Group Theory in Quantum Mechanics
Lecture 23 (11613

Harmonic oscillator symmetry U(1)CU(2)CU(3)...

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 21-22 )
(PSDS - Ch. 8 )

Review : 1-D ata algebra of U(1) representations
Review : Translate T (a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and “squeezed” states)

2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

%ﬁ;ﬂ | Anti-commutation relations
and Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Bookkeeping : Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
R(3) Angular momentum generators by U(2) analysis

Angular momentum raise-n-lower operators 8 and S.
SU(2)CU(2) oscillators vs. R(3)CO(3) rotors
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* Review : 1-D ata algebra of U(1) representations
Review : Translate T(a) and/or Boost B(b) to construct coherent state
Review : Time evolution of coherent state (and “squeezed” states)
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Review :  [-D ata algebra of U(1) representations

4 N
4 N , [ 7o o ot [agn
(X-I—iP) ( /Ma)x+ip/~/Ma)) aT:(X_lP):( Mo X—ip/ M(U)
Y Ton Jho J2n
Define { Destruction operator ) and \ Creation Operator y

Commutation relations between a = (X+iP)/2 and a'= (X-iP)/2 with X=VMoxA2 and P=pAN2M :
_a,aqzaaT-aTa=£(\/Mw x+ip/\/Ma))(\/Ma) x—ip/\/Ma))—i(\/Ma) x—ip/x/Ma))(\/Ma) x+ip/\/Ma))

a,ang(px—xp):%[x,p]ﬂ @a,aqzﬂ or (aaT=aTa+1) [ x,p |=xp-px=hi1
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Review - 1-D ata algebra of U(1) representations

Ist excited state wavefunction yy(x)=(e 11y N o~ =/

<x |aT|O> B <x |1> — Wi (X) st Transition . 75

energy by-Eg\ | A0 N LT JO

Expanding the creation operator —ho I B o
<x‘aT‘O>:%(\/Ma) <x‘X’O>—i<x‘p‘O>/«/Ma))=<x‘1>:1//1(x) ClaS<Sica1 turning points X
2n TTT-T-ITj IS SN SODE DAk

The operator coordinate rgpresentatiqns generate the first excited statefwavefunction.

)=o) | i o) )

l

—Maox?2/2h “Mawox?/2h a a’f‘
- [Mxe —iﬁa c /M]

\ 2% const. [ dx  const.
2
—Mwx“/2h 23
_ L [Mx+zﬁwa/F) _
«/2/‘1 const. I
[ 2 3/4
—Mwx“/2h )
_VMo e (2x)=(M(0] /MLM—MM /2h)
2% const. th
Zero-point
energy E
=h/2
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Review - 1-D ata algebra of U(1) representations

n\ln—1
Derive normalization for n* state obtained by (a')" operator: ~ Use: a"a™ =n!| 1+na'a+ %a’fzﬁ T

fn natn ¥ |
|n>:a_|0>’ Where. 1:<n|n>:<0|a a |20>:n!<0|1+na a;..|o>: n
COnSt. (const.) (const.) (const.)
tn
a 0 ) tn _ tn—1 Tn
|n) = 0) Root-factorial normalization Use: @aa'" =na'™ "+a"a
Jn!
Apply creation a': Apply destruction a:
tn+l tn+l tn tn—1 tn tn—1
N - |0>_\/—a 0) ~aa'"|0) (ma'""+a'a)0) ~—a'""’|0)
) Jn! " (n+1)! ) Jn! Jn! (n—1)!
(af[n)=nr1|n+1) aln)=+ln|n—1))
Feynman's mnemonic rule: Larger of two quanta goes 1n radical factor
| 1
. .
sz
Ty — a) = . \/g
* - Use: aa”=na™ '+al"a

Number operator and Hamiltonian operator
v v a'aa’™|0) a'a”'|0) a'"|0)

Number operator N=a'a counts quanta. a'a|n)= =n =n =n|n
Hamiltonian operator 0 1 172 s
H |n) = ho a'a |n) + 10/21 |n) = ho(n+1/2)n)  H=relaat)=io 2 +ho 1/2

3 1/2

Hamiltonian operator is ho N plus zero-point energy 120/2 .
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Review : [-D ata algebra of U(1) representations
Review : Translate T(a) and/or Boost B(b) to construct coherent state ‘
Review : Time evolution of coherent state (and “squeezed” states)
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Review : Translate T (a) and/or Boost B(b) to construct coherent state

T(a) and B(b) operations do not commute. T(a)=e """ oy B(b) =/ P*

Define a combined boost-translation operation: C(a,b) = ei(bx—ap)/ L

Use Baker-Campbell-Hausdorf identity since [X,p]=ia1 and [[X,p],X]=[[X,P].P]=0.
eAtB — eAeBe_[A’B]/z = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]]

C(a.b)= ei(bx—ap)/h _ oibX/h ~iap/h e—ab[x,p]/2h2 _ oibXIh —iaplh ~iab/2h

C(d,b) =B(b)T(a)e_iab/2h =T(a)B(b)eiab/2h
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Review : Translate T (a) and/or Boost B(b) to construct coherent state

T(a) and B(b) operations do not commute. T(a)=e """ oy B(b) =/ P*

Define a combined boost-translation operation: C(a,b) = ei(bx—ap)/ L

Use Baker-Campbell-Hausdorf identity since [X,p]=ia1 and [[X,p],X]=[[X,P].P]=0.
eAtB — eAeBe_[A’B]/z = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]]

C(a.b)= ei(bx—ap)/h _ oibX/h ~iap/h e—ab[x,p]/2h2 _ oibXIh —iaplh ~iab/2h

C(a,b) =B(b)T(a)e—lab/2h=T(a)B(b)elab/2h C()mplex
phasor coordinate o.(a,b)

defined by: a(a,b)

Reordering only affects the overall phase.

i(bx-ap)/h _ ib(a'+a)N2hMw+a(a’-a)NMw/2n = aM® /2% +ib/2hM @
Cla,b)=¢ =e b
T , T , T =[a+iMw}/Mw/2h
—(y ¥ — —y¥ —y*¥
_poa—ara _ || /2 oa’ —o*a :e|oc| /2 ~o*a o8
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Review : Translate T(a) and/or Boost B(b) to construct coherent state

T(a) and B(b) operations do not commute. T(a)=e """ oy B(b) =/ P*

Define a combined boost-translation operation: C(a,b) = ei(bx—ap)/ L

Use Baker-Campbell-Hausdorf identity since [X,p]=ia1 and [[X,p],X]=[[X,P].P]=0.
eAtB — eAeBe_[A’B]/z = eBeAe[A’B]/2 , where: [A,[A,B]] =0= [B,[A,B]]

C(a.b)= ei(bx—ap)/h _ oibX/h ~iap/h e—ab[x,p]/2h2 _ oibXIh —iaplh ~iab/2h

C(Cl,b) =B(b)T(a)€_lab/2h=T(a)B(b)€lab/2h C()mplex
phasor coordinate o.(a,b)

defined by: a(a,b)

Reordering only affects the overall phase.

i(bx-ap)/h _ ib(a'+a)N2hMw+a(a’-a)NMw/2n = aM® /2% +ib/2hM @
Cla,b)=¢ =e b
T , T , T =[a+iMw}/Mw/2h
—(y ¥ — —y¥ —y*¥
_poa—ara _ || /2 oa’ —o*a :e|oc| /2 ~o*a o8

Coherent wavepacket state |0Uxg,po)): |t (x9.po))=C(xg.p)|0) = ¢! X=PoP)/h |0)

= €_|a0|2/2€a0 aTe_ao* 2 | 0>
:e_|a0’2/2€a0 al | O>

ol 2 3 (@) |0)/n!

n=0
n n
el g (%) oy _a”o)
= 170 ;Eo 75 |n) , where: |n)= T

Tuesday, April 21, 2015



Review : [-D ata algebra of U(1) representations
Review : Translate T(a) and/or Boost B(b) to construct coherent state
*Review : Time evolution of coherent state (and “squeezed’ states)

<
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Review : Time evolution of coherent state (and “squeezed” states) |060 (x0.Po )> =e

Time evolution operator for constant H has general form : U(t,O)ze'iH’ &

Oscillator eigenstate time evolution 1s simply determined by harmonic phases.

U(t,())|n>=e'th/h|n> _ e-i(n+1/2)wt|n>

ol 12 5 (o0 )

n=0 \/;

)
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. . Y1 ) ] 2/2 -
Review : Time evolution of coherent state (and “squeezed” states) |oco(x0, Po )>=€ ol 2 5

Time evolution operator for constant H has general form : U(t,O)ze'iH’ &

Oscillator eigenstate time evolution 1s simply determined by harmonic phases.
U(t,())| n>=e-th/h|n> _ e-z(n+1/2)a)t|n>
Coherent state evolution results. ( )n
Xo

U(l‘,O)‘OCO (xo,p0)>=e_‘050| /2 § \/m U(t,0)|n>=e_|a°| /2 §

n=0

It

) )

) 2 oo Olne
=e—l(0t/2e—|060| /2 Z ( 0

n=0 \/ﬁ

n=0 \/;

€

n=0

(g )n -i(nH12)ot

()"

Jn!

)

)
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Jol22 = (o)
Review : Time evolution of coherent state (and “squeezed’ states) |050(x0a190 )>=€ ol 12 ZO—( \/(;—? |n)
- !

Time evolution operator for constant H has general form : U(t,()):e'iH’ &

Oscillator eigenstate time evolution 1s simply determined by harmonic phases.
U(t,())| n>=e-th/h|n> _ e-i(n+1/2)a)t|n>
Coherent state evolution results. . .
() at (s p0)=e 07 5 0Ly =gt § L1 ptwnmor

n=0 \/m n=0 \/;

dwt )"
. N 2 fe%e) (OCOe )
_lot/2, 0|7 /2 ¥

n=0 \/; | n>

Evolution simplifies to a variable-ay coherent state with altime dependent phasor coordinate a;:

it

O(1.0)] et (x0,p0)) ="t (x,.,)) where: o (%p) =™ oo, o)

[xt+i]\1;t }ze'iwt[xo+i—]\l;(;)}
)]
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Jol22 = (o)
Review : Time evolution of coherent state (and “squeezed’ states) |oc0(x0,p0 )>=€ ol 12 ZO—( \/(;—? |n)
- !

Time evolution operator for constant H has general form : U(t,O):e'iH’ &

Oscillator eigenstate time evolution 1s simply determined by harmonic phases.
U(t,())| n>=e-th/h|n> _ e-i(n+1/2)a)t|n>
Coherent state evolution results. . .
() at (s p0)=e 07 5 0Ly =gt § L1 ptwnmor

n=0 M n=0 \/;

) 2 oo Olne
=e-zwt/2e—|oc0| /2 y ( 0

n=0 \/; | n>

Evolution simplifies to a variable-ay coherent state with altime dependent phasor coordinate a;:

it

O(1.0)] et (x0,p0)) ="t (x,.,)) where: o (%p) =™ oo, o)

{xt+i]\l;t }ze'iwt[xo+i—]\l;(;)}
)]

(x,p,) mimics classical oscillator

X, = xocosa)t+&sina)t
M

b = — X sinw?+ -2 cosm1
M Mo

(Real and 1imaginary parts (x; and p,/M®) of a; go clockwise on phasor circle.)
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Review : Time evolution of coherent state (and “squeezed” states)

(6o, )

(5o, )

(4o, )

(3 o)

(2o, )

(1o, )

(0o, )

TG

o] -] -

(710,y Coherent ket |au(x0,p0)) is eigenvector of destruct-op. a.

a‘aO (xO’p0)>=e_|a0|2/2 D (aO) a| >

n=0 \/n_
el () o
n= () \/_ \/_| 1>

= ao‘cxo Xo > Po )> with eigenvalue ay

Coherent bra {ou(x(0,p0)| is eigenvector of create-op. ar.

<050 (Xo »1’90)‘5r = <050 (Xo »Po)‘ 0‘8

Expected quantum energy has simple time independent form

<E>|a0 = <0‘o(xo»Po)‘H‘O‘o(xo»Po)>

:<a0(x0,po)\(mafa+’*‘2“’1]\ao(xo,po)>

B s ho
= ha)ocooco + 7
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Properties of “squeezed” coherent states

(a) Coherent wave oscillation

=T=21W/® ¢
Time t

LI

1 I_!_I 1

-

LI

Yay! Classical Cosine trajectory!

Time t ' T;/4=T/20

SENRRANRRRRRY

Amplitude coordinate x

>

(b) Squeezed ground state
(“Squeezed vacuum” oscillation)

’

ujan

what happens if you apply
operators with non-linear “tensor”

”C3/4=3TC/2(D

Zni exponents exp(sX?), exp(f p?), etc.

TI/ZZTC/(D

[k

E [
!

|
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Properties of “squeezed” coherent states

(a) Coherent wave oscillation

=T=21W/® ¢
Time t

LI

(a) Squeézed amplitude

Time t

1 I_!_I 1

High Ax at zero
Low Ap at zero

Time t

NuNARARARANAN

s L

Amplitude coordinate x

>

(b) Squeezed ground state
(“Squeezed vacuum” oscillation)

ow Ax at crest .

(b) Squeezed phase A

Time t

ujan

T3/4=37'C/20)

B High Mx-griroug
_ Low Ap at-troug

TI/ZZTC/(D

--- Low Ax at zero
L] n=4 High Ap at zero

ek

at crest T

E [
!

|
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Mostly Anti-commutation relations
I;Lo;atlon Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Bookkeeping : Outer product arrays

Entangled 2-particle states

Tuesday, April 21, 2015
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2D-0Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kj;, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)

Tuesday, April 21, 2015
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2D-0Oscillator basic states and operations
First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2

Tuesday, April 21, 2015
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2D-0Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (a.kl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2
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2D-0Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (an -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.

Tuesday, April 21, 2015
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Mostly Anti-commutation relations
I;Lo;atlon Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Bookkeeping : Outer product arrays

Entangled 2-particle states

Tuesday, April 21, 2015
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2D-0Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ X/, P2l=0=[X>,p:], [a;,a",]=0=[a,,a’/]
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2D-0Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (an -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.

[ a,, aT]] =1, [a,, aT2] =1
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2D-0Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)
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2D-0Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (aTl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aTma aTn] = aTmaTn - aTnaer: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H H
H- 11 Hipp
Hy Hy
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2D-0Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (a.kl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H=H, (aja,+1/2)+ Hala, ( - H”J

Hy Hy

+H,aa,;+Ho, (aga2 +1/ 2)
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2D-0Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (a.kl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H=Hy (afa, +1/2)+ Haja, = Alafa, +1/2)+(#-iC)ala, (Hu H12] ( A —iC}
H-= =

+H,aa, + H,, (aga2 +1/ 2) +(B+iC)aba, + D(aga2 +1/ 2)
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2D-0Oscillator basic states and operations - Commutattion

First rewrite a classical 2-D Hamiltonian (Lecture. 6-9) with a thick-tip pen! (They’re operators now!)

A D
H= 5(p12 +x12)+ (X;X5 +P1P2 )+ C(XP2 —X2P1)+E(p% +x%)

(Mass factors VM, spring constants Kjj, and Planck 7 constants are absorbed into 4, B, C, and D constants used in Lectures 6-9.)
Define a and at operators

a;=(x;+ip)2 a', = (x;-1p)2 a, = (X, +1ip,)/N2 a’,=(X,-1p,)"2
X = (a.kl T a; )/\/2 P = 1 (afl -d; )/\/2 X, = (aTz + a )/\/2 P> = 1 (afz -d) )/\/2

Each system dimension X; and Xz 1s assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[X;,P:]=0=[X;,p;], [a;,a";]=0=[a,,a]
Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
[a,a]=1, [axa’)]=1

This applies 1n general to N-dimensional oscillator problems.

([ ama an] = aman - anam — O) ([ ama aTn] = amaTn - aTnam: 5mn-l) ([ aera aTn] = aeraTn - aTnaTm: O)

New symmetrized a',,a, operators replace the old ket-bras |m)n| that define[semi-classical H matrix.
y p p

H-= 11 12 =( A iC }
Hy Hy

+iC D

+H,aa, + H,, (aga2 +1/ 2) +(B+iC)aba, + D(aga2 +1/ 2)

Both are elementary "place-holders" for parameters H,,, or A, 5+iC, and D.

mY(n|—(a'a +a.a’ |/2=a'a. +5 .1/2
m=n n—m m=n m.,n
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry ‘

Mostly Anti-commutation relations
I;Lo;atlon Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Bookkeeping : Outer product arrays

Entangled 2-particle states
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Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.
(a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Tuesday, April 21, 2015

32



Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.
(a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a¥,, raises electromagnetic mode quantum number m to m+1 it is said to create a photon.
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Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.
(a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a¥,, raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a',, raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.
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Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.

a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.
p P ydq p

If a¥,, raises electromagnetic mode quantum number m to m+1 it is said to create a photon.
If a',, raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a',, raises liquid “He rotational quantum number m to m+1 it is said to create a roton.
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Mostly Anti-commutation relations
I;Lo;atlon Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Bookkeeping : Outer product arrays

Entangled 2-particle states
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Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.
(a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a¥,, raises electromagnetic mode quantum number m to m+1 it is said to create a photon.
If a¥,, raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a',, raises liquid “He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity 1s named Fermi-Dirac symmetry or anti-symmetry. It 1s found 1n electron waves.

Fermi operators (C,,,C,) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

{c,..c,}=¢C,.C,+¢C,C,=0 {c,,c’,=¢c,c’+c,c,=5,,1 (ct,ch1=c',c,+c’,c’,=0
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Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.
(a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a¥,, raises electromagnetic mode quantum number m to m+1 it is said to create a photon.
If a¥,, raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a',, raises liquid “He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity 1s named Fermi-Dirac symmetry or anti-symmetry. It 1s found 1n electron waves.

Fermi operators (C,,,C,) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.
{€1,C1}=C1C\C,C,=0 {emchi=c,c’+c’,c,=5,,1 {cneh=c’,c’+c’c, =0

Fermi ¢, has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.
Creating two Fermions of the same type 1s punished by death. This 1s because x=-x implies x=0.
c’ch, 0y=-c",c",10)=0

That no two indistinguishable Fermions can be in the same state, 1s called the Pauli exclusion principle.
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Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.
(a,, a',) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a¥,, raises electromagnetic mode quantum number m to m+1 it is said to create a photon.
If a¥,, raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a',, raises liquid “He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity 1s named Fermi-Dirac symmetry or anti-symmetry. It 1s found 1n electron waves.

Fermi operators (C,,,C,) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.
{€1,C1}=C1C\C,C,=0 {emchi=c,c’+c’,c,=5,,1 {cneh=c’,c’+c’c, =0

Fermi ¢, has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.
Creating two Fermions of the same type 1s punished by death. This 1s because x=-x implies x=0.
¢’c,0=-¢cc,0=0
That no two indistinguishable Fermions can be in the same state, 1s called the Pauli exclusion principle.

Quantum numbers of #=0 and n=1 are the only allowed eigenvalues of the number operator ¢¥,,C,,.

¢c,00=0, cc,|l)=1), ¢',c,|n)=0 for: n>1
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Mostly Anti-commutation relations
I;Lo;atlon Two-dimensional (or 2-particle) base states: ket-kets and bra-bras ‘
Bookkeeping : Outer product arrays

Entangled 2-particle states
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n;)|ny)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n;)|ny)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states [ )|W¥,) : eigenstates |n)|ny), or {n[{n],
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n;)|ny)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states W )|W,) : eigenstates |n)|ny), or (n[{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 (x1||‘1’,)|‘{’2)‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2

Tuesday, April 21, 2015 44



Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 <x1”q,1>|\{,2>‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2

Product of individual probabilities ‘(x Y 1>|2 and ‘<X2|\Pg>‘2 respects standard Bayesian probability theory.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 (x1||‘1’,)|‘{’2)‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2

Product of individual probabilities ‘(x Y 1>|2 and ‘(Xgl\P2>‘2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation {x;,x,|¥;,¥,) = (6| )Y )
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"” |n)|n,)
It 1s outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras” {ny|(n;| = (n)n:))’

This applies to all types of states |W)|W¥,) : eigenstates |n)|n,), or {n,|{nl,
position states |x)x,) and (x,[{x;|, coherent states ooy and (o[ o], or whatever.

Scalar product is defined so that each kind of particle or dimension
will "find" each other and ignore the presence of other kind(s). ez 1y (I 2) = g [ )G [W2)

Probability axiom-1 gives correct probability for finding particle-1 at x; and particle-2 at x;,
if state | )|¥,) must choose between all (x; , x5). ‘ (x), le‘l’z,‘{b)‘Z:‘ (0 (x1||‘1’,)|‘{’2)‘2

=|(x1|\P1)‘2‘(x2|‘P2>‘2

Product of individual probabilities ‘(x Y 1>|2 and ‘(Xgl\P2>‘2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation {x;,x,|¥;,¥,) = (6| )Y )

Must ask a perennial modern question: "How are these structures stored in a computer program?"
The usual answer 1s 1n outer product or tensor arrays. Next pages show sketches of these objects.
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Mostly Anti-commutation relations

I;Lo;atlon Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

Bookkeeping : * Outer product arrays ‘
Entangled 2-particle states
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
| 0 |1 | 0 o _| O _| 1 _| 0
0,)= 0 )= 0 ]21)= E 0,) 0 [12) 0 . 125) {
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
0 1 0 0 1 0
0,)= 0 )= ]21)= 05)= )= 0 [22)=

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0 0 0
0 1 0 0

0 0 0 0

1\(1) |0 1\(0) |0 0V(1) |1 0Y(0) |0

ollo| [0 oll1] |0 1ol [0 1ol [0
|01>|02>: ollol™ 1o |01>|12>: ollol™ 1o |11>|02>: ollol" 1o |11>|22>: oll11711
0 0 0 0

0 0 0 0

0 0 0 0
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1

10,)=

1
0
0

)=

0
1

21)=

0
0

Type—?2

0,)=

1
0
0

1) =

(@I

|22)=

0
0

Outer products are constructed for the states that might have non-negligible amplitudes.

o O

S O O -

e O O O e

S =

S O O -

O O O

S O =l O O

O O O

o O

—_ O O .-

O O O e

Herein lies conflict between standard
oo-D analysis and finite computers
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1
1 0
0 1
0,)= 0 )=

,121)

0
0
1

Type—?2

0,)=

1
0

1) =

(@I

0

0
|22)=

Outer products are constructed for the states that might have non-negligible amplitudes.

o O

S O O -

e O O O e

S =

S O O -

O O O

o O

S O =

O O O

0
g Herein lies conflict between standard
: co-D analysis and finite computers
0) |0
0l [0 : : :
L=l Make adjustable-size finite phasor
N arrays for each particle/dimension.
0
0
0
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
| 0 _| 1 | O .. _| 0 _| 1 _| 0]
0,)= N )= N 2))= E 0,) N L) NE 2;) Ll

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0 0 0
0 1 0 0 o .
Herein lies conflict between standard
0 0 0 0 . .
: : : : co-D analysis and finite computers
(1) |o 1\(0) |o 0Y(1) |1 0)(0) |0
ofjo| |o of1]| |0 1{jo| |o 1{{o] |0 . . .
0,)]0,)= = 10)]1,) = = |1,)]0,) = = 11,)]2,)= = Make adjustable-size finite phasor
olflo| |o oflo| |o oflo]| |o of1]| |1 : , ,
N : : Ny N arrays for each particle/dimension.
0 0 0 0
0 0 0 0 Convergence is achieved by orderly
0 0 0 0 upgrades in the number of phasors to
: a point where results do not change.
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1
1 0
0 1
0,)= 0 )=

,121)

0
0
1

Type—?2

1

0
|0,)=

1) =

(@I

0

0
|22)=

Outer products are constructed for the states that might have non-negligible amplitudes.

o O

S O O -

e O O O e

S =

S O O -

O O O

o O

S O =

O O O

A 2-wave state product has a lexicographic (00, 01,

0
0 . .
0 Herein lies conflict between standard
: co-D analysis and finite computers
0) |0
o |o . . :
L=l Make adjustable-size finite phasor
| arrays for each particle/dimension.
0
0 Convergence is achieved by orderly
0 upgrades in the number of phasors to
: a point where results do not change.

02,..10, 11, 12,..., 20, 21, 22, ..) array indexing.
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
| 0 _| 1 | O .. _| 0 _| 1 _| 0]
0,)= N )= N 2))= E 0,) N L) NE 2;) Ll

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0 0 0
0 1 0 0 — .
Herein lies conflict between standard
0 0 0 0 . .
: : : : co-D analysis and finite computers
(1) |o 1\(0) |o 0Y(1) |1 0)(0) |0
ofjo| |o of1]| |0 1{jo| |o 1{{o] |0 . . .
0,)|0,)= ollol=1o 10)|1,)= ollol=1o 1,}]0,)= ollol=1o 11,)]2,)= ol 171 Make adjustable-size finite phasor
- : : ; : : N ; arrays for each particle/dimension.
0 0 0 0
0 0 0 0 Convergence is achieved by orderly
0 0 0 0 upgrades in the number of phasors to
: a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

(0 | Y, ) <0 | Y, > <O102 | Y'Y, > "Little-Endian" indexing
O, | | (o1, ]%,w,) (..01,02,03..10,11,12,13 ...
20,21,22,23,...)

(OF )R | [{0.2,[¥)¥)
: : Least significant digit at (right) END

) (o)) | TEIEs | | T
(L %)
Cle) || e | 7| el || e

GO | | GO )
L) | | 2w w,)
Cle)ew)| | Colee)
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1
1 0
0 1
|01>: 0 ’11>: 0 »21>:

Type—?2

|()2>=

0 0
1 0
BE I NERE I

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0

0 1

0 0

1\(1) |0 1Y(0) |0

010 0 011 0
|01>|02>: 0 0 = 0 |Ol>|12>: O 0 = 0
0 0

0 0

0 0

o O

S O =

O O O

0
0 o .
0 Herein lies conflict between standard
: co-D analysis and finite computers
0)(0) |0
1{{o] |0 . : :
11,)]2,)= oll1 171 Make adjustable-size finite phasor
| ; arrays for each particle/dimension.
0
0 Convergence is achieved by orderly
0 upgrades in the number of phasors to
: a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

<O|\P1><O|‘PZ> <0102 |\P1‘P2>

OP¥)(11Y,) | | (01, |¥,Y,)

URDIEE A RECERE S

1 ‘I’l 1 ‘Pz 1 ‘Pl 1 ‘P2 L1, ‘1’1‘1’2

O 1w (B e | 7| aredeie) 7] oo e
| - eeres| | e

QY )(UY,) | | 2L|YY,)

ClY)ew)| | @olrw)

"Little-Endian" indexing

(...01,02,03..10,11,12,13 ...

20,21,22,23,...)
. ) ) Least significant digit at (right) END
or anti-lexicographic
(00, 10, 20, ...01, 11, 21,..., 02, 12, 22, ..)

aI'I‘ay lndeX1ng "Big-Endian" indexing
(...00,10,20..01,11,21,31 ...

02,12,22,32...)

Most significant digit at (right) END
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Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

Type—1 Type—?2
1 0 0 1 0 0
| 0 _| 1 | O .. _| 0 _| 1 _| 0]
0,)= N )= N 2))= E 0,) N L) NE 2;) Ll

Outer products are constructed for the states that might have non-negligible amplitudes.

1 0 0 0
0 1 0 0 — .
Herein lies conflict between standard
0 0 0 0 . .
: : : : co-D analysis and finite computers
(1) |o 1\(0) |o 0Y(1) |1 0)(0) |0
ofjo| |o of1]| |0 1{jo| |o 1{{o] |0 . . .
0,)|0,)= ollol=1o 10)|1,)= ollol=1o 1,}]0,)= ollol=1o 11,)]2,)= ol 171 Make adjustable-size finite phasor
- : : ; : : N ; arrays for each particle/dimension.
0 0 0 0
0 0 0 0 Convergence is achieved by orderly
0 0 0 0 upgrades in the number of phasors to
: a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

(0 | Y, ) <0 | Y, > <O102 | YV, > <0102 | ‘P> Y "Little-Endian" indexing
O] )1|¥,) | | (01, |¥¥,) 0,1,|%) | | ¥, (..01,02,03..10,11,12,13 ...
<O|‘P1><2|\I—‘2> <0122 |lP1\Pz> <0122 |‘P> Y, 20,21,22,23,...)
: : : : Least significant digit at (right) END
v ||t || Gsares | |Gy | Shorthand e | v
\Pl\}l: 1 ® 2 — 1 2 — 112 142 -_ _ ._ |‘P>= 11, _ 11
I ey | @l |7 el || alwory | Dig-bra-big-ket =115 1) 1= v,
: : : : notation : B
Qe )0[w,) | [{20,[¥,) (2,0,]%) | | ¥a
QIE)AN,) | | (2L [P,) QL) | [,
QI )e[w,) | [{(22,]¥,) (2.2,]¥) | |¥x
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2-D ata algebra of U(2) representations and R(3) angular momentum operators
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

* Entangled 2-particle states ‘
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

ANALOGY: non

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7

)k
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

ANALOGY: non

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7

)k

n
...that might be diagonalized to a combination of n projectors: M= X ,ue‘ e><e‘
e=1
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

ANALOGY: non

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7

)k

n
...that might be diagonalized to a combination of n projectors: M= X ,ue‘ e><e‘
e=1

So a general two-particle state |¥) is a combination of entangled products: “P>=22l// j k|\lj j>|\lj k>
jk o
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Entangled 2-particle states

A matrix operator M is rarely a single nilpotent operator |1){2| or idempotent |1){1].

A two-particle state |¥) is rarely a single outer product [¥)|¥,) of 1-particle states [¥;) and [¥,).
(Even rarer 1s |[¥)|¥)).)

ANALOGY: non

A general n-by-n matrix M operator is a combination of n? terms: M= X ¥ M ik
j=lk=1 7

)k

n
..that might be diagonalized to a combination of n projectors: M= X ,ue‘ e><e‘
e=1

So a general two-particle state [¥) is a combination of entangled products: “P>=22l// j k|\lj j>|\lj k>
jk o

...that might be de-entangled to a combination of n terms: “P>=Z¢e‘(Pe>‘ (Pe>
e
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*Two—particle (or 2-dimensional) matrix operators ‘

U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz :aﬂnl ’nz =\/n + ‘nl+1n2 a§|nln2>=|nl>a§‘n2 =\/n2+ ‘nl n2+1>
al"’ll”lz a1|n1 ’nz \/7|n1—1n2 a2|nln2 —|n1 az‘nz \/7|n1n2—1
a;"finds" its type-1 ay"finds" its type-2
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz :aﬂnl ’nz =\/n + ‘nl+1n2 a§|nln2>=|nl>a§‘n2 =\/n2+ ‘nl n2+1>
al"’ll”lz a1|n1 ’nz \/7|n1—1n2 a2|nln2 —|n1 az‘nz \/7|n1n2—1
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

REIRCI

|myny) = g 111y !
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator @k acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz aﬂnl ’nz =\/n + ‘nl+1n2 a2|nln2 —|n1 az‘nz =\/n, +1 ‘nl n2+1
al‘nlnz a1|n1 ’nz \/7|n1—1n2 a2|nln2 —|n1 az‘nz \/7|n1 n2—1
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

" (al)" H=H, (aja,+1/2)+ H,ala
a a 1\did 1241492
= LB ( )
n'ln,!
The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.
H =A(a}ha1 +1/2)+( —iC)aja,

+Hyaa; + Hy, (aga2 +1/ 2)

+(z+iC)aba, + D(aga2 + 1/2)
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator @k acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz :aﬂnl ’nz =\/n + ‘nl+1n2 a§|nln2>=|nl>a§‘n2 =\/n2+ ‘nl n2+1>
al‘nlnz a1|n1 ’nz \/7’111—1112 a2|nln2 —|n1 az‘nz \/7|n1n2—1
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.
(aI)n1 (az)n2 H=H,, (a{fa1 +1/ 2)+ H,aja,

|I’l1n2> = |0 O>
NIRY

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.
H =A(aIa1+1/2)+( —iC)aja,

+Hyaa; + Hy, (aga2 +1/ 2)

afal |n1n2> = n1|n1 n2> aifa2|n1n2> = \/nl +1\/n2 |n1 +1n, —1>

a§a1 |n1n2> = \/nl \/nz +1|n1 —1n, +1> a§a2|nln2> = n2|nl n2>

+(z+iC)aba, + D(aga2 + 1/2)
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz aﬂnl |n2 =\/n + |n1+1n2 a2|nln2>—|nl a2|n2 =\/n, +1 |n1 n2+1
a1|n1n2 a1|n1 |n2 \/7|n1 1n2 a2|nln2>—|nl a2|n2 \/7|n1 Ny —
a;"'finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

(ai{-)nl (a; )l’lz H = Hll (a}-al + 1 / 2)+ leai;-az
|I’l1n2> = |0 0>
v ling! +H,,ata, +H22(a§a2 +1/2)

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = A(aira1 +1/2)+( —iC)aja,

a{fal |n1n2> = n1|n1 n2> aira2|n1n2> = \/nl +1\/n2 |n1 +1n, —1>
a§a1 |n1n2> = \/nl \/nz +1|n1 —1n, +1> a§a2|nln2> = n2|nl n2>

00) |o1) 02) | |10) 1) 12) ‘ 120) 21) 22)

<OO| 0 "Little-Endian" indexing

(01 D (...01,02,03..10,11,12,13 ...
20,21,22,23,...)

(02] 2D

+(z+iC)aba, + D(aga2 + 1/2)

<1:0|
(1]

(H)=A(1/2)+ D(1/2)+ (2]
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

aﬂnlnz aﬂnl |n2 =\/n + |n1+1n2 a2|nln2>—|nl a2|n2 =\/n, +1 |n1 ny +1
a|niny) =@ [ny)|ny) = | my —1ny) ay|myny) =|ny yag|ny) = \Jny [y my = 1)
a;"'finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

(ai{-)nl (a; )l’lz H = Hll (a}-al + 1 / 2)+ leai;-az
|I’l1n2> = |0 0>
v ling! +H,,ata, +H22(a§a2 +1/2)

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = A(aira1 +1/2)+( —iC)aja,

i _ i _
aja|mny) =my|n ny) ajay|mny )= \Jm +1ny [y + 1y — 1) ( \al :
+ B + B +( 5 +iC a2a1+D(a2a2+1/2)
aja, |nyny ) = \ny \Jny +1|m —1ny +1) aya,|mny) = my|ny ny)
|00) |01) |02) | |10) 111) 12) 20) |21) 122)
<OO| 0 "Little-Endian" indexing
(01 D | nric , (...01,02,03..10,11,12,13 ...
20,21,22,23,...)
(02| 2D .- J2(B+iC)
ao|| - rB-icC | A
(11 . 2(B=iC) - A+D
<H>:A(1/2)+D(1/2)+ <12| . A+2D
(20]
(21]
(22|
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Two-particle (or 2-dimensional) matrix operators

When 2-particle operator ax acts on a 2-particle state, ax "finds" its type-k state but ignores the others.

af|nln2>:af|nl>|n2>:wlnl +1|n1 +1n2> a§|nln2>=|nl>a§|n2>:«/n2 +1|n1 ny +1>

a|niny) =@ [ny)|ny) = | my —1ny) ay|myny) =|ny yag|ny) = \Jny [y my = 1)
a;"finds" its type-1 ay"finds" its type-2

General definition of the 2D oscillator base state.

(a-{)n] (a; )l’lz H = Hll (a}-al + 1 / 2)+ leai;-az
|I’l1n2> = |0 0>
v ling! +H,,ata, +H22(a§a2 +1/2)

The a,,'a, combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = A(aira1 +1/2)+( —iC)aja,

i _ i _
aja|mny)=m|n ny) aja,|nny ) = \n +1yny |y +1ny — 1) (5 +iC)al :
+ B + B +( 5 +iC a2a1+D(a2a2+1/2)
aja, |nyny ) = \ny \Jny +1|m —1ny +1) aya,|mny) = my|ny ny)
|00) |O1) 102) | [10) 111) 112) 20) 121) 122)
<OO| 0 "Little-Endian" indexing
(01 D | ByiC , (..01,02,03..10,11,12,13 ...
20,21,22,23,...)
(02] 2D V2 (B +iC)
<10| . —iC e A .. .
(11] . 2(B=ic) - A+D | V2(B+iC)
(H)=A(1/2)+ D(1/2)+ (12 | T JE(5+iC)
(20| . 2(B=iC) 2A
(21] : Ja(B-ic) - 2A+D

(22| : 2A+2D .-
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Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
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U(2)-2D-HO Hamiltonian and irreducible representations

"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...

20,21,22,23,...)
H= 00) |o1) 102) 10) 1) 12) 120) 121) 122)
A(aja+172)+(1-iC)ala, 000
(01] D +iC :
+( +iC)a§al+D(a§a2+1/2) (02 \ 2D V2(B+iC)
(10| | - _ich\‘\\\ﬁk e A e :
(H)y=A1/2)+DA/2)+ (11| . 2(B-ic) - A+D N2 (B+iC) :
(12] Example: A+2D V4 (5 +iC)
afal nln2>=n1‘ n1n2> : TE : : : : : :
a;a1 n1n2>:\/”_1\/@|n1—1n2+1> (20| a1a2|02>:\/ﬁ\/§|0+1 2_1>:\/§|11 ‘/5( ~iC) 2A
+ (21] aja,|mny )=\fn+Jny|n+ ny-1) Va(r=ic) 2A+D
3132 l’lll’lz >=\/n1+1\/n2 n1+1 l’l2—1> <22| —>

a;a2| n1n2>=n2| n1n2>

2A+2D .-

Rearrangement of rows and columns brings the matrix to a block-diagonal form.
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U(2)-2D-HO Hamiltonian and irreducible representations

H=
A(aja+172)+(1-iC)ala,

+( +iC)a§al+D(a§a2+1/2)

(H)y=A(1/2)+ D(/2)+

afal nmn ”1‘ ”1”2>

JriJno | m=1ny+)

>:
a;al ”1”2>
)

"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...

:\/n1+1 \/nz n1+1 n2—1>

aIaz mn,

a;a2| n1n2>=n2| n1n2>

20,21,22,23,...)
|00) |O1) 02) 10) 111) 112) 20) 121) |22)
(00| 0
(o1] D +iC :
(02 \ 2D V2(B+iC)
Qo[ - s-ic T~ - A .
(11] . 2(B-ic) - A+D | N2(B+iC) :
(12] Example: A+2D JA(5+iC)
(20| [@jay 02)=\J0+1/2]0+1 2-1)=V2]11 J2(5-iC) 2A
(21] [a1ad mm = o[ np+l ny=t) J4(5-iC) 2A+D

(22|

2A+2D .-

Rearrangement of rows and columns brings the matrix to a block-diagonal form.

CBase states |n )|n,) with the same total quantum number v=n; + n, define each block.)
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U(2)-2D-HO Hamiltonian and irreducible representations

H=

"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...

A(aja+172)+(1-iC)ala,

+( +iC)a§al+D(a§a2+1/2)

(H)y=A(1/2)+ D(/2)+

aIal nmny ”1‘ ”1”2>

a;al

>:
mn, >=\/a M | n—1 n2+1>
)

aIaz mny :\/l’l1+1 \/nz n1+1 I’l2—1>

a§a2| n1n2>=n2| n1n2>

20,21,22,23,...)
|00) |O1) 02) 10) 111) 112) 20) 121) |22)
(00| o
(01] D +iC
(02 \ 2D V2(B+iC)
(o] | - s-ic T~ A
(11] V2(5-iC) A+D | V2(B+iC)
(12| Example: A+2D Ja(r+iC)
(20| [@jay 02)=\J0+1/2]0+1 2-1)=V2]11 J2(B=iC) 2A
(21] [a1ad mm =y np+l nf) JA(B-iC) 2A4D
(22] 2A+2D

Rearrangement of rows and columns brings thle matrix to a block-diagonal form.

CBase states |n;)|n,) with the same total quantﬁm number v = n; + n, define each block)

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13
20,21,22,23,...)

Overtone (V=3)
vibrational sub-space

|00) | |01)  |10) 102) /|11> 20) |03) 12) |21) |30)
<OO| 0 | Vacuum (v=0) /
<0 1| D +iC |  Fundamentaf (v=1)
<10| —iC A vibrational fub-space
(02| 2D j V2(B+iC)
_ . . Overtone (V=2)
<H> =A1/2)+DA/2)+ <1 1| \/5( B ZC) A+D \/5( + ZC) vibrational sub-space
(20| V2(5-iC) 24
(03 3D J3(5+iC)
(12| V3(B-iC)  A+2D  J4(B+iC)
(21] Ja(B=iC)  24+D  J3(B+iC)
(30| J3(5-iC) 3A
5 1 ! a+p _
HA:A(afa1+1/2)+D(a§a2+1/2) 2n2=A(”1+5)+D(”2+5)— > (ny+ny +1)+ (= ny)
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Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states
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2D-Oscillator states

Fundamental eigenstates I G Lo) o) )
. . . . Fundamental _ .
The first step is to diagonalize the fundamental 2-by-2 matrix . Hh- B 21’0 S
0,1 | B+iC D

Group reorganized "Big-Endian" indexing
(...00,10,20..01,11,21,31 ...02,12,22,32...)
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2D-Oscillator states

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix . (H) e =

v=1 -

Recall decomposition of H ( Lectures 6-10 )

A APy ) DO pan) O L] O L aip| 1O
B+iC D 2 0 1 10 )2 i 0 )2 0 -1

ny,ny 1,0> O,1>
(1,0 A B=iC
0,1 | B+iC D

+

A+ D
2

1

Group reorganized "Big-Endian" indexing
(...00,10,20..01,11,21,31 ...02,12,22,32...)

1
2
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2D-Oscillator states

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix . (H) e =

v=1 -

Recall decomposition of H ( Lectures 6-10 )
( A -ic }ALDE (A+D)( 1o ]+2 [ 0 1
+iC D 2 0 1 I O
in terms of Jordan-Pauli spin operators.

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

m.ny | [1,0) [0,1)
(Lo| | A —iC
0,1 | B+iC D

j%+2c( ? o J%+(A—D)( (1) ° }

+

A+ D
2

1

Group reorganized "Big-Endian" indexing
(...00,10,20..01,11,21,31 ...02,12,22,32...)

1
2
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2D-Oscillator states

Fundamental eigenstates Lo mm Lo oy |
The first step 1s to diagonalize the fundamental 2-by-2 matrix . ) B 21’0: S
0,1 +iC D
Recall decomposition of H ( Lectures 6-10 ) Group reorganized "Big-Endian” indexing

(...00,10,20..01,11,21,31 ...02,12,22,32...)

( A pmic ]+—A+D1= (A+D)( b0 )+2 [ 01 jl +2C( 0 - Jl+(A—D)( o ]1
+iC D 2 0 1 I 0 )2 i 0 )2 0 -1 )2
in terms of Jordan-Pauli spin operators.

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

. QutQ A+DE|(2 )2+(2C)2+(A—D)2_A+D+\/(A—D)2+ 2, 2
. _ _ArD, (AP
- 2 2 2 2
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2D-Oscillator states

Fundamental eigenstates L Lo oy |
. . . . Fundamental _ .
The first step 1s to diagonalize the fundamental 2-by-2 matrix . ) B 21’0: A T
0,1 +iC D
Recall decomposition of H ( Lectures 6-10 ) Group reorganized "Big-Endian” indexing

(...00,10,20..01,11,21,31 ...02,12,22,32...)

( A pmic ]+—A+D1= (A+D)( b0 }+2 [ 01 jl +2C[ 0 - Jl+(A—D)( o ]1
+iC D 2 0 1 I 0 )2 i 0 )2 0 -1 )2
in terms of Jordan-Pauli spin operators.

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

. QutQ A+DE|(2 )2+(2C)2+(A—D)2_A+D+\/(A—Dj2+ 2, 2
. _ _ArD, (AP
- 2 2 2 2

Polar angles (¢,%) of +€2-vector (or polar angles (¢,9%m) of —2-vector) gives H eigenvectors.

_ —i : A-D
¢ 92 cosg —e P2 smg cosz‘;‘:?
|a)+>= p |a)_>= p where: <
ade sinE e cos— tang = —
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2D-Oscillator states

Fundamental eigenstates L Lo oy |
. . . . Fundamental _ .
The first step 1s to diagonalize the fundamental 2-by-2 matrix . ) B 21’0: A T
0,1 +iC D
Recall decomposition of H ( Lectures 6-10 ) (Group reorganized “Blg-Endian” indexing

(...00,10,20..01,11,21,31 ...02,12,22,32...)

( A pmic ]+—A+D1= (A+D)( b0 }+2 [ 01 jl +2C[ 0 - Jl+(A—D)( o ]1
+iC D 2 0 1 I 0 )2 i 0 )2 0 -1 )2
in terms of Jordan-Pauli spin operators.

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

. QutQ A+DE|(2 )2+(2C)2+(A—D)2_A+D+\/(A—Dj2+ 2, 2
. _ _ArD, (AP
- 2 2 2 2

Polar angles (¢,%) of +€2-vector (or polar angles (¢,9%m) of —2-vector) gives H eigenvectors.

_ —i : A-D
¢ 92 cosg —e P2 smg cosz‘/‘:?
|a)+>= p |a)_>= p where: <
ade sinE e cos— tang = —

More important for the general solution, are the eigen-creation operators aT+ and at- defined by

_ (% 0 . U e .U : (%
al =e 02 (cosgaf+e’¢ smgag) . a =92 (—smEaI+e’¢ cosaag)
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2D-Oscillator states

Fundamental eigenstates L Lo oy |
. . . . Fundamental _ .
The first step 1s to diagonalize the fundamental 2-by-2 matrix . ) B 21’0: A T
0,1 +iC D
Recall decomposition of H ( Lectures 6-10 ) Group reorganized "Big-Endian” indexing

(...00,10,20..01,11,21,31 ...02,12,22,32...)

( A pmic ]+—A+D1= (A+D)( b0 }+2 [ 01 jl +2C[ 0 - Jl+(A—D)( o ]1
+iC D 2 0 1 I 0 )2 i 0 )2 0 -1 )2
in terms of Jordan-Pauli spin operators.

H=Q,1+QeS=0Q,1+Q,S,+Q S +Q,S, (ABC Optical vector notation)
=Qy1+Q. S, +Q,S, +Q,S, (XYZ Electron spin notation)

Frequency eigenvalues m. of H-Qy1/2 and fundamental transition frequency {2 = m. - O_ :

. QutQ A+DE|(2 )2+(2C)2+(A—D)2_A+D+\/(A—Dj2+ 2, 2
. _ _ArD, (AP
- 2 2 2 2

Polar angles (¢,%) of +€2-vector (or polar angles (¢,9%m) of —2-vector) gives H eigenvectors.

_ —i : A-D
¢ 92 cosg —e P2 smg cosz‘;‘:?

|w+>= p |w_>= p where: <
szﬁna- ewmco&E tang = —

More important for the general solution, are the eigen-creation operators aT+ and at- defined by
al =e 02 (cosgaf +e'® singag) . a =92 (—Singair +e'® cosgag)

a]k_F create H eigenstates directly from the ground state.
al|0)=lo,) . a|0)=[o)
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—~

2D-Oscillator states

—~ Py

Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.

|00) | |01) |10)

02)

1)

20)

03)

12)

21)

|30>

(00| 0

(H)=A1/2)+ D(1/2)+ {

20

()]

+ 0

20

RI0N

o, +20_

20, +o_

3w

H” = A(afa1 +1/2)+D(a§a2 +1/2)

Group reorganized

"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

(28 +(20) +(A-D)

=A-D
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2D-Oscillator states Grou reorgnized
Setting (#=0=C) and (A=w, ) and (D=w_) gives diagonal block matrices. "Litle-Endian indexing

(...01,02,03..10,11,12,13 ...
|00) [|01) [10)||02)  [11)  |20)||03)  |12) 121)  |30) | - 20,21,22,23..)
(00| | ©

(
- < = Jl20 P+ (20 + (4= D)
(02| 20 D
(1] »
(20| 20

(03] 30

(12| o, +20_
(

<

(H)=A(1/2)+ D(1/2)+ To

21| 20, +@_
30| 30

1 _A+D

HA:A(afa1+1/2)+D(a§a2+1/2) génzzA(nl+%)+D(n2+§)_ . (n1+n2+1)+A_D

(”1—”2)
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2D-Oscillator states Grou reorgnized
Setting (#=0=C) and (A=w, ) and (D=w_) gives diagonal block matrices. "Litle-Endian indexing

(...01,02,03..10,11,12,13 ...
|00) [|01) [10)||02)  [11)  |20)||03)  |12) 121)  |30) | - 20,21,22,23..)
(00| | ©

(
- < = Jl20 P+ (20 + (4= D)
<02| 20 b

(1] W, +o

20 20
03] 30

<m:MHﬂHMMH<
(
(12| o, +20_
(
{

21| 20, +@_
30| 30

1 _A+D

A-D

(”1—”2)
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2D-Oscillator states Grou reorgnized
Setting (#=0=C) and (A=w, ) and (D=w_) gives diagonal block matrices. "Litle-Endian indexing

(...01,02,03..10,11,12,13 ...

|00) [|01) [10)||02)  [11)  |20)||03)  |12) 121)  |30) | - 20,21,22,23..)

(00| | ©

(01] w_ 0, —0_=Q

(10 o. (28 +(20) +(A-D)

<02| 20 b

(H)=A(1/2)+ D(1/2)+ (i @, 0.

(20| 20,

(03] 30

(12| o, +20_

(21] 20, +@_

(30] 3w,

1 1Y A+D A-D
HA:A(aIa1+1/2)+D(a§a2 +1/2) e,flnz =A(n1+5)+D(n2+5): (ny+ny+1)+ (n,—n,)
Q
— Q()(nl +7’l2 +1)+E(7’l1 —n2)=Q0 (U+1)+Q m
Define fotal quantum number v=2j and half-difference or asymmetry quantum number m
. Tt v m = ’21 — ILZ
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2D-Oscillator states
Setting (7=0=C) and (4=, ) and (D=w_ ) gives diagonal block matrices.

00)

—~

01) |10)

02)

1)

20)

03)

12)

21)

|30>

0

(H)=A1/2)+ D(1/2)+ {

20

()]

+ 0

20

RI0N

o, +20_

20, +o_

3w

H” = A(afa1 +1/2)+D(a§a2 +1/2)

A
nn,

(e oo

I’l2+_

A+ D

)

Group reorganized
"Little-Endian" indexing
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

(28 +(20) +(A-D)
—A-D

A-D

(n1+n2+1)+ (nl—nz)

Define fotal quantum number v=2j and half-difference or asymmetry quantum number m

R R
m=+1/2

v+1=2j+1 multiplies base frequency w=, v=1

m multiplies beat frequency ()

.......................

w=QO
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Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
* 2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
R(3) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators Sy and S.
SU(2)CU(2) oscillators vs. R(3)CO(3) rotors
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2D-Oscillator states and related 3D angular momentum multiplets

Setting (7=0=C) and (4=wm. ) and (D=w_ ) gives diagonal block matrices.

|00) | |01) [10)|]02)  |11)  |20) | |03) |12) 121)  [30) | -
(00[ | ©
(01] o
(10 o,
(02| 20
H)= A1/2)+ DA+ DT O
(20| 20,
(03] 30
(12| O, +20_
(21] 20, +®_
(30] 3w,
SU(2) Multiplets R(3) Multlplet’% .
J=2 I
- m=+3/2 _]
j=3/2 +1/2 "tensor" )
:gg Zji<<::::::%ji+]
0
J=1/2 m=+1/2 "vector" -1
"spinor” 172 -
P J=0 Uscalar" 5 =0

@, —0_=Q

Group reorganized
"Little-Endian" indexing

(...01,02,03..10,11,12,13 ...

20,21,22,23,...)

=J(25) +(2C)* +(A- D)’

=A-D
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2D-Oscillator states and related 3D angular momentum multiplets Group reorganized
Setting (5/=0=C) and (A=, ) and (D=wm_) gives diagonal block matrices. “Litle-Endian* indexing

(..01,02,03..10,11,12,13 ...
|00) | |01) |10)|]02)  |11)  |20) | |03) 12) 121) 30) 20,21,22,23,...)
(o] | 0
01| W W, —0_ =L

(
(10 o, = J(25) +(2C) +(A- D)’
< =A-D

02| 20_

(11] 0
(20| 20
(03] 30.

(12| O, +20_
(

<

(H)= A(1/2)+ D(1/2)+ o

21| 20, +0_

30| 30

N \
Q“
il

|

i
b
i
i
{ '
7/’7
\\

Y

|
|

0’0//
WA
44
i
o
W.\‘
i
|

%."«
!
N

= +2
j=2 +1

SU(2) Multiplets R(3) Multiplets e

it
oo
hie
%V/
‘"
)
il

\
)

{
»’
"o
|
i
/
i

Y
|

m = +3/2

— -1
J=3/2 +1/2 "tensor” 2
:ég £<Wl: +1

0

j=1/2 -]

m=-+1/2 "vector"

" ° 1" _]/2
spinor =0

f
*'a
i
“\1
/JA\
!

'7

f
;é{!
i
)
)
/

‘\

\;I
|
/
!

4

./
|
J

|
;
i

=5/

\,/
|
é,
I

j=2

IR

?,

()

j=1

j=1/2 T

/\<i§$
Q=w/3 =2m/3 =

"scalar" 1, =0

SO = D W B~ W O O o0 O

S

c
[
@)

Y
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2D-Oscillator states and related 3D angular momentum multiplets

8> =|00) "scalar"

"spinor”

= | 1 1) "3-vector"

|i;z>:|n1n2> 3

"4-spinor”

"tensor"

Structure of U(2)

(a) N-particle 2-level states (vacuum) =0 0)
/ |

...or spin-1/2 states

= 10)=a;T |00y 1

= 10 I)=a,1 |0 0)

1l1=|20y=a,Ta,T|00) [1]1] N=2
1021= |1 Iy=a,Ta,T |0 0)

111 N=31]1]2

n,
1111 N=4[1]1]1]2

L) 2 (111

T anT

Total|Spin S

‘a2 I 15/2 Mg=({J,)

+2
Spin z-component

_ W j=12
- |T> _|Jm:+1/2

— —|j=12
212 |\L> |m=—1/2>

22[2

n,
1121212 2121212

[1[2]2(2]2] [2]2]2]2]2]
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Two-particle (or 2-dimensional) matrix operators

U(2) Hamiltonian and irreducible representations

2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets

R(3) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators $yand S.
SU(2)CU(2) oscillators vs. R(3)CO(3) rotors
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ND-Oscillator eigensolutions

Introducing U(N)

(a) N-D Oscillator Degeneracy ¢ of quamtum levelv

Principal Quantum Number

Dimension of oscillator

(b) Stacking numbers

=0 N=] PY triangular
o] \ ‘ N=2 ° numbers
V=2 1 N=3 ‘ ”3 @ ‘etrahedral
o=3 N=4 )/O numbers
v=4 2 N=5 ° mg & . o
s 133 1
p 1 46 4 1
- 1 510105 1 Neg

1 6 1520 15 6 1
1 7213535217 1
1 828 56 70 56 28 8 1

)

N A0/ /2\(J/ /

(é/’ (J/’ ‘7\

(c) Binomial coefficients ( 3\’ (3\, (3\’ (% (3\
(N-1+v)! — -1+v +V (4\ \Uvs \ KIP\ ¢ NI 4\ 3) /4\
(N-1)!v! \0 (\I/ (\2) (d/
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ND-Oscillator eigensolutions

Introducing U(3)
(b) N—partzcle 3 level states ...or spin-1 states | = |Ty=|'~!
= 1100y=a,T(000) 2 = |y =i=1)

2010000 Ly, s = =)
3] = 00]>=a3 0 0 0) \ /Ta aT:\
\ a1 a3 3 338
3\ \ a3 a1 a3
(vacuum)
\ \ 1 |000>
3K2 303 \\
\ \\ azTal
2|3]
30 N2 203 \
N
2] 2[2 N
~ N
1122 222
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2 2
—|x; +x
2,.2 ( 1 2)
—iwyt iyt |2 e_<xl +X2) € 2

J2x,e7 00" 4 2 x e 00

1
\P(xl’xbt)zi‘l//lo (x1.72 ) e +Wor (x,%;) e

21

2
+ ‘ =0
(2 +2) (2 +2) vl for
_€ 2 2 _ _
= (xl + x2 + 2X1X2 COS(G)IO 6001)t) =
T

e

IXf+x5 forit=Ty, /4 (21.1.30)
‘2

T

‘xl —Xy|  for:t=Tpey /2
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Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
*R(S ) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators Sy and S.

SU(2)CU(2) oscillators vs. R(3)CO(3) rotors
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Group reorganized "Big-Endian" indexing
(...00,10,20..01,11,21,31 ...02,12,22,32...)
(...00,10, 01, 20,11, 02, 30, 21, 12, 03,

40, 31,22,...)

(also known as: { S;,5¢,5, })

R(3) Angular momentum generators by U(2) analysis

(v=1) or (j=1/2) block H matrices of U(2) oscillator
Use irreps of unit operator S, =1 and spin operators { S, Sy, S, }.

A
+iC

—iC
D

|

_ 4D
2

|

1
0

0
1

1
2

0 L 0 -+ L
)+2 2 420 +(4-D)| ?
0 0
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R(3) Angular momentum generators by U(2) analysis Group reorganized "Big-Endian" indexing
(..00,10,20..01,11,21,31 ...02,12,22,32...)

(...00,10, 01, 20,11, 02, 30, 21, 12, 03,

(v=1) or (j=1/2) block H matrices of U(2) oscillator 40,31,22,..)
Use irreps of unit operator Sy =1 and spin operators { Sy, Sy, S7}. (also known as: { $;,5.-,S,})

1 i 1
| 0 = 0 —= - 0
el o R IS I I N O
— 0 — 0 0 ——
2 2 2
(v=2) or (j=1) 3-by-3 block uses|their vectorirreps. \( \
V2 N2
24 2(5-iC) - L 2 7 o
V2(5+iC)  a+D  N2(B-ic) |=(4+D) . 1 .}rz % . % +2C i% . _,-g +(A—D)[. 0o - }
. V2(5+iC) 2D S Y ,-Q coeo -l
2 2
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R(3) Angular momentum generators by U(2) analysis Group reorganized "Big-Endian" indexing
(..00,10,20..01,11,21,31 ...02,12,22,32...)

(...00,10, 01, 20,11, 02, 30, 21, 12, 03,

(v=1) or (j=1/2) block H matrices of U(2) oscillator 40,31,22,..)
Use irreps of unit operator Sy =1 and spin operators { Sy, Sy, S7}. (also known as: { $;,5.-,S,})

1 i 1
0 = 0 —= -~ 0
- A+D
S o O U I D O
=0 20 0 -=
2 2 2
(v=2) or (j=1) 3-by-3 block uses|their vectorirreps. \4 \
RCI ]
24 2(-iC) - L 2 R Lo
V2(5+iC)  a+D  N2(B-ic) |=(4+D) . 1 .}rz % . % +2C i% . _,-g +(A—D)[. 0o - }
| V2(p+ic) 2D S ¥ 2 oo
2 2
(V=3) or (j=3/2) 4-by-4 block uses|Dirac spinor]irreps. \ \
R R R 3
34 B(p-ic) 2 2 2
V3(s+iC) 244D a(p-iC) 3(4+0) : o : g % . ,g . —z% - %
Apeic) asw Ry |2 | [T E D E T w T E M
V3(s+ic) 3D ! 2 G 2 2 & 2 2_2
2 2
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R(3) Angular momentum generators by U(2) analysis

(v=1) or (j=1/2) block H matrices of U(2) oscillator

Use irreps of unit operator S, =1 and spin operators { S, Sy, S, }.

—iC :<A+D 1
0

(v=2) or (j=1) 3-by-3 block uses ltheir vectorirreps.

V2
24 J2(5=ic) : o TR
V2(5+iC)  a+D  N2(B-ic) |=(4+D) . 1 .}+2 % ' g
: V2(5+iC) 2D NN 5

(LV=3) or (j=3/2) 4-by-4 block usesJDirac SpInor| irreps.

34

vg( +iC)

(vV=2j) or (2j+1)-by-(2j+1) block|uses DV)(s,) irreps of U(2) or R

Q. (s}

A
+iC

V3(5-ic)
24+ D

JZ( +iC)

JZ( ~iC)
A+2D

Jg( +iC)

D

V3(5-iC)

3D

0
0+2
1

1
2

Y =20, (1)

1
2
0

i
2

+2C

V3

2

S
2

N | ~.

+2C

%3
2

+2C

Group reorganized "Big-Endian" indexing
(...00,10,20..01,11,21,31 ...02,12,22,32...)
(...00,10, 01, 20,11, 02, 30, 21, 12, 03,

40, 31,22,...)

(also known as: { S;,5¢,5, })

N
_12 | 1 - -
. —iﬁ +(A—D)[. 0 - }
Q A |
\ \
oo 3
2 5
R R
2 2 2
i N e
12 . —12 2
iﬁ .3
2
is).
J J
+QY<SY> +QZ<SZ>
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R(3) Angular momentum generators by U(2) analysis

(v=1) or (j=1/2) block H matrices of U(2) oscillator
Use irreps of unit operator S, =1 and spin operators { S, Sy, S, }.

Group reorganized "Big-Endian" indexing
(...00,10,20..01,11,21,31 ...02,12,22,32...)
(...00,10, 01, 20,11, 02, 30, 21, 12, 03,

40, 31,22,...)

(also known as: { S;,5¢,5, })

1 i 1
A i€ ) ADE L0 "2 +2C " +(4-D) 2 "
iC D 2 L o1 Ly, i o L
2 2 2
(v=2) or (j=1) 3-by-3 block uses ltheir vectorirreps. \4 \
J2 2
24 2(-iC) - L oz I Lo
V2(5+iC)  a+D  N2(B-ic) |=(4+D) . 1 .}rz % . % +2C i% . _,-g +(A—D)[. 0o - }
. V2(5+iC) 2D S N N o
2 B
(LV=3) or (j=3/2) 4-by-4 block usesJDirac SpInor| irreps. \ \
BN B N
34 B(p-ic) 2 2 2
(z+iC) 244D Ja(5-iC) 3(4+D) 1 . ) % ' % e ’g ' "'g ' H(4-D) ' % '
Ja(r+ic)  a+2p B(s-ic) |2 o T R * iﬂ | _iﬁ - 1
Blic) a0 | I '
2 2
(vV=2j) or (2j+1)-by-(2j+1) block|uses DV)(s,) irreps of U(2) or RiS). l
(HY ™ =20, (1) + Q (s, ) +Q, (s, +Q, (s,

All j-block matrix operators factor into rais¢-n-lower § /pe'f‘at/

/

+iSy plus theldiagonal Sz

<H>j‘bl“"=2jgo<1>j+[(g ~i,)(s, +s, )Y +(Q, +iQ,)(s —iSY>J}/2+QZ<SZ>j
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Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
ND multiplets
R(3) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators $yand S. ‘

SU(2)CU(2) oscillators vs. R(3)CO(3) rotors
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Angular momentum raise-n-lower operators S, and S.

(s+=s +isy) and ( S.=§ -isyzsﬂ)

Starting with j=1/2 we see that S+ is an elementary projection operator €1, = |1){2| = Py,

! .
| 0 — 0 ——
2 |, . 2 01| _
Tl B =P
0 0 0

Such operators can be upgraded to creation-destruction operator combinations a'a

—nim _at —(aia \ —ata —af
s,=aa,=ala, , s_=(aja,) =aja =aa,
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Angular momentum raise-n-lower operators S, and S.

(s+=s +isy) and ( S.=§ -isyzsﬂ)

Starting with j=1/2 we see that S+ is an elementary projection operator €1, = |1){2| = Py,

.

% 0 =3 0 1
+1 . = :Plz
0 0 0

Such operators can be upgraded to creation-destruction operator combinations a'a

s,=aa,=aa, , S_= (ajaz )T =a,a =aja, (1 )
| | | OO N
Hamilton-Pauli-Jordan representation of Sy is: (s,)\2)=D"*(s,)= 1
O -
\ 2
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Angular momentum raise-n-lower operators S, and S.

(s+=s +isy) and ( S.=§ -isyzsﬂ)

Starting with j=1/2 we see that S+ is an elementary projection operator €1, = |1){2| = Py,

1 ]
1 1 L 0 3 0 =3 0 1
<s+>5:D2(s+):D2(s +iSY)= +i| = =P,
2 2

Such operators can be upgraded to creation-destruction operator combinations a'a
—nim _af —(ata \ —afa —af
s,=aa,=ala, , s_=(aja,) =aja =aa,

1 _ pl) 2 0
Hamilton-Pauli-Jordan representation of Sy is: <S Z> Y=D" (Sz) 2

This suggests an a‘a form for s.
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Angular momentum raise-n-lower operators S+ and S.

(s+=s +i$y) and ( S.=$S -iSY:S+T)

Starting with j=1/2 we see that S+ is an elementary projection operator €1, = |1){2| = Py,

1 i
L ; "2 ' 0 1
(s,)?=D*(s,)=D>(s, +is, )= +i| = =Py,
2 2

Such operators can be upgraded to creation-destruction operator combinations a'a
s,=aa,=ala, , s = (ajaz)T =aja =ala,
S0
. . . e\ z
Hamilton-Pauli-Jordan representation of S is: <S Z> D (S Z)
This suggests an a‘a form for s.
Let a;=a; create up-spin T

1/2
-[1)-| 1y |-
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Angular momentum raise-n-lower operators S+ and S.

(s+=s +i$y) and ( S.=$S -iSY:S+T)

Starting with j=1/2 we see that S+ is an elementary projection operator €1, = |1){2| = Py,

1 i
. : "2 ' 0 1
(s,)?=D*(s,)=D>(s, +is, )= +i| = =Py,
2 2

Such operators can be upgraded to creation-destruction operator combinations a'a

—nim _at —(aia \ —ata —af
s,=aa,=ala, , s_=(aja,) =aja =aa,

-

1

Hamilton-Pauli-Jordan representation of 8y is: <S Z>(§) = D(E) (S Z) (2) 1
s,=3(aja, —aja,)=}(ala,-ala,)

Let aj=a] create dn-spin |

172

=a’'|0)=a’|0
. > 0)=ai[o}

\9}

This suggests an a‘a form for s.
Let a;=a; create up-spin T
1/2

» >=azo>=axo> 2)=J4)-

Tuesday, April 21, 2015

109



Angular momentum raise-n-lower operators S+ and S.

(s+=s +i$y) and ( S.=$S -iSY:S+T)

Starting with j=1/2 we see that S+ is an elementary projection operator €1, = |1){2| = Py,

1 i
L ; "2 ' 0 1
(s,)?=D*(s,)=D>(s, +is, )= . + i P :[0 0] =P,
2 2

Such operators can be upgraded to creation-destruction operator combinations a'a

—nim _at —(aia \ —ata —af
s,=aa,=ala, , s_=(aja,) =aja =aa,

-

1

Hamilton-Pauli-Jordan representation of §;is: (8 Z>(§) = D(z) (S Z) (2) 1
s,=3(aja, —aja,)=}(ala,-ala,)

Let aj=a] create dn-spin |

172

=a’'|0)=a’|0
. > 0)=ai[o}

\9}

This suggests an a‘a form for s.
Let a;=a; create up-spin T
1/2
=a’|0)=a’|0 2y=|)=
+1/2>1>T> 2)=[4)
s,=a/a,=aja destroys dn-spin |
creates up-spin T

to raise angular momentum by one 7 unit

aja [L)=|T) or: aja,|2)=]1)
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Angular momentum raise-n-lower operators S, and S.

(s+=s +isy) and ( S.=§ -isyzsﬂ)

Starting with j=1/2 we see that S+ is an elementary projection operator €1, = |1){2| = Py,

1 i
L : "2 ' 0 1
(s,)?=D*(s,)=D>(s, +is, )= . o \ =[0 0] =Py,
2 2

Such operators can be upgraded to creation-destruction operator combinations a'a

—nim _at —(aia \ —ata —af
s,=aa,=ala, , s_=(aja,) =aja =aa,

Hamilton-Pauli-Jordan representation of Sy is: <s Z>(§) =

|
D=
e
»
N
N—
Il
N =
-

0 et
_1f AT T Y T
s,=3(aja, —aja,)=}(ala,-ala,)
Let aj=a] create dn-spin |
172

=a’'|0)=a’|0
I > 0)=ai[o}

Cata —al -
s_=a,a,=a,a,destroys up-spin T

\S]

This suggests an a‘a form for s.
Let a;=a; create up-spin T
1/2
=a/|0)=a}|0 2)=|{)=
+1/2>1>T> 2)=[4)
s,=aja,=a}a destroys dn-spin |

creates up-spin T
to raise angular momentum by one 7 unit

aja [L)=|T) or: aja,|2)=]1)

creates dn-spin |
to lower angular momentum by one 7 unit

aja,|T)=|{) or aja,|1)=|2)
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Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets

ND multiplets
R(3) Angular momentum generators by U(2) analysis
Angular momentum raise-n-lower operators $yand S.
SU(2)CU(2) oscillators vs. R(3)CO(3) rotors ‘
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n,n;)

Oscillator total quanta: v=(n;+n,)

1) (a;,) : 00)

n!n,!

|n1”2> =
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |r;,n,)=R(3) spin or rotor states |7,)

Oscillator total quanta: v=(n;+n,) Rotor total momenta: j=v/2

=8 ooy —joo)-.)

n!n,!

|”1n2> =
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |r;,n,)=R(3) spin or rotor states |7,)

Oscillator total quanta: v=(n;+n;) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

(a)"(a))" ~ (af)ﬁm(a;)j_m _|J {j =/2 (”1'”2)/2}
)= Jm!m! |OO>_\/(j+m)!(j—m)!|OO>_‘ / m =(n;-ny)/2
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |r;,n,)=R(3) spin or rotor states |7,)

Oscillator total quanta: v=(n;+n;) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

L 1 A R
! ( . ' ! m :(I/l]-ng)/Z ny; = j-m

nl!n,!

|”1”2> =
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |r;,n,)=R(3) spin or rotor states |7,)

Oscillator total quanta: v=(n;+n;) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

" (a J =02 =(ntn)2) (ny = jEm
PR 1) Ol ) |
T I, JG+m)(j-m)! m =(n;-n)/2 SR

U(2) boson oscillator states = U(2) spinor states

nyn _(ar)"(a)" ()" (a)”
| T ¢> W |00> \/(]+m) (J m) |00> | >
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states |/,)

Oscillator total quanta: v=(n;+n;) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

(a])"(a})" i (a;)ﬁm(a;)f—m N [j =1/2 (n1+n2)/2} {n, = j+m}
|n1n2>— /nl!—nz! |O O>_\/(j+m)!(j—m)!|0 O>_‘m> . Z(n]—nz)/Z 0 = jom

U(2) boson oscillator states = U(2) spinor states
a1) (a0)" 0 (30)"(a0)

nyln,! :\/(j+m)!(j—m)!|00>:|£1>

)=

Oscillator afa...

a'a, | nn, >=\/n1+1 \/Z| n,+l n2—1>
ala, | nn, >=\/n—1 A /n2+1| n,-1 n2+1>
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states |/,)

Oscillator total quanta: v=(n;+n;) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

j=ﬂﬂ2=1hfﬂuﬁ9 n]=j+nz
Ny, = j-m

(ai)l(a;)2|00>: (ai) (a;)_ |OO>=‘j>

|n1n2>: ’11!”2! \/(]+m)'(]—m)'

U(2) boson oscillator states = U(2) spinor states

) o), )
nyln,! |OO>_\/(j+m)!(j—m)!|00>_|m>

Oscillator.@afa give S, matrices.

N\ N
aa, | nn, >=«/n1+1 \/Z| n+l n2—1> =S,

a.a, | nn, >=\/n_“ /n2+1| n,-1 n2+1>

)=

J
m+1

2= j+m [ j—m

m =(n;-n)/2
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states |/,)

Oscillator total quanta: v=(n;+n,) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

C(@)'(a)?, () ") J =2 ()2 [ f*””j
|n17’l2>— W |OO>— ( . |OO>—‘ > m:(lfl]—nz)/Z 15 :j'm

U(2) boson oscillator states = U(2) spinor states

n.n :(aT) (a})” (a*)ﬁm(ai)i—m
| 1 ¢> W 00)= \/(]+m) — 00)= | >

Oscillator. afa give s, and 8. matrices.

Ta2|nln2 —«/”1 \/Z| n+l n,-1 {+

a a1|nln2 —\/7\/112 |n1 1n2+1
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states |/,)

Oscillator total quanta: v=(n;+n,) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

C(@)'(a)?, () ") J =2 ()2 [ f*””j
=t O TG m =(nm)/2 2 =

U(2) boson oscillator states = U(2) spinor states

) ) @) @)
) ! 00)= JGi+m)t(j—m) 00)=1)

Oscillator. afa give s, and 8. matrices. 1/2-difference of number-ops 1s §; eigenvalue.

aja,|nn,)=/n+ \/Z| n+l n-1)=ls, >—\/j+m+1\/j—m i+1> aja|mn, )=n|nn,)
| aia,|nn, )=n,|nn,)

ala |nln2 —\/7\/112 |n1 1n2+1
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states |/,)

Oscillator total quanta: v=(n;+n,) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

~ (af)"l (a;)"z ) (aj)ﬂm(a;)f-m N J =V/2 =(n;+n,)/2 [nl j+m}
|n1n2>— /nl !—nz! |O 0>— \/(j+m)!(j—m)!|0 O>_‘m> . :(n]—ng)/Z 0 = jom

U(2) boson oscillator states = U(2) spinor states

) ) @) @)
) ! 00)= JGi+m)t(j—m) 00)=1)

Oscillator. afa give s, and 8. matrices. 1/2-difference of number-ops 1s §7 eigenvalue.

Ta2|nln2 _\/T\/Z| n1+1 n2 S, i’t>_\/j+m+1\/j_m £1+1> Ta |I’l1n2 _n1|n1n2 ‘ Ta -a, 4 )| > - n2|\>A m‘ D
S_|))= ' ) ajaynn,)=n|nn,)

a a1|nln2 —\/7\/112 |n1 1n2+1
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states |/,)

Oscillator total quanta: v=(n;+n,) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

(@)@, () e) J =2 ()2 [ f*””j
=t O TG m =(nm)/2 2 =
U(2) boson oscillator states = U(2) spinor states
() gy )
| T¢> /nT'”z | > \/(]+m) (] m)| | >

Oscillator{ia give Sy argA S_ matrices. 1/2-difference of number-ops 1s §7 eigenvalue.

aIa2|nln2>:«/nl+1\/Z| n+l n2—1> S, il>—\/]+m+1\/]—m i+1> Ta |”1"2 _"1|”1”2 ‘ fa _a' a )| > n n2| > m‘ D
a;a1|nln2>:\/n7“/n2+l|nl-l n,+) = _| il>—\/]+m\/] —m+|’ a,a |”1”2 ”2|”1”2

j=1 vector Sy 2o RN -and 8z

= i s 1
D'(s,)=D'(s, +is,)= g . % +i i% . _,-g —[ 0o . \/5}, D'(s,)= 0
Q : iﬁ ’ -1
N\ 2 2 Z
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(a]) (a:)°

|nln2>= P
Jn!n,!

_(a})'(a})"

I, )= '
n.!n,!

00)=

SU(2)CU(2) oscillators vs. R(3)CO(3) rotors

U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states |/,)

Oscillator total quanta: v=(n;+n,) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

(aT)jer (aT)j_m . ] =1)/2 =(n1+n2)/2 n; :j+m
. 1 2 |O ()> :‘ i > |
J(i+m)t(j—m)! " m =(n-ny)/2 ny = j-m

U(2) boson oscillator states = U(2) spinor states

1) ")~

J+m)i(j=m)!

Oscillator. afa give s, and 8. matrices.

a'a, | nn, >:«/n1+1 \/Z| n,+l n2—1> S,
ala, | nn, >:\/n71\ /n2+1| n,-1 n2+1>

i,t>—\/ ]+m+1\/ j—m Lﬂj

_| il>—\/]+m\/] —m+l L_l

00)=[})

1/2-difference of number-ops 1s $; eigenvalue.

T —
a |n1n2 I’l1| nlnz

? i\_, nz
aa,|nn, )=n,|nn,) }( ‘ %3 aa)| > | >m‘ D

j=1 vector Sy % - - -i% . 5 -and Sz !
2 .
D'(s.)=D'(s, +is, )= g | % v g | _,@ -[0 | 5}, p'(s,) . o
2 V2 o »
g 2 2 D
(j=3/2 spinor S, ...and Sy . )
5 T |
el 0 - A o2
O R S S S
. 0 . 2
3
N\ =y,
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SU(2)CU(2) oscillators vs. R(3)CO(3) rotors
U(2) boson oscillator states |n;,n,)= R(3) spin or rotor states ‘ ’m>

Oscillator total quanta: v=(n;+n;) Rotor total momenta: j=v/2 and z-momenta: m=(n;-n,)/2

B (af)"l (a;)"z B (aj)ﬂm(a;)f-m [j =/2 (n1+n2)/2} {nl j+m}
= OGS |OO>_\/(j+ )!(j—m)! 00)=]. m =(n;-ny)/2 ny =j-m

U(2) boson oscillator states = U(2) spinor states

) ) @) @)
) ! 00)= JGi+m)t(j—m) 00)=1)

Oscillator. afa give s, and 8. matrices. 1/2-difference of number-ops 1s §7 eigenvalue.

a'a,|nn, )=n+./n|n+ n-1)=/s, ;,L>_\/ Jjrml [ j—m|’ +1> aja|nn,)=n|nn,) ‘ ?a _a'a )| > n— n2|\>A m| D
_| il>—\/]+m\/]—m+l - a,a |n1n2 n2|n1n2

ala, | nn, >:\/n71\ /n2+1| n,-1 n2+1>

j=1 vector S - % - - —i% . 5 -and Sz .
N £ T
2 N S0 o
\_ P 2 ¥,
(j=3/2 spinor S, and 8| 3 1\ (" j=2 tensor Sy and Sy D)
R \ G S
)0 h L oe)]. v o T o
RN - SN D)=l . o . G . FHP)). ) oo -
0
\_ 2 ) \_ 0 . y
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