Group Theory in Quantum Mechanics Lecture 23 (4.20.17)

Harmonic oscillator symmetry $U(1) \subset \underline{U(2)} \subset U(3)$...

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 21-22) (PSDS - Ch. 8)

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D at a algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Mostly <u>Anti</u>-commutation relations

and Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Bookkeeping: Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

ND multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S₊ and S₋

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

Review: 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S₊ and S₋

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

Review: 1-D at a algebra of U(1) representations

$$\mathbf{a} = \frac{\left(\mathbf{X} + i\mathbf{P}\right)}{\sqrt{\hbar\omega}} = \frac{\left(\sqrt{M\omega} \mathbf{x} + i\mathbf{p} / \sqrt{M\omega}\right)}{\sqrt{2\hbar}}$$

Define

Destruction operator

$$\mathbf{a}^{\dagger} = \frac{\left(\mathbf{X} - i\mathbf{P}\right)}{\sqrt{\hbar\omega}} = \frac{\left(\sqrt{M\omega} \mathbf{x} - i\mathbf{p} / \sqrt{M\omega}\right)}{\sqrt{2\hbar}}$$

Creation Operator

Commutation relations between $\mathbf{a} = (\mathbf{X} + i\mathbf{P})/2$ and $\mathbf{a}^{\dagger} = (\mathbf{X} - i\mathbf{P})/2$ with $\mathbf{X} = \sqrt{M\omega \mathbf{x}}/\sqrt{2}$ and $\mathbf{P} = \mathbf{p}/\sqrt{2M}$:

$$\left[\mathbf{a},\mathbf{a}^{\dagger}\right] \equiv \mathbf{a}\mathbf{a}^{\dagger} - \mathbf{a}^{\dagger}\mathbf{a} = \frac{1}{2\hbar} \left(\sqrt{M\omega} \mathbf{x} + i\mathbf{p} / \sqrt{M\omega}\right) \left(\sqrt{M\omega} \mathbf{x} - i\mathbf{p} / \sqrt{M\omega}\right) - \frac{1}{2\hbar} \left(\sqrt{M\omega} \mathbf{x} - i\mathbf{p} / \sqrt{M\omega}\right) \left(\sqrt{M\omega} \mathbf{x} + i\mathbf{p} / \sqrt{M\omega}\right) \right)$$

and

$$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] = \frac{2i}{2\hbar} \left(\mathbf{p} \mathbf{x} - \mathbf{x} \mathbf{p}\right) = \frac{-i}{\hbar} \left[\mathbf{x}, \mathbf{p}\right] = \mathbf{1}$$

$$\left[a,a^{\dagger}\right]=1$$

or
$$\left(aa^{\dagger}=a^{\dagger}a+1\right)$$
 $\left[x,p\right]=xp-px=\hbar i 1$

$$[\mathbf{x},\mathbf{p}] \equiv \mathbf{x}\mathbf{p} - \mathbf{p}\mathbf{x} = \hbar i \mathbf{1}$$

1st excited state wavefunction $\psi_1(x) = \langle x | 1 \rangle$

$$\langle x \mid \mathbf{a}^{\dagger} \mid 0 \rangle = \langle x \mid 1 \rangle = \psi_1(x)$$

Expanding the creation operator

$$\langle x | \mathbf{a}^{\dagger} | 0 \rangle = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{M\omega} \langle x | \mathbf{x} | 0 \rangle - i \langle x | \mathbf{p} | 0 \rangle / \sqrt{M\omega} \right) = \langle x | 1 \rangle = \psi_1(x)$$

The operator coordinate representations generate the first excited state wavefunction.

$$\langle x|1\rangle = \psi_{1}(x) = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{M\omega} x \psi_{0}(x) - i\frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M\omega} \right)$$

$$= \frac{1}{\sqrt{2\hbar}} \left(\sqrt{M\omega} x \frac{e^{-M\omega x^{2}/2\hbar}}{const.} - i\frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M\omega x^{2}/2\hbar}}{const.} / \sqrt{M\omega} \right)$$

$$= \frac{1}{\sqrt{2\hbar}} \frac{e^{-M\omega x^{2}/2\hbar}}{const.} \left(\sqrt{M\omega} x + i\frac{\hbar}{i} \frac{M\omega x}{\hbar} / \sqrt{M\omega} \right)$$

$$= \frac{\sqrt{M\omega}}{\sqrt{2\hbar}} \frac{e^{-M\omega x^{2}/2\hbar}}{const.} (2x) = \left(\frac{M\omega}{\pi\hbar} \right)^{3/4} \sqrt{2\pi} \left(x e^{-M\omega x^{2}/2\hbar} \right)$$

 $=\hbar\omega$

Review: 1-D at a algebra of U(1) representations

Derive normalization for n^{th} state obtained by $(\mathbf{a}^{\dagger})^n$ operator: Use: $\mathbf{a}^n \mathbf{a}^{\dagger n} = n! \left[\mathbf{1} + n \mathbf{a}^{\dagger} \mathbf{a} + \frac{n(n-1)}{2! \cdot 2!} \mathbf{a}^{\dagger 2} \mathbf{a}^2 + \dots \right]$

$$|n\rangle = \frac{\mathbf{a}^{\dagger n}|0\rangle}{const.}$$
, where: $1 = \langle n|n\rangle = \frac{\langle 0|\mathbf{a}^n\mathbf{a}^{\dagger n}|0\rangle}{(const.)^2} = n! \frac{\langle 0|\mathbf{1} + n\mathbf{a}^{\dagger}\mathbf{a} + ..|0\rangle}{(const.)^2} = \frac{n!}{(const.)^2}$

$$|n\rangle = \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}$$
 Root-factorial normalization Use: $\mathbf{a}\mathbf{a}^{\dagger n} = n\mathbf{a}^{\dagger n-1} + \mathbf{a}^{\dagger n}\mathbf{a}$

Use:
$$aa^{\dagger n} = na^{\dagger n-1} + a^{\dagger n}a$$

Apply destruction **a**:

Apply creation **a**[†]:

$$\mathbf{a}^{\dagger} | n \rangle = \frac{\mathbf{a}^{\dagger n+1} | 0 \rangle}{\sqrt{n!}} = \sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1} | 0 \rangle}{\sqrt{(n+1)!}}$$

$$\mathbf{a}|n\rangle = \frac{\mathbf{a}\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} = \frac{(n\mathbf{a}^{\dagger n-1} + \mathbf{a}^{\dagger n}\mathbf{a})|0\rangle}{\sqrt{n!}} = \sqrt{n}\frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}$$

$$\mathbf{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$

$$\mathbf{a}|n\rangle = \sqrt{n}|n-1\rangle$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$\left\langle \mathbf{a}^{\dagger} \right\rangle = \left(\begin{array}{cccc} \cdot & & & & \\ 1 & \cdot & & & & \\ & \sqrt{2} & \cdot & & & \\ & & \sqrt{3} & \cdot & & \\ & & & \sqrt{4} & \cdot & \\ & & & & \ddots & \cdot \end{array} \right)$$

$$\langle \mathbf{a} \rangle = \begin{pmatrix} \cdot & 1 & & & \\ & \cdot & \sqrt{2} & & & \\ & & \cdot & \sqrt{3} & & \\ & & & \cdot & \sqrt{4} & \\ & & & & \cdot & \ddots \end{pmatrix}$$

$$\mathbf{Use: aa^{\dagger n}} = n\mathbf{a}^{\dagger n-1} + \mathbf{a}^{\dagger n}\mathbf{a}$$

$$U_{\mathbf{Se}}$$
: $\mathbf{aa}^{\dagger n} = n\mathbf{a}^{\dagger n-1} + \mathbf{a}^{\dagger n}\mathbf{a}$

Number operator and Hamiltonian operator

Number operator **N**=**a**[†]**a** counts quanta.

$$\mathbf{a}^{\dagger}\mathbf{a}|n\rangle = \frac{\mathbf{a}^{\dagger}\mathbf{a}\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} = n\frac{\mathbf{a}^{\dagger}\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}} = n\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} = n|n\rangle$$

Hamiltonian operator

$$\mathbf{H} | n \rangle = \hbar \omega \, \mathbf{a}^{\dagger} \mathbf{a} | n \rangle + \hbar \omega / 2 \mathbf{1} | n \rangle = \hbar \omega (n + 1/2) | n \rangle$$

$$\begin{array}{c} \textit{Hamiltonian operator} \\ \textbf{H} \mid n \rangle = \hbar \omega \, \textbf{a}^{\dagger} \textbf{a} \mid n \rangle + \hbar \omega / 2 \textbf{1} \mid n \rangle \\ &= \hbar \omega (n+1/2) \mid n \rangle \end{array} \\ \langle \textbf{H} \rangle = \hbar \omega \langle \textbf{a}^{\dagger} \textbf{a} + \frac{1}{2} \textbf{1} \rangle = \hbar \omega \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ . \end{pmatrix} + \hbar \omega \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ . \end{pmatrix}$$

Hamiltonian operator is $\hbar\omega$ N plus zero-point energy $1\hbar\omega/2$.

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S+ and S_

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

T(a) and B(b) operations do not commute.

$$\mathbf{T}(a) = e^{-ia\mathbf{p}/\hbar} \text{ or } \mathbf{B}(b) = e^{ib\mathbf{x}/\hbar}$$

Define a combined boost-translation operation: $\mathbf{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$

Use Baker-Campbell-Hausdorf identity since
$$[\mathbf{x},\mathbf{p}]=i\hbar\mathbf{1}$$
 and $[[\mathbf{x},\mathbf{p}],\mathbf{x}]=[[\mathbf{x},\mathbf{p}],\mathbf{p}]=0$. $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2}=e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A},\mathbf{B}]]$ $\mathbf{C}(a,b)=e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}=e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}$

$$\mathbf{C}(a,b) = \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$$

T(a) and B(b) operations do not commute.

$$\mathbf{T}(a) = e^{-ia\mathbf{p}/\hbar} \mathbf{or} \mathbf{B}(b) = e^{ib\mathbf{x}/\hbar}$$

Define a combined boost-translation operation: $\mathbb{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$

Use Baker-Campbell-Hausdorf identity since $[x,p]=i\hbar 1$ and [[x,p],x]=[[x,p],p]=0.

$$e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$$
, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$

$$\mathbf{C}(a,b) = e^{i\left(b\mathbf{x} - a\mathbf{p}\right)/\hbar} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-ab\left[\mathbf{x},\mathbf{p}\right]/2\hbar^2} = e^{ib\mathbf{x}/\hbar}e^{-ia\mathbf{p}/\hbar}e^{-iab/2\hbar}$$

$$\mathbf{C}(a,b) = \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$$

Complex

phasor coordinate $\alpha(a,b)$ defined by: $\alpha(a,b)$

Reordering only affects the overall phase.

$$\mathbf{C}(a,b) = e^{i(b\mathbf{x} - a\mathbf{p})/\hbar} = e^{ib(\mathbf{a}^{\dagger} + \mathbf{a})/\sqrt{2\hbar M\omega} + a(\mathbf{a}^{\dagger} - \mathbf{a})\sqrt{M\omega/2\hbar}}$$
$$= e^{\alpha \mathbf{a}^{\dagger} - \alpha * \mathbf{a}} = e^{-|\alpha|^2/2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha * \mathbf{a}} = e^{|\alpha|^2/2} e^{-\alpha * \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}}$$

 $= a\sqrt{M\omega/2\hbar} + ib/\sqrt{2\hbar M\omega}$ $= \left[a + i\frac{b}{M\omega}\right]\sqrt{M\omega/2\hbar}$

T(a) and B(b) operations do not commute.

$$\mathbf{T}(a) = e^{-ia\mathbf{p}/\hbar} \mathbf{or} \mathbf{B}(b) = e^{ib\mathbf{x}/\hbar}$$

Define a combined boost-translation operation: $\mathbb{C}(a,b) = e^{i(b\mathbf{x}-a\mathbf{p})/\hbar}$

Use Baker-Campbell-Hausdorf identity since $[x,p]=i\hbar 1$ and [[x,p],x]=[[x,p],p]=0.

$$e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}e^{-[\mathbf{A},\mathbf{B}]/2} = e^{\mathbf{B}}e^{\mathbf{A}}e^{[\mathbf{A},\mathbf{B}]/2}$$
, where: $[\mathbf{A},[\mathbf{A},\mathbf{B}]] = \mathbf{0} = [\mathbf{B},[\mathbf{A},\mathbf{B}]]$

$$\mathbf{C}(a,b) = e^{i(b\mathbf{x} - a\mathbf{p})/\hbar} = e^{ib\mathbf{x}/\hbar} e^{-ia\mathbf{p}/\hbar} e^{-ab[\mathbf{x},\mathbf{p}]/2\hbar^2} = e^{ib\mathbf{x}/\hbar} e^{-ia\mathbf{p}/\hbar} e^{-iab/2\hbar}$$

$$\mathbf{C}(a,b) = \mathbf{B}(b)\mathbf{T}(a)e^{-iab/2\hbar} = \mathbf{T}(a)\mathbf{B}(b)e^{iab/2\hbar}$$

Complex

phasor coordinate $\alpha(a,b)$

defined by: $\alpha(a,b)$

Reordering only affects the overall phase.

$$\mathbf{C}(a,b) = e^{i(b\mathbf{x} - a\mathbf{p})/\hbar} = e^{ib(\mathbf{a}^{\dagger} + \mathbf{a})/\sqrt{2\hbar M\omega} + a(\mathbf{a}^{\dagger} - \mathbf{a})\sqrt{M\omega/2\hbar}}$$
$$= e^{\alpha \mathbf{a}^{\dagger} - \alpha^{*} \mathbf{a}} = e^{-|\alpha|^{2}/2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}} = e^{|\alpha|^{2}/2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}}$$

$$= a\sqrt{M\omega/2\hbar} + ib/\sqrt{2\hbar M\omega}$$
$$= \left[a + i\frac{b}{M\omega}\right]\sqrt{M\omega/2\hbar}$$

Coherent wavepacket state $|\alpha(x_0, p_0)\rangle$: $|\alpha_0(x_0, p_0)\rangle = \mathbf{C}(x_0, p_0)|0\rangle = e^{i(x_0 \mathbf{x} - p_0 \mathbf{p})/\hbar}|0\rangle$ $= e^{-|\alpha_0|^2/2} e^{\alpha_0 \mathbf{a}^{\dagger}} e^{-\alpha_0^* \mathbf{a}}|0\rangle$ $= e^{-|\alpha_0|^2/2} e^{\alpha_0 \mathbf{a}^{\dagger}}|0\rangle$ $= e^{-|\alpha_0|^2/2} \sum_{n=0}^{\infty} (\alpha_0 \mathbf{a}^{\dagger})^n |0\rangle/n!$ $= e^{-|\alpha_0|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha_0)^n}{\sqrt{n!}} |n\rangle , \text{ where: } |n\rangle = \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}$

Review: 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S+ and S_

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

$$\left|\alpha_{0}(x_{0},p_{0})\right\rangle = e^{-\left|\alpha_{0}\right|^{2}/2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \left|n\right\rangle$$

Time evolution operator for constant H has general form : $\mathbf{U}(t,0) = e^{-i\mathbf{H}t/\hbar}$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

$$\left|\alpha_{0}\left(x_{0},p_{0}\right)\right\rangle = e^{-\left|\alpha_{0}\right|^{2}/2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \left|n\right\rangle$$

Time evolution operator for constant H has general form: $\mathbf{U}(t,0) = e^{-i\mathbf{H}t/\hbar}$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

Coherent state evolution results.

$$\begin{aligned} \mathbf{U}(t,0) \Big| \alpha_{0}(x_{0},p_{0}) \Big\rangle &= e^{-|\alpha_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\alpha_{0})^{n}}{\sqrt{n!}} \mathbf{U}(t,0) \Big| n \Big\rangle = e^{-|\alpha_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\alpha_{0})^{n}}{\sqrt{n!}} e^{-i(n+1/2)\omega t} \Big| n \Big\rangle \\ &= e^{-i\omega t/2} e^{-|\alpha_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\alpha_{0}e^{-i\omega t})^{n}}{\sqrt{n!}} \Big| n \Big\rangle \end{aligned}$$

$$|\alpha_0(x_0, p_0)\rangle = e^{-|\alpha_0|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha_0)^n}{\sqrt{n!}} |n\rangle$$

Time evolution operator for constant H has general form: $U(t,0) = e^{-iHt/\hbar}$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

Coherent state evolution results.

$$\mathbf{U}(t,0)|\alpha_0(x_0,p_0)\rangle = e^{-|\alpha_0|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha_0)^n}{\sqrt{n!}} \mathbf{U}(t,0)|n\rangle = e^{-|\alpha_0|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha_0)^n}{\sqrt{n!}} e^{-i(n+1/2)\omega t}|n\rangle$$

$$=e^{-i\omega t/2}e^{-\left|\alpha_{0}\right|^{2}/2}\sum_{n=0}^{\infty}\frac{\left(\alpha_{0}e^{-i\omega t}\right)^{n}}{\sqrt{n!}}\left|n\right\rangle$$

Evolution simplifies to a variable- α_0 coherent state with a *time dependent phasor coordinate* α_t :

$$\mathbf{U}(t,0)|\alpha_0(x_0,p_0)\rangle = e^{-i\omega t/2}|\alpha_t(x_t,p_t)\rangle \text{ where:}$$

$$\frac{\alpha_t(x_t, p_t)}{\left[x_t + i \frac{p_t}{M\omega}\right]} = e^{-i\omega t} \frac{\alpha_0(x_0, p_0)}{\left[x_0 + i \frac{p_0}{M\omega}\right]}$$

$$|\alpha_0(x_0, p_0)\rangle = e^{-|\alpha_0|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha_0)^n}{\sqrt{n!}} |n\rangle$$

Time evolution operator for constant H has general form: $U(t,0)=e^{-iHt/\hbar}$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$\mathbf{U}(t,0)|n\rangle = e^{-i\mathbf{H}t/\hbar}|n\rangle = e^{-i(n+1/2)\omega t}|n\rangle$$

Coherent state evolution results.

$$\mathbf{U}(t,0)|\alpha_{0}(x_{0},p_{0})\rangle = e^{-|\alpha_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\alpha_{0})^{n}}{\sqrt{n!}} \mathbf{U}(t,0)|n\rangle = e^{-|\alpha_{0}|^{2}/2} \sum_{n=0}^{\infty} \frac{(\alpha_{0})^{n}}{\sqrt{n!}} e^{-i(n+1/2)\omega t}|n\rangle$$

$$=e^{-i\omega t/2}e^{-\left|\alpha_{0}\right|^{2}/2}\sum_{n=0}^{\infty}\frac{\left(\alpha_{0}e^{-i\omega t}\right)^{n}}{\sqrt{n!}}\left|n\right\rangle$$

Evolution simplifies to a variable- α_0 coherent state with a *time dependent phasor coordinate* α_t :

$$\mathbf{U}(t,0)|\alpha_0(x_0,p_0)\rangle = e^{-i\omega t/2}|\alpha_t(x_t,p_t)\rangle \text{ where:}$$

$$\alpha_{t}(x_{t}, p_{t}) = e^{-i\omega t} \quad \alpha_{0}(x_{0}, p_{0})$$

$$\left[x_{t} + i\frac{p_{t}}{M\omega}\right] = e^{-i\omega t}\left[x_{0} + i\frac{p_{0}}{M\omega}\right]$$

 (x_t, p_t) mimics classical oscillator

$$x_t = x_0 \cos \omega t + \frac{p_0}{M\omega} \sin \omega t$$

$$\frac{p_t}{M\omega} = -x_0 \sin \omega t + \frac{p_0}{M\omega} \cos \omega t$$

(Real and imaginary parts (x_t and $p_t/M\omega$) of α_t go clockwise on phasor circle.)

 $t = 0.3\tau$ $\begin{array}{c} Coherent \\ state |\alpha_t\rangle \\ \\ + \langle \mathbf{k} \rangle \\ \\ 10 \\ 15 \\ \end{array}$

Expected quantum energy has simple time independent form

 $\langle \boldsymbol{\alpha}_0(x_0, p_0) | \mathbf{a}^{\dagger} = \langle \boldsymbol{\alpha}_0(x_0, p_0) | \boldsymbol{\alpha}_0^* \rangle$

$$\begin{split} \left\langle E \right\rangle \!\! \left|_{\alpha_0} &= \! \left\langle \alpha_0 \! \left(x_0, p_0 \right) \! \middle| \mathbf{H} \middle| \alpha_0 \! \left(x_0, p_0 \right) \! \right\rangle \\ &= \! \left\langle \alpha_0 \! \left(x_0, p_0 \right) \middle| \! \left(\hbar \omega \mathbf{a}^\dagger \mathbf{a} \! + \! \frac{\hbar \omega}{2} \mathbf{1} \right) \middle| \alpha_0 \! \left(x_0, p_0 \right) \! \right\rangle \\ &= \! \hbar \omega \alpha_0^* \! \alpha_0 \! + \! \frac{\hbar \omega}{2} \end{split}$$

Properties of "squeezed" coherent states

Yay! Classical Cosine trajectory!

what happens if you apply operators with non-linear "tensor" exponents $\exp(s\mathbf{x}^2)$, $\exp(f\mathbf{p}^2)$, etc.

Properties of "squeezed" coherent states

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D at a algebra of U(2) representations and R(3) angular momentum operators

2D-Oscillator basic states and operations

Commutation relations

Mostly

and

Notation

Bookkeeping:

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S₊ and S₋

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \; \mathbf{p}_2)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \; \mathbf{p}_2)/\sqrt{2}$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and a† operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$${\bf p}_1 = {\rm i} \; ({\bf a}^{\dagger}_1 - {\bf a}_1)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and a† operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}^{\dagger}_{2} = (\mathbf{x}_{2} - i \, \mathbf{p}_{2})/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1) / \sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other.

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S+ and S_

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

Mostly Notation and Bookkeeping:

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{p}_{1} = i (\mathbf{a}^{\dagger}_{1} - \mathbf{a}_{1})/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and a† operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1},\mathbf{a}^{\dagger}_{1}]=\mathbf{1},\ [\mathbf{a}_{2},\mathbf{a}^{\dagger}_{2}]=\mathbf{1}$$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and at operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}^{\dagger}_{2} = (\mathbf{x}_{2} - i \, \mathbf{p}_{2})/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$${\bf p}_1 = {\rm i} \; ({\bf a}^{\dagger}_1 - {\bf a}_1)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to *N*-dimensional oscillator problems.

$$\left[\left[\left[\left[\mathbf{a}_{m},\,\mathbf{a}_{n} \right] = \mathbf{a}_{m}\mathbf{a}_{n} - \mathbf{a}_{n}\mathbf{a}_{m} = \mathbf{0} \right] \right]$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$[\mathbf{a}^{\dagger}_{m}, \mathbf{a}^{\dagger}_{n}] = \mathbf{a}^{\dagger}_{m} \mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n} \mathbf{a}^{\dagger}_{m} = \mathbf{0}$$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and at operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$ $\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$ $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$${\bf p}_1 = {\rm i} \; ({\bf a}^{\dagger}_1 - {\bf a}_1)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to N-dimensional oscillator problems.

$$oxed{egin{aligned} \left[oldsymbol{\mathsf{a}}_m, oldsymbol{\mathsf{a}}_n
ight] = oldsymbol{\mathsf{a}}_m oldsymbol{\mathsf{a}}_n - oldsymbol{\mathsf{a}}_n oldsymbol{\mathsf{a}}_m = oldsymbol{\mathsf{0}}
ight]} \end{aligned}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$[\mathbf{a}^{\dagger}_{m},\mathbf{a}^{\dagger}_{n}]=\mathbf{a}^{\dagger}_{m}\mathbf{a}^{\dagger}_{n}$$
 - $\mathbf{a}^{\dagger}_{n}\mathbf{a}^{\dagger}_{m}=\mathbf{0}$

New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical H matrix.

$$\mathbf{H} = \left(\begin{array}{cc} H_{11} & H_{12} \\ H_{21} & H_{22} \end{array} \right)$$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and at operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$ $\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$ $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to N-dimensional oscillator problems.

$$oldsymbol{eta} \left[oldsymbol{\mathsf{a}}_m, oldsymbol{\mathsf{a}}_n
ight] = oldsymbol{\mathsf{a}}_m oldsymbol{\mathsf{a}}_n - oldsymbol{\mathsf{a}}_n oldsymbol{\mathsf{a}}_m = oldsymbol{\mathsf{0}}
ight]$$

$$egin{aligned} \left(\left[\ \mathbf{a}_m, \ \mathbf{a}_n
ight] = \mathbf{a}_m \mathbf{a}_n^{\dagger} - \mathbf{a}_n^{\dagger} \mathbf{a}_m = \mathbf{0}
ight) & \left(\left[\ \mathbf{a}_m, \ \mathbf{a}^{\dagger}_n
ight] = \mathbf{a}_m \mathbf{a}^{\dagger}_n - \mathbf{a}^{\dagger}_n \mathbf{a}_m = \delta_{mn} \mathbf{1}
ight) & \left(\left[\ \mathbf{a}^{\dagger}_m, \ \mathbf{a}^{\dagger}_n
ight] = \mathbf{a}^{\dagger}_m \mathbf{a}^{\dagger}_n - \mathbf{a}^{\dagger}_n \mathbf{a}^{\dagger}_m = \mathbf{0}
ight) \end{aligned}$$

$$[\mathbf{a}^{\dagger}_{m},\mathbf{a}^{\dagger}_{n}]=\mathbf{a}^{\dagger}_{m}\mathbf{a}^{\dagger}_{n}$$
 - $\mathbf{a}^{\dagger}_{n}\mathbf{a}^{\dagger}_{m}=\mathbf{0}$

New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical **H** matrix.

$$\mathbf{H} = H_{11} \Big(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \Big) + H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}$$
$$+ H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} + H_{22} \Big(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \Big)$$

$$\mathbf{H} = \left(\begin{array}{cc} H_{11} & H_{12} \\ H_{21} & H_{22} \end{array} \right)$$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and at operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \; \mathbf{p}_2)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \; \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$

$$\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$
 $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to N-dimensional oscillator problems.

$$[\; \mathbf{a}_m,\, \mathbf{a}_n] = \mathbf{a}_m \mathbf{a}_n$$
 - $\mathbf{a}_n \mathbf{a}_m = \mathbf{0}$

$$([\mathbf{a}_m, \mathbf{a}_n] = \mathbf{a}_m \mathbf{a}_n - \mathbf{a}_n \mathbf{a}_m = \mathbf{0}) \qquad ([\mathbf{a}_m, \mathbf{a}^{\dagger}_n] = \mathbf{a}_m \mathbf{a}^{\dagger}_n - \mathbf{a}^{\dagger}_n \mathbf{a}_m = \delta_{mn} \mathbf{1})$$

$$([\mathbf{a}^{\dagger}_{m}, \mathbf{a}^{\dagger}_{n}] = \mathbf{a}^{\dagger}_{m} \mathbf{a}^{\dagger}_{n} - \mathbf{a}^{\dagger}_{n} \mathbf{a}^{\dagger}_{m} = \mathbf{0})$$

New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical H matrix.

$$\mathbf{H} = H_{11} \Big(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \Big) + H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = A \Big(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \Big) + (B - iC) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}$$

$$+ H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} + H_{22} \Big(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \Big) + (B + iC) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} + D \Big(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \Big)$$

$$\mathbf{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix}$$

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They're operators now!)

$$\mathbf{H} = \frac{\mathbf{A}}{2} (\mathbf{p}_1^2 + \mathbf{x}_1^2) + \mathbf{B} (\mathbf{x}_1 \mathbf{x}_2 + \mathbf{p}_1 \mathbf{p}_2) + C (\mathbf{x}_1 \mathbf{p}_2 - \mathbf{x}_2 \mathbf{p}_1) + \frac{D}{2} (\mathbf{p}_2^2 + \mathbf{x}_2^2)$$

(Mass factors \sqrt{M} , spring constants K_{ij} , and Planck \hbar constants are absorbed into A, B, C, and D constants used in Lectures 6-9.)

Define a and at operators

$$\mathbf{a}_1 = (\mathbf{x}_1 + i \, \mathbf{p}_1)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_1 = (\mathbf{x}_1 - i \, \mathbf{p}_1)/\sqrt{2}$

$$\mathbf{a}^{\dagger}_{1} = (\mathbf{x}_{1} - i \, \mathbf{p}_{1})/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$

$$\mathbf{a}_2 = (\mathbf{x}_2 + i \, \mathbf{p}_2)/\sqrt{2}$$
 $\mathbf{a}^{\dagger}_2 = (\mathbf{x}_2 - i \, \mathbf{p}_2)/\sqrt{2}$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$

$$\mathbf{x}_1 = (\mathbf{a}^{\dagger}_1 + \mathbf{a}_1)/\sqrt{2}$$
 $\mathbf{p}_1 = i (\mathbf{a}^{\dagger}_1 - \mathbf{a}_1)/\sqrt{2}$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$

$$\mathbf{x}_2 = (\mathbf{a}^{\dagger}_2 + \mathbf{a}_2)/\sqrt{2}$$
 $\mathbf{p}_2 = i (\mathbf{a}^{\dagger}_2 - \mathbf{a}_2)/\sqrt{2}$

Each system dimension \mathbf{x}_1 and \mathbf{x}_2 is assumed orthogonal, neither being constrained by the other. This includes an axiom of *inter-dimensional commutivity*.

$$[\mathbf{x}_{1}, \mathbf{p}_{2}] = \mathbf{0} = [\mathbf{x}_{2}, \mathbf{p}_{1}], [\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{2}] = \mathbf{0} = [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{1}]$$

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

$$[\mathbf{a}_{1}, \mathbf{a}^{\dagger}_{1}] = \mathbf{1}, [\mathbf{a}_{2}, \mathbf{a}^{\dagger}_{2}] = \mathbf{1}$$

This applies in general to N-dimensional oscillator problems.

$$[\; \mathbf{a}_m,\, \mathbf{a}_n] = \mathbf{a}_m \mathbf{a}_n$$
 - $\mathbf{a}_n \mathbf{a}_m = \mathbf{0}$

$$\left([\mathbf{a}_m, \mathbf{a}_n] = \mathbf{a}_m \mathbf{a}_n - \mathbf{a}_n \mathbf{a}_m = \mathbf{0} \right) \quad \left([\mathbf{a}_m, \mathbf{a}^\dagger_n] = \mathbf{a}_m \mathbf{a}^\dagger_n - \mathbf{a}^\dagger_n \mathbf{a}_m = \delta_{mn} \mathbf{1} \right) \quad \left([\mathbf{a}^\dagger_m, \mathbf{a}^\dagger_n] = \mathbf{a}^\dagger_m \mathbf{a}^\dagger_n - \mathbf{a}^\dagger_n \mathbf{a}^\dagger_m = \mathbf{0} \right)$$

$$[\mathbf{a}^{\dagger}_{m},\mathbf{a}^{\dagger}_{n}]=\mathbf{a}^{\dagger}_{m}\mathbf{a}^{\dagger}_{n}$$
 - $\mathbf{a}^{\dagger}_{n}\mathbf{a}^{\dagger}_{m}=\mathbf{0}$

New symmetrized $\mathbf{a}^{\dagger}_{m}\mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical H matrix.

$$\mathbf{H} = H_{11} \Big(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \Big) + H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = A \Big(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \Big) + (B - iC) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}$$

$$+ H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} + H_{22} \Big(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \Big) + (B + iC) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} + D \Big(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \Big)$$

$$\mathbf{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix}$$

Both are elementary "place-holders" for parameters H_{mn} or A, $B\pm iC$, and D.

$$|m\rangle\langle n| \rightarrow (\mathbf{a}_{m}^{\dagger}\mathbf{a}_{n} + \mathbf{a}_{n}\mathbf{a}_{m}^{\dagger})/2 = \mathbf{a}_{m}^{\dagger}\mathbf{a}_{n} + \delta_{m,n}\mathbf{1}/2$$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays

Entangled 2-particle states

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_{+} and \mathbf{S}_{-}

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

Mostly Notation and Bookkeeping:

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

If \mathbf{a}^{\dagger}_{m} raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

If \mathbf{a}^{\dagger}_{m} raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If \mathbf{a}^{\dagger}_{m} raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

If \mathbf{a}^{\dagger}_{m} raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If \mathbf{a}^{\dagger}_{m} raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If \mathbf{a}^{\dagger}_{m} raises liquid ⁴He rotational quantum number m to m+1 it is said to create a roton.

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Mostly

and

Notation

Bookkeeping:

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry <u>Anti</u>-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras Outer product arrays

Entangled 2-particle states

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_{+} and \mathbf{S}_{-} $SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

If \mathbf{a}^{\dagger}_{m} raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If \mathbf{a}^{\dagger}_{m} raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If \mathbf{a}^{\dagger}_{m} raises liquid ⁴He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators ($\mathbf{c}_m, \mathbf{c}_n$) are defined to create Fermions and use <u>anti-commutators</u> { \mathbf{A}, \mathbf{B} } = $\mathbf{AB} + \mathbf{BA}$.

$$\{\mathbf{c}_m,\mathbf{c}_n\}=\mathbf{c}_m\mathbf{c}_n+\mathbf{c}_n\mathbf{c}_m=\mathbf{0}$$

$$\{\mathbf{c}_{m},\mathbf{c}^{\dagger}_{n}\}=\mathbf{c}_{m}\mathbf{c}^{\dagger}_{n}+\mathbf{c}^{\dagger}_{n}\mathbf{c}_{m}=\delta_{mn}\mathbf{1}$$

$$\{\mathbf{c}^{\dagger}_{m},\mathbf{c}^{\dagger}_{n}\}=\mathbf{c}^{\dagger}_{m}\mathbf{c}^{\dagger}_{n}+\mathbf{c}^{\dagger}_{n}\mathbf{c}^{\dagger}_{m}=\mathbf{0}$$

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

If \mathbf{a}^{\dagger}_{m} raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If \mathbf{a}^{\dagger}_{m} raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If \mathbf{a}^{\dagger}_{m} raises liquid ⁴He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators ($\mathbf{c}_m, \mathbf{c}_n$) are defined to create Fermions and use <u>anti-commutators</u> { \mathbf{A}, \mathbf{B} } = $\mathbf{AB} + \mathbf{BA}$.

$$\{\mathbf{c}_m,\mathbf{c}_n\}=\mathbf{c}_m\mathbf{c}_n+\mathbf{c}_n\mathbf{c}_m=\mathbf{0}$$

$$\{\mathbf{c}_{m},\mathbf{c}_{n}\}=\mathbf{c}_{m}\mathbf{c}_{n}+\mathbf{c}_{n}\mathbf{c}_{m}=\mathbf{0} \qquad \{\mathbf{c}_{m},\mathbf{c}_{n}^{\dagger}\}=\mathbf{c}_{m}\mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger}\mathbf{c}_{m}=\delta_{mn}\mathbf{1}$$

$$\{\mathbf{c}^{\dagger}_{m},\mathbf{c}^{\dagger}_{n}\}=\mathbf{c}^{\dagger}_{m}\mathbf{c}^{\dagger}_{n}+\mathbf{c}^{\dagger}_{n}\mathbf{c}^{\dagger}_{m}=\mathbf{0}$$

Fermi \mathbf{c}^{\dagger}_{n} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0.

$$\mathbf{c}^{\dagger}{}_{m}\mathbf{c}^{\dagger}{}_{m}\ket{0}=$$
 - $\mathbf{c}^{\dagger}{}_{m}\mathbf{c}^{\dagger}{}_{m}\ket{0}=\mathbf{0}$

That no two indistinguishable Fermions can be in the same state, is called the *Pauli exclusion principle*.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as *Bose symmetry*. Bose and Einstein discovered this symmetry of light quanta. $(\mathbf{a}_m, \mathbf{a}^{\dagger}_n)$ operators called *Boson operators* create or destroy *quanta* or "particles" known as *Bosons*.

If \mathbf{a}^{\dagger}_{m} raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If \mathbf{a}^{\dagger}_{m} raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If \mathbf{a}^{\dagger}_{m} raises liquid ⁴He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators ($\mathbf{c}_m, \mathbf{c}_n$) are defined to create Fermions and use <u>anti-commutators</u> { \mathbf{A}, \mathbf{B} } = $\mathbf{AB} + \mathbf{BA}$.

$$\{\mathbf{c}_{m},\mathbf{c}_{n}\}=\mathbf{c}_{m}\mathbf{c}_{n}+\mathbf{c}_{n}\mathbf{c}_{m}=\mathbf{0} \qquad \{\mathbf{c}_{m},\mathbf{c}^{\dagger}_{n}\}=\mathbf{c}_{m}\mathbf{c}^{\dagger}_{n}+\mathbf{c}^{\dagger}_{n}\mathbf{c}_{m}=\delta_{mn}\mathbf{1}$$

$$\{\mathbf{c}_m,\mathbf{c}^\dagger{}_n\} = \mathbf{c}_m\mathbf{c}^\dagger{}_n + \mathbf{c}^\dagger{}_n\mathbf{c}_m = \delta_{mn}$$
1

$$\{\mathbf{c}^{\dagger}_{m},\mathbf{c}^{\dagger}_{n}\}=\mathbf{c}^{\dagger}_{m}\mathbf{c}^{\dagger}_{n}+\mathbf{c}^{\dagger}_{n}\mathbf{c}^{\dagger}_{m}=\mathbf{0}$$

Fermi \mathbf{c}^{\dagger}_{n} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0.

$$\mathbf{c}^{\dagger}_{m}\mathbf{c}^{\dagger}_{m}\ket{0}=$$
 - $\mathbf{c}^{\dagger}_{m}\mathbf{c}^{\dagger}_{m}\ket{0}=\mathbf{0}$

That no two indistinguishable Fermions can be in the same state, is called the *Pauli exclusion principle*.

Quantum numbers of n=0 and n=1 are the only allowed eigenvalues of the number operator $\mathbf{c}^{\dagger}_{m}\mathbf{c}_{m}$.

$$\mathbf{c}^{\dagger}_{m}\mathbf{c}_{m}|0\rangle = \mathbf{0}$$
, $\mathbf{c}^{\dagger}_{m}\mathbf{c}_{m}|1\rangle = |1\rangle$, $\mathbf{c}^{\dagger}_{m}\mathbf{c}_{m}|n\rangle = \mathbf{0}$ for: $n>1$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

<u>Anti</u>-commutation relations

\rightarrow

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S₊ and S₋

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

Mostly Notation and Bookkeeping:

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle.

The dual description is done similarly using "bra-bras" $\langle n_2 | \langle n_1 | = (|n_1\rangle | n_2\rangle)^{\dagger}$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1|=(|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1|=(|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1|=(|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between all (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$ $= |\langle x_1|\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1|=(|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between <u>all</u> (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$ $= |\langle x_1|\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$

Product of individual probabilities $|\langle x_1|\Psi_1\rangle|^2$ and $|\langle x_2|\Psi_2\rangle|^2$ respects standard Bayesian probability theory.

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1|=(|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between <u>all</u> (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$ $= |\langle x_1|\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$

Product of individual probabilities $|\langle x_1|\Psi_1\rangle|^2$ and $|\langle x_2|\Psi_2\rangle|^2$ respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation $\langle x_1, x_2 | \Psi_1, \Psi_2 \rangle = \langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle$

A state for a particle in two-dimensions (or two one-dimensional particles) is a "ket-ket" $|n_1\rangle|n_2\rangle$ It is outer product of the kets for each single dimension or particle. The dual description is done similarly using "bra-bras" $\langle n_2|\langle n_1|=(|n_1\rangle|n_2\rangle)^{\dagger}$

This applies to all types of states $|\Psi_1\rangle|\Psi_2\rangle$: eigenstates $|n_1\rangle|n_2\rangle$, or $\langle n_2|\langle n_1|$, position states $|x_1\rangle|x_2\rangle$ and $\langle x_2|\langle x_1|$, coherent states $|\alpha_1\rangle|\alpha_2\rangle$ and $\langle \alpha_2|\langle \alpha_1|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle = \langle x_1 | \Psi_1 \rangle \langle x_2 | \Psi_2 \rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_1 and particle-2 at x_2 , if state $|\Psi_1\rangle|\Psi_2\rangle$ must choose between <u>all</u> (x_1, x_2) . $|\langle x_1, x_2|\Psi_1, \Psi_2\rangle|^2 = |\langle x_2|\langle x_1||\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$ $= |\langle x_1|\Psi_1\rangle|^2 |\langle x_2|\Psi_2\rangle|^2$

Product of individual probabilities $|\langle x_1|\Psi_1\rangle|^2$ and $|\langle x_2|\Psi_2\rangle|^2$ respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation $\langle x_1, x_2 | \Psi_1, \Psi_2 \rangle = \langle x_2 | \langle x_1 | | \Psi_1 \rangle | \Psi_2 \rangle$

Must ask a perennial modern question: "How are these structures stored in a computer program?" The usual answer is in outer product or tensor arrays. Next pages show sketches of these objects.

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets

R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators S₊ and S₋

 $SU(2)\subset U(2)$ oscillators vs. $R(3)\subset O(3)$ rotors

Mostly Notation and Bookkeeping:

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$|0_{1}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \cdots \qquad |0_{2}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \cdots$$

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$Type-1 \qquad Type-2 \qquad \cdots$$

$$|0_{1}\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots \qquad |0_{2}\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$Type-1 \qquad Type-2 \qquad \cdots$$

$$|0_{1}\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots \qquad |0_{2}\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \cdots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞-D analysis and finite computers

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$|0_{1}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots \qquad |0_{2}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞-D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$|0_{1}\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \dots \qquad |0_{2}\rangle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \dots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞-D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$|0_{1}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots \qquad |0_{2}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞-D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$|0_{1}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots \qquad |0_{2}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞-D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} \langle 0|\Psi_{1}\rangle \\ \langle 1|\Psi_{1}\rangle \\ \langle 2|\Psi_{1}\rangle \\ \vdots \end{pmatrix} \otimes \begin{pmatrix} \langle 0|\Psi_{2}\rangle \\ \langle 1|\Psi_{2}\rangle \\ \langle 2|\Psi_{2}\rangle \\ \vdots \end{pmatrix} = \begin{pmatrix} \langle 0|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle \\ \langle 0|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \langle 1|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle \\ \langle 1|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \langle 1|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle \\ \langle 2|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \langle 2|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \langle 2|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\Psi_{2}\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\Psi_{2}\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\Psi_{2}\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\Psi_{2}\Psi_{2}\Psi_{2}\rangle \\ \vdots \\ \hline \langle 2|\Psi_{1}\Psi_{2}\Psi_{2}\Psi_{2}\Psi_{2}\Psi_{2}\Psi_{2}$$

$$\vdots \\ \hline \langle 2|\Psi$$

"Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20,21,22,23,...)

Least significant digit at (right) END

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$|0_{1}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots \qquad |0_{2}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞-D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} \langle 0|\Psi_{1}\rangle \\ \langle 1|\Psi_{1}\rangle \\ \langle 2|\Psi_{1}\rangle \\ \vdots \end{pmatrix} \otimes \begin{pmatrix} \langle 0|\Psi_{2}\rangle \\ \langle 1|\Psi_{2}\rangle \\ \langle 2|\Psi_{2}\rangle \\ \vdots \end{pmatrix} = \begin{pmatrix} \langle 0|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle \\ \langle 0|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \langle 0|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle \\ \langle 1|\Psi_{1}\rangle\langle 1|\Psi_{2}\rangle \\ \langle 1|\Psi_{1}\rangle\langle 0|\Psi_{2}\rangle \\ \langle 1|\Psi_{1}\Psi_{2}\rangle \\ \langle 1|\Psi_{1}\Psi$$

"Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20,21,22,23,...)

Least significant digit at (right) END

or anti-lexicographic

(00, 10, 20, ...01, 11, 21,..., 02, 12, 22, ..)

array indexing

"Big-Endian" indexing

(...00,10,20..01,11,21,31 ...

02,12,22,32...)

Most significant digit at (right) END

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$|0_{1}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{1}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{1}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots \qquad |0_{2}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, |1_{2}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, |2_{2}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix}, \dots$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Herein lies conflict between standard ∞-D analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

"Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20,21,22,23,...)

Least significant digit at (right) END

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
<u>Anti</u>-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_{+} and \mathbf{S}_{-} $SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_I\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_I\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_I\rangle|\Psi_I\rangle$.)

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_I\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_I\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_I\rangle|\Psi_I\rangle$.)

ANALOGY:

A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^{n} \sum_{k=1}^{n} M_{j,k} |j\rangle\langle k|$

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_1\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_1\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_1\rangle|\Psi_1\rangle$.)

ANALOGY:

ANALOGY:
A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^{n} \sum_{k=1}^{n} M_{j,k} |j\rangle\langle k|$

...that *might* be diagonalized to a combination of *n* projectors: $\mathbf{M} = \sum_{e=1}^{n} \mu_e |e\rangle\langle e|$

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_I\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_I\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_I\rangle|\Psi_I\rangle$.)

ANALOGY:

A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^n \sum_{k=1}^n M_{j,k} |j\rangle\langle k|$

...that *might* be diagonalized to a combination of *n* projectors: $\mathbf{M} = \sum_{e=1}^{n} \mu_e |e\rangle\langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of *entangled* products: $|\Psi\rangle = \sum_{j} \sum_{k} \psi_{j,k} |\Psi_{j}\rangle |\Psi_{k}\rangle$

A matrix operator M is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $|\Psi_I\rangle|\Psi_2\rangle$ of 1-particle states $|\Psi_I\rangle$ and $|\Psi_2\rangle$. (Even rarer is $|\Psi_I\rangle|\Psi_I\rangle$.)

ANALOGY:

A general *n-by-n* matrix **M** operator is a combination of n^2 terms: $\mathbf{M} = \sum_{j=1}^{n} \sum_{k=1}^{n} M_{j,k} |j\rangle\langle k|$

...that *might* be diagonalized to a combination of *n* projectors: $\mathbf{M} = \sum_{e=1}^{n} \mu_e |e\rangle\langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of *entangled* products: $|\Psi\rangle = \sum_{j} \sum_{k} \psi_{j,k} |\Psi_{j}\rangle |\Psi_{k}\rangle$

...that *might* be *de-entangled* to a combination of *n* terms: $|\Psi\rangle = \sum_{e} \phi_{e} |\varphi_{e}\rangle |\varphi_{e}\rangle$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

<u>Anti</u>-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) Hamiltonian and irreducible representations

2D-Oscillator states and related 3D angular momentum multiplets

ND multiplets

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_+ and $\mathbf{S}_ SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others.

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle|\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle|\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle|\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others.

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle$$

General definition of the 2D oscillator base state.

$$|n_1 n_2\rangle = \frac{\left(\mathbf{a}_1^{\dagger}\right)^{n_1} \left(\mathbf{a}_2^{\dagger}\right)^{n_2}}{\sqrt{n_1! n_2!}} |0 0\rangle$$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others.

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle$$

General definition of the 2D oscillator base state.

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!\,n_{2}!}}|0\,0\rangle$$

$$\mathbf{H} = H_{11}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + \mathbf{1}/2\right) + H_{12}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} + H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

$$+ H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$

The $\mathbf{a}_m^{\dagger} \mathbf{a}_n$ combinations in the *ABCD* Hamiltonian **H** have fairly simple matrix elements.

$$\mathbf{H} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \left(\mathbf{B} - iC \right) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}$$
$$+ \left(\mathbf{B} + iC \right) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others.

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle|\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{2}^{\dagger}|n_{1}n_{2}\rangle = |n_{1}\rangle|\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{2}^{\dagger}|n_{1}n_{2}\rangle = |n_{1}\rangle|\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

General definition of the 2D oscillator base state.

$$|n_1 n_2\rangle = \frac{\left(\mathbf{a}_1^{\dagger}\right)^{n_1} \left(\mathbf{a}_2^{\dagger}\right)^{n_2}}{\sqrt{n_1! \, n_2!}} |0 \, 0\rangle$$

$$\mathbf{H} = H_{11} (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2) + H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}$$
$$+ H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} + H_{22} (\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2)$$

The $\mathbf{a}_m^{\dagger} \mathbf{a}_n$ combinations in the *ABCD* Hamiltonian **H** have fairly simple matrix elements.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1|n_{2}-1\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}|n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{2}|n_{1}|n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{2}|n_{1}|n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{2}|n_{1}|n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}|n_{2}\rangle$$

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others.

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}|n_{1}n_{2}\rangle = |n_{1}\rangle\mathbf{a}_{2}^{\dagger}|n_{2}\rangle = \sqrt{n_{2}+1}|n_{1}|n_{2}+1\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle\mathbf{a}_{2}|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

General definition of the 2D oscillator base state.

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle + H_{11}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)\right)$$

The \mathbf{a}_m \mathbf{a}_n combinations in the *ABCD* Hamiltonian \mathbf{H} have fairly simple matrix elements.

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others.

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle$$

$$\mathbf{a}_{2}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle$$

General definition of the 2D oscillator base state.

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!\,n_{2}!}}|0\,0\rangle$$

$$+H_{21}\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)$$
The $\mathbf{a}_{m}^{\dagger}\mathbf{a}_{n}$ combinations in the $ABCD$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

When 2-particle operator \mathbf{a}_k acts on a 2-particle state, \mathbf{a}_k "finds" its type-k state but ignores the others.

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}^{\dagger}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}+1}|n_{1}+1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = \mathbf{a}_{1}|n_{1}\rangle|n_{2}\rangle = \sqrt{n_{1}}|n_{1}-1|n_{2}\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle = \sqrt{n_{2}}|n_{1}|n_{2}-1\rangle$$

$$\mathbf{a}_{1}|n_{1}n_{2}\rangle = |n_{1}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{2}\rangle|n_{3}\rangle|n_{2}\rangle|n_{2}\rangle|n_{3}\rangle|n_{2}\rangle|n_{3$$

General definition of the 2D oscillator base state.

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle + H_{11}\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} + H_{22}\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} + \mathbf{1}/2\right)\right)$$

The \mathbf{a}_m \mathbf{a}_n combinations in the *ABCD* Hamiltonian \mathbf{H} have fairly simple matrix elements.

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $\mathbf{a}^{\dagger}\mathbf{a}$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations

2D-Oscillator states and related 3D angular momentum multiplets

ND multiplets

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_+ and $\mathbf{S}_ SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

U(2)-2D-HO Hamiltonian and irreducible representations

"Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20,21,22,23....)

	1								I	20,21,22	∠,∠J,)	
H=	00	$ 01\rangle$	$ 02\rangle$	•••	$ 10\rangle$	$ 11\rangle$	$ 12\rangle$	•••	$ 20\rangle$	$ 21\rangle$	$ 22\rangle$	•••
$A(\mathbf{a}_1^{\dagger}\mathbf{a}_1+1/2)+(B-iC)\mathbf{a}_1^{\dagger}\mathbf{a}_2$	0			•••				• • •				•••
(0)		D			B + iC			•••				•••
$+(B+iC)a_2^{\dagger}a_1+D(a_2^{\dagger}a_2+1/2)$ (02)			2 <i>D</i>			$\sqrt{2}\left(\mathbf{B}+iC\right)$		•••				•••
<u>:</u>	:	1	:	٠.	:	:	:	٠.				•••
(10	•	B-iC			\boldsymbol{A}			•••	•			•••
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) + \langle 11 \rangle$			$\sqrt{2}(B-iC)$	·)		A + D		•••	$\sqrt{2}(B+iC)$			
(12		Exan	nple:				A+2D	•••		$\sqrt{4}\left(\mathbf{B}+iC\right)$		•••
$\mathbf{a}_1^{\dagger}\mathbf{a}_1 n_1n_2\rangle = n_1 n_1n_2\rangle$ $\underline{\hspace{1cm}}$:	:	:	٠.	:	:	:	٠.	:	:	:	·
$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1} n_{1}-1 n_{2}+1\rangle$ (20)			√2 0+1 2−1}=			$\sqrt{2}\left(\mathbf{B}-iC\right)$		•••	2 <i>A</i>			•••
/21	$ \mathbf{a}_1^{\dagger}\mathbf{a}_2 $	$ n_1 n_2\rangle = \sqrt{n}$	$\frac{1}{n_1+1}\sqrt{n_2}n_1+1$	n_2 –1 \rangle		•	$\sqrt{4}\left(B-iC\right)$			2A + D		•••
$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}} n_{1}+1 n_{2}-1\rangle$											2A + 2D	•••
$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} n_{1}n_{2}\rangle=n_{2} n_{1}n_{2}\rangle$:	1				:	:	÷	٠.	:	:	:	·

Rearrangement of rows and columns brings the matrix to a block-diagonal form.

U(2)-2D-HO Hamiltonian and irreducible representations

"Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20 21 22 23)

H =		$ 00\rangle$	$ 01\rangle$	$ 02\rangle$		$ 10\rangle$	$ 11\rangle$	$ 12\rangle$		$ 20\rangle$	$ 20,21,22\rangle$	$ 2,23,\rangle$	•••
$A(\mathbf{a}_1^{\dagger}\mathbf{a}_1 + 1/2) + (B-iC)\mathbf{a}_1^{\dagger}\mathbf{a}_2$	$\langle 00 $	0			•••								•••
,	(01)		D			B + iC							•••
$+(B+iC)a_2^{\dagger}a_1^{}+D(a_2^{\dagger}a_2^{}+1/2)$	(02)			2 <i>D</i>			$\sqrt{2}\left(B+iC\right)$	•					•••
·	÷	:	<u></u>	:	٠.	:	:	:	٠٠.				•••
	(10)		B-iC	*		\boldsymbol{A}			•••				•••
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(11)			$\sqrt{2}(B-iC)$	c)		A + D			$\sqrt{2}(B+iC)$			•••
	(12)		Exan	nple:				A+2D	•••		$\sqrt{4}\left(\underline{B}+iC\right)$		•••
$\mathbf{a}_1^\dagger \mathbf{a}_1 n_1 n_2\rangle = n_1 n_1 n_2\rangle$	÷	:	<u>:</u>	:	٠.	÷	:	:	٠.	:	:	:	·
$ \mathbf{u}_{1} \mathbf{u}_{1} \mathbf{u}_{1} \mathbf{u}_{2} -\sqrt{ u_{1} } \sqrt{ u_{2} } + 1 u_{1} - 1 u_{2} + 1 u_{1} $				$\sqrt{2} 0+12-1\rangle$			$\sqrt{2}\left(\mathbf{B}-iC\right)$		•••	2 <i>A</i>			•••
	(21)	$\mathbf{a}_1^{\dagger}\mathbf{a}_2 n_1$	$ n_2\rangle = \sqrt{n}$	$\frac{1}{1+1}\sqrt{n_2}n_1+1$	n_2 –1 \rangle			$\sqrt{4}\left(B-iC\right)$	•••		2A + D		•••
$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2} n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}} n_{1}+1 n_{2}-1\rangle$	(22)											2A + 2D	
$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} n_{1}n_{2}\rangle = n_{2} n_{1}n_{2}\rangle$	\vdots					÷	:	÷	٠.	:	:	:	٠.

Rearrangement of rows and columns brings the matrix to a block-diagonal form.

Base states $|n_1\rangle|n_2\rangle$ with the same total quantum number $v=n_1+n_2$ define each block.

U(2)-2D-HO Hamiltonian and irreducible representations

"Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20 21 22 23

• •	I	١٥٥١	104	100	1	١٠٥١	la a\	140			20,21,22		
H=		$ 00\rangle$	$ 01\rangle$	$ 02\rangle$	•••	$ 10\rangle$	$ 11\rangle$	$ 12\rangle$	•••	$ 20\rangle$	$ 21\rangle$	$ 22\rangle$	•••
$A(\mathbf{a}_1^{\dagger}\mathbf{a}_1 + 1/2) + (B - iC)\mathbf{a}_1^{\dagger}\mathbf{a}_2$	$\langle 00 $	0							•••				•••
	(01)		D			B + iC			• • •				•••
$+ig({}^{}_{}\!\!+\!iCig)$ a $_2^{\dagger}$ a $_1^{}\!\!+\!\!D\!\!\left(a_2^{\dagger}a_2^{}\!\!+\!\!1/2 ight)$	(02)			2 <i>D</i>			$\sqrt{2}\left(\underline{B}+iC\right)$						•••
,	:	i		:	٠	:	÷	:	٠.				
_	(10)	•	B-iC		•••	A			•••				•••
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(11)			$\sqrt{2}(B-iC)$	c)		A + D			$\sqrt{2}(B+iC)$			•••
	(12)		Exam	iple:				A+2D			$\sqrt{4}\left(\underline{B}+iC\right)$		
$\mathbf{a}_1^{\dagger}\mathbf{a}_1 n_1n_2\rangle = n_1 n_1n_2\rangle$:	:	:	:		:	:	:	٠.	:	:	:	·
$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1} n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1} n_{1}-1 n_{2}+1\rangle$, , ,			$\sqrt{2} 0+1 2-1\rangle$			$\sqrt{2}\left(B-iC\right)$			2 A			•••
	(21)	$\mathbf{a}_1^{\dagger}\mathbf{a}_2 n_1$	$n_2 \rangle = \sqrt{n_1}$	$\frac{1}{1+1}\sqrt{n_2} n_1+1$	$n_1-1\rangle$			$\sqrt{4}\left(B-iC\right)$	•••		2A + D		•••
$ A_1 A_2 n_1n_2 = n_1+ n_2 n_1+ n_2- $	(22)							•				2A + 2D	
$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2} n_{1}n_{2}\rangle = n_{2} n_{1}n_{2}\rangle$:				/	:	:	:	٠.	:	:	:	٠.

Rearrangement of rows and columns brings the matrix to a block-diagonal form.

Base states $|n_1\rangle|n_2\rangle$ with the same total quantum number $v = n_1 + n_2$ define each block.

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13
20,21,22,23,...)

Dasc states [n]/[i	12/ V	VIUI	tile 8	same i	ioiai qu	anium n	umber 0	$-n_1 + n_2$	t ₂ define	cacii bi	OCK.	(01,02,0310,11,12,1.
		$ 00\rangle$	01>	$ 10\rangle$	02⟩	/ 11 <i>></i>	$ 20\rangle$	03>	12⟩	21⟩	30⟩	20,21,22,23,)
	$\langle 00 \rangle$	0	Vacuum	(v=0)								
	(01)		D	B+iC	Fundament	tal(v=1)						
	(10		B-iC	\boldsymbol{A}	vibrational	sub-space						
	(02)				2 <i>D</i> 🗸	$\sqrt{2}\left(B+iC\right)$						
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + D(1/2) +$	(11				$\sqrt{2}(B-iC)$	A+D	$\sqrt{2}\left(\underline{B}+iC\right)$	Overtone (v= vibrational si				
	(20					$\sqrt{2}\left(B-iC\right)$	2 A	violational st	io-space			
	(03							3 <i>D</i>	$\sqrt{3}(B+iC)$			
	(12							$\sqrt{3}(B-iC)$	A + 2D	$\sqrt{4}\left(\underline{B}+iC\right)$		Overtone (v=3)
	(21)								$\sqrt{4}\left(\underline{B}-iC\right)$	2A + D	$\sqrt{3}(B+iC)$	vibrational sub-space
	(30									$\sqrt{3}(B-iC)$	3 A	
$\mathbf{H}^{\mathbf{A}} = \mathbf{A} \Big(\mathbf{a}_1^{\dagger} \mathbf{a}_1 + 1 / 2 \Big)$	$\frac{\exists}{2} + D$	$\left(\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}\right)$	2 + 1 /2)	$arepsilon_{n_1 n_2}^{oldsymbol{A}}$	$ = \mathbf{A} \left(n_1 + \frac{1}{2} \right) $	$+D\left(n_2+\frac{1}{2}\right)$	$= \frac{A+D}{2}(n_1+$	$(n_2+1)+\frac{A-1}{2}$	(n_1-n_2)		

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) Hamiltonian and irreducible representations

2D-Oscillator states and related 3D angular momentum multiplets - ND multiplets

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_{+} and \mathbf{S}_{-} $SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

$$\langle \mathbf{H} \rangle_{v=1}^{Fundamental} = \begin{vmatrix} n_1, n_2 & |1,0\rangle & |0,1\rangle \\ |\langle 1,0| & A & B-iC \\ |\langle 0,1| & B+iC & D \end{vmatrix} + \frac{A+D}{2} \mathbf{1}$$

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...)

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .
$$\langle \mathbf{H} \rangle_{v=1}^{Fundamental} = \begin{bmatrix} n_1, n_2 & |1,0\rangle & |0,1\rangle \\ \langle 1,0| & A & B-iC \\ \langle 0,1| & B+iC & D \end{bmatrix} + \frac{A+D}{2} \mathbf{1}$$

Recall decomposition of **H** (Lectures 6-10)

Group reorganized "Big-Endian" indexing (...00,10,20..<mark>01</mark>,11,21,31 ...02,12,22,32...)

$$\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} + \frac{A+D}{2} \mathbf{1} = \begin{pmatrix} A+D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} + 2C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{2} + \begin{pmatrix} A-D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2}$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .
$$\langle \mathbf{H} \rangle_{v=1}^{Fundamental} = \begin{bmatrix} n_1, n_2 & |1,0\rangle & |0,1\rangle \\ \langle 1,0| & A & B-iC \\ \langle 0,1| & B+iC & D \end{bmatrix} + \frac{A+D}{2} \mathbf{1}$$

Recall decomposition of **H** (Lectures 6-10)

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...)

$$\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} + \frac{A + D}{2} \mathbf{1} = \begin{pmatrix} A + D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} + 2C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{2} + \begin{pmatrix} A - D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

$$\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{S} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$$
$$= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z \quad (XYZ \ Electron \ spin \ notation)$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .
$$\langle \mathbf{H} \rangle_{v=1}^{Fundamental} = \begin{vmatrix} n_1, n_2 & |1,0\rangle & |0,1\rangle \\ \langle 1,0| & A & B-iC \\ \langle 0,1| & B+iC & D \end{vmatrix} + \frac{A+D}{2} \mathbf{1}$$

Recall decomposition of **H** (Lectures 6-10)

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...)

$$\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} + \frac{A + D}{2} \mathbf{1} = \begin{pmatrix} A + D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} + 2C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{2} + \begin{pmatrix} A - D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

$$\begin{aligned} \mathbf{H} &= \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \vec{\mathbf{S}} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A & (ABC \ Optical \ vector \ notation) \\ &= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z & (XYZ \ Electron \ spin \ notation) \end{aligned}$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1/2** and fundamental transition frequency $\Omega = \omega_+ - \omega_-$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .
$$\langle \mathbf{H} \rangle_{v=1}^{Fundamental} = \begin{vmatrix} n_1, n_2 & |1,0\rangle & |0,1\rangle \\ \langle 1,0| & A & B-iC \\ \langle 0,1| & B+iC & D \end{vmatrix} + \frac{A+D}{2} \mathbf{1}$$

Recall decomposition of **H** (Lectures 6-10)

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...)

$$\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} + \frac{A+D}{2} \mathbf{1} = \begin{pmatrix} A+D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} + 2C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{2} + \begin{pmatrix} A-D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

$$\begin{aligned} \mathbf{H} &= \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \vec{\mathbf{S}} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A & (ABC \ Optical \ vector \ notation) \\ &= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z & (XYZ \ Electron \ spin \ notation) \end{aligned}$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1/2** and fundamental transition frequency $\Omega = \omega_+ - \omega_-$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

Polar angles (ϕ, ϑ) of $+\Omega$ -vector (or polar angles $(\phi, \vartheta \pm \pi)$ of $-\Omega$ -vector) gives **H** eigenvectors.

$$|\omega_{+}\rangle = \begin{pmatrix} e^{-i\varphi/2}\cos\frac{\vartheta}{2} \\ e^{i\varphi/2}\sin\frac{\vartheta}{2} \end{pmatrix}, \quad |\omega_{-}\rangle = \begin{pmatrix} -e^{-i\varphi/2}\sin\frac{\vartheta}{2} \\ e^{i\varphi/2}\cos\frac{\vartheta}{2} \end{pmatrix} \quad \text{where:} \begin{cases} \cos\vartheta = \frac{A-D}{\Omega} \\ \tan\varphi = \frac{C}{B} \end{cases}$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .
$$\langle \mathbf{H} \rangle_{v=1}^{Fundamental} = \begin{vmatrix} n_1, n_2 & |1,0\rangle & |0,1\rangle \\ \langle 1,0| & A & B-iC \\ \langle 0,1| & B+iC & D \end{vmatrix} + \frac{A+D}{2} \mathbf{1}$$

Recall decomposition of **H** (Lectures 6-10)

(...00,10,20..01,11,21,31 ...02,12,22,32...)

$$\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} + \frac{A + D}{2} \mathbf{1} = \begin{pmatrix} A + D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} + 2C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{2} + \begin{pmatrix} A - D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

$$\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{S} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$$

$$= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z \quad (XYZ \ Electron \ spin \ notation)$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1/2** and fundamental transition frequency $\Omega = \omega_+ - \omega_-$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

Polar angles (ϕ, ϑ) of $+\Omega$ -vector (or polar angles $(\phi, \vartheta \pm \pi)$ of $-\Omega$ -vector) gives **H** eigenvectors.

$$|\omega_{+}\rangle = \begin{pmatrix} e^{-i\varphi/2}\cos\frac{\vartheta}{2} \\ e^{i\varphi/2}\sin\frac{\vartheta}{2} \end{pmatrix}, \quad |\omega_{-}\rangle = \begin{pmatrix} -e^{-i\varphi/2}\sin\frac{\vartheta}{2} \\ e^{i\varphi/2}\cos\frac{\vartheta}{2} \end{pmatrix} \quad \text{where:} \begin{cases} \cos\vartheta = \frac{A-D}{\Omega} \\ \tan\varphi = \frac{C}{B} \end{cases}$$

More important for the general solution, are the eigen-creation operators \mathbf{a}^{\dagger} + and \mathbf{a}^{\dagger} - defined by

$$\mathbf{a}_{+}^{\dagger} = e^{-i\varphi/2} \left(\cos \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \sin \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right), \quad \mathbf{a}_{-}^{\dagger} = e^{-i\varphi/2} \left(-\sin \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \cos \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right)$$

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .
$$\langle \mathbf{H} \rangle_{v=1}^{Fundamental} = \begin{vmatrix} n_1, n_2 & |1,0\rangle & |0,1\rangle \\ \langle 1,0| & A & B-iC \\ \langle 0,1| & B+iC & D \end{vmatrix} + \frac{A+D}{2} \mathbf{1}$$

Recall decomposition of **H** (Lectures 6-10)

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...)

$$\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} + \frac{A + D}{2} \mathbf{1} = \begin{pmatrix} A + D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} + 2C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{2} + \begin{pmatrix} A - D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{2}$$

in terms of Jordan-Pauli spin operators.

$$\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{\Omega} \bullet \mathbf{S} = \Omega_0 \mathbf{1} + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C + \Omega_A \mathbf{S}_A \quad (ABC \ Optical \ vector \ notation)$$

$$= \Omega_0 \mathbf{1} + \Omega_X \mathbf{S}_X + \Omega_Y \mathbf{S}_Y + \Omega_Z \mathbf{S}_Z \quad (XYZ \ Electron \ spin \ notation)$$

Frequency eigenvalues ω_{\pm} of **H**- Ω_0 **1/2** and fundamental transition frequency $\Omega = \omega_+ - \omega_-$:

$$\omega_{\pm} = \frac{\Omega_0 \pm \Omega}{2} = \frac{A + D \pm \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}}{2} = \frac{A + D}{2} \pm \sqrt{\left(\frac{A - D}{2}\right)^2 + B^2 + C^2}$$

Polar angles (ϕ, ϑ) of $+\Omega$ -vector (or polar angles $(\phi, \vartheta \pm \pi)$ of $-\Omega$ -vector) gives **H** eigenvectors.

$$|\omega_{+}\rangle = \begin{pmatrix} e^{-i\varphi/2}\cos\frac{\vartheta}{2} \\ e^{i\varphi/2}\sin\frac{\vartheta}{2} \end{pmatrix}, \quad |\omega_{-}\rangle = \begin{pmatrix} -e^{-i\varphi/2}\sin\frac{\vartheta}{2} \\ e^{i\varphi/2}\cos\frac{\vartheta}{2} \end{pmatrix} \quad \text{where:} \begin{cases} \cos\vartheta = \frac{A-D}{\Omega} \\ \tan\varphi = \frac{C}{B} \end{cases}$$

More important for the general solution, are the eigen-creation operators \mathbf{a}^{\dagger} + and \mathbf{a}^{\dagger} - defined by

$$\mathbf{a}_{+}^{\dagger} = e^{-i\varphi/2} \left(\cos \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \sin \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right), \quad \mathbf{a}_{-}^{\dagger} = e^{-i\varphi/2} \left(-\sin \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger} + e^{i\varphi} \cos \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger} \right)$$

a[†] create **H** eigenstates directly from the ground state.

$$\mathbf{a}_{+}^{\dagger}|0\rangle = |\omega_{+}\rangle$$
, $\mathbf{a}_{-}^{\dagger}|0\rangle = |\omega_{-}\rangle$

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

		$ 00\rangle$	$ 01\rangle$	$ 10\rangle$	$ 02\rangle$	$ 11\rangle$	$ 20\rangle$	03⟩	$ 12\rangle$	$ 21\rangle$	$ 30\rangle$	
•	$\langle 00 $	0										
•	(01		ω_{-}									
	(10			$\omega_{\scriptscriptstyle +}$								
•	(02				$2\omega_{-}$							
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(11					$\omega_{+} + \omega_{-}$						
	$\langle 20 $						$2\omega_{+}$					
•	(03							3ω_				
	(12								$\omega_{+} + 2\omega_{-}$			
	(21									$2\omega_{+} + \omega_{-}$		
	(30										$3\omega_{+}$	
-	:											

$$\omega_{+} - \omega_{-} = \Omega$$

$$= \sqrt{(2B)^{2} + (2C)^{2} + (A - D)^{2}}$$

$$= A - D$$

$$\mathbf{H}^{\mathbf{A}} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$$

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

		-	•		-	•	•	_	_			
		$ 00\rangle$	$ 01\rangle$	$ 10\rangle$	$ 02\rangle$	$ 11\rangle$	$ 20\rangle$	03⟩	$ 12\rangle$	$ 21\rangle$	30⟩	
•	$\langle 00 $	0										
	(01		ω_{-}									
	(10			$\omega_{\scriptscriptstyle +}$								
	(02				$2\omega_{-}$							
= A(1/2) + D(1/2) +	$\langle 11 $					$\omega_{+} + \omega_{-}$						
	(20						$2\omega_{+}$					
	(03							$3\omega_{-}$				
	(12								$\omega_+ + 2\omega$			
	(21)									$2\omega_{+} + \omega_{-}$		
	(30										$3\omega_{+}$	
	:											

$$\omega_{+} - \omega_{-} = \Omega$$

$$= \sqrt{(2B)^{2} + (2C)^{2} + (A - D)^{2}}$$

$$= A - D$$

$$\mathbf{H}^{\mathbf{A}} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$$

 $\langle \mathbf{H} \rangle =$

$$\varepsilon_{n_1 n_2}^{\mathbf{A}} = \mathbf{A} \left(n_1 + \frac{1}{2} \right) + \mathbf{D} \left(n_2 + \frac{1}{2} \right) = \frac{\mathbf{A} + \mathbf{D}}{2} (n_1 + n_2 + 1) + \frac{\mathbf{A} - \mathbf{D}}{2} (n_1 - n_2)$$

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Group reorganized "Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20,21,22,23,...)

•		•	•		•	•	•	_	_			
		$ 00\rangle$	$ 01\rangle$	$ 10\rangle$	$ 02\rangle$	$ 11\rangle$	$ 20\rangle$	03>	$ 12\rangle$	$ 21\rangle$	30⟩	
	(00	0										
	(01		ω_{-}									
_	(10			$\omega_{\scriptscriptstyle +}$								
	(02				$2\omega_{-}$							
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	$\langle 11 $					$\omega_{+} + \omega_{-}$						
()	(20						$2\omega_{+}$					
	$\langle 03 $							3ω_				
	(12)								$\omega_+ + 2\omega$			
	(21									$2\omega_+ + \omega$		
_	(30										$3\omega_{+}$	
	:											

$$\omega_{+} - \omega_{-} = \Omega$$

$$= \sqrt{(2B)^{2} + (2C)^{2} + (A - D)^{2}}$$

$$= A - D$$

$$\mathbf{H}^{\mathbf{A}} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$$

$$\mathcal{E}_{n_1 n_2}^{\mathbf{A}} = \mathbf{A} \left(n_1 + \frac{1}{2} \right) + \mathbf{D} \left(n_2 + \frac{1}{2} \right) = \frac{\mathbf{A} + \mathbf{D}}{2} (n_1 + n_2 + 1) + \frac{\mathbf{A} - \mathbf{D}}{2} (n_1 - n_2)$$
$$= \Omega_0 \left(n_1 + n_2 + 1 \right) + \frac{\Omega}{2} (n_1 - n_2) = \Omega_0 (\upsilon + 1) + \Omega m$$

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

						•	•	_	_			
		$ 00\rangle$	$ 01\rangle$	$ 10\rangle$	$ 02\rangle$	$ 11\rangle$	$ 20\rangle$	03>	$ 12\rangle$	$ 21\rangle$	30⟩	
•	$\langle 00 $	0										
•	(01		ω_{-}									
	(10			$\omega_{\scriptscriptstyle +}$								
	(02				$2\omega_{-}$							
1/2)+	(11)					$\omega_+ + \omega$						
• <i>, 2)</i>	(20						$2\omega_{+}$					
	(03							3ω_				
	(12)								$\omega_+ + 2\omega$			
	(21									$2\omega_+ + \omega$		
_	(30										$3\omega_{+}$	
·	÷											

$$\omega_{+} - \omega_{-} = \Omega$$

$$= \sqrt{(2B)^{2} + (2C)^{2} + (A - D)^{2}}$$

$$= A - D$$

$$\mathbf{H}^{\mathbf{A}} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$$

 $\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1$

$$\varepsilon_{n_1 n_2}^{\mathbf{A}} = \mathbf{A} \left(n_1 + \frac{1}{2} \right) + \mathbf{D} \left(n_2 + \frac{1}{2} \right) = \frac{\mathbf{A} + \mathbf{D}}{2} (n_1 + n_2 + 1) + \frac{\mathbf{A} - \mathbf{D}}{2} (n_1 - n_2)$$

$$= \Omega_0 (n_1 + n_2 + 1) + \frac{\Omega}{2} (n_1 - n_2) = \Omega_0 (\upsilon + 1) + \Omega m$$

Define total quantum number v=2j and half-difference or asymmetry quantum number m

$$v = n_1 + n_2 = 2j$$

$$j = \frac{n_1 + n_2}{2} = \frac{\upsilon}{2}$$

$$m = \frac{n_1 - n_2}{2}$$

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Group reorganized "Little-Endian" indexing (...01,02,03..10,11,12,13 ... 20,21,22,23,...)

		$ 00\rangle$	$ 01\rangle$	$ 10\rangle$	$ 02\rangle$	$ 11\rangle$	$ 20\rangle$	03⟩	$ 12\rangle$	$ 21\rangle$	30⟩	•••
	$\langle 00 $	0										
	(01		ω_{-}									
	(10			$\omega_{\scriptscriptstyle +}$								
	(02				$2\omega_{-}$							
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(11					$\omega_{+} + \omega_{-}$						
	(20						$2\omega_{+}$					
	(03							3ω_				
	(12								$\omega_{+} + 2\omega_{-}$			
	(21]								,	$2\omega_{+}+\omega_{-}$		
	(30										$3\omega_{+}$	
	•											

$$\omega_{+} - \omega_{-} = \Omega$$

$$= \sqrt{(2B)^{2} + (2C)^{2} + (A - D)^{2}}$$

$$= A - D$$

$$\mathbf{H}^{\mathbf{A}} = \mathbf{A} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{1}/2 \right) + \mathbf{D} \left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{1}/2 \right)$$

$$\varepsilon_{n_1 n_2}^{\mathbf{A}} = \mathbf{A} \left(n_1 + \frac{1}{2} \right) + \mathbf{D} \left(n_2 + \frac{1}{2} \right) = \frac{\mathbf{A} + \mathbf{D}}{2} (n_1 + n_2 + 1) + \frac{\mathbf{A} - \mathbf{D}}{2} (n_1 - n_2)$$

$$= \Omega_0 \left(n_1 + n_2 + 1 \right) + \frac{\Omega}{2} (n_1 - n_2) = \Omega_0 (\upsilon + 1) + \Omega m$$

Define total quantum number v=2j and half-difference or asymmetry quantum number m

$$v = n_1 + n_2 = 2j$$

$$j = \frac{n_1 + n_2}{2} = \frac{v}{2}$$

$$m = \frac{n_1 - n_2}{2}$$

v+1=2j+1 multiplies base frequency $\omega=\Omega_0$ v=1m multiplies beat frequency Ω

$$\omega_{+} = \Omega_{0} + \Omega(+\frac{1}{2})$$

$$\omega_{-} = \Omega_0 + \Omega(-\frac{I}{2})$$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) Hamiltonian and irreducible representations

> 2D-Oscillator states and related 3D angular momentum multiplets - ND multiplets

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_{+} and \mathbf{S}_{-} $SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

		$ 00\rangle$	$ 01\rangle$	$ 10\rangle$	$ 02\rangle$	$ 11\rangle$	$ 20\rangle$	03⟩	$ 12\rangle$	$ 21\rangle$	$ 30\rangle$	
	(00)	0										
	(01		ω_{-}									
	(10			$\omega_{\scriptscriptstyle +}$								
	(02				2ω_							
$\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2) +$	(11]					$\omega_{+} + \omega_{-}$						
(11) - A(112) + D(112) +	$\langle 20 $						$2\omega_{+}$					
	(03							3ω_				
	(12								$\omega_+ + 2\omega$			
	(21)									$2\omega_{+} + \omega_{-}$		
	(30										$3\omega_{+}$	
	:											

$\omega_+ - \omega = \Omega$
$= \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}$
=A-D

SU(2) Multiplets

Setting (B=0=C) and $(A=\omega_+)$ and $(D=\omega_-)$ gives diagonal block matrices.

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

		$ 00\rangle$	$ 01\rangle$	$ 10\rangle$	$ 02\rangle$	$ 11\rangle$	$ 20\rangle$	$ 03\rangle$	$ 12\rangle$	$ 21\rangle$	30>	•••
	(00)	0										
	(01		ω_{-}									
	(10			$\omega_{\scriptscriptstyle +}$								
	(02				$2\omega_{-}$							
(2)+	(11]					$\omega_{+} + \omega_{-}$						
2) 1	(20						$2\omega_{+}$					
	(03							3ω_				
	\(12\)								$\omega_+ + 2\omega$			
	(21									$2\omega_+ + \omega$		
	(30										$3\omega_{+}$	
	:								_			ς

$\omega_+ - \omega = \Omega$
$= \sqrt{(2B)^2 + (2C)^2 + (A - D)^2}$
=A-D

SU(2) Multiplets

 $\langle \mathbf{H} \rangle = \mathbf{A}(1/2) + \mathbf{D}(1/2)$

 $C_2^{A,B,or}$

2D-Oscillator states and related 3D angular momentum multiplets $Structure\ of\ U(2)$

$$\frac{j=0}{j=1} \quad \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix} = |00\rangle \quad \text{"scalar"}$$

$$j=\frac{1}{2} \quad \begin{vmatrix} 1/2 \\ 1/2 \\ 1/2 \end{vmatrix} = |10\rangle = |\uparrow\rangle \quad \text{"spinor"}$$

$$\begin{vmatrix} 1 \\ 1 \\ 2 \end{vmatrix} = |20\rangle \quad \text{"setor"}$$

$$\begin{vmatrix} 1 \\ 1 \\ 2 \end{vmatrix} = |02\rangle \quad \text{"3-vector"}$$

$$\begin{vmatrix} 1 \\ 1 \\ 1 \\ 2 \end{vmatrix} = |02\rangle \quad \text{"4-spinor"}$$

$$\begin{vmatrix} 3/2 \\ 1/2 \\ 1/2 \\ 2 \end{vmatrix} = |12\rangle \quad \text{"4-spinor"}$$

$$\begin{vmatrix} 3/2 \\ 1/2 \\ 2/2 \\ 1/2 \\ 2 \end{vmatrix} = |03\rangle \quad \text{"4-spinor"}$$

$$\begin{vmatrix} 3/2 \\ 1/2 \\ 2$$

 $\left| \begin{array}{c} j \\ m \end{array} \right\rangle = \left| n_1 n_2 \right\rangle$

$$j = \frac{v}{2} = \frac{n_1 + n_2}{2}$$

$$n_1 = j + m = 2v + m$$

$$m = \frac{n_1 - n_2}{2}$$

$$n_2 = j - m = 2v - m$$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $\mathbf{a}^{\dagger}\mathbf{a}$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) Hamiltonian and irreducible representations

2D-Oscillator states and related 3D angular momentum multiplets

ND multiplets

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_{+} and \mathbf{S}_{-} $SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Introducing U(N)

(a) N-D Oscillator Degeneracy ℓ of quamtum level v

Dimension of oscillator

(b) Stacking numbers

triangular

numbers

tetrahedral

numbers

Introducing U(3)

$$\Psi(x_{1},x_{2},t) = \frac{1}{2} \left| \psi_{10}(x_{1},x_{2}) e^{-i\omega_{10}t} + \psi_{01}(x_{1},x_{2}) e^{-i\omega_{01}t} \right|^{2} e^{-(x_{1}^{2}+x_{2}^{2})} = \frac{e^{-(x_{1}^{2}+x_{2}^{2})}}{2\pi} \left| \sqrt{2}x_{1}e^{-i\omega_{10}t} + \sqrt{2}x_{1}e^{-i\omega_{01}t} \right|^{2}$$

$$= \frac{e^{-(x_{1}^{2}+x_{2}^{2})}}{\pi} \left(x_{1}^{2} + x_{2}^{2} + 2x_{1}x_{2}\cos(\omega_{10} - \omega_{01})t \right) = \frac{e^{-(x_{1}^{2}+x_{2}^{2})}}{\pi} \begin{cases} \left| x_{1} + x_{2} \right|^{2} & \text{for: } t = 0 \\ x_{1}^{2} + x_{2}^{2} & \text{for: } t = \tau_{\text{beat}} / 4 \\ \left| x_{1} - x_{2} \right|^{2} & \text{for: } t = \tau_{\text{beat}} / 2 \end{cases}$$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets ND multiplets

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_+ and $\mathbf{S}_ SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

(v=1) or (j=1/2) block **H** matrices of U(2) oscillator

Use irreps of unit operator $S_0 = 1$ and spin operators $\{S_X, S_Y, S_Z\}$. (also known as: $\{S_B, S_C, S_A\}$)

$$\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + 2C \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} + \begin{pmatrix} A - D \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...) (...00,10, 01, 20,11, 02, 30, 21, 12, 03, 40, 31,22,...)

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...) (...00,10, 01, 20,11, 02, 30, 21, 12, 03, 40, 31,22,...)

(v=1) or (j=1/2) block **H** matrices of U(2) oscillator

Use irreps of unit operator $S_0 = 1$ and spin operators $\{S_X, S_Y, S_Z\}$. (also known as: $\{S_B, S_C, S_A\}$)

$$\begin{pmatrix} 2A & \sqrt{2}(B-iC) & \cdot \\ \sqrt{2}(B+iC) & A+D & \sqrt{2}(B-iC) \\ \cdot & \sqrt{2}(B+iC) & 2D \end{pmatrix} = \begin{pmatrix} A+D \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} + 2B \begin{pmatrix} \cdot & \frac{\sqrt{2}}{2} & \cdot \\ \frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\ \cdot & \frac{\sqrt{2}}{2} & \cdot \end{pmatrix} + 2C \begin{pmatrix} \cdot & -i\frac{\sqrt{2}}{2} & \cdot \\ i\frac{\sqrt{2}}{2} & \cdot & -i\frac{\sqrt{2}}{2} \\ \cdot & i\frac{\sqrt{2}}{2} & \cdot \end{pmatrix} + \begin{pmatrix} A-D \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$$

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...) (...00,10, 01, 20,11, 02, 30, 21, 12, 03, 40, 31,22,...)

(v=1) or (j=1/2) block **H** matrices of U(2) oscillator

Use irreps of unit operator $S_0 = 1$ and spin operators $\{S_X, S_Y, S_Z\}$. (also known as: $\{S_B, S_C, S_A\}$)

$$\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + 2C \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} + \begin{pmatrix} A - D \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

(v=2) or (j=1) 3-by-3 block uses their vector irreps.

$$\begin{pmatrix} 2A & \sqrt{2}(B-iC) \\ \sqrt{2}(B+iC) & A+D & \sqrt{2}(B-iC) \\ & & \sqrt{2}(B+iC) & 2D \end{pmatrix} = \begin{pmatrix} A+D \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & \cdot & 1 & \cdot \\ & & & 1 \end{pmatrix} + 2B \begin{pmatrix} & \cdot & \frac{\sqrt{2}}{2} & \cdot \\ & \frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\ & & \frac{\sqrt{2}}{2} & \cdot & \end{pmatrix} + 2C \begin{pmatrix} & \cdot & -i\frac{\sqrt{2}}{2} & \cdot \\ & i\frac{\sqrt{2}}{2} & \cdot & -i\frac{\sqrt{2}}{2} \\ & & i\frac{\sqrt{2}}{2} & \cdot & \end{pmatrix} + \begin{pmatrix} A-D \end{pmatrix} \begin{pmatrix} & 1 & \cdot & \cdot \\ & \cdot & 0 & \cdot \\ & \cdot & -1 & \end{pmatrix}$$

(v=3) or (j=3/2) 4-by-4 block uses Dirac spinor irreps.

$$\begin{pmatrix}
3A & \sqrt{3}(B-iC) \\
\sqrt{3}(B+iC) & 2A+D & \sqrt{4}(B-iC) \\
\sqrt{4}(B+iC) & A+2D & \sqrt{3}(B-iC) \\
\sqrt{3}(B+iC) & 3D
\end{pmatrix} = \frac{3(A+D)}{2} \begin{pmatrix}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \frac{\sqrt{3}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{3}}{2} & \cdot & -i\frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & -i\frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & -i\frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & -i\frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & -i\frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & -i\frac{\sqrt{3}}{2} \\
\cdot & \cdot & \cdot & \frac{\sqrt{3}}{2} & \cdot \\
\end{pmatrix} + (A-D) \begin{pmatrix} \frac{3}{2} & \cdot & \cdot & \cdot \\
\cdot & \frac{1}{2} & \cdot & \cdot \\
\cdot & \cdot & -\frac{1}{2} & \cdot \\
\cdot & \cdot & -\frac{1}{2} & \cdot \\
\cdot & \cdot & -\frac{3}{2} \end{pmatrix}$$

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...) (...00,10, 01, 20,11, 02, 30, 21, 12, 03, 40, 31,22,...)

(v=1) or (j=1/2) block **H** matrices of U(2) oscillator

Use irreps of unit operator $S_0 = 1$ and spin operators $\{S_X, S_Y, S_Z\}$. (also known as: $\{S_B, S_C, S_A\}$) $\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} + 2B \begin{vmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \\ \end{vmatrix} + 2C \begin{vmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \\ \end{vmatrix} + (A - D) \begin{vmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{vmatrix}$ (v=2) or (j=1) 3-by-3 block uses their vector irreps. $\begin{pmatrix}
2A & \sqrt{2}(B-iC) & \cdot \\
\sqrt{2}(B+iC) & A+D & \sqrt{2}(B-iC) \\
\cdot & \sqrt{2}(B+iC) & 2D
\end{pmatrix} = (A+D)\begin{pmatrix}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{pmatrix} + 2B\begin{pmatrix}
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\
\cdot & \frac{\sqrt{2}}{2} & \cdot & \frac{1}{2}
\end{pmatrix} + 2C\begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
i\frac{\sqrt{2}}{2} & \cdot & -i\frac{\sqrt{2}}{2} \\
\cdot & i\frac{\sqrt{2}}{2} & \cdot & -i\frac{\sqrt{2}}{2}
\end{pmatrix} + (A-D)\begin{pmatrix}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{pmatrix}$ (v=3) or (j=3/2) 4-by-4 block uses Dirac spinor irreps.

$$(\mathbf{v}=2j) \text{ or } (2j+1)-\text{by-}(2j+1) \text{ block} \text{ uses } \mathbf{D}^{(j)}(\mathbf{s}_{\mu}) \text{ irreps of } \mathbf{U}(2) \text{ or } \mathbf{R}(3).$$

$$\langle \mathbf{H} \rangle^{j-block} = 2j\Omega_0 \langle \mathbf{1} \rangle^j + \Omega_X \langle \mathbf{s}_X \rangle^j + \Omega_Y \langle \mathbf{s}_Y \rangle^j$$

Group reorganized "Big-Endian" indexing (...00,10,20..01,11,21,31 ...02,12,22,32...) (...00,10, 01, 20,11, 02, 30, 21, 12, 03, 40, 31,22,...)

(v=1) or (j=1/2) block **H** matrices of U(2) oscillator

Use irreps of unit operator $S_0 = 1$ and spin operators $\{S_X, S_Y, S_Z\}$. (also known as: $\{S_B, S_C, S_A\}$)

$$\begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2B \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + 2C \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} + \begin{pmatrix} A - D \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

 $(\upsilon=2)$ or (j=1) 3-by-3 block uses their vector irreps.

$$\begin{pmatrix}
2A & \sqrt{2}(B-iC) & \cdot \\
\sqrt{2}(B+iC) & A+D & \sqrt{2}(B-iC) \\
\cdot & \sqrt{2}(B+iC) & 2D
\end{pmatrix} = \begin{pmatrix}
A+D \end{pmatrix} \begin{pmatrix}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{pmatrix} + 2B \begin{pmatrix}
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\cdot & \frac{\sqrt{2}}{2} & \cdot
\end{pmatrix} + 2C \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
i\frac{\sqrt{2}}{2} & \cdot & -i\frac{\sqrt{2}}{2} \\
\cdot & i\frac{\sqrt{2}}{2} & \cdot \\
\cdot & i\frac{\sqrt{2}}{2} & \cdot
\end{pmatrix} + (A-D) \begin{pmatrix}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{pmatrix}$$

(v=3) or (j=3/2) 4-by-4 block uses Dirac spinor irreps.

$$\begin{pmatrix}
3A & \sqrt{3}(B-iC) \\
\sqrt{3}(B+iC) & 2A+D & \sqrt{4}(B-iC) \\
\sqrt{4}(B+iC) & A+2D & \sqrt{3}(B-iC) \\
\sqrt{3}(B+iC) & 3D
\end{pmatrix} = \frac{3(A+D)}{2} \begin{pmatrix}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{4}}{2} & \cdot & \frac{\sqrt{3}}{2} \\
\cdot & \cdot & \frac{\sqrt{3}}{2} & \cdot & \frac{\sqrt{3}}{2}
\end{pmatrix} + \begin{pmatrix}
A-D \\
\cdot & \frac{3}{2} & \cdot & \cdot \\
\cdot & \frac{1}{2} & \cdot & \cdot \\
\cdot & \cdot & -\frac{1}{2} & \cdot \\
\cdot & \cdot & -\frac{1}{2} & \cdot \\
\cdot & \cdot & -\frac{3}{2}
\end{pmatrix}$$

 $(\upsilon=2j)$ or (2j+1)-by-(2j+1) block uses $D^{(j)}(\mathbf{s}_{\mu})$ irreps of U(2) or R(3).

$$\left\langle \mathbf{H} \right\rangle^{j-block} = 2j\Omega_{0} \left\langle \mathbf{1} \right\rangle^{j} + \qquad \qquad \Omega_{\underline{X}} \left\langle \mathbf{s}_{\underline{X}} \right\rangle^{j} \qquad \qquad + \Omega_{\underline{Y}} \left\langle \mathbf{s}_{\underline{Y}} \right\rangle^{j} \qquad \qquad + \Omega_{\underline{Z}} \left\langle \mathbf{s}_{\underline{Z}} \right\rangle^{j}$$

All j-block matrix operators factor into raise-n-lower operators $\mathbf{s}_{\pm} = \mathbf{s}_{X} \pm i\mathbf{s}_{Y}$ plus the diagonal \mathbf{s}_{Z}

$$\left\langle \mathbf{H} \right\rangle^{j-block} = 2j\Omega_{0} \left\langle \mathbf{1} \right\rangle^{j} + \left[\left(\Omega_{X}^{J} - i\Omega_{Y}^{J} \right) \left\langle \mathbf{s}_{X}^{J} + i\mathbf{s}_{Y}^{J} \right\rangle^{j} + \left(\Omega_{X}^{J} + i\Omega_{Y}^{J} \right) \left\langle \mathbf{s}_{X}^{J} - i\mathbf{s}_{Y}^{J} \right\rangle^{j} \right] / 2 + \Omega_{Z}^{J} \left\langle \mathbf{s}_{Z}^{J} \right\rangle^{j}$$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) Hamiltonian and irreducible representations

2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets

$$\mathbf{s}_{+} = \mathbf{s}_{X} + i\mathbf{s}_{Y}$$
 and $\mathbf{s}_{-} = \mathbf{s}_{X} - i\mathbf{s}_{Y} = \mathbf{s}_{+}^{\dagger}$

Starting with j=1/2 we see that S+ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$\langle \mathbf{s}_{+} \rangle^{\frac{1}{2}} = D^{\frac{1}{2}}(\mathbf{s}_{+}) = D^{\frac{1}{2}}(\mathbf{s}_{X} + i\mathbf{s}_{Y}) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{P}_{12}$$

Such operators can be upgraded to creation-destruction operator combinations a†a

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}$$
, $\mathbf{s}_{-} = (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2})^{\dagger} = \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} = \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$

$$\mathbf{S}_{+} = \mathbf{S}_{X} + i\mathbf{S}_{Y}$$
 and $\mathbf{S}_{-} = \mathbf{S}_{X} - i\mathbf{S}_{Y} = \mathbf{S}_{+}^{\dagger}$

Starting with j=1/2 we see that S+ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$\langle \mathbf{s}_{+} \rangle^{\frac{1}{2}} = D^{\frac{1}{2}}(\mathbf{s}_{+}) = D^{\frac{1}{2}}(\mathbf{s}_{X} + i\mathbf{s}_{Y}) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{P}_{12}$$

Such operators can be upgraded to creation-destruction operator combinations a†a

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} \quad , \qquad \mathbf{s}_{-} = \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger} = \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} = \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$$
Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is: $\langle \mathbf{s}_{Z} \rangle^{\left(\frac{1}{2}\right)} = D^{\left(\frac{1}{2}\right)} (\mathbf{s}_{Z}) = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$

$$\mathbf{S}_{+} = \mathbf{S}_{X} + i\mathbf{S}_{Y}$$
 and $\mathbf{S}_{-} = \mathbf{S}_{X} - i\mathbf{S}_{Y} = \mathbf{S}_{+}^{\dagger}$

Starting with j=1/2 we see that S+ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$\langle \mathbf{s}_{+} \rangle^{\frac{1}{2}} = D^{\frac{1}{2}}(\mathbf{s}_{+}) = D^{\frac{1}{2}}(\mathbf{s}_{X} + i\mathbf{s}_{Y}) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{P}_{12}$$

Such operators can be upgraded to *creation-destruction operator* combinations **a**†**a**

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}$$
, $\mathbf{s}_{-} = \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger} = \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} = \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$

 $\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \quad , \qquad \mathbf{s}_{-} = \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right) = \mathbf{a}_{2} \mathbf{a}_{1} - \mathbf{a}_{2} \mathbf{a}_{1}$ Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is: $\left\langle \mathbf{s}_{Z} \right\rangle^{\left(\frac{1}{2}\right)} = D^{\left(\frac{1}{2}\right)} \left(\mathbf{s}_{Z}\right) = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$ $\mathbf{s}_{Z} = \frac{1}{2} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right) = \frac{1}{2} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)$

$$\mathbf{s}_{\mathbf{Z}} = \frac{1}{2} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} \right) = \frac{1}{2} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow} \right)$$

$$\mathbf{s}_{+} = \mathbf{s}_{X} + i\mathbf{s}_{Y}$$
 and $\mathbf{s}_{-} = \mathbf{s}_{X} - i\mathbf{s}_{Y} = \mathbf{s}_{+}^{\dagger}$

Starting with j=1/2 we see that S+ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$\langle \mathbf{s}_{+} \rangle^{\frac{1}{2}} = D^{\frac{1}{2}}(\mathbf{s}_{+}) = D^{\frac{1}{2}}(\mathbf{s}_{X} + i\mathbf{s}_{Y}) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{P}_{12}$$

Such operators can be upgraded to *creation-destruction operator* combinations **a**†**a**

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}$$
, $\mathbf{s}_{-} = (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2})^{\dagger} = \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} = \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$

 $\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} , \qquad \mathbf{s}_{-} = (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2})_{-} - \mathbf{a}_{2} \mathbf{a}_{1} \qquad \mathbf{a}_{2} \mathbf{a}_{2} \mathbf{a}_{2}$ Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is: $\left\langle \mathbf{s}_{Z} \right\rangle^{\left(\frac{1}{2}\right)} = D^{\left(\frac{1}{2}\right)} \left(\mathbf{s}_{Z}\right) = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$ $\mathbf{s}_{Z} = \frac{1}{2} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right) = \frac{1}{2} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)$

Let $\mathbf{a}_{1}^{\dagger} = \mathbf{a}_{1}^{\dagger}$ create up-spin \uparrow

$$|1\rangle = |\uparrow\rangle = \begin{vmatrix} 1/2 \\ +1/2 \end{vmatrix} = \mathbf{a}_1^{\dagger} |0\rangle = \mathbf{a}_1^{\dagger} |0\rangle$$

Angular momentum raise-n-lower operators S₊ and S₋

$$\mathbf{s}_{+} = \mathbf{s}_{X} + i\mathbf{s}_{Y}$$
 and $\mathbf{s}_{-} = \mathbf{s}_{X} - i\mathbf{s}_{Y} = \mathbf{s}_{+}^{\dagger}$

Starting with j=1/2 we see that S+ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$\langle \mathbf{s}_{+} \rangle^{\frac{1}{2}} = D^{\frac{1}{2}}(\mathbf{s}_{+}) = D^{\frac{1}{2}}(\mathbf{s}_{X} + i\mathbf{s}_{Y}) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{P}_{12}$$

Such operators can be upgraded to creation-destruction operator combinations a†a

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}$$
, $\mathbf{s}_{-} = (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2})^{\dagger} = \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} = \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$

Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is: $\langle \mathbf{s}_{Z} \rangle^{\left(\frac{1}{2}\right)} = D^{\left(\frac{1}{2}\right)}(\mathbf{s}_{Z}) = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$

This suggests an $\mathbf{a}^{\dagger}\mathbf{a}$ form for $\mathbf{s}_{\mathbf{z}}$.

Let $\mathbf{a}_{1}^{\dagger} = \mathbf{a}_{1}^{\dagger}$ create up-spin \uparrow

$$|1\rangle = |\uparrow\rangle = \begin{vmatrix} 1/2 \\ +1/2 \end{vmatrix} = \mathbf{a}_1^{\dagger} |0\rangle = \mathbf{a}_1^{\dagger} |0\rangle$$

Let $\mathbf{a}_2^{\dagger} = \mathbf{a}_{\perp}^{\dagger}$ create dn-spin \downarrow

$$|2\rangle = |\downarrow\rangle = \begin{vmatrix} 1/2 \\ -1/2 \end{vmatrix} = \mathbf{a}_{2}^{\dagger} |0\rangle = \mathbf{a}_{\downarrow}^{\dagger} |0\rangle$$

 $\mathbf{s}_{\mathbf{z}} = \frac{1}{2} (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}) = \frac{1}{2} (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1})$

Angular momentum raise-n-lower operators S₊ and S₋

$$\mathbf{s}_{+} = \mathbf{s}_{X} + i\mathbf{s}_{Y}$$
 and $\mathbf{s}_{-} = \mathbf{s}_{X} - i\mathbf{s}_{Y} = \mathbf{s}_{+}^{\dagger}$

Starting with j=1/2 we see that S+ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$\langle \mathbf{s}_{+} \rangle^{\frac{1}{2}} = D^{\frac{1}{2}}(\mathbf{s}_{+}) = D^{\frac{1}{2}}(\mathbf{s}_{X} + i\mathbf{s}_{Y}) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{P}_{12}$$

Such operators can be upgraded to creation-destruction operator combinations a†a

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}$$
, $\mathbf{s}_{-} = (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2})^{\dagger} = \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} = \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$

Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is: $\langle \mathbf{s}_{Z} \rangle^{\left(\frac{1}{2}\right)} = D^{\left(\frac{1}{2}\right)}(\mathbf{s}_{Z}) = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$

This suggests an $\mathbf{a}^{\dagger}\mathbf{a}$ form for $\mathbf{s}_{\mathbf{z}}$.

Let
$$\mathbf{a}_{1}^{\dagger} = \mathbf{a}_{1}^{\dagger}$$
 create up-spin \uparrow

$$|1\rangle = |\uparrow\rangle = \begin{vmatrix} 1/2 \\ +1/2 \end{vmatrix} = \mathbf{a}_1^{\dagger} |0\rangle = \mathbf{a}_1^{\dagger} |0\rangle$$

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow} \frac{\text{destroys dn-spin}}{\text{creates up-spin}}$$

to <u>raise</u> angular momentum by one \hbar unit

$$\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow} |\downarrow\rangle = |\uparrow\rangle$$
 or: $\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} |2\rangle = |1\rangle$

$$\mathbf{s}_{\mathbf{Z}} = \frac{1}{2} \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} \right) = \frac{1}{2} \left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow} - \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow} \right)$$

Let $\mathbf{a}_{2}^{\dagger} = \mathbf{a}_{\perp}^{\dagger}$ create dn-spin \downarrow

$$|2\rangle = |\downarrow\rangle = \begin{vmatrix} 1/2 \\ -1/2 \end{vmatrix} = \mathbf{a}_2^{\dagger} |0\rangle = \mathbf{a}_{\downarrow}^{\dagger} |0\rangle$$

Angular momentum raise-n-lower operators S₊ and S₋

$$\mathbf{s}_{+} = \mathbf{s}_{X} + i\mathbf{s}_{Y}$$
 and $\mathbf{s}_{-} = \mathbf{s}_{X} - i\mathbf{s}_{Y} = \mathbf{s}_{+}^{\dagger}$

Starting with j=1/2 we see that S+ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$\langle \mathbf{s}_{+} \rangle^{\frac{1}{2}} = D^{\frac{1}{2}}(\mathbf{s}_{+}) = D^{\frac{1}{2}}(\mathbf{s}_{X} + i\mathbf{s}_{Y}) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{P}_{12}$$

Such operators can be upgraded to creation-destruction operator combinations a†a

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}$$
, $\mathbf{s}_{-} = (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2})^{\dagger} = \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1} = \mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$

This suggests an $\mathbf{a}^{\dagger}\mathbf{a}$ form for $\mathbf{s}_{\mathbf{Z}}$.

Let $\mathbf{a}_{1}^{\dagger} = \mathbf{a}_{1}^{\dagger}$ create up-spin \uparrow

$$|1\rangle = |\uparrow\rangle = \begin{vmatrix} 1/2 \\ +1/2 \end{vmatrix} = \mathbf{a}_1^{\dagger} |0\rangle = \mathbf{a}_1^{\dagger} |0\rangle$$

$$\mathbf{s}_{+} = \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} = \mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow} \text{ destroys dn-spin } \downarrow$$
 creates up-spin \uparrow

to <u>raise</u> angular momentum by one \hbar unit

$$\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow} |\downarrow\rangle = |\uparrow\rangle$$
 or: $\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} |2\rangle = |1\rangle$

Hamilton-Pauli-Jordan representation of
$$\mathbf{s}_{\mathbf{Z}}$$
 is: $\langle \mathbf{s}_{\mathbf{Z}} \rangle^{\left(\frac{1}{2}\right)} = D^{\left(\frac{1}{2}\right)} (\mathbf{s}_{\mathbf{Z}}) = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$

This suggests an $\mathbf{a}^{\dagger}\mathbf{a}$ form for $\mathbf{s}_{\mathbf{Z}}$.

$$\mathbf{s}_{\mathbf{Z}} = \frac{1}{2} (\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}) = \frac{1}{2} (\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2})$$

Let $\mathbf{a}_{2}^{\dagger} = \mathbf{a}_{1}^{\dagger}$ create dn-spin \downarrow

$$|2\rangle = |\downarrow\rangle = \begin{vmatrix} 1/2 \\ -1/2 \end{vmatrix} = \mathbf{a}_{2}^{\dagger} |0\rangle = \mathbf{a}_{\downarrow}^{\dagger} |0\rangle$$

$$\mathbf{s}_{-}=\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger}\mathbf{a}_{\uparrow}\operatorname{destroys}\operatorname{up-spin}\uparrow$$
 creates $\operatorname{dn-spin}\downarrow$

to <u>lower</u> angular momentum by one \hbar unit

$$\mathbf{a}_{\downarrow}^{\dagger}\mathbf{a}_{\uparrow}|\uparrow\rangle = |\downarrow\rangle$$
 or: $\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|1\rangle = |2\rangle$

Review : 1-D at a algebra of U(1) representations

Review: Translate T(a) and/or Boost B(b) to construct coherent state

Review: Time evolution of coherent state (and "squeezed" states)

2-D $a^{\dagger}a$ algebra of U(2) representations and R(3) angular momentum operators 2D-Oscillator basic states and operations

Commutation relations

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutation relations

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Outer product arrays

Entangled 2-particle states

Two-particle (or 2-dimensional) matrix operators

U(2) *Hamiltonian and irreducible representations*

2D-Oscillator states and related 3D angular momentum multiplets ND multiplets

R(3) Angular momentum generators by U(2) analysis Angular momentum raise-n-lower operators \mathbf{S}_{+} and \mathbf{S}_{-} $SU(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

U(2) boson oscillator states $|n_1,n_2\rangle$

Oscillator total quanta: $v = (n_1 + n_2)$

$$|n_1 n_2\rangle = \frac{\left(\mathbf{a}_1^{\dagger}\right)^{n_1} \left(\mathbf{a}_2^{\dagger}\right)^{n_2}}{\sqrt{n_1! n_2!}} |0 0\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \left|\frac{j}{m}\right\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2 and z-momenta: $m = (n_1 - n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \left|\begin{smallmatrix} j\\ m \end{smallmatrix}\right\rangle$$

$$m = (n_{1}-n_{2})/2$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2 and z-momenta: $m = (n_1 - n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \begin{vmatrix} j \\ m \end{vmatrix}$$

$$m = (n_{1}-n_{2})/2$$

$$m = j+m$$

$$n_{2} = j-m$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2 and z-momenta: $m = (n_1 - n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! n_{2}!}}|0 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 0\rangle = \begin{vmatrix} j \\ m \end{vmatrix}$$

$$m = (n_{1}-n_{2})/2$$

$$m = j+m$$

$$n_{2} = j-m$$

$$n_1 = j + m$$

$$n_2 = j - m$$

$$\left| n_{\uparrow} n_{\downarrow} \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{n_{1}} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{n_{2}}}{\sqrt{n_{\uparrow}! \, n_{2}!}} \left| 0 \, 0 \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{j+m} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{j-m}}{\sqrt{(j+m)! (j-m)!}} \left| 0 \, 0 \right\rangle = \left| \frac{j}{m} \right\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2 and z-momenta: $m = (n_1 - n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! n_{2}!}}|0 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 0\rangle = \begin{vmatrix} j \\ m \end{vmatrix}$$

$$m = (n_{1}-n_{2})/2$$

$$m = j+m$$

$$n_{2} = j-m$$

$$\begin{array}{c}
n_1 = j + m \\
n_2 = j - m
\end{array}$$

U(2) boson oscillator states = U(2) spinor states

$$\left| n_{\uparrow} n_{\downarrow} \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{n_{1}} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{n_{2}}}{\sqrt{n_{\uparrow}! \, n_{2}!}} \left| 0 \, 0 \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{j+m} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{j-m}}{\sqrt{(j+m)! (j-m)!}} \left| 0 \, 0 \right\rangle = \left| \frac{j}{m} \right\rangle$$

Oscillator a†a...

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}\left|\,n_{1}n_{2}\right\rangle \!\!=\!\! \sqrt{n_{1}\!+\!1}\,\sqrt{n_{2}}\left|\,n_{1}\!+\!1\,\,n_{2}\!-\!1\right\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2 and z-momenta: $m = (n_1 - n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! n_{2}!}}|0 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 0\rangle = \begin{vmatrix} j \\ m \end{vmatrix}$$

$$m = (n_{1}-n_{2})/2$$

$$m = j+m$$

$$n_{2} = j-m$$

$$n_1 = j + m
 n_2 = j - m$$

$$\left| n_{\uparrow} n_{\downarrow} \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{n_{1}} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{n_{2}}}{\sqrt{n_{\uparrow}! \, n_{2}!}} \left| 0 \, 0 \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{j+m} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{j-m}}{\sqrt{(j+m)!(j-m)!}} \left| 0 \, 0 \right\rangle = \left| \frac{j}{m} \right\rangle$$

Oscillator
$$\mathbf{a}^{\dagger}\mathbf{a}$$
 give \mathbf{s}_{+} matrices.
$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}\left|n_{1}n_{2}\right\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}\left|n_{1}+1\right.n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\left|_{m}^{j}\right\rangle = \sqrt{j+m+1}\sqrt{j-m}\left|_{m+1}^{j}\right\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v=(n_1+n_2)$ Rotor total momenta: j=v/2 and z-momenta: $m=(n_1-n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! n_{2}!}}|0 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 0\rangle = \begin{vmatrix} j \\ m \end{vmatrix}$$

$$m = (n_{1}-n_{2})/2$$

$$m = j+m$$

$$n_{2} = j-m$$

$$\left|n_{\uparrow}n_{\downarrow}\right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}! n_{2}!}}\left|0 \ 0\right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}\left|0 \ 0\right\rangle = \left|\frac{j}{m}\right\rangle$$

Oscillator
$$\mathbf{a}^{\dagger}\mathbf{a}$$
 give \mathbf{S}_{+} and \mathbf{S}_{-} matrices.
$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1|n_{2}-1\rangle \Rightarrow \mathbf{S}_{+}|_{m}^{j}\rangle = \sqrt{j+m+1}\sqrt{j-m}|_{m+1}^{j}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle \Rightarrow \mathbf{S}_{-}|_{m}^{j}\rangle = \sqrt{j+m}\sqrt{j-m+1}|_{m-1}^{j}\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v=(n_1+n_2)$ Rotor total momenta: j=v/2 and z-momenta: $m=(n_1-n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \begin{vmatrix} j \\ m \end{vmatrix}$$

$$m = (n_{1}-n_{2})/2$$

$$m = j+m$$

$$n_{2} = j-m$$

$$j = v/2 = (n_1 + n_2)/2$$

$$m = (n_1 - n_2)/2$$

$$\begin{pmatrix}
n_1 = j + m \\
n_2 = j - m
\end{pmatrix}$$

$$\left| n_{\uparrow} n_{\downarrow} \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{n_{1}} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{n_{2}}}{\sqrt{n_{\uparrow}! \, n_{2}!}} \left| 0 \, 0 \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{j+m} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{j-m}}{\sqrt{(j+m)! (j-m)!}} \left| 0 \, 0 \right\rangle = \left| \frac{j}{m} \right\rangle$$

Oscillator
$$\mathbf{a}^{\dagger}\mathbf{a}$$
 give \mathbf{s}_{+} and \mathbf{s}_{-} matrices.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1|n_{2}-1\rangle \Rightarrow \mathbf{s}_{+}|_{m}^{j}\rangle = \sqrt{j+m+1}\sqrt{j-m}|_{m+1}^{j}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle \Rightarrow \mathbf{s}_{-}|_{m}^{j}\rangle = \sqrt{j+m}\sqrt{j-m+1}|_{m-1}^{j}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle=n_{1}|n_{1}n_{2}\rangle$$
 $\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle=n_{2}|n_{1}n_{2}\rangle$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2 and z-momenta: $m = (n_1 - n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \begin{vmatrix} j \\ m \end{vmatrix}$$

$$m = (n_{1}-n_{2})/2$$

$$m = j+m$$

$$n_{2} = j-m$$

$$\begin{pmatrix}
n_1 = j + m \\
n_2 = j - m
\end{pmatrix}$$

$$\left| n_{\uparrow} n_{\downarrow} \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{n_{1}} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{n_{2}}}{\sqrt{n_{\uparrow}! \, n_{2}!}} \left| 0 \, 0 \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{j+m} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{j-m}}{\sqrt{(j+m)! (j-m)!}} \left| 0 \, 0 \right\rangle = \left| \frac{j}{m} \right\rangle$$

Oscillator
$$\mathbf{a}^{\dagger}\mathbf{a}$$
 give \mathbf{s}_{+} and \mathbf{s}_{-} matrices.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1|n_{2}-1\rangle \Rightarrow \mathbf{s}_{+}|_{m}^{j}\rangle = \sqrt{j+m+1}\sqrt{j-m}|_{m+1}^{j}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle \Rightarrow \mathbf{s}_{-}|_{m}^{j}\rangle = \sqrt{j+m}\sqrt{j-m+1}|_{m-1}^{j}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle$$
 $\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$

$$\left\{\mathbf{s}_{Z}\left|_{m}^{j}\right\rangle = \frac{1}{2}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}\right)\left|_{m}^{j}\right\rangle = \frac{n_{1} - n_{2}}{2}\left|_{m}^{j}\right\rangle = m\left|_{m}^{j}\right\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v = (n_1 + n_2)$ Rotor total momenta: j = v/2 and z-momenta: $m = (n_1 - n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \left|\begin{smallmatrix} j \\ m \end{smallmatrix}\right\rangle$$

$$\begin{pmatrix} n_1 = j + m \\ n_2 = j - m \end{pmatrix}$$

$$\left| n_{\uparrow} n_{\downarrow} \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{n_{1}} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{n_{2}}}{\sqrt{n_{\uparrow}! \, n_{2}!}} \left| 0 \, 0 \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{j+m} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{j-m}}{\sqrt{(j+m)! (j-m)!}} \left| 0 \, 0 \right\rangle = \left| \frac{j}{m} \right\rangle$$

Oscillator,
$$\mathbf{a}^{\dagger}\mathbf{a}$$
 give \mathbf{s}_{+} and \mathbf{s}_{-} matrices.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1|n_{2}-1\rangle \Rightarrow \mathbf{s}_{+}|_{m}^{j}\rangle = \sqrt{j+m+1}\sqrt{j-m}|_{m+1}^{j}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle \Rightarrow \mathbf{s}_{-}|_{m}^{j}\rangle = \sqrt{j+m}\sqrt{j-m+1}|_{m-1}^{j}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle=n_{1}|n_{1}n_{2}\rangle$$
 $\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle=n_{2}|n_{1}n_{2}\rangle$

$$\left\{\mathbf{s}_{z}\left|_{m}^{j}\right\rangle = \frac{1}{2}\left(\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}\right)\left|_{m}^{j}\right\rangle = \frac{n_{1} - n_{2}}{2}\left|_{m}^{j}\right\rangle = m\left|_{m}^{j}\right\rangle$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v=(n_1+n_2)$ Rotor total momenta: j=v/2 and z-momenta: $m=(n_1-n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \left|\begin{smallmatrix} j \\ m \end{smallmatrix}\right\rangle$$

$$j = v/2 = (n_1 + n_2)/2$$

$$m = (n_1 - n_2)/2$$

$$n_1 = j + m$$

$$n_2 = j - m$$

$$(n_1 = j+m)$$
 $n_2 = j-m$

U(2) boson oscillator states = U(2) spinor states

$$\left|n_{\uparrow}n_{\downarrow}\right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}! n_{2}!}}\left|0 \ 0\right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}\left|0 \ 0\right\rangle = \left|\begin{smallmatrix}j\\m\end{smallmatrix}\right\rangle$$

Oscillator a†a give s₊ and s₋ matrices.

1/2-difference of number-ops is $\mathbf{s}_{\mathbf{Z}}$ eigenvalue.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1|n_{2}-1\rangle \Rightarrow \mathbf{s}_{+}|_{m}^{j}\rangle = \sqrt{j+m+1}\sqrt{j-m}|_{m+1}^{j}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle=n_{1}|n_{1}n_{2}\rangle$$
 $\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle=n_{2}|n_{1}n_{2}\rangle$

$$\mathbf{s}_{Z} \begin{vmatrix} j \\ m \end{vmatrix} = \frac{1}{2} (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}) \begin{vmatrix} j \\ m \end{vmatrix} = \frac{n_{1} - n_{2}}{2} \begin{vmatrix} j \\ m \end{vmatrix} = m \begin{vmatrix} j \\ m \end{vmatrix}$$

$$\int_{D^{\frac{3}{2}}(\mathbf{s}_{+})=\begin{bmatrix} \cdot & \sqrt{3} & \cdot & \cdot \\ 0 & \cdot & \sqrt{4} & \cdot \\ \cdot & 0 & \cdot & \sqrt{3} \\ \cdot & \cdot & 0 & \cdot \end{bmatrix} = \begin{bmatrix} D^{\frac{3}{2}}(\mathbf{s}_{-}) \end{bmatrix}^{\dagger}, \quad D^{\frac{3}{2}}(\mathbf{s}_{z}) = \begin{bmatrix} \cdot & \frac{1}{2} & \cdot & \cdot \\ \cdot & \frac{1}{2} & \cdot & \cdot \\ \cdot & \cdot & -\frac{1}{2} & \cdot \\ \cdot & \cdot & \cdot & -\frac{3}{2} \end{bmatrix}$$

U(2) boson oscillator states $|n_1,n_2\rangle = R(3)$ spin or rotor states $\binom{j}{m}$

Oscillator total quanta: $v=(n_1+n_2)$ Rotor total momenta: j=v/2 and z-momenta: $m=(n_1-n_2)/2$

$$|n_{1}n_{2}\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}! \, n_{2}!}}|0 \, 0\rangle = \frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0 \, 0\rangle = \left|\frac{j}{m}\right\rangle$$

$$m = (n_{1}-n_{2})/2$$

U(2) boson oscillator states = U(2) spinor states

$$\left| n_{\uparrow} n_{\downarrow} \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{n_{1}} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{n_{2}}}{\sqrt{n_{\uparrow}! \, n_{2}!}} \left| 0 \, 0 \right\rangle = \frac{\left(\mathbf{a}_{\uparrow}^{\dagger} \right)^{j+m} \left(\mathbf{a}_{\downarrow}^{\dagger} \right)^{j-m}}{\sqrt{(j+m)! (j-m)!}} \left| 0 \, 0 \right\rangle = \left| \frac{j}{m} \right\rangle$$

Oscillator, a†a give s₊ and s₋ matrices.

1/2-difference of number-ops is $\mathbf{S}_{\mathbf{Z}}$ eigenvalue.

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = \sqrt{n_{1}+1}\sqrt{n_{2}}|n_{1}+1|n_{2}-1\rangle \Rightarrow \mathbf{s}_{+}|_{m}^{j}\rangle = \sqrt{j+m+1}\sqrt{j-m}|_{m+1}^{j}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = \sqrt{n_{1}}\sqrt{n_{2}+1}|n_{1}-1|n_{2}+1\rangle \Rightarrow \mathbf{s}_{-}|_{m}^{j}\rangle = \sqrt{j+m}\sqrt{j-m+1}|_{m-1}^{j}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle = n_{1}|n_{1}n_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle = n_{2}|n_{1}n_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}^{\dagger}\mathbf{a}_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}^{\dagger}\mathbf{a}_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}^{\dagger}\mathbf{a}_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}^{\dagger}\mathbf{a}_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}^{\dagger}\mathbf{a}_{2}\rangle \\ \mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}^{\dagger}\mathbf{a}_{2}\rangle$$

$$\mathbf{a}_{1}^{\dagger}\mathbf{a}_{1}|n_{1}n_{2}\rangle=n_{1}|n_{1}n_{2}\rangle$$

$$\mathbf{a}_{2}^{\dagger}\mathbf{a}_{2}|n_{1}n_{2}\rangle=n_{2}|n_{1}n_{2}\rangle$$

$$\mathbf{s}_{Z} \begin{vmatrix} j \\ m \end{vmatrix} = \frac{1}{2} (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} - \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}) \begin{vmatrix} j \\ m \end{vmatrix} = \frac{n_{1} - n_{2}}{2} \begin{vmatrix} j \\ m \end{vmatrix} = m \begin{vmatrix} j \\ m \end{vmatrix}$$

$$\int_{D^{1}(\mathbf{s}_{+})=D^{1}(\mathbf{s}_{X}+i\mathbf{s}_{Y})} = \begin{pmatrix}
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\
\cdot & \frac{\sqrt{2}}{2} & \cdot \\
\cdot & \frac{\sqrt{2}}{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
i\frac{\sqrt{2}}{2} & \cdot & -i\frac{\sqrt{2}}{2} \\
\cdot & i\frac{\sqrt{2}}{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
i\frac{\sqrt{2}}{2} & \cdot & -i\frac{\sqrt{2}}{2} \\
\cdot & i\frac{\sqrt{2}}{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot \\
\cdot & 0 & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0 & \cdot & \sqrt{2} & \cdot
\end{pmatrix} + i \begin{pmatrix}
\cdot & -i\frac{\sqrt{2}}{2} & \cdot \\
0$$

$$(j=3/2 \text{ spinor } \mathbf{S}_{+}) = \begin{pmatrix} \cdot & \sqrt{3} & \cdot & \cdot \\ 0 & \cdot & \sqrt{4} & \cdot \\ \cdot & 0 & \cdot & \sqrt{3} \\ \cdot & \cdot & 0 & \cdot \end{pmatrix} = \begin{pmatrix} D^{\frac{3}{2}}(\mathbf{s}_{-}) \end{pmatrix}^{\dagger}, \qquad D^{\frac{3}{2}}(\mathbf{s}_{z}) = \begin{pmatrix} \frac{3}{2} & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \cdot & \cdot \\ \cdot & \cdot & -\frac{1}{2} & \cdot \\ \cdot & \cdot & \cdot & -\frac{3}{2} \end{pmatrix}$$

$$\begin{pmatrix}
j = 3/2 \text{ spinor } \mathbf{S}_{+} & \dots \text{ and } \mathbf{S}_{Z} \\
D^{\frac{3}{2}}(\mathbf{s}_{+}) = \begin{pmatrix}
\cdot \sqrt{3} & \cdot & \cdot \\
0 & \cdot \sqrt{4} & \cdot \\
\cdot & 0 & \cdot \sqrt{3}
\end{pmatrix} = \begin{pmatrix}
D^{\frac{3}{2}}(\mathbf{s}_{-}) \\
D^{\frac{3}{2}}(\mathbf{s}_{-}) = \begin{pmatrix}
\cdot \sqrt{3} & \cdot & \cdot \\
\cdot \frac{1}{2} & \cdot & \cdot \\
\cdot & \cdot -\frac{1}{2} & \cdot \\
\cdot & \cdot & \cdot -\frac{3}{2}
\end{pmatrix}$$

$$\begin{vmatrix}
j = 2 \text{ tensor } \mathbf{S}_{+} & \dots \text{ and } \mathbf{S}_{Z} \\
\begin{pmatrix}
\cdot \sqrt{4} & \cdot & \cdot & \cdot \\
0 & \cdot \sqrt{3} & \cdot & \cdot \\
\cdot & 0 & \cdot \sqrt{3} & \cdot \\
\cdot & \cdot & 0 & \cdot \sqrt{4} \\
\cdot & \cdot & \cdot & 0 & \cdot
\end{pmatrix} = \begin{pmatrix}
D^{2}(\mathbf{s}_{-}) \\
\cdot & \cdot & \cdot & -1 & \cdot \\
\cdot & \cdot & \cdot & -1 & \cdot \\
\cdot & \cdot & \cdot & -2
\end{pmatrix}$$