 \\
& y \text {-counts } \sim\left|\left\langle y \mid x^{\prime}\right\rangle\right|^{2} \\
& =\sin ^{2} \theta=0.2 \zeta
\end{aligned}
$$

Fig. 1.3.3 Simulated polarization analyzer set up as a sorter-counter

(2) Optical analyzer in a filter configuration (Polaroid ${ }^{\mathbb{O}}$ sunglasses)

Analyzer blocks one path which may have photon counter without affecting function.

Fig. 1.3.4 Simulated polarization analyzer set up to filter out the x-polarized photons

Review: "Abstraction" of bra and ket vectors from a Transformation Matrix Introducing scalar and matrix products

Planck's energy and N-quanta (Cavity/Beam wave mode)
Did Max Planck Goof? What's 1-photon worth?
Feynman amplitude axiom 1
What comes out of a beam sorter channel or branch-b?
Sample calculations
Feynman amplitude axioms 2-3
Beam analyzers: Sorter-unsorters
The "Do-Nothing" analyzer
Feynman amplitude axiom 4
Some "Do-Something" analyzers
Sorter-counter, Filter, 1/2-wave plate, 1/4-wave plate

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

Fig. 1.3.5 Polarization control set to shift phase by (a) Half-wave $(\Omega=\pi)$, (b) Quarter wave ($\Omega=\pi / 2$)
(a)Analyzer Experiment

Similar to "do-nothing" analyzer but has extra phase factor $e-i \Omega=0.94-i 0.34$ on the x^{\prime}-path .
x-output:

$$
\left\langle x \mid \Psi_{\text {out }}\right\rangle=\left\langle x \mid x^{\prime}\right\rangle e^{-i \Omega}\left\langle x^{\prime} \mid \Psi_{\text {in }}\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi_{\text {in }}\right\rangle=e^{-i \Omega} \cos \Theta \cos \left(\Theta_{\text {in }}-\Theta\right)-\sin \Theta \sin \left(\Theta_{\text {in }}-\Theta\right)
$$

y-output:

$$
\left\langle y \mid \Psi_{\text {out }}\right\rangle=\left\langle y \mid x^{\prime}\right\rangle e^{-i \Omega}\left\langle x^{\prime} \mid \Psi_{\text {in }}\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid \Psi_{\text {in }}\right\rangle=e^{-i \Omega} \sin \Theta \cos \left(\Theta_{\text {in }}-\Theta\right)+\cos \Theta \sin \left(\Theta_{\text {in }}-\Theta\right)
$$

Fig. 1.3.6 Polarization stätes for (a) Half-wave $(\Omega=\pi)$, (b) Quarter wave $(\Omega=\pi / 2)$ (c) $(\Omega=-\pi / 4)$

Ellipsis in Middle
1.3.1 A y-polarized light beam of unit amplitude (1 photon/sec.) enters an active analyzer that is tilted by 30° as shown below. The active analyzer puts a $\omega=90^{\circ}$ phase factor e-i ω in the x^{\prime} beam.
Fill in the blanks with numbers or symbols that tell as much as possible about what is present at each channel or branch.

