Group Theory in Quantum Mechanics

Lecture $23_{(4.20 .17)}$

Harmonic oscillator symmetry $U(1) \subset \underline{U(2) \subset U(3) \ldots}$

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 21-22)
(PSDS-Ch. 8)
Review : 1-D àa algebra of $U(1)$ representations
Review : Translate $\mathbf{T}(a)$ and/or Boost $\mathbf{B}(b)$ to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
2-D àa algebra of $U(2)$ representations and $R(3)$ angular momentum operators
2D-Oscillator basic states and operations
Commutation relations

Mostly
Notation
and Bookkeeping :

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Review : 1-D a`a algebra of $U(1)$ representations
Review : Translate $\mathbf{T}(a)$ and/or Boost $\mathbf{B}(b)$ to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)

```
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
    2D-Oscillator basic states and operations
            Commutation relations
            Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                    Anti-commutation relations
            Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                    Outer product arrays
                    Entangled 2-particle states
    Two-particle (or 2-dimensional) matrix operators
            U(2) Hamiltonian and irreducible representations
            2D-Oscillator states and related 3D angular momentum multiplets
R(3) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators }\mp@subsup{\mathbf{S}}{+}{}\mathrm{ and S_
SU(2)\subsetU(2) oscillators vs. R(3)\subsetO(3) rotors
```

Review : 1-D àa algebra of $U(1)$ representations

$$
\text { Define } \quad \text { Destruction operator }
$$

$\mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}}$
Creation Operator

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})$
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1} \quad\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1} \quad$ or $\quad \mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1} \quad[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representatiqns generate the first excited state

$$
\begin{aligned}
\langle x \mid 1\rangle & =\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} \psi_{0}(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}-i \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}\left(\sqrt{M \omega} x+i \frac{\hbar}{i} \frac{M \omega x}{\hbar} / \sqrt{M \omega}\right) \\
& =\frac{\sqrt{M \omega}}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}(2 x)=\left(\frac{M \omega}{\pi \hbar}\right)^{3 / 4} \sqrt{2 \pi}\left(x e^{-M \omega x^{2} / 2 \hbar}\right)
\end{aligned}
$$

$$
=\hbar \omega / 2
$$

$$
\mathbf{a}^{\dagger}
$$ wavefunction.

Classical turning points

Review: 1-D ađa algebra of $U(1)$ representations
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(\mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \mathbf{a}^{\dagger n-1}|0\rangle
$$

$\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$
$\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle$
Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{ccccc}
& 1 & & & \\
& \cdot \sqrt{2} & & & \\
& \cdot & \sqrt{3} & & \\
& & \cdot & \sqrt{4} & \\
& & & \ddots & \ddots
\end{array}\right) \quad \text { Use: } \mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n|n\rangle
$$

Hamiltonian operator
$\mathbf{H}|n\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}|n\rangle+\hbar \omega / 2 \mathbf{1}|n\rangle=\hbar \omega(n+1 / 2)|n\rangle$
$\left.\langle\mathbf{H}\rangle=\hbar \omega\left\langle\mathbf{a}^{+} \mathbf{a}+\frac{1}{2}\right\rangle\right\rangle=\hbar \omega\left(\begin{array}{lllll}0 & & & & \\ & 1 & & & \\ & & 2 & & \\ & & & 3 & \ddots \\ & & & & \ddots\end{array}\right)+\hbar \omega$
Hamiltonian operator is $\hbar \omega \mathbf{N}$ plus zero-point energy $\mathbf{1} \hbar \omega / 2$.

Review : 1-D a`a algebra of $U(1)$ representations
Review : Translate $\mathbf{T}(a)$ and/or Boost $\mathbf{B}(b)$ to construct coherent state Review : Time evolution of coherent state (and "squeezed" states)

2-D àa algebra of $U(2)$ representations and $R(3)$ angular momentum operators 2D-Oscillator basic states and operations

Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
$R(3)$ Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Review : Translate $\mathbf{T}(a)$ and/or Boost $\mathbf{B}(b)$ to construct coherent state

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute.
$\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$
Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$
Use Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2} \text {, where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]]
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
\mathbf{C}(a, b)=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Review : Translate $\mathbf{T}(a)$ and/or Boost $\mathbf{B}(b)$ to construct coherent state

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute.
$\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$
Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

Use Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}$, where: $[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]]$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
\mathbf{C}(a, b)=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.

Complex
phasor coordinate $\alpha(a, b)$ defined by: $\alpha(a, b)$

$$
\begin{aligned}
\mathbf{C}(a, b) & =e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} \\
& =e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}}
\end{aligned}
$$

$$
\begin{aligned}
& =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{aligned}
$$

Review : Translate $\mathbf{T}(a)$ and/or Boost $\mathbf{B}(b)$ to construct coherent state

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute.
$\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$
Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

Use Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}$, where: $[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]]$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
\mathbf{C}(a, b)=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.

Complex
phasor coordinate $\alpha(a, b)$
defined by: $\alpha(a, b)$

$$
\begin{array}{cl}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}}
\end{array} \quad \begin{aligned}
& =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
&
\end{aligned}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
\begin{aligned}
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0}{ }^{*} \mathbf{a}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty}\left(\alpha_{0} \mathbf{a}^{\dagger}\right)^{n}|0\rangle / n! \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle, \quad \text { where: }|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}
\end{aligned}
$$

Review : 1-D àa algebra of $U(1)$ representations
Review : Translate $\mathbf{T}(a)$ and/or Boost $\mathbf{B}(b)$ to construct coherent state Review : Time evolution of coherent state (and "squeezed" states)

2-D àa algebra of $U(2)$ representations and $R(3)$ angular momentum operators 2D-Oscillator basic states and operations

Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Review : Time evolution of coherent state (and "squeezed" states) $\quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle$
Time evolution operator for constant \mathbf{H} has general form : $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Review : Time evolution of coherent state (and "squeezed" states)

$$
\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle
$$

Time evolution operator for constant \mathbf{H} has general form : $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Time evolution of coherent state (and "squeezed" states)

$$
\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle
$$

Time evolution operator for constant \mathbf{H} has general form : $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Evolution simplifies to a variable $-\alpha_{0}$ coherent state with a time dependent phasor coordinate α_{t}.

$$
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-i \omega t / 2}\left|\alpha_{t}\left(x_{t}, p_{t}\right)\right\rangle \quad \text { where: }
$$

$$
\begin{aligned}
\alpha_{t}\left(x_{t}, p_{t}\right) & =e^{-i \omega t} \quad \alpha_{0}\left(x_{0}, p_{0}\right) \\
{\left[x_{t}+i \frac{p_{t}}{M \omega}\right] } & =e^{-i \omega t}\left[x_{0}+i \frac{p_{0}}{M \omega}\right]
\end{aligned}
$$

Time evolution of coherent state (and "squeezed" states)

$$
\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle
$$

Time evolution operator for constant \mathbf{H} has general form : $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Evolution simplifies to a variable $-\alpha_{0}$ coherent state with a time dependent phasor coordinate α_{t}. $\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-i \omega t / 2}\left|\alpha_{t}\left(x_{t}, p_{t}\right)\right\rangle$ where:

$$
\begin{aligned}
\alpha_{t}\left(x_{t}, p_{t}\right) & =e^{-i \omega t} \quad \alpha_{0}\left(x_{0}, p_{0}\right) \\
{\left[x_{t}+i \frac{p_{t}}{M \omega}\right] } & =e^{-i \omega t}\left[x_{0}+i \frac{p_{0}}{M \omega}\right]
\end{aligned}
$$

$\left(x_{t}, p_{t}\right)$ mimics classical oscillator

$$
\begin{aligned}
x_{t} & =x_{0} \cos \omega t+\frac{p_{0}}{M \omega} \sin \omega t \\
\frac{p_{t}}{M \omega} & =-x_{0} \sin \omega t+\frac{p_{0}}{M \omega} \cos \omega t
\end{aligned}
$$

(Real and imaginary parts (x_{t} and $\left.p_{t} / M \omega\right)$ of α_{t} go clockwise on phasor circle.)

Review : Time evolution of coherent state (and "squeezed" states)

$$
\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \mathbf{a}^{\dagger}=\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \alpha_{0}^{*}
$$

Expected quantum energy has simple time independent form

$$
\begin{aligned}
& \left.\langle E\rangle\right|_{\alpha_{0}}=\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \mathbf{H}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \\
& =\left\langle\left.\alpha_{0}\left(x_{0}, p_{0}\right)\left(\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\frac{\hbar \omega}{2} \mathbf{1}\right) \right\rvert\, \alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \\
& \quad=\hbar \omega \alpha_{0}^{*} \alpha_{0}+\frac{\hbar \omega}{2}
\end{aligned}
$$

Properties of "squeezed" coherent states

Yay! Classical Cosine trajectory!
what happens if you apply operators with non-linear "tensor" exponents $\exp \left(s \mathbf{X}^{2}\right), \exp \left(f \mathbf{p}^{2}\right)$, etc.

Properties of "squeezed" coherent states


```
Review : 1-D a`a algebra of U(1) representations
Review: Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
```

2-D a"a algebra of $U(2)$ representations and $R(3)$ angular momentum operators Commutation relations Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$

$2 D$-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define \mathbf{a} and \mathbf{a}^{\dagger} operators

$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}^{\dagger}=\left(\mathbf{x}_{2}-\mathbf{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}_{2}^{\dagger}-\mathbf{a}_{2}\right) / \sqrt{ } 2$

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{1}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathbf{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{2}$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.

```
Review : 1-D a`a algebra of U(1) representations
Review:Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
```

2-D àa algebra of $U(2)$ representations and $R(3)$ angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Mostly
Notation
and
Bookkeeping :

Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O$ (3) rotors

2D-Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathbf{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}_{1}^{\dagger}-\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}_{2}^{\dagger}-\mathbf{a}_{2}\right) / \sqrt{ } 2$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other. This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

2D-Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.) Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{2}$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{2}$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{2}$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other. This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{1}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

2D-Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and \mathbf{a}^{\dagger} operators

$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathbf{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}+\mathbf{a}_{2}\right) / \sqrt{ } 2$

$$
\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}_{2}^{\dagger}-\mathbf{a}_{2}\right) / \sqrt{ } 2
$$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{I}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.
$\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}$

$$
\left[\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1} \quad\left[\mathbf{a}_{m}^{\dagger}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}^{\dagger}=\mathbf{0}
$$

2D-Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and \mathbf{a}^{\dagger} operators

$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathbf{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathbf{i}\left(\mathbf{a}_{1}^{\dagger}-\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}_{2}^{\dagger}-\mathbf{a}_{2}\right) / \sqrt{ } 2$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{I}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.
$\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}$

$$
\begin{array}{r}
\left(\left[\mathbf{a}_{m}, \mathbf{a}^{\dagger}{ }_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1}\right) \\
\text { ators replace the old ket-bras }|m\rangle\langle n| \text { that define semi-class } \\
\\
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}
\end{array}
$$

2D-Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and \mathbf{a}^{\dagger} operators

$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{2}$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{2} \quad \mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{ } 2$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.
$\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}$

$$
\left[\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1}
$$

$$
\left[\mathbf{a}_{m}^{\dagger}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}^{\dagger}=\mathbf{0}
$$

New symmetrized $\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical \mathbf{H} matrix.

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

$$
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)
$$

2D-Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and \mathbf{a}^{\dagger} operators

$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{2} \quad \mathbf{a}^{\dagger}{ }_{1}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{2}$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{2} \quad \mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{2}$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{ } 2$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{I}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{1}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.
$\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}$

$$
\begin{array}{r}
{\left[\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1}} \\
\text { ators replace the old ket-bras }|m\rangle\langle n| \\
=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}
\end{array}
$$

$$
\left[\mathbf{a}_{m}^{\dagger}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}^{\dagger}=\mathbf{0}
$$

New symmetrized $\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical \mathbf{H} matrix.

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} & & A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right) & & +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

$$
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right.
$$

2D-Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and \mathbf{a}^{\dagger} operators

$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{2} \quad \mathbf{a}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{2}$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{2}$
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2 \quad \mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{2}$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{ } 2$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{I}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{1}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.
$\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}$

$$
\begin{array}{r}
{\left[\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1}} \\
\text { ators replace the old ket-bras }|m\rangle\langle n| \\
\quad=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}
\end{array}
$$

$$
\left[\mathbf{a}^{\dagger}{ }_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}^{\dagger}=\mathbf{0}
$$

New symmetrized $\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical \mathbf{H} matrix.

$$
\begin{array}{rlr}
\mathbf{H}=H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right) & \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{array}
$$

$$
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)
$$

Both are elementary "place-holders" for parameters $H_{m n}$ or $A, B \pm i C$, and D.

$$
|m\rangle\langle n| \rightarrow\left(\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}+\mathbf{a}_{n} \mathbf{a}_{m}^{\dagger}\right) / 2=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}+\delta_{m, n} \mathbf{1} / 2
$$

```
Review : 1-D a`a algebra of U(1) representations
Review: Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
```

Mostly Notation and Bookkeeping :

2-D a+a algebra of $U(2)$ representations and $R(3)$ angular momentum operators 2D-Oscillator basic states and operations

Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

2-D àa algebra of $U(2)$ representations and $R(3)$ angular momentum operators 2D-Oscillator basic states and operations

Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Mostly
Notation
and
Bookkeeping :

```
Review: 1-D a`a algebra of U(1) representations
```

Review: 1-D a`a algebra of U(1) representations
Review:Translate T(a) and/or Boost B(b) to construct coherent state
Review:Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)

```
Review : Time evolution of coherent state (and "squeezed" states)
```

7 Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves. Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use $\underline{\text { anti-commutators }\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A} \text {. }}$

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{C}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{C}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{C}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

 Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.
Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use $\underline{\text { anti-commutators }\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A} \text {. }}$

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{c}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Fermi \mathbf{c}_{n}^{\dagger} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all. Creating two Fermions of the same type is punished by death. This is because $x=-x$ implies $x=0$.

$$
\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=-\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=\mathbf{0}
$$

That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

 Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.
Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use $\underline{\text { anti-commutators }\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A} \text {. }}$

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{C}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{c}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Fermi \mathbf{c}_{n}^{\dagger} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all. Creating two Fermions of the same type is punished by death. This is because $x=-x$ implies $x=0$.

$$
\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=-\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=\mathbf{0}
$$

That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle. Quantum numbers of $n=0$ and $n=1$ are the only allowed eigenvalues of the number operator $\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}$.

$$
\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}|0\rangle=\mathbf{0}, \mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}|1\rangle=|1\rangle, \mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}|n\rangle=\mathbf{0} \text { for: } n>1
$$

```
Review : 1-D a`a algebra of U(1) representations
Review: Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
2-D àa algebra of \(U(2)\) representations and \(R(3)\) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
\(R(3)\) Angular momentum generators by \(U(2)\) analysis
Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{-}\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
```

Mostly Notation and Bookkeeping :

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{l}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1}\right|\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{1}\right|\right| \Psi_{1}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{l}\right|\right| \Psi_{l}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Product of individual probabilities $\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}$ and $\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}$ respects standard Bayesian probability theory.

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{l}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{1}\right|\right| \Psi_{1}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Product of individual probabilities $\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}$ and $\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}$ respects standard Bayesian probability theory.
Note common shorthand big-bra-big-ket notation $\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle=\left\langle x_{2}\right|\left\langle x_{1}\right|\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{l}\right|\right| \Psi_{l}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Product of individual probabilities $\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}$ and $\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}$ respects standard Bayesian probability theory.
Note common shorthand big-bra-big-ket notation $\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle=\left\langle x_{2}\right|\left\langle x_{1}\right|\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$

Must ask a perennial modern question: "How are these structures stored in a computer program?" The usual answer is in outer product or tensor arrays. Next pages show sketches of these objects.

```
Review: 1-D a`a algebra of U(1) representations
Review: Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
2-D àa algebra of \(U(2)\) representations and \(R(3)\) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
\(\stackrel{\rightharpoonup}{7}\) Outer product arrays Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
\(R(3)\) Angular momentum generators by \(U(2)\) analysis
Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{-}\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
```

Mostly
Notation
and
Bookkeeping :

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type-1 } \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots\end{array}\right)$,

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ \overline{0} \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \quad \begin{gathered}\text { Herein lies conflict between standard } \\ \infty-D \text { analysis and finite computers }\end{gathered}$

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ \overline{0} \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ \overline{1} \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ \overline{0} \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ \overline{1} \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2 -wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.$) array indexing.$

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2 -wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.$) array indexing.$
$\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left(\begin{array}{c}\left\langle 0 \mid \Psi_{1}\right\rangle \\ \left\langle 1 \mid \Psi_{1}\right\rangle \\ \left\langle 2 \mid \Psi_{1}\right\rangle \\ \vdots\end{array}\right) \otimes\left(\begin{array}{c}\left\langle 0 \mid \Psi_{2}\right\rangle \\ \left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots\end{array}\right)=\left(\begin{array}{c}\left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle \\ \left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle}{} \\ \left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle}{\left\langle 0_{1}\right\rangle} \\ \left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots\end{array}\right)=\left(\begin{array}{c}\left\langle 0_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 0_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 0_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 1_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle}{} \\ \left\langle 1_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 1_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 2_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle}{} \\ \left\langle 2_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 2_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots\end{array}\right)$
"Little-Endian" indexing (...01,02,03..10,11,12,13. 20,21,22,23,...)

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type-1 } \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.$) array indexing.$
$\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left(\begin{array}{c}\left\langle 0 \mid \Psi_{1}\right\rangle \\ \left\langle 1 \mid \Psi_{1}\right\rangle \\ \left\langle 2 \mid \Psi_{1}\right\rangle \\ \vdots\end{array}\right) \otimes\left(\begin{array}{c}\left\langle 0 \mid \Psi_{2}\right\rangle \\ \left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots\end{array}\right)=\left(\begin{array}{c}\left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle \\ \left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle}{} \\ \left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle}{\left\langle 0_{1}\right\rangle} \\ \left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots\end{array}\right)=\left(\begin{array}{c}\left\langle 0_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 0_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 0_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 1_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle}{} \\ \left\langle 1_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 1_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 2_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle}{} \\ \left\langle 2_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 2_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots\end{array}\right)$
"Little-Endian" indexing (...01,02,03..10,11,12,13... 20,21,22,23,...)

Least significant digit at (right) END
or anti-lexicographic (00, 10, 20, ...01, 11, 21,..., 02, 12, 22, ..)
array indexing

$$
\begin{aligned}
& \text { "Big-Endian" indexing } \\
& (\ldots .00,10,20 . .01,11,21,31 \ldots \\
& 02,12,22,32 \ldots)
\end{aligned}
$$

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.) array indexing.

"Little-Endian" indexing (...01,02,03..10,11,12,13 .. 20,21,22,23,...)

```
Review : 1-D a`a algebra of U(1) representations
Review :Translate T(a) and/or Boost \mathbf{B}}\mathrm{ (b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
```

2-D a'a algebra of $U(2)$ representations and $R(3)$ angular momentum operators
$2 D$-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Entangled 2-particle states

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

Entangled 2-particle states

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$. (Even rarer is $\left|\Psi_{l}\right\rangle\left|\Psi_{l}\right\rangle_{.}$.)

Entangled 2-particle states

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$. (Even rarer is $\left|\Psi_{1}\right\rangle\left|\Psi_{1}\right\rangle_{\text {. }}$)

ANALOGY:

ANALOGY:
A general n-by- n matrix \mathbf{M} operator is a combination of n^{2} terms: $\mathbf{M}=\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j, k}|j\rangle\langle k|$

Entangled 2-particle states

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$. (Even rarer is $\left|\Psi_{1}\right\rangle\left|\Psi_{1}\right\rangle_{\text {. }}$)

ANALOGY:

A general n-by-n matrix \mathbf{M} operator is a combination of n^{2} terms: $\mathbf{M}=\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j, k}|j\rangle\langle k|$
...that might be diagonalized to a combination of n projectors: $\quad \mathbf{M}=\sum_{e=1}^{n} \mu_{e}|e\rangle\langle e|$

Entangled 2-particle states

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$. (Even rarer is $\left|\Psi_{1}\right\rangle\left|\Psi_{l}\right\rangle_{.}$.)

ANALOGY:

A general n-by- n matrix \mathbf{M} operator is a combination of n^{2} terms: $\mathbf{M}=\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j, k}|j\rangle\langle k|$
...that might be diagonalized to a combination of n projectors: $\quad \mathbf{M}=\sum_{e=1}^{n} \mu_{e}|e\rangle\langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of entangled products: $|\Psi\rangle=\sum_{j} \sum_{k} \psi_{j, k}\left|\Psi_{j}\right\rangle\left|\Psi_{k}\right\rangle$

Entangled 2-particle states

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$.
(Even rarer is $\left|\Psi_{1}\right\rangle\left|\Psi_{l}\right\rangle$.)

ANALOGY:

ANALOGY:
A general n-by-n matrix \mathbf{M} operator is a combination of n^{2} terms: $\mathbf{M}=\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j, k}|j\rangle\langle k|$
...that might be diagonalized to a combination of n projectors: $\quad \mathbf{M}=\sum_{e=1}^{n} \mu_{e}|e\rangle\langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of entangled products: $|\Psi\rangle=\sum_{j} \sum_{k} \psi_{j, k}\left|\Psi_{j}\right\rangle\left|\Psi_{k}\right\rangle$
...that might be de-entangled to a combination of n terms: $|\Psi\rangle=\sum_{e} \phi_{e}\left|\varphi_{e}\right\rangle\left|\varphi_{e}\right\rangle$

```
Review : 1-D a`a algebra of U(1) representations
Review: Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
    2D-Oscillator basic states and operations
            Commutation relations
            Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
            Anti-commutation relations
        Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
            Outer product arrays
            Entangled 2-particle states
\Two-particle (or 2-dimensional) matrix operators
            U(2) Hamiltonian and irreducible representations
```

 2D-Oscillator states and related 3D angular momentum multiplets
 $R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.

$$
\begin{array}{rlrl}
\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle= & \mathbf{a}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle & & \mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle \\
\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle & =\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle & & \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle \\
\mathbf{a}_{1} \text { "fininds" finds" it type-1 type-2 }
\end{array}
$$

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.

$$
\begin{aligned}
& \mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle \\
& \mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle \\
& \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle \\
& \mathbf{a}_{1} \text { "finds" its type-1 } \\
& \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle \\
& \mathbf{a}_{2} \text { "finds" "ts type-2 }
\end{aligned}
$$

General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{+}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.

$$
\begin{array}{rlrl}
\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle= & \mathbf{a}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle & & \mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle \\
\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle & =\begin{array}{l}
\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle \\
\\
\mathbf{a}_{1} \text { "finds" } 1 \text { tis sype-1 }
\end{array} & & \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle \\
\mathbf{a}_{2}^{2} \text { "finds" it type-2 }
\end{array}
$$

General definition of the $2 D$ oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{+}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
$\mathbf{a}_{2}{ }^{\prime \prime}$ finds" its type-2

General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle= \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}} \sqrt{n_{2}+1}\left|n_{1}+1 n_{2}-1\right\rangle \\
\left.n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

Two-particle (or 2-dimensional) matrix operators

When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
$\mathbf{a}_{2}{ }^{\prime \prime}$ finds" its type-2

General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{\mathbf{2}}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

Two-particle (or 2-dimensional) matrix operators

When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
\mathbf{a}_{2} "finds" its type-2
General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

	$\|00\rangle$	$\|01\rangle$	$\|02\rangle$	\ldots	$\|10\rangle$	\|11)	$\|12\rangle$		\|20)	\|21>	\|22>	...
$\begin{aligned} & \hline\langle 00\| \\ & \langle 01\| \\ & \langle 02\| \end{aligned}$	0 \vdots	D	$2 D$		$B+i C$	$\sqrt{2}(B+i C)$		\ldots				"Little-Endian" indexing (...01,02,03..10, 11, 12, 13 . 20,21,22,23,...)
$\begin{aligned} & \hline\langle 10\| \\ & \langle 11\| \\ & \langle 12\| \end{aligned}$		$B-i C$	$\sqrt{2}(B-i C)$			$A+D$	$A+2 D$	\cdots				
$\begin{aligned} & \hline\langle 20\| \\ & \langle 21\| \\ & \langle 22\| \end{aligned}$												

Two-particle (or 2-dimensional) matrix operators

When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
\mathbf{a}_{2} "finds" its type-2
General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\mathbf{H}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}
$$

$$
+(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

$$
\begin{aligned}
& \langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+
\end{aligned}
$$


```
Review : 1-D a`a algebra of U(1) representations
Review: Translate T(a) and/or Boost B(b) to construct coherent state
Review: Time evolution of coherent state (and "squeezed" states)
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
    2D-Oscillator basic states and operations
            Commutation relations
            Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
            Anti-commutation relations
        Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                        Outer product arrays
                    Entangled 2-particle states
        Two-particle (or 2-dimensional) matrix operators
```

```
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
\(R(3)\) Angular momentum generators by \(U(2)\) analysis
Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{-}\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
```


Rearrangement of rows and columns brings the matrix to a block-diagonal form.

Rearrangement of rows and columns brings the matrix to a block-diagonal form.
Base states $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ with the same total quantum number $\mathrm{v}=n_{1}+n_{2}$ define each block.
"Little-Endian" indexing

Rearrangement of rows and columns brings the matrix to a block-diagonal form.
Group reorganized Base states $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ with the same total quantum number $v=n_{1}+n_{2}$ define each block.


```
Review : 1-D a`a algebra of U(1) representations
Review :Translate \mathbf{T}}\mathrm{ (a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
    2D-Oscillator basic states and operations
            Commutation relations
            Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                Anti-commutation relations
            Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                    Outer product arrays
                    Entangled 2-particle states
```

 Two-particle (or 2-dimensional) matrix operators
 U(2) Hamiltonian and irreducible representations
 $R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

(...00,10,20..01,11,21,31 ...02,12,22,32...)

Fundamental eigenstates

The first step is to diagonalize the fund
Recall decomposition of \mathbf{H} (Lectures 6-10)

$$
\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=
$$

(...00,10,20..01,11,21,31 ...02,12,22,32...)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

Fundamental eigenstates

The first step is to diagonalize the fund
Recall decomposition of \mathbf{H} (Lectures 6-10)

$$
\begin{aligned}
\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}= & \begin{array}{c|cc}
\begin{array}{c|cc}
n_{1}, n_{2} & |1,0\rangle & |0,1\rangle \\
\hline \left.\begin{array}{c|cc}
\langle 1,0| & A & B-i C \\
\langle 0,1| & B+i C & D
\end{array} \right\rvert\, & +\frac{A+D}{2} \mathbf{1} \\
\hline
\end{array} \\
& \text { Group reorganized "Big-Endian" indexing } \\
& (\ldots 00,10,20 . .01,11,21,31 \ldots 02,12,22,32 \ldots)
\end{array}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

$$
\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=
$$

Recall decomposition of \mathbf{H} (Lectures 6-10)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .
Recall decomposition of \mathbf{H} (Lectures 6-10)

$$
\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=
$$

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Polar angles (φ, ϑ) of $+\boldsymbol{\Omega}$-vector (or polar angles $(\varphi, \vartheta \pm \pi)$ of $\boldsymbol{\Omega} \boldsymbol{\Omega}$-vector) gives \mathbf{H} eigenvectors.

$$
\left|\omega_{+}\right\rangle=\binom{e^{-i \varphi / 2} \cos \frac{\vartheta}{2}}{e^{i \varphi / 2} \sin \frac{\vartheta}{2}}, \quad\left|\omega_{-}\right\rangle=\binom{-e^{-i \varphi / 2} \sin \frac{\vartheta}{2}}{e^{i \varphi / 2} \cos \frac{\vartheta}{2}} \quad \text { where: }\left\{\begin{array}{c}
\cos \vartheta=\frac{A-D}{\Omega} \\
\tan \varphi=\frac{C}{B}
\end{array}\right.
$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

$$
\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=
$$

Recall decomposition of \mathbf{H} (Lectures 6-10)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Polar angles (φ, ϑ) of $+\boldsymbol{\Omega}$-vector (or polar angles $(\varphi, \vartheta \pm \pi)$ of $\boldsymbol{\Omega} \boldsymbol{\Omega}$-vector) gives \mathbf{H} eigenvectors.

$$
\left|\omega_{+}\right\rangle=\binom{e^{-i \varphi / 2} \cos \frac{\vartheta}{2}}{e^{i \varphi / 2} \sin \frac{\vartheta}{2}}, \quad\left|\omega_{-}\right\rangle=\binom{-e^{-i \varphi / 2} \sin \frac{\vartheta}{2}}{e^{i \varphi / 2} \cos \frac{\vartheta}{2}} \quad \text { where: }\left\{\begin{array}{c}
\cos \vartheta=\frac{A-D}{\Omega} \\
\tan \varphi=\frac{C}{B}
\end{array}\right.
$$

More important for the general solution, are the eigen-creation operators $\mathbf{a} \dagger+$ and $\mathbf{a} \dagger$ - defined by

$$
\mathbf{a}_{+}^{\dagger}=e^{-i \varphi / 2}\left(\cos \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \sin \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right), \quad \mathbf{a}_{-}^{\dagger}=e^{-i \varphi / 2}\left(-\sin \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \cos \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right)
$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

$$
\begin{aligned}
& \langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}= \\
& \text { Group reorganized "Big-Endian" indexing }
\end{aligned}
$$

Recall decomposition of \mathbf{H} (Lectures 6-10)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Polar angles (φ, ϑ) of $+\boldsymbol{\Omega}$-vector (or polar angles $(\varphi, \vartheta \pm \pi)$ of $\boldsymbol{\Omega} \boldsymbol{\Omega}$-vector) gives \mathbf{H} eigenvectors.

$$
\left|\omega_{+}\right\rangle=\binom{e^{-i \varphi / 2} \cos \frac{\vartheta}{2}}{e^{i \varphi / 2} \sin \frac{\vartheta}{2}}, \quad\left|\omega_{-}\right\rangle=\binom{-e^{-i \varphi / 2} \sin \frac{\vartheta}{2}}{e^{i \varphi / 2} \cos \frac{\vartheta}{2}} \quad \text { where: }\left\{\begin{array}{c}
\cos \vartheta=\frac{A-D}{\Omega} \\
\tan \varphi=\frac{C}{B}
\end{array}\right.
$$

More important for the general solution, are the eigen-creation operators $\mathbf{a} \dagger+$ and $\mathbf{a} \dagger$ - defined by

$$
\mathbf{a}_{+}^{\dagger}=e^{-i \varphi / 2}\left(\cos \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \sin \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right), \quad \mathbf{a}_{-}^{\dagger}=e^{-i \varphi / 2}\left(-\sin \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \cos \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right)
$$

$\mathbf{a}_{ \pm}^{\dagger}$ create \mathbf{H} eigenstates directly from the ground state.

$$
\mathbf{a}_{+}^{\dagger}|0\rangle=\left|\omega_{+}\right\rangle, \quad \mathbf{a}_{-}^{\dagger}|0\rangle=\left|\omega_{-}\right\rangle
$$

Setting $(B=0=C)$ and $\left(A=\omega_{+}\right)$and ($\left.D=\omega_{-}\right)$gives diagonal block matrices.

	$\|00\rangle$	$\|01\rangle \quad\|10\rangle$	$\|02\rangle$	$\|11\rangle$	$\|20\rangle$	\|03>	\|12>	$\|21\rangle$	$\|30\rangle$	\ldots
<00\|	0									
$\begin{aligned} & \hline\langle 01\| \\ & \langle 10\| \end{aligned}$		ω_{-} ω_{+}								
$\langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+\begin{gathered} \langle 02\| \\ \langle 11\| \\ \langle 20\| \end{gathered}$			$2 \omega_{-}$	$\omega_{+}+\omega_{-}$	$2 \omega_{+}$					
$\begin{aligned} & \langle 03\| \\ & \langle 12\| \\ & \langle 21\| \\ & \langle 30\| \end{aligned}$							$\omega_{+}+2 \omega_{-}$	$2 \omega_{+}+\omega_{-}$	$3 \omega_{+}$	
-										

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

$$
\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

Setting ($B=0=C$) and $\left(A=\omega_{+}\right)$and ($D=\omega_{-}$) gives diagonal block matrices.

	$\|00\rangle$	$\|01\rangle\|10\rangle$	$\|02\rangle$	\|11>	\|20〉	$\|03\rangle$	\|12>	\|21>	$\|30\rangle$	\ldots
<00\|	0									
<01\|		ω_{-}								
$\langle 10\|$		ω_{+}								
<02\|			$2 \omega_{-}$							
$\langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+$				$\omega_{+}+\omega_{-}$	$2 \omega_{+}$					
<03\|						$3 \omega_{-}$				
<12\|							$\omega_{+}+2 \omega_{-}$			
$\langle 21\|$								$2 \omega_{+}+\omega_{-}$		
$\langle 30\|$									$3 \omega_{+}$	
;										

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

$$
\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

$$
\varepsilon_{n_{1} n_{2}}^{A}=A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right)
$$

Setting $(B=0=C)$ and $\left(A=\omega_{+}\right)$and $\left(D=\omega_{-}\right)$gives diagonal block matrices.

	\| 00\rangle	$\|01\rangle\|10\rangle$	\|02>	\|11>	$\|20\rangle$	\|03)	\|12>	\|21>	$\|30\rangle$	\ldots
<00\|	0									
<01\|		ω_{-}								
$\langle 10\|$		ω_{+}								
<02\|			$2 \omega_{-}$							
$\langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+$				$\omega_{+}+\omega_{-}$	$2 \omega_{+}$					
<03\|						$3 \omega_{-}$				
<12							$\omega_{+}+2 \omega_{-}$			
$\langle 21\|$								$2 \omega_{+}+\omega_{-}$		
<30\|									$3 \omega_{+}$	
¢										

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

$$
\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

$$
\begin{aligned}
\varepsilon_{n_{1} n_{2}}^{A} & =A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right) \\
& =\Omega_{0}\left(n_{1}+n_{2}+1\right)+\frac{\Omega}{2}\left(n_{1}-n_{2}\right)=\Omega_{0}(v+1)+\Omega m
\end{aligned}
$$

Setting $(B=0=C)$ and $\left(A=\omega_{+}\right)$and $\left(D=\omega_{-}\right)$gives diagonal block matrices.

	$\|00\rangle$	$\|01\rangle\|10\rangle$	$\|02\rangle$	\|11)	\|20>	$\|03\rangle$	\|12>	\|21>	$\|30\rangle$	\ldots
<00\|	0									
<01\|		ω_{-}								
<10\|		ω_{+}								
<02\|			$2 \omega_{-}$							
$\langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+\begin{aligned} & \langle 11\| \\ & \langle 20\| \end{aligned}$				$\omega_{+}+\omega_{-}$	$2 \omega_{+}$					
<03\|						$3 \omega_{-}$				
<12\|							$\omega_{+}+2 \omega_{-}$			
$\langle 21\|$								$2 \omega_{+}+\omega_{-}$		
<30\|									$3 \omega_{+}$	
!										

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

$\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)$

$$
\begin{aligned}
\varepsilon_{n_{1} n_{2}}^{A} & =A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right) \\
& =\Omega_{0}\left(n_{1}+n_{2}+1\right)+\frac{\Omega}{2}\left(n_{1}-n_{2}\right)=\Omega_{0}(v+1)+\Omega m
\end{aligned}
$$

Define total quantum number $v=2 j$ and half-difference or asymmetry quantum number m

$$
v=n_{1}+n_{2}=2 j \quad j=\frac{n_{1}+n_{2}}{2}=\frac{v}{2} \quad m=\frac{n_{1}-n_{2}}{2}
$$

Setting $(B=0=C)$ and $\left(A=\omega_{+}\right)$and $\left(D=\omega_{-}\right)$gives diagonal block matrices.

	$\|00\rangle$	$\|01\rangle\|10\rangle \mid$	\|02>	\|11>	\|20)	\|03>	\|12)	\|21>	$\|30\rangle$	
<00\|	0									
$\begin{aligned} & \hline\langle 01\| \\ & \langle 10\| \end{aligned}$		ω_{-} ω_{+}								
$\langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+$			$2 \omega_{-}$	$\omega_{+}+\omega_{-}$	$2 \omega_{+}$					
							$\omega_{+}+2 \omega_{-}$	$2 \omega_{+}+\omega_{-}$	$3 \omega_{+}$	
!										

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

$\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)$

$$
\begin{aligned}
\varepsilon_{n_{1} n_{2}}^{A} & =A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right) \\
& =\Omega_{0}\left(n_{1}+n_{2}+1\right)+\frac{\Omega}{2}\left(n_{1}-n_{2}\right)=\Omega_{0}(v+1)+\Omega m
\end{aligned}
$$

Define total quantum number $v=2 j$ and half-difference or asymmetry quantum number m

$$
v=n_{1}+n_{2}=2 j \quad j=\frac{n_{1}+n_{2}}{2}=\frac{v}{2} \quad m=\frac{n_{1}-n_{2}}{2}
$$

$v+1=2 j+1$ multiplies base frequency $\omega=\Omega_{0} \xlongequal{v=1}$
$m=+1 / 2$ m multiplies beat frequency Ω

$$
\omega_{+}=\Omega_{0}+\Omega\left(+\frac{1}{2}\right)
$$

$$
\omega_{-}=\Omega_{0}+\Omega\left(-\frac{1}{2}\right)
$$

```
Review : 1-D a`a algebra of U(1) representations
Review :Translate \mathbf{T}(a)\mathrm{ and/or Boost B}(b) to construct coherent state
Review :Time evolution of coherent state (and "squeezed" states)
2-D a+a algebra of U(2) representations and R(3) angular momentum operators
    2D-Oscillator basic states and operations
            Commutation relations
            Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                    Anti-commutation relations
            Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                    Outer product arrays
                    Entangled 2-particle states
        Two-particle (or 2-dimensional) matrix operators
            U(2) Hamiltonian and irreducible representations
    -2D-Oscillator states and related 3D angular momentum multiplets
                                    ND multiplets
\(R(3)\) Angular momentum generators by \(U(2)\) analysis Angular momentum raise-n-lower operators \(\mathbf{s}_{+}\)and \(\mathbf{s}_{-}\) \(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
```

2D-Oscillator states and related 3D angular momentum multiplets Setting ($B=0=C$) and $\left(A=\omega_{+}\right)$and ($D=\omega_{-}$) gives diagonal block matrices.

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

SU(2) Multiplets

2D-Oscillator states and related 3D angular momentum multiplets Setting ($B=0=C$) and $\left(A=\omega_{+}\right)$and ($D=\omega_{-}$) gives diagonal block matrices.

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

SU(2) Multiplets


```
Review : 1-D a`a algebra of U(1) representations
Review :Translate \mathbf{T}(a)\mathrm{ and/or Boost B}\mathbf{B}(b)\mathrm{ to construct coherent state}
Review :Time evolution of coherent state (and "squeezed" states)
2-D a*a algebra of U(2) representations and R(3) angular momentum operators
    2D-Oscillator basic states and operations
            Commutation relations
            Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                    Anti-commutation relations
            Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                    Outer product arrays
                    Entangled 2-particle states
    Two-particle (or 2-dimensional) matrix operators
            U(2) Hamiltonian and irreducible representations
            2D-Oscillator states and related 3D angular momentum multiplets
```

```
                    ND multiplets
\(R(3)\) Angular momentum generators by \(U(2)\) analysis Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{-}\) \(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
```


Introducing $U(N)$

(a) N-D Oscillator Degeneracy ℓ of quamtum levelv

Principal Quantum Number Dimension of oscillator

(c) Binomial coefficients

$$
\frac{(N-1+v)!}{(N-1)!v!}=\binom{N-1+v}{v}=\binom{N-1+v}{N-1}
$$

Introducing $U(3)$

(b) N-particle 3-level states ...or spin-1 states

$t=\tau_{\text {beat }} / 8$

$t=\tau_{\text {beat }} / 4$
$t=\tau_{\text {beat }} / 2$

$$
\begin{aligned}
\Psi\left(x_{1}, x_{2}, t\right) & =\frac{1}{2}\left|\psi_{10}\left(x_{1}, x_{2}\right) e^{-i \omega_{10} t}+\psi_{01}\left(x_{1}, x_{2}\right) e^{-i \omega_{01 t}}\right|^{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}=\frac{e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}}{2 \pi}\left|\sqrt{2} x_{1} e^{-i \omega_{10} t}+\sqrt{2} x_{1} e^{-i \omega_{01} t}\right|^{2} \\
& =\frac{e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}}{\pi}\left(x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2} \cos \left(\omega_{10}-\omega_{01}\right) t\right)=\frac{\left.e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}\right)}{\pi} \begin{cases}\left|x_{1}+x_{2}\right|^{2} & \text { for: } t=0 \\
x_{1}^{2}+x_{2}^{2} & \text { for: } t=\tau_{\text {beat }} / 4 \quad \text { (21.1.30) } \\
\left|x_{1}-x_{2}\right|^{2} & \text { for: } t=\tau_{\text {beat }} / 2\end{cases}
\end{aligned}
$$

```
Review : 1-D a`a algebra of U(1) representations
Review: Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and "squeezed" states)
2-D a`a algebra of U(2) representations and R(3) angular momentum operators
    2D-Oscillator basic states and operations
            Commutation relations
        Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
            Anti-commutation relations
        Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
            Outer product arrays
            Entangled 2-particle states
        Two-particle (or 2-dimensional) matrix operators
            U(2) Hamiltonian and irreducible representations
            2D-Oscillator states and related 3D angular momentum multiplets
\(R(3)\) Angular momentum generators by \(U(2)\) analysis Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{-}\)
\(R(3)\) Angular momentum generators by \(U(2)\) analysis
\((v=1)\) or \((j=1 / 2)\) block \(\mathbf{H}\) matrices of \(\mathrm{U}(2)\) oscillator
Use irreps of unit operator \(\mathbf{S}_{0}=\mathbf{1}\) and spin operators \(\left\{\mathbf{S}_{X}, \mathbf{S}_{Y}, \mathbf{S}_{Z}\right\}\). (also known as: \(\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}\) )
\[
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
\]
\[
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
\]
\[
(v=2) \text { or }(j=1) \text { 3-by-3 block uses their vector } \downarrow \text { irreps. }
\]
\[
\left(\begin{array}{ccc}
2 A & \sqrt{2}(B-i C) & \cdot \\
\sqrt{2}(B+i C) & A+D & \sqrt{2}(B-i C) \\
& \sqrt{2}(B+i C) & 2 D
\end{array}\right)=(A+D)\left(\begin{array}{cc}
1 & \cdot \\
\cdot & 1 \\
\cdot & \cdot \\
\cdot & 1
\end{array}\right)+2 B\left(\begin{array}{ccc}
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\
\cdot & \frac{\sqrt{2}}{2} & \cdot
\end{array}\right)+2 C\left(\begin{array}{ccc}
\downarrow & -i \frac{\sqrt{2}}{2} & \cdot \\
i \frac{\sqrt{2}}{2} & \cdot & -i \frac{\sqrt{2}}{2} \\
& i \frac{\sqrt{2}}{2} & \cdot
\end{array}\right)+(A-D)\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)
\]
\(R(3)\) Angular momentum generators by \(U(2)\) analysis
\((v=1)\) or \((j=1 / 2)\) block \(\mathbf{H}\) matrices of \(\mathrm{U}(2)\) oscillator
Use irreps of unit operator \(\mathbf{S}_{0}=\mathbf{1}\) and spin operators \(\left\{\mathbf{S}, \mathbf{S}_{V}, \mathbf{S}_{Z}\right\}\). (also known as: \(\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}\) )
\[
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
\]
\((v=2)\) or \((j=1)\) 3-by-3 block uses their vectorvirreps.

\((v=3)\) or \((j=3 / 2) 4\)-by-4 block uses Dirac spinor irreps.

\(R(3)\) Angular momentum generators by \(U(2)\) analysis
\((v=1)\) or \((j=1 / 2)\) block \(\mathbf{H}\) matrices of \(\mathrm{U}(2)\) oscillator
Use irreps of unit operator \(\mathbf{S}_{0}=\mathbf{1}\) and spin operators \(\left\{\mathbf{S}, \mathbf{S}_{Y}, \mathbf{S}_{Z}\right\}\). (also known as: \(\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}\) )
\[
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
\]
\((v=2)\) or \((j=1) 3\)-by-3 block uses their vectorvirreps.
\(\left(\begin{array}{ccc}2 A & \sqrt{2}(B-i C) & \\ \sqrt{2}(B+i C) & A+D & \sqrt{2}(B-i C) \\ & \sqrt{2}(B+i C) & 2 D\end{array}\right)=(A+D)\left(\begin{array}{c}\downarrow \\ 1 \\ \vdots \\ 1\end{array}\right)\)
\((v=3)\) or \((j=3 / 2) 4\)-by-4 block uses Dirac spinor irreps.

\((v=2 j)\) or \((2 j+1)\)-by- \((2 j+1)\) block uses \(\mathrm{D}^{(j)}\left(\mathbf{s}_{\mu}\right)\) irreps of \(\mathrm{U}(2)\) or \(\mathrm{R}(3)\).
\(\langle\mathbf{H}\rangle^{j-\text { block }}=2 j \Omega_{0}\langle\mathbf{1}\rangle^{j}+\)
\(\boldsymbol{\Omega}_{X}\left\langle\mathbf{s}_{X}\right\rangle^{j}\)
\(+\Omega_{Y}\left\langle\mathbf{s}_{Y}\right\rangle^{j}\)

\(R(3)\) Angular momentum generators by \(U(2)\) analysis
\((v=1)\) or \((j=1 / 2)\) block \(\mathbf{H}\) matrices of \(\mathrm{U}(2)\) oscillator
Use irreps of unit operator \(\mathbf{S}_{0}=\mathbf{1}\) and spin operators \(\left\{\mathbf{S}_{X}, \mathbf{S}_{Y}, \mathbf{S}_{Z}\right\}\). (also known as: \(\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}\) )
\[
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
\]
\((v=2)\) or \((j=1) 3\)-by-3 block uses their vector irreps.
 \((v=3)\) or \((j=3 / 2) 4\)-by-4 block uses Dirac spinor irreps.
\({ }_{3}{ }^{3} \quad \sqrt{3}(B-i C)\)

\((v=2 j) \operatorname{li}(2 j+1)\) by \(\left.(2 j+1) \quad \frac{\sqrt{3}}{2}\right)\)
\[
-i \frac{\sqrt{2}}{2}
\]
\((v=2 j)\) or \((2 j+1)\)-by- \((2 j+1)\) block uses \(D^{(j)}\left(\mathbf{s}_{\mu}\right)\) irreps of \(U(2)\) or \(R(3)\).
\[
\langle\mathbf{H}\rangle^{j-\text { block }}=2 j \Omega_{0}\langle 1\rangle^{j}+\quad \Omega_{X}\left\langle\mathbf{s}_{X}\right\rangle^{j} \quad+\Omega_{Y}\left\langle\mathbf{s}_{Y}\right\rangle^{j} \quad+\Omega_{Z}\left\langle\mathbf{s}_{Z}\right\rangle^{j}
\]

All j-block matrix operators factor into raise-n-lower operaters \(\mathbf{s}_{ \pm}=\mathbf{s}^{2} \pm i \mathbf{s}_{Y}\) plus the diagonal \(\mathbf{s}_{Z}\)
\[
\langle\mathbf{H}\rangle^{j-\text { block }}=2 j \Omega_{0}\langle\mathbf{1}\rangle^{j}+\left[\left(\Omega_{X}-i \mathbf{S}_{Y}\right)\left\langle\mathbf{s}_{X}+i \mathbf{s}_{Y}\right\rangle^{j}+\left(\Omega_{X}+i \mathbf{S}_{Y}\right)\left\langle\mathbf{s}_{X}-i \mathbf{s}_{Y}\right\rangle^{j}\right] / 2+\Omega_{Z}\left\langle\mathbf{s}_{Z}\right\rangle^{j}
\]
```

Review: 1-D a`a algebra of U(1) representations Review: Translate T(a) and/or Boost B(b) to construct coherent state Review : Time evolution of coherent state (and "squeezed" states) 2-D a`a algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
R(3) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators }\mp@subsup{\mathbf{S}}{+}{}\mathrm{ and }\mp@subsup{\mathbf{S}}{-}{
SU(2)\subsetU(2) oscillators vs. R(3)\subsetO(3) rotors

```

Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}\).
\[
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
\]

Starting with \(j=1 / 2\) we see that \(\mathbf{S}_{+}\)is an elementary projection operator \(\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}\)
\[
\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+i\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\mathbf{P}_{12}
\]

Such operators can be upgraded to creation-destruction operator combinations àa
\[
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
\]

Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{\text {. }}\)
\[
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
\]

Starting with \(j=1 / 2\) we see that \(\mathbf{S}+\) is an elementary projection operator \(\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}\) \(\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}\)
Such operators can be upgraded to creation-destruction operator combinations àa
\[
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
\]

Hamilton-Pauli-Jordan representation of \(\mathbf{s}_{Z}\) is: \(\quad\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & -\frac{1}{2}\end{array}\right)\)

Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{\text {. }}\)
\[
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
\]

Starting with \(j=1 / 2\) we see that \(\mathbf{S}+\) is an elementary projection operator \(\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}\) \(\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+\mathbf{s}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}\)
Such operators can be upgraded to creation-destruction operator combinations \(\mathbf{a}^{\dagger} \mathbf{a}\)
\[
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
\]

Hamilton-Pauli-Jordan representation of \(\mathbf{s}_{Z}\) is: \(\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & -\frac{1}{2}\end{array}\right)\)
This suggests an \(\mathbf{a}^{\dagger} \mathbf{a}\) form for \(\mathbf{s}_{Z}\).
\[
\mathbf{s}_{Z}=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\]

Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{\text {. }}\)
\[
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathbf{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
\]

Starting with \(j=1 / 2\) we see that \(\mathbf{S}+\) is an elementary projection operator \(\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}\)
\(\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}\)
Such operators can be upgraded to creation-destruction operator combinations àa
\[
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
\]

Hamilton-Pauli-Jordan representation of \(\mathbf{s}_{Z}\) is: \(\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & -\frac{1}{2}\end{array}\right)\)
This suggests an \(\mathbf{a}^{\dagger} \mathbf{a}\) form for \(\mathbf{s}_{Z}\).
\[
\mathbf{s}_{Z}=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\]

Let \(\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}\) create up-spin \(\uparrow\)
\[
|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle
\]

Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{\text {. }}\)
\[
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
\]

Starting with \(j=1 / 2\) we see that \(\mathbf{S}+\) is an elementary projection operator \(\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}\)
\(\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}\)
Such operators can be upgraded to creation-destruction operator combinations àa
\[
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
\]

Hamilton-Pauli-Jordan representation of \(\mathbf{s}_{Z}\) is:
\[
\begin{aligned}
\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right) & =\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
\mathbf{s}_{Z} & =\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\end{aligned}
\]

Let \(\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}\) create up-spin \(\uparrow\)
\[
|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle
\]

Let \(\mathbf{a}_{2}^{\dagger}=\mathbf{a}_{\downarrow}^{\dagger}\) create dn-spin \(\downarrow\)
\(|2\rangle=|\downarrow\rangle=\left|\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle=\mathbf{a}_{\downarrow}^{\dagger}|0\rangle\)

Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}_{\text {. }}\)
\[
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{i}_{Y}=\mathbf{s}_{+}^{\dagger}
\]

Starting with \(j=1 / 2\) we see that \(\mathbf{S}+\) is an elementary projection operator \(\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}\)
\(\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+\mathbf{i}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}\)
Such operators can be upgraded to creation-destruction operator combinations àa
\[
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
\]

Hamilton-Pauli-Jordan representation of \(\mathbf{s}_{Z}\) is:
\[
\begin{aligned}
\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right) & =\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
\mathbf{s}_{Z} & =\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\end{aligned}
\]

Let \(\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}\) create up-spin \(\uparrow\)
\[
|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle
\]

Let \(\mathbf{a}_{2}^{\dagger}=\mathbf{a}_{\downarrow}^{\dagger}\) create dn-spin \(\downarrow\)
\(|2\rangle=|\downarrow\rangle=\left|\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle=\mathbf{a}_{\downarrow}^{\dagger}|0\rangle\)
\(\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\) destroys dn-spin \(\downarrow\) creates up-spin \(\uparrow\)
to raise angular momentum by one \(\hbar\) unit
\[
\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}|\downarrow\rangle=|\uparrow\rangle \quad \text { or: } \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}|2\rangle=|1\rangle
\]

Angular momentum raise-n-lower operators \(\mathbf{S}_{+}\)and \(\mathbf{S}\).
\[
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
\]

Starting with \(j=1 / 2\) we see that \(\mathbf{S}+\) is an elementary projection operator \(\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}\)
\(\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+\mathbf{i}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}\)
Such operators can be upgraded to creation-destruction operator combinations àa
\[
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
\]

Hamilton-Pauli-Jordan representation of \(\mathbf{s}_{Z}\) is:
\[
\begin{aligned}
\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right) & =\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
\mathbf{s}_{Z} & =\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\end{aligned}
\]

Let \(\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}\) create up-spin \(\uparrow\)
\[
|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle
\]
\(\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\) destroys dn-spin \(\downarrow\) creates up-spin \(\uparrow\)
to raise angular momentum by one \(\hbar\) unit
\[
\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}|\downarrow\rangle=|\uparrow\rangle \quad \text { or: } \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}|2\rangle=|1\rangle
\]

Let \(\mathbf{a}_{2}^{\dagger}=\mathbf{a}_{\downarrow}^{\dagger}\) create dn-spin \(\downarrow\)
\(|2\rangle=|\downarrow\rangle=\left|\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle=\mathbf{a}_{\downarrow}^{\dagger}|0\rangle\)
\(\mathbf{s}_{-}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}\) destroys up-spin \(\uparrow\) creates dn-spin \(\downarrow\)
to lower angular momentum by one \(\hbar\) unit \(\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}|\uparrow\rangle=|\downarrow\rangle \quad\) or: \(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}|1\rangle=|2\rangle\)
```

Review : 1-D a`a algebra of U(1) representations Review: Translate T(a) and/or Boost B(b) to construct coherent state Review : Time evolution of coherent state (and "squeezed" states) 2-D a`a algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
R(3) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators }\mp@subsup{\mathbf{S}}{+}{}\mathrm{ and S.
SU(2)\subsetU(2) oscillators vs. R(3)\subsetO(3) rotors

```
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle\)
Oscillator total quanta: \(v=\left(n_{1}+n_{2}\right)\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
\]
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{c}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(v=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(v=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle \quad \begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=R(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\mathbf{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{)^{\dagger}}^{n_{2}}\right.}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{+}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left\lvert\, \begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned} \quad \begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}\right.
\]
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\mathbf{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned} \begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\mathbf{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned} \begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{i-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]

\section*{Oscillator \(\mathbf{a}^{\dagger} \mathbf{a} . .\).}
\(\mathbf{a}_{1} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle\)
\(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\mathbf{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\[
\begin{gathered}
n_{1}=j+m \\
n_{2}=j-m
\end{gathered}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]

Oscillator \(\mathbf{a}^{\dagger} \mathbf{a}\) give \(\mathbf{s}_{+}\)matrices.
\(\left.\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{\left.n_{2}-1\right\rangle}^{\Longrightarrow} \mathbf{s}_{+}\right|{ }_{m}^{j}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle\)
\(\mathbf{a}_{2}^{\mathbf{a}} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\mathbf{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\[
\begin{aligned}
& n_{l}=j+m \\
& n_{2}=j-m
\end{aligned}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]

Oscillator \(\mathbf{a}^{\dagger} \mathbf{a}\) give \(\mathbf{s}_{+}\)and \(\mathbf{s}_{\text {- matrices. }}\)
\(\left.\left.\mathbf{a}_{1} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}{ }_{m}^{j}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle\)
\(\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}\left|{ }_{m}^{j}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(v=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and z-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\[
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]

\section*{Oscillator \(\mathbf{a}^{\dagger} \mathbf{a}\) give \(\mathbf{s}_{+}\)and \(\mathbf{s}\). matrices.}
\(\left.\left.\mathbf{a}_{1} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left.\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\right|_{m} ^{j}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle\)
\(\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}\left|\begin{array}{c}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle\)

1/2-difference of number-ops is \(\mathbf{S}_{Z}\) eigenvalue.
\(\left.\begin{array}{l}\mathbf{a}_{\mid=1}^{+} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\ \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle\end{array}\right\}\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(v=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and z-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\[
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]

\section*{Oscillator \(\mathbf{a}^{\dagger} \mathbf{a}\) give \(\mathbf{s}_{+}\)and \(\mathbf{s}\). matrices.}
\(\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle\) \(\left.\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{S}_{-\mid}^{j} \left\lvert\, \begin{array}{l}j \\ j\end{array}\right.\right)\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle\)

1/2-difference of number-ops is \(\mathbf{s}_{\text {L }}\) eigenvalue.
\(\left.\left.\left.\begin{array}{l}\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\ \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle\end{array}\right\} \mathbf{s}_{Z}\left|\begin{array}{c}j \\ m\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)\left|\begin{array}{|c}j \\ m\end{array}\right\rangle=\left.\frac{n_{1}-n_{2}}{2}\right|_{m} ^{j}\right\rangle=\left.m\right|_{m} ^{j}\right\rangle\)
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=R(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\mathbf{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}} 00\right\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\[
\begin{gathered}
n_{1}=j+m \\
n_{2}=j-m
\end{gathered}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle
\]

\section*{Oscillator \(\mathbf{a}^{\dagger} \mathbf{a}\) give \(\mathbf{s}_{+}\)and \(\mathbf{s}_{-}\)matrices.}
\(\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\left|{ }_{m}^{j}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle\) \(\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}_{-}\left|\begin{array}{c}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle\)

1/2-difference of number-ops is \(\mathbf{s}_{Z}\) eigenvalue.
\[
\left.\left.\left.\begin{array}{l}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}\right\} \mathbf{s}_{Z}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)| |_{m}^{j}\right\rangle=\frac{n_{1}-n_{2}}{2}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\left.m\right|_{m} ^{j}\right\rangle
\]
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=R(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\boldsymbol{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\[
\begin{gathered}
n_{1}=j+m \\
n_{2}=j-m
\end{gathered}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left.\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
\]

\section*{Oscillator \(\mathbf{a}^{\dagger} \mathbf{a}\) give \(\mathbf{s}_{+}\)and \(\mathbf{s}_{-}\)matrices.}
\(\left.\left.\mathbf{a}_{1}^{+} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left.\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\right|_{m} ^{j}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle\) \(\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}_{-}\left|\begin{array}{c}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle\)

1/2-difference of number-ops is \(\mathbf{s}_{Z}\) eigenvalue.
\[
\left.\begin{array}{l}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}\right\} \mathbf{s}_{Z}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)\left|\begin{array}{c}
j \\
m
\end{array}\right\rangle=\frac{n_{1}-n_{2}}{2}\left|\begin{array}{c}
j \\
m
\end{array}\right\rangle=m\left|\begin{array}{c}
j \\
m
\end{array}\right\rangle
\]
\[
j=3 / 2 \text { spinor } \mathbf{S}_{+}
\]
\[
D^{\frac{3}{2}}\left(\mathbf{s}_{+}\right)=\left(\begin{array}{cccc}
\cdot & \sqrt{3} & \cdot & \cdot \\
0 & \cdot & \sqrt{4} & \cdot \\
\cdot & 0 & \cdot & \sqrt{3} \\
\cdot & \cdot & 0 & \cdot
\end{array}\right)=\left(D^{\frac{3}{2}}\left(\mathbf{s}_{-}\right)\right)^{\dagger}, \quad D^{\frac{3}{2}}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cccc}
\overline{2} & \cdot & \\
\cdot & \frac{1}{2} & \cdot & \cdot \\
& 2 & & \\
\cdot & \cdot & -\frac{1}{2} & \cdot \\
\cdot & \cdot & \cdot & -\frac{3}{2}
\end{array}\right)
\]
\[
\begin{aligned}
& j=1 \text { vector } \mathbf{s}_{+} \\
& D^{1}\left(\mathbf{s}_{+}\right)=D^{1}\left(\mathbf{s}_{X}+i \mathbf{s}_{Y}\right)=\left(\begin{array}{ccc}
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\
\cdot & \frac{\sqrt{2}}{2} & \cdot
\end{array}\right)+i\left(\begin{array}{ccc}
\cdot & -i \frac{\sqrt{2}}{2} & \cdot \\
i \frac{\sqrt{2}}{2} & \cdot & -i \frac{\sqrt{2}}{2} \\
\cdot & i \frac{\sqrt{2}}{2} & \cdot
\end{array}\right)=\left(\begin{array}{ccc}
\cdot & \sqrt{2} & \cdot \\
0 & \cdot & \sqrt{2} \\
\cdot & 0 & \cdot
\end{array}\right), \\
& \ldots \text { and } \mathbf{s}_{Z} \\
& D^{1}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)
\end{aligned}
\]
\(S U(2) \subset U(2)\) oscillators vs. \(R(3) \subset O(3)\) rotors
\(U(2)\) boson oscillator states \(\left|n_{1}, n_{2}\right\rangle=R(3)\) spin or rotor states \(\left|\begin{array}{l}j \\ m\end{array}\right\rangle\)
Oscillator total quanta: \(\boldsymbol{v}=\left(n_{1}+n_{2}\right) \quad\) Rotor total momenta: \(j=v / 2\) and \(z\)-momenta: \(m=\left(n_{1}-n_{2}\right) / 2\)
\[
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
\]
\[
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
\]
\[
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
\]
\(U(2)\) boson oscillator states \(=U(2)\) spinor states
\[
\left.\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
\]
 \(\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}_{-}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle\) 1/2-difference o
\(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{\mid}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle\) \(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle\) \(\left.\left.\left.\mathbf{S}_{Z}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)| |_{m}^{j}\right\rangle=\left.\frac{n_{1}-n_{2}}{2}\right|_{m} ^{j}\right\rangle=\left.m\right|_{m} ^{j}\right\rangle\)
\(j=3 / 2\) spinor \(\mathbf{S}_{+}\)
\(D^{\frac{3}{2}}\left(\mathbf{s}_{+}\right)=\left(\begin{array}{cccc}\cdot & \sqrt{3} & \cdot & \cdot \\ 0 & \cdot & \sqrt{4} & \cdot \\ \cdot & 0 & \cdot & \sqrt{3} \\ \cdot & \cdot & 0 & \cdot\end{array}\right)=\left(D^{\frac{3}{2}}\left(\mathbf{s}_{-}\right)\right)^{\dagger}, \quad D^{\frac{3}{2}}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cccc}\frac{-}{2} & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \cdot & \cdot \\ & 2 & & \\ \cdot & \cdot & -\frac{1}{2} & \cdot \\ & & 2 & \\ \cdot & \cdot & \cdot & -\frac{3}{2}\end{array}\right)\)
\(j=2\) tensor \(\mathbf{S}_{+}\)
\(D^{2}\left(\mathbf{s}_{+}\right)=\left(\begin{array}{ccccc}\cdot & \sqrt{4} & \cdot & \cdot & \cdot \\ 0 & \cdot & \sqrt{3} & \cdot & \cdot \\ \cdot & 0 & \cdot & \sqrt{3} & \cdot \\ \cdot & \cdot & 0 & \cdot & \sqrt{4} \\ \cdot & \cdot & \cdot & 0 & \cdot\end{array}\right)=\left(D^{2}\left(\mathbf{s}_{-}\right)\right)^{\dagger}, \quad D^{2}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{ccccc}2 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & -2\end{array}\right)\)```

