Group Theory in Quantum Mechanics Lecture 21 (4.13.17)

Octahedral O_h⊃subgroup tunneling parameter modeling

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS - Ch. 4)

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$

Review Coset factored splitting of $O \supset D_4 \supset C_4$ *projectors*

Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ *projectors and levels*

Subgroup-defined tunneling parameter modeling

Comparing two diagonal $O \supset C_4$ *parameter sets to* SF_6 *spectra*

Comparing two diagonal $O \supset C_3$ *parameter sets to* SF_6 *spectra*

Why $O \supset C_2$ *parameter sets require off-diagonal nilpotent* $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $g \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16)

(a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$

Calculating and Factoring $\mathbf{P}^{T_1}_{I_40_4}$ and $\mathbf{P}^{T_1}_{I_43_4}$

Review Calculating idempotent projectors P^µ_{m,m} of O⊃C₄ P^E₀₄₀₄ P^E₂₄₂₄ P^{T₁}₀₄₀₄ P^{T₁}₁₄₁₄ P^{T₂}₂₄₂₄
 Review Coset factored splitting of O⊃D₄⊃C₄ projectors
 Review Broken-class-ordered splitting of O⊃D₄⊃C₄ projectors and levels
 Subgroup-defined tunneling parameter modeling
 Comparing two diagonal O⊃C₄ parameter sets to SF₆ spectra
 Comparing two diagonal O⊃C₃ parameter sets to SF₆ spectra
 Why O⊃C₂ parameter sets require off-diagonal nilpotent P^µ_{m,n} (m≠n)
 Irreducible nilpotent projectors P^µ_{m,n} (m≠n)
 Using fundamental g≓P^µ_{m,n} relations: (from Lecture 16)
 (a) P^µ_{m,m} gP^µ_{n,n}=D^µ_{m,n}(g)P^µ_{m,n} (b) g=∑_µ∑_{m,n}D^µ_{m,n}(g)P^µ_{m,n} (c) P^µ_{n,n}=(ℓ^{µ/o}G)∑_gD^{µ*}_{m,n}(g)g
 Review of D₃⊃C₂ ~ C_{3v}⊃C_v

Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

 $\mathbf{P}_{0_{4}0_{4}}^{E} = \frac{1}{12} [(1) \cdot \mathbf{1} \mathbf{p}_{0_{4}} + (1) \cdot \mathbf{\rho}_{x} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{0_{4}}]$ Broken-class-ordered sum:

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{E} = \frac{1}{12} (\mathbf{1}\cdot\mathbf{1} - \frac{1}{2}\mathbf{r}_{1} - \frac{1}{2}\mathbf{r}_{2} - \frac{1}{2}\mathbf{r}_{3} - \frac{1}{2}\mathbf{r}_{4} - \frac{1}{2}\mathbf{\tilde{r}}_{1} - \frac{1}{2}\mathbf{\tilde{r}}_{2} - \frac{1}{2}\mathbf{\tilde{r}}_{3} - \frac{1}{2}\mathbf{\tilde{r}}_{4} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{1}{2}\mathbf{\tilde{R}}_{x}$

$$Calculating \mathbf{P}^{T_{1}}_{0:0i} \xrightarrow{O \subseteq C_{4}} \underbrace{\begin{smallmatrix} 0 & 1 & 1 & 2 & 3 & 3 \\ \hline A_{4}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 & 1 & 1 \\ \hline A_{2}U_{4} & 1 \\ \hline A_{2}U_$$

 $\begin{array}{l} +\frac{1}{32}(-1)(+1,1,+1)+\frac{1}{32}(-1)(+1,1,+1)+\frac{1}{32}(0)(+1,1,+1)+\frac{1}{32}(1)(+1,+1,+1)+\frac{1}{32}(1$

 $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8} \left[(1) \cdot \mathbf{1} \mathbf{p}_{0_{4}} + (-1) \cdot \rho_{x} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{r}_{1} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{r}_{2} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{0_{4}} \right]$ Broken-class-ordered sum:

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{T_{1}} = \frac{1}{8} \left(1 \cdot \mathbf{1} + \mathbf{0} +$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} OC_{4} & \left[0_{4} & 1_{4} & 2_{4} & 3_{4} \\ \hline 4_{4} LC_{4} & 1 & \cdots & \vdots \\ \hline 4_{4} LC_{4} & 1 & \cdots & \vdots \\ \hline 4_{4} LC_{4} & 1 & \cdots & \vdots \\ \hline 4_{4} LC_{4} & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1$$

 $\frac{1}{8}\left(\underline{1}\underline{1}\underline{-1}\rho_{z}+\underline{i}\mathbf{R}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{0}\rho_{x}+\underline{0}\rho_{y}+\underline{0}\mathbf{i}_{4}+\underline{0}\mathbf{i}_{3}+\underline{i}\underline{i}\mathbf{r}_{1}\underline{-i}\mathbf{r}_{4}\underline{-1}\mathbf{i}_{1}+\underline{i}\underline{2}\mathbf{R}_{y}+\underline{i}\underline{i}\mathbf{r}_{2}\underline{-i}\mathbf{r}_{3}\underline{-1}\mathbf{i}_{2}\mathbf{i}_{2}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{y}-\underline{-i}\underline{i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}\mathbf{i}_{2}\mathbf{$

Coset-factored sum:

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8} [(1) \cdot \mathbf{1} \mathbf{p}_{1_{4}} + (0) \cdot \boldsymbol{\rho}_{x} \mathbf{p}_{1_{4}} + (\frac{i}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{1_{4}} + (\frac{i}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{1_{4}} + (-\frac{i}{2}) \cdot \tilde{\mathbf{r}}_{1} \mathbf{p}_{1_{4}} + (-\frac{i}{2}) \cdot \tilde{\mathbf{r}}_{2} \mathbf{p}_{1_{4}}]$

Broken-class-ordered sum:

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} + \frac{i}{2}\mathbf{r}_{1} + \frac{i}{2}\mathbf{r}_{2} - \frac{i}{2}\mathbf{r}_{3} - \frac{i}{2}\mathbf{r}_{4} - \frac{i}{2}\mathbf{\tilde{r}}_{1} - \frac{i}{2}\mathbf{\tilde{r}}_{2} + \frac{i}{2}\mathbf{\tilde{r}}_{3} + \frac{i}{2}\mathbf{\tilde{r}}_{4} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{\tilde{R}}_{x} + \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{i}{2}\mathbf{\tilde{i}}_{1} - \frac{i}{2}\mathbf{\tilde{i}}_{2} + \mathbf{0}\mathbf{\tilde{i}}_{3} + \mathbf{0}\mathbf{\tilde{i}}_{4} - \frac{i}{2}\mathbf{\tilde{i}}_{5} - \frac{i}{2}\mathbf{\tilde{i}}_{6})$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) $(a) \mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n} (\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\nu} \sum_{m,n} D^{\mu}_{m,n} (\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} \cap G) \sum_{\mathbf{g}} D^{\mu^*}_{m,n} (\mathbf{g}) \mathbf{g}$

Review of $D_3 \supset C_2 \sim C_{3\nu} \supset C_{\nu}$ *Calculating and Factoring* $\mathbf{P}^{T_1}_{I_40_4}$ *and* $\mathbf{P}^{T_1}_{I_43_4}$

Irreducible idemp	otent proje	ectors $\mathbf{P}^{\mu}_{m,m}$	of $O \supset C_4 \sim 2$	$T_d \supset C_{4i}$						
$1C_{4} = 1\left\{1, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \tilde{\mathbf{R}}_{z}\right\}$	$\rho_x C_4 = \left\{ \rho_x, \rho_y \right\}$	$\mathbf{r}_{1}^{0} \mathbf{r}_{1}^{0} r$	$\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$	$\mathbf{r}_2 C_4 = \left\{ \mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_2 \right\}$	$_{2}, \tilde{\mathbf{R}}_{y} \} \tilde{\mathbf{r}}_{1}C_{4} = \{\tilde{\mathbf{r}}_{1}, \tilde{\mathbf{r}}_{3}, \tilde{\mathbf{R}}_{x}\}$	$\left\{\mathbf{i}_{6}\right\} \mathbf{\tilde{r}}_{2}\mathbf{C}$	$C_4 = \left\{ i \right\}$	$\tilde{\mathbf{r}}_2, \tilde{\mathbf{r}}_4,$	$\mathbf{R}_{x},$	i ₅ }
Coset-factored A $\mathbf{P}_{0_40_4}^{A_1} = \frac{1}{12}[(1)\cdot\mathbf{1p}_{0_4}]$ Coset-factored A	1-SUM: + (1)· $\rho_x p_{0_4}$ 2-SUM:	+ (1) $\cdot \mathbf{r}_{1} \mathbf{p}_{0_{4}}$	+ (1) $\cdot \mathbf{r}_{2} \mathbf{p}_{0_{4}}$	+ (1)· $\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}}$	+ $(1) \cdot \tilde{\mathbf{r}}_2 \mathbf{p}_{0_4}$]	$\mathbf{p}_{m_4} = p_{m_4}$	$\sum_{n=0}^{3} \frac{e^{2\pi}}{n}$	<i>im∙p</i> /4 4	R ^{<i>p</i>} _{<i>z</i>} =	_
$\mathbf{P}_{2_{4}2_{4}}^{A_{2}} = \frac{1}{12}[(1) \cdot \mathbf{1p}_{2_{4}}]$ Coset-factored E-	+ (1) $\cdot \rho_x \mathbf{p}_{2_4}$	+ (1) $\cdot \mathbf{r}_{1} \mathbf{p}_{2_{4}}$	+ (1) $\cdot \mathbf{r}_{2} \mathbf{p}_{2_{4}}$	+ (1)· $\tilde{\mathbf{r}}_{1}\mathbf{p}_{2_{4}}$	+ $(1) \cdot \tilde{\mathbf{r}}_2 \mathbf{p}_{2_4}$]	p ₀	=(1+	\mathbf{R}_{z} + ρ	$\hat{P}_z + \tilde{R}$. _z)/4
$\mathbf{P}_{0_{4}0_{4}}^{E} = \frac{1}{12} [(1) \cdot 1 \mathbf{p}_{0_{4}}]$	+(1)· $\rho_x \mathbf{p}_{0_4}$	+ $(-\frac{1}{2}) \cdot \mathbf{r}_1 \mathbf{p}_{0_4}$	+ $(-\frac{1}{2})$ · $\mathbf{r}_{2}\mathbf{p}_{0_{4}}$	+ $(-\frac{1}{2}) \cdot \tilde{\mathbf{r}}_1 \mathbf{p}_{0_4}$	+ $(-\frac{1}{2}) \cdot \tilde{\mathbf{r}}_{2} \mathbf{p}_{0_{4}}$]	$\begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \end{bmatrix}$	=(1+i)	$\mathbf{R}_z - \rho_z$	$z - i\mathbf{R}$	(z)/4
$\mathbf{P}_{2_{4}2_{4}}^{E} = \frac{1}{12} [(1) \cdot 1 \mathbf{p}_{2_{4}}]$ Coset-factored T ₁	+ (1) $\cdot \rho_x \mathbf{p}_{2_4}$ -SUM:	+ $(-\frac{1}{2})$ · $\mathbf{r}_{1}\mathbf{p}_{2_{4}}$	$+ \left(-\frac{1}{2} \right) \cdot \mathbf{r}_{2} \mathbf{p}_{2_{4}}$	$+ (-\frac{1}{2}) \cdot \tilde{\mathbf{r}}_1 \mathbf{p}_{2_4}$	+ $(-\frac{1}{2})\cdot \tilde{\mathbf{r}}_{2}\mathbf{p}_{2_{4}}]$	\mathbf{p}_{2}	(1-i)	$\mathbf{R}_{z} - \rho_{z}$	$\sum_{z}^{z} \mathbf{R}$	z)/4
$\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8} [(1) \cdot 1 \mathbf{p}_{1_{4}}]$	+ (0) $\cdot \boldsymbol{\rho}_{x} \mathbf{p}_{1_{4}}$	+ $\left(\frac{i}{2}\right) \cdot \mathbf{r}_1 \mathbf{p}_{1_4}$	+ $(+\frac{i}{2}) \cdot \mathbf{r}_2 \mathbf{p}_{1_4}$	+ $(-\frac{i}{2})$ · $\tilde{\mathbf{r}}_1\mathbf{p}_{1_4}$	+ $(-\frac{i}{2})\cdot \tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}$]	l í	ŧ			
$\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8} [(1) \cdot \mathbf{I} \mathbf{p}_{3_{4}}]$ $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8} [(1) \cdot \mathbf{I} \mathbf{p}_{0_{4}}]$	+ (0) $\cdot \rho_x \mathbf{p}_{3_4}$ + (-1) $\cdot \rho_x \mathbf{p}_{0_4}$	+ $(-\frac{4}{2}) \cdot \mathbf{r}_1 \mathbf{p}_{3_4}$ + $(0) \cdot \mathbf{r}_1 \mathbf{p}_{0_4}$	+ $(-\frac{1}{2}) \cdot \mathbf{r}_2 \mathbf{p}_{3_4}$ + $(0) \cdot \mathbf{r}_2 \mathbf{p}_{0_4}$	+ $(\underline{\mathbf{+}}_{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{3_{4}}$ + $(0) \cdot \tilde{\mathbf{r}}_{1} \mathbf{p}_{0_{4}}$	+ $(\underline{\mathbf{+}}_{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{3_{4}}$] + $(0) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{0_{4}}$]	C_{A} : χ^{μ}_{σ}	g=1	R_	ρ,	Ñ,
<i>Coset-factored</i> T ₂	-sum:					$\frac{\mu = 0_4}{\mu = 0_4}$	1	1	1	1
$\mathbf{P}_{1_{4}1_{4}}^{T_{2}} = \frac{1}{8} [(1) \cdot 1\mathbf{p}_{1_{4}}]$ $\mathbf{p}_{1_{2}}^{T_{2}} = \frac{1}{8} [(1) \cdot 1\mathbf{p}_{1_{4}}]$	+ (0) $\cdot \rho_x \mathbf{p}_{1_4}$	+ $\left(-\frac{i}{2}\right) \cdot \mathbf{r}_1 \mathbf{p}_{1_4}$	+ $\left(-\frac{i}{2}\right) \cdot \mathbf{r}_{2} \mathbf{p}_{1_{4}}$	+ $\left(-\frac{i}{2}\right) \cdot \tilde{\mathbf{r}}_{1} \mathbf{p}_{1_{4}}$	+ $\left(-\frac{i}{2}\right) \cdot \tilde{\mathbf{r}}_{2} \mathbf{p}_{1_{4}}$]	1 ₄	1	- <i>i</i>	-1	i
$\mathbf{P}_{3_43_4}^{T} = \frac{1}{8} [(1) \cdot \mathbf{I} \mathbf{p}_{3_4}]$ $\mathbf{P}_{2_42_4}^{T_2} = \frac{1}{8} [(1) \cdot \mathbf{I} \mathbf{p}_{2_4}]$	+ (0) $\cdot \boldsymbol{\rho}_x \boldsymbol{p}_{3_4}$ + (1) $\cdot \boldsymbol{\rho}_x \boldsymbol{p}_{2_4}$	+ $(+\frac{1}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{3_{4}}$ + $(0) \cdot \mathbf{r}_{1} \mathbf{p}_{2_{4}}$	+ $(+\frac{1}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{3_{4}}$ + $(0) \cdot \mathbf{r}_{2} \mathbf{p}_{2_{4}}$	+ $(+\frac{1}{2}) \cdot \mathbf{r}_1 \mathbf{p}_{3_4}$ + $(0) \cdot \mathbf{\tilde{r}}_1 \mathbf{p}_{2_4}$	+ $(+_2) \cdot \mathbf{r}_2 \mathbf{p}_{3_4}$] + $(0) \cdot \mathbf{\tilde{r}}_2 \mathbf{p}_{2_4}$]	2 ₄ 3 ₄	1	-1 - <i>i</i>	1 -1	-1 - <i>i</i>
					•					

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra

Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

 $Irreducible idempotent projectors \mathbf{P}^{\mu}_{m,m} of O \supset C_4 \sim T_d \supset C_{4i}$ Broken-class-ordered A₁-sum: $\mathbf{P}_{0_40_4}^{A_1} = \frac{1}{2^4} (\mathbf{1} + \mathbf{1} + \mathbf{1}$

Broken-class-ordered T₁-*sum:*

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} + \frac{i}{2}\mathbf{r}_{1} + \frac{i}{2}\mathbf{r}_{2} - \frac{i}{2}\mathbf{r}_{3} - \frac{i}{2}\mathbf{r}_{4} - \frac{i}{2}\tilde{\mathbf{r}}_{1} - \frac{i}{2}\tilde{\mathbf{r}}_{2} + \frac{i}{2}\tilde{\mathbf{r}}_{3} + \frac{i}{2}\tilde{\mathbf{r}}_{4} + 0\rho_{x} + 0\rho_{y} - 1\rho_{z} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{R}_{y} + i\mathbf{R}_{z} + \frac{1}{2}\tilde{\mathbf{R}}_{x} + \frac{1}{2}\tilde{\mathbf{R}}_{y} - i\tilde{\mathbf{R}}_{z} - \frac{1}{2}\mathbf{i}_{1} - \frac{1}{2}\mathbf{i}_{2} + 0\mathbf{i}_{3} + 0\mathbf{i}_{4} - \frac{1}{2}\mathbf{i}_{5} - \frac{1}{2}\mathbf{i}_{6})$ $\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} - \frac{i}{2}\mathbf{r}_{1} - \frac{i}{2}\mathbf{r}_{2} + \frac{i}{2}\mathbf{r}_{3} + \frac{i}{2}\tilde{\mathbf{r}}_{2} - \frac{i}{2}\tilde{\mathbf{r}}_{3} - \frac{i}{2}\tilde{\mathbf{r}}_{4} + 0\rho_{x} + 0\rho_{y} - 1\rho_{z} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{R}_{y} - i\mathbf{R}_{z} + \frac{1}{2}\tilde{\mathbf{R}}_{y} + i\tilde{\mathbf{R}}_{z} - \frac{1}{2}\mathbf{i}_{1} - \frac{1}{2}\mathbf{i}_{2} + 0\mathbf{i}_{3} + 0\mathbf{i}_{4} - \frac{1}{2}\mathbf{i}_{5} - \frac{1}{2}\mathbf{i}_{6})$ $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 - 1\rho_{x} - 1\rho_{y} + 1\rho_{z} + 0 + 0 + 1\mathbf{R}_{z} + 0 + 0 + 1\mathbf{R}_{z} + 0 + 0 + 1\mathbf{i}_{3} - \mathbf{i}_{4} + 0 + 0)$

Broken-class-ordered T₂-*sum:*

 $\mathbf{P}_{1_{4}1_{4}}^{T_{2}} = \frac{1}{8} (\mathbf{1} \cdot \mathbf{1} - \frac{i}{2} \mathbf{r}_{1} - \frac{i}{2} \mathbf{r}_{2} + \frac{i}{2} \mathbf{r}_{3} + \frac{i}{2} \mathbf{r}_{4} + \frac{i}{2} \tilde{\mathbf{r}}_{1} + \frac{i}{2} \tilde{\mathbf{r}}_{2} - \frac{i}{2} \tilde{\mathbf{r}}_{3} - \frac{i}{2} \tilde{\mathbf{r}}_{4} + 0 \rho_{x} + 0 \rho_{y} - \mathbf{1} \rho_{z} - \frac{1}{2} \mathbf{R}_{x} - \frac{1}{2} \mathbf{R}_{y} + i \mathbf{R}_{z} - \frac{1}{2} \tilde{\mathbf{R}}_{x} - \frac{1}{2} \tilde{\mathbf{R}}_{y} - i \tilde{\mathbf{R}}_{z} + \frac{1}{2} \mathbf{i}_{1} + \frac{1}{2} \mathbf{i}_{2} + 0 \mathbf{i}_{3} + 0 \mathbf{i}_{4} + \frac{1}{2} \mathbf{i}_{5} + \frac{1}{2} \mathbf{i}_{6})$ $\mathbf{P}_{3_{4}3_{4}}^{T_{2}} = \frac{1}{8} (\mathbf{1} \cdot \mathbf{1} + \frac{i}{2} \mathbf{r}_{1} + \frac{i}{2} \mathbf{r}_{2} - \frac{i}{2} \mathbf{r}_{3} - \frac{i}{2} \tilde{\mathbf{r}}_{1} - \frac{i}{2} \tilde{\mathbf{r}}_{2} + \frac{i}{2} \tilde{\mathbf{r}}_{3} +$

I	0	cha	ract	ers		$2\pi i m_{\star} \cdot p$	
$O:\chi_{g}^{\mu}$	g=1	\mathbf{r}_{1-4}^{p}	ρ_{xyz}	\mathbf{R}_{xyz}^{p}	i ₁₋₆	$d_{pp}^{m_4} = e^{\frac{2\pi m_4 p}{4}}$	
$\mu = A_1$	1	1	1	1	1	C_4 characters	$\mathbf{n} = (1 + \mathbf{P} + \mathbf{o} + \mathbf{\tilde{P}})/4$
A_2	1	1	1	-1	-1		$\mathbf{p}_{0_4} = (1 + \mathbf{K}_z + \rho_z + \mathbf{K}_z)/4$
E	2	-1	2	0	0	$1 \frac{3}{2\pi i m_4 \cdot p}$	$\mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$
T_1	3	0	-1	1	-1 p	$m_{4} = \frac{1}{4} \sum_{p=0}^{2} e^{-4} \mathbf{R}_{z}^{P} = \{$	$\mathbf{n}_{a} = (1 \cdot \mathbf{R} + \rho \cdot \mathbf{\tilde{R}})/4$
T_2	3	0	-1	-1	1	1	\mathbf{P}_{2_4} (\mathbf{P}_z $\mathbf{P}_$
- 1							$\mathbf{p}_{3_4} = (1 \cdot i\mathbf{R}_z \cdot \rho_z + i\mathbf{R}_z)/4$

l

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

$O \supset C_4$	04	14	2 ₄	34	$1 \cdot \mathbf{P}^{\alpha} =$	= (p ₀₄	+ p ₁₂	+ p ₂₄	+ \mathbf{p}_{3_4}	\mathbf{P}^{α}	1	where •	$\mathbf{n} = \frac{1}{2} \sum_{k=1}^{3} e^{i \mathbf{m} \cdot \mathbf{p}/4} \mathbf{R}^{p}$
$A_1 \downarrow C_4$	1	•	•	•	$1 \cdot \mathbf{P}^{A_1}$	$= \mathbf{P}_{0_4 0_4}^{A_1}$	+ 0	+ 0	+ 0	Sum	marv	of	P_{m_4} 4 $p=0$ T_z
$A_2 \downarrow C_4$	•	•	1	•	$1 \cdot \mathbf{P}^{A_2}$	= 0	+ 0	+ $\mathbf{P}_{2_4 2_4}^{A_2}$	+ 0	С	$D \supset C_4$	- J	$\mathbf{p}_{0_4} = (1 + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z) / 4$
$E \downarrow C_4$	1	•	1	•	$1 \cdot \mathbf{P}^E$	$= \mathbf{P}_{0_40_4}^E$	+ 0	+ $\mathbf{P}_{2_4 2_4}^E$	+ 0	dia	igonal	p =	$\int \mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z) / 4$
$T_1 \downarrow C_4$	1	1	•	1	$1 \cdot \mathbf{P}^{T_1} =$	$= \mathbf{P}_{0_4 0_4}^{T_1}$	+ $\mathbf{P}_{1_4 1}^{T_1}$	₄ + 0	+ $\mathbf{P}_{3_43_4}^{T_1}$	(iden	npoter	$(nt)^{m_4}$	$\mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z) / 4$
$T_2 \downarrow C_4$	•	1	1	1	$1 \cdot \mathbf{P}^{T_2} =$	= 0 ·	+ $\mathbf{P}_{1_4 1_4}^{T_2}$	+ $\mathbf{P}_{2_4 2_4}^{T_2}$	+ $\mathbf{P}_{3_43_4}^{T_2}$	pro	jector D µ	'S	$\left[\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \rho_z + i\mathbf{\tilde{R}}_z) / 4 \right]$
$\mathbf{P}_{n_4n_4}^{(\alpha)}(\mathbf{O}$	$O \supset C_4$) 1	r_1r_2	$r_3\tilde{r}_4$	$\tilde{r}_1\tilde{r}_2r_3r_4$	$\rho_x \rho_y$	$ ho_z$	$R_x \tilde{R}_x R_y$	$\tilde{R}_y R_z$	\tilde{R}_{z}	$i_1i_2i_5i_6$	$i_{3}i_{4}$	
24.]	$P_{0_4 0_4}^{A_1}$	1		1	1	1	1	1	1	1	+1	(+1)	$T 1 0 \uparrow 1 \phi$
24·1	$P^{A_2}_{2_4 2_4}$	1		1	1	1	1	-1	-1	-1	-1	-1	$\frac{1}{16} \frac{1}{16} \frac$
12.1	$\mathbf{P}_{0_{4}0_{4}}^{E}$	1	-	$\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	(+1)	split split
12· I	$E^{E}_{2_4 2_4}$	1	_	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	$\mathbf{P}_{0_{4}0_{4}}^{A_{1}} \underline{+1} \qquad \underbrace{+1}_{a} \mathbf{P}_{0_{4}0_{4}}^{A_{1}} \mathbf{P}_{0_{4}0_{4}}^{E} \underline{+1}$
8 · F	$\begin{bmatrix} T_1 \\ 1_4 1_4 \end{bmatrix}$	1	-	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	- <i>i</i>	+i	$-\frac{1}{2}$	0	
8 · P	$\begin{array}{c} T_1 \\ 3_4 3_4 \end{array}$	1	4	$\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	+i	- <i>i</i>	$-\frac{1}{2}$	0	$\mathbf{P}_{1}^{T_{1}}$ 0
8 · P	$\begin{array}{c} T_1 \\ 0_4 0_4 \end{array}$	1		0	0	-1	1	0	1	1	0	(-1)	
8 · F	T_{2} $1_{4}1_{4}$	1	-	$-\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	- <i>i</i>	+i	$+\frac{1}{2}$	0	$\mathbf{P}_{0_4 0_4}^E = \frac{-1/2}{2}$
8 · P	$T_2 3_4 3_4$	1	-	$\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	- <i>i</i>	$+\frac{1}{2}$	0	$-1 \mathbf{P}_{0_4 0_4}^{T_1}$
8 · P	T_{2} $2_{4}2_{4}$	1		0	0	-1	1	0	-1	-1	0	1	

0	ahana	atous	I	5 cl	lass sums (l	Each con	ımutes	with all 24 op	erator	s in O			1 3
U	Churu	$O: \chi_{g}^{\mu}$	g=	$\mathbf{r}_{1-4} = \mathbf{r}_{1-4}$	$ \begin{array}{c} & \mathbf{R}_{xyz} \\ \mathbf{\rho}_{xyz} & \tilde{\mathbf{R}}_{xyz} \end{array} $	i ₁₋₆					V	vhere:	$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{5} e^{im \cdot p/4} \mathbf{R}_z^p$
	SAC	$\mu = A_1$	1	1	1 1	1							$ [\mathbf{p}_0 = (1 + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z) / 4] $
	iecto	A_2	1	1	1 -1	-1							$\mathbf{n} = (1 + i\mathbf{R} - 0 - i\mathbf{\tilde{R}})/\mathbf{\Lambda}$
	proj	E	2	-1	2 0	0						$\mathbf{p}_{m} = \mathbf{k}$	$\int_{0}^{1} \mathbf{p}_{1_4} = (\mathbf{I} + i\mathbf{K}_z - p_z - i\mathbf{K}_z)/4$
	P ^L	T_1	3	0	-1 1	-1						<i>…</i> 4	$\mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \mathbf{R}_z) / 4$
	a)	T_2	3	0 10 .	-1 -1 split-class s	1 sums (Ea	ch con	nmutes with all	4 ope	rators	in C4)		$\left(\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z) / 4 \right)$
P (a	(0^{-1})	ר ה	1	2 r r ~ ~ ~	3 ~~~ r r	$\begin{vmatrix} 4\\ 0 & 0 \end{vmatrix}$	5	R Ř R Ř	7 R	$\frac{8}{\tilde{R}}$	9 i i i i	10 i i	
$\square n_4$	n ₄ (0 -	\mathcal{L}_{4}	1	'1'2'3'4	¹ ² ³ ⁴	$P_x P_y$	P_z	$n_x n_x n_y n_y$	Λ_{Z}	Λ_{z}	<i>i</i> 1 <i>i</i> 2 <i>i</i> 5 <i>i</i> 6	<i>i</i> ₃ <i>i</i> ₄	
	$24 \cdot \mathbf{P}_{0}^{2}$	$\begin{array}{c} 4_1 & I \\ 4_0 & I \end{array}$	1	1	1	1	1	1	1	1	+1	(+1)	The O A cluster
	$24 \cdot \mathbf{P}_2^2$	$\frac{4}{4^{2}_{4}}$ 2	1	1	1	1	1	-1	-1	-1	-1	-1	i_{16} i_{34}
-	$12 \cdot \mathbf{P}_{0}^{I}$	² ₄ 0 ₄ 3	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	(+1)	split split
ectors	$12 \cdot \mathbf{P}_{2}^{H}$	E 4	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	$\mathbf{P}_{0_4 0_4}^{A_1} \underline{+1} \qquad \underbrace{+1}_{i = 1} \mathbf{P}_{0_4 0_4}^{A_1} \mathbf{P}_{0_4 0_4}^{E} \underline{+1}$
kk proj	$8 \cdot \mathbf{P}_{l_4}^T$	1 ₄ 5	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	- <i>i</i>	+i	$-\frac{1}{2}$	0	
10 Pu	$8 \cdot \mathbf{P}_{3_4}^{T_1}$	₃₄ 6	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	+ <i>i</i>	- <i>i</i>	$-\frac{1}{2}$	0	\mathbf{P}^{T_1} 0
	$8 \cdot \mathbf{P}_{0_4}^{\mathbf{T}_1}$	0 ₄ 7	1	0	0	-1	1	0	1	1	0	(-1)	
	$8 \cdot \mathbf{P}_{l_4}^T$	² 1 ₄ 8	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	-i	+i	$+\frac{1}{2}$	0	$\mathbf{P}_{0_4 0_4}^E = \frac{1/2}{2}$
	$8 \cdot \mathbf{P}_{3_4}^{T_2}$	² ₃₄ 9	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	-i	$+\frac{1}{2}$	0	$\underline{-1} \mathbf{P}_{0_{4}0_{4}}^{T_{1}}$
	$8 \cdot \mathbf{P}_{2_4}^{T_2}$	2 ₄ 10	1	0	0	-1	1	0	-1	-1	0	1	

0		I I	5 0	class s	sums (E	Each coi	mmutes	with all 2	4 operate	ors in O)		1 3
0 chara	$O: \chi_{g}^{\mu}$	g=]	$\begin{matrix} \mathbf{r}_{1-4} \\ \tilde{\mathbf{r}}_{1-4} \end{matrix}$	ρ_{xyz}	\mathbf{R}_{xyz} $\mathbf{\tilde{R}}_{xyz}$	i ₁₋₆					ν	where:	$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{5} e^{im \cdot p/4} \mathbf{R}_z^p$
SA	$\mu = A_1$	1	1	1	1	1							$\int \mathbf{p}_{0} = (1 + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4$
ecto	A_2	1	1	1	-1	-1							$\mathbf{I}_{0_{4}} \left(\begin{array}{c} z \\ z \end{array}\right) = \frac{1}{2} \left(\mathbf{I}_{4} \right) \left($
proj	E	2	-1	2	0	0						p =	$\begin{cases} \mathbf{p}_{1_4} = (\mathbf{I} + i\mathbf{K}_z - \rho_z - i\mathbf{K}_z)/4 \end{cases}$
D F	T_1	3	0	-1	1	-1						■ <i>m</i> ₄	$\mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z) / 4$
Ś	T_2	3	0	-1	-1	1							$\mathbf{p}_{2} = (1 - i\mathbf{R} - \rho + i\tilde{\mathbf{R}})/4$
		I	10) split-	-class s	ums (Ec	ich con	nmutes wit	h all 4 op	perators	s in C_4)		$\begin{bmatrix} \mathbf{r}_{3_4} & \vdots & z & \mathbf{r}_z & \vdots & z \end{pmatrix}$
$\mathbf{P}_{n_4n_4}^{(\alpha)}(\boldsymbol{O})$	$\supset C_4)$	1	$r_1 r_2 \tilde{r}_3 \tilde{r}_2$	$\tilde{r}_4 \tilde{r}_1$	$\tilde{r}_2 r_3 r_4$	$\left \begin{array}{c} 4 \\ \rho_x \rho_y \end{array} \right $	${5 \over ho_z}$	$R_x \tilde{R}_x^6 R_y$	$\tilde{R}_{y} \stackrel{7}{R_{z}}$	\tilde{R}_z	$\frac{9}{i_1i_2i_5i_6}$	$\frac{10}{i_{3}i_{4}}$	Adding rows of
24 · P	$A_1 I O_4 O_4 I$	1	1	1	1	1	1	1	1 1	1	+1	+1	eigenvalue table
24 · P	$\frac{A_2}{2_4 2_4}$ 2	1	1	1	1	1 '	1	-1	1 -1	-1	-1	-1	collapses it back
12 · P	$\frac{E}{0_4 0_4}$ 3	1	$-\frac{1}{2}$	_1	$-\frac{1}{2}$	1	\mathbf{O}^1	$-\frac{1}{2}$	0^{1}	1	$-\frac{1}{2}$) +1	io O-churuciers
$\frac{12 \cdot \mathbf{P}_2}{12 \cdot \mathbf{P}_2}$	$\frac{E}{2_4 2_4}$ 4	4	$-\frac{1}{2}$		$-\frac{1}{2}$	1	∠ ₁	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	
$\begin{bmatrix} 0 & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} 0 \cdot \mathbf{P}_{1}^{1}$	⁷ ₁ 5	1	$-\frac{i}{2}$		$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	- <i>i</i>	+i	$-\frac{1}{2}$	0	
$\frac{1}{2} 8 \cdot \mathbf{P}_{3}^{\mathbf{I}}$	¹ ₄ 3 ₄ 6	3	$+\frac{i}{2}$	0	$-\frac{i}{2}$	0 _	1 -1	$+\frac{1}{2}$	+ <i>i</i>	- <i>i</i>	$-\frac{1}{2}$	0	
$8 \cdot \mathbf{P}_{0}^{T}$, 40 ₄ 7	1	0		0	-1	1	0	1	1	0	-1	
$8 \cdot \mathbf{P}_{1}^{7}$	⁷ ₂ 8	1	$+\frac{i}{2}$		$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	- <i>i</i>	+ <i>i</i>	$+\frac{1}{2}$	0	
$8 \cdot \mathbf{P}_{3}^{7}$	² ₄₃₄ 9	3	$-\frac{i}{2}$	0	$+\frac{i}{2}$	0 _	1 -1	$-\frac{1}{2}$	- 1 + <i>i</i>	— <i>i</i>	$+\frac{1}{2}$	0	
$8 \cdot \mathbf{P}_{2}^{T}$	² _{4²4} 10	1	0		0	-1	1	0	-1	-1	0	1	

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

*C*⁴ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O\supset C_4$	0 °	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{\mathrm{II}}=i_{34}$
$\varepsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{ m II}$
$\varepsilon_{0_4}^E$	<i>g</i> 0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy}-R_z$	$-2i_{\mathrm{II}}+2i_{\mathrm{II}}$
1_4	•	•	•	•	•
$\varepsilon_{1_4}^{T_2}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{I}$
$\varepsilon_{1_4}^{T_1}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_{4}	•	•	•	•	•
$\varepsilon_{2_4}^E$	<i>g</i> 0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{\mathbf{T_2}}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\text{II}}$
$\varepsilon^{A_2}_{2_4}$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{I}}$ $-2i_{\mathrm{II}}$
3_4	•	•	•		•
$arepsilon^{T_2}_{3_4}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy} + 2I_z$	$+2i_{I}$
$\varepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{\mathrm{I}}$

*C*₄ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

4

$O \supset C_4$	0 °	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\mathrm{I}} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\mathrm{I}}=i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\varepsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{\mathrm{II}}$
$\varepsilon_{0_4}^E$	<i>g</i> 0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy}-R_z$	$-2i_{\mathrm{I}}+2i_{\mathrm{II}}$
1_4	•	•	•	•	•
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{I}$
$\varepsilon_{1_4}^{T_1}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_{4}	•	•	•	•	•
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{T_2}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{II}$
$\varepsilon^{A_2}_{2_4}$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{I}}$ $-2i_{\mathrm{II}}$
3_4	•	•	•		•
$arepsilon^{T_2}_{3_4}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy}+2I_z$	$+2i_{I}$
$arepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{\mathrm{I}}$

Int.J.Mol.Sci, 14, 714(2013)

 \mathcal{J}_4

*C*₄ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O\supset C_4$	0 °	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{\mathrm{II}}=i_{34}$
$\varepsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{\mathrm{II}}$
$\varepsilon_{0_4}^E$	<i>g</i> 0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy}-R_z$	$-2i_{\mathrm{II}}+2i_{\mathrm{II}}$
1_4	•	•	•	•	•
$\varepsilon_{1_4}^{T_2}$	<i>g</i> 0	$+2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{I}$
$\varepsilon_{1_4}^{T_1}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_{4}	•	•	•		•
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{T_2}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{II}$
$\varepsilon^{A_2}_{2_4}$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{I}}$ $-2i_{\mathrm{II}}$
3_4	•	•	•		•
$arepsilon^{T_2}_{3_4}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy}+2I_z$	$+2i_{I}$
$\varepsilon_{3_4}^{T_1}$	g_0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{I}$

Int.J.Mol.Sci, 14, 714(2013)

 \mathcal{J}_4

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O \supset C_4$	0 °	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\varepsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{ m II}$
$\varepsilon_{0_4}^E$	<i>g</i> 0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy}-R_z$	$-2i_{\mathrm{II}}+2i_{\mathrm{II}}$
1_4	•	•	•		•
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{I}$
$\varepsilon_{1_4}^{T_1}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_{4}	•	•	•	•	•
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{\mathbf{T_2}}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\mathrm{II}}$
$\varepsilon^{A_2}_{2_4}$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{II}} - 2i_{\mathrm{II}}$
3_4	•	•	•		•
$\varepsilon_{3_4}^{T_2}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy} + 2I_z$	$+2i_{I}$
$\varepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{I}$

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O \supset C_4$	0 °	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{\mathrm{II}}=i_{34}$
$\varepsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{ m II}$
$\varepsilon_{0_4}^E$	<i>g</i> 0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy}-R_z$	$-2i_{\mathrm{II}}+2i_{\mathrm{II}}$
1_4	•	•	•		•
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{I}$
$\varepsilon_{1_4}^{T_1}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_{4}	•	•	•	•	
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{T_2}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\mathrm{II}}$
$\varepsilon^{A_2}_{2_4}$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{II}} - 2i_{\mathrm{II}}$
3_4	•	•	•		•
$arepsilon^{T_2}_{3_4}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy} + 2I_z$	$+2i_{I}$
$\varepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{I}$

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O\supset C_4$	0 °	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\mathrm{I}} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I} = {\rm Im}r_{1234}$		$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\varepsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{ m II}$
$\varepsilon_{0_4}^E$	<i>g</i> 0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy}-R_z$	$-2i_{\mathrm{II}}+2i_{\mathrm{II}}$
1_4	•	•	•	•	•
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{I}$
$\varepsilon_{1_4}^{T_1}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_{4}	•	•	•	•	
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{\mathbf{T_2}}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\mathrm{II}}$
$\varepsilon^{A_2}_{2_4}$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{II}}-2i_{\mathrm{II}}$
3_4	•	•	•		•
$arepsilon^{T_2}_{3_4}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy} + 2I_z$	$+2i_{I}$
$\varepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{\mathrm{I}}$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Table 12. Splittings of $O \supset C_3$ given sub-class structure.

		· -	
$\int \int u h \alpha v \alpha u n d$	otinod tunno	1100 $navama$	ov m a d a l m a
$(\land) M D Y () M D - M$		μην παιαμεί	
		0 P	

$O \supset C_3$	0°	$r_n 120^\circ$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
03	•	$r_{\mathrm{I}}=Re(r_{1})$ $i_{\mathrm{I}}=Im(r_{1})$	0 - 0	$R_n = Re(R_{xyz})$	$i_{ m I}=i_{136}$
		$r_{ m II} = Re(r_{234}) ~~i_{ m I} = Im(r_{234})$	$\rho = \rho_{xyz}$	$I_n = Im(R_{xyz})$	$i_{ m II}=i_{245}$
$arepsilon^{oldsymbol{A_1}}_{0_3}$	g_0	$2r_{ m I}$ $+ 6r_{ m II}$	3 ho	$6R_n$	$3i_{\mathrm{I}}+3i_{\mathrm{I}}$
$arepsilon^{A_2}_{0_3}$	g_0	$2r_{ m I}$ $+ 6r_{ m II}$	3 ho	$-6R_n$	$-3i_{\mathrm{I}}-3i_{\mathrm{II}}$
$arepsilon_{0_3}^{T_1}$	<i>g</i> 0	$2r_{\mathrm{I}} - 2r_{\mathrm{II}}$	- ho	$2R_n$	$i_{\mathrm{I}} - 3i_{\mathrm{II}}$
$arepsilon_{0_3}^{T_2}$	g_0	$2r_{\mathrm{I}} - 2r_{\mathrm{II}}$	- ho	$-2R_n$	$-i_{ m I}+3i_{ m II}$
1 ₃					
$arepsilon_{1_3}^E$	g 0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}+3\sqrt{3}i_{\mathrm{II}}$	3 ho	0	0
$arepsilon^{T_1}_{1_3}$	g_0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}-\sqrt{3}i_{\mathrm{II}}$	- ho	$2R_n + 2\sqrt{3}I_n$	$-2i_{ ext{ iny I}}$
$arepsilon_{1_3}^{T_2}$	g 0	$-r_{ ext{I}}+\sqrt{3}i_{ ext{I}}+r_{ ext{II}}-\sqrt{3}i_{ ext{II}}$	- ho	$-2R_n - 2\sqrt{3}I_n$	$2i_{\mathrm{I}}$
2_3					
$arepsilon_{2_3}^E$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}-3\sqrt{3}i_{\mathrm{II}}$	3ρ	0	0
$arepsilon^{T_1}_{2_3}$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}+\sqrt{3}i_{\mathrm{II}}$	- ho	$2R_n - 2\sqrt{3}I_n$	$-2i_{ m I}$
$arepsilon^{T_2}_{2_3}$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}+\sqrt{3}i_{\mathrm{II}})$	$-\rho$	$-2R_n+2\sqrt{3}I_n$	$2i_{\rm I}$ Int.J.

Table 12. Splittings of $O \supset C_3$ given sub-class structure. C₃ Subgroup-defined tunneling parameter modeling

		<u> </u>			
$O \supset C_3$	0°	$r_n 120^\circ$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\mathrm{I}}=Re(r_{1})$ $i_{\mathrm{I}}=Im(r_{1})$	0 - 0	$R_n = Re(R_{xyz})$	$i_{ m I}=i_{136}$
03		$r_{ m II} = Re(r_{234}) ~~i_{ m I} = Im(r_{234})$	$\rho = \rho_{xyz}$	$I_n = Im(R_{xyz})$	$i_{ m II}=i_{245}$
$arepsilon^{A_1}_{0_3}$	g_0	$2r_{\mathrm{I}}$ $+ 6r_{\mathrm{II}}$	3 ho	$6R_n$	$3i_{\mathrm{I}}+3i_{\mathrm{I}}$
$arepsilon_{0_3}^{A_2}$	g_0	$2r_{ m I}$ $+ 6r_{ m II}$	3 ho	$-6R_n$	$-3i_{ m I}-3i_{ m II}$
$arepsilon_{0_3}^{T_1}$	g 0	$2r_{\mathrm{I}} - 2r_{\mathrm{II}}$	- ho	$2R_n$	$i_{ m I}$ – $3i_{ m II}$
$arepsilon_{0_3}^{T_2}$	g_0	$2r_{\mathrm{I}} - 2r_{\mathrm{II}}$	- ho	$-2R_n$	$-i_{ m I}+3i_{ m II}$
1_3					
$arepsilon_{1_3}^{E}$	g_0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}+3\sqrt{3}i_{\mathrm{II}}$	3 ho	0	0
$arepsilon_{1_3}^{T_1}$	g_0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}-\sqrt{3}i_{\mathrm{II}}$	- ho	$2R_n + 2\sqrt{3}I_n$	$-2i_{ extsf{I}}$
$arepsilon_{1_3}^{T_2}$	g 0	$-r_{ ext{I}}+\sqrt{3}i_{ ext{I}}+r_{ ext{II}}-\sqrt{3}i_{ ext{II}}$	- ho	$-2R_n - 2\sqrt{3}I_n$	$2i_{\mathrm{I}}$
2_3					
$arepsilon_{2_3}^E$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}-3\sqrt{3}i_{\mathrm{II}}$	3 ho	0	0
$arepsilon_{2_3}^{T_1}$	g_0	$-r_{ ext{I}}-\sqrt{3}i_{ ext{I}}+r_{ ext{II}}+\sqrt{3}i_{ ext{II}}$	- ho	$2R_n - 2\sqrt{3}I_n$	$-2i_{ ext{I}}$
$arepsilon_{2_3}^{T_2}$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}+\sqrt{3}i_{\mathrm{II}})$	- ho	$-2R_n+2\sqrt{3}I_n$	$2i_{\rm I}$ Int.J.

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

$O \supset C_3$ $A_1 \downarrow C_3$ $A_2 \downarrow C_3$ $E \downarrow C_2$	$\begin{array}{c c} 0_3 & 1_3 \\ \hline 1 & \cdot \\ 1 & \cdot \\ \cdot & 1 \end{array}$	2 ₃ · ·	
$T_1 \downarrow C_3$ $T_2 \downarrow C_3$	1 1 1 1	1 1	
$O_h \supset C_{3v}$	A' A''	E	$\mathbf{\tilde{r}_{1} \sigma_{5}} \mathbf{Local} C_{3v}$
$\frac{A_{1g} \downarrow C_{3v}}{A_{2g} \downarrow C_{3v}}$	1 · · 1	•	$rac{1}{2}$
$E_g \downarrow C_{3v}$ $T_{1g} \downarrow C_{3v}$	· · · 1	1	$\begin{array}{c c} \mathbf{O}_{\mathbf{x}} & \mathbf{I} \\ \mathbf{O}_{\mathbf{x}} & \mathbf{I} \\ \mathbf{O}_{\mathbf{x}} & \mathbf{I} \\ \mathbf{O}_{\mathbf{x}} & \mathbf{O}_{\mathbf{y}} \\ \mathbf{O}_{\mathbf{y}} & \mathbf{O}_{\mathbf{y}} \\ \mathbf{O}_{\mathbf{y}} & \mathbf{I}_{\mathbf{y}} \\ \mathbf{O}_{\mathbf{y}} \\ $
$, \frac{T_{2g} \downarrow C_{3v}}{A_{1g} \downarrow C_{3v}}$	1 · · 1 1 ·	; •	$Local C_{4v}$
	· · · 1 ·	1 1	

 $T_{2u} \downarrow C_{3v}$ · 1 1

Why $O \supset C_2$ *parameter sets require off-diagonal nilpotent* $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

($D \supset C_2$	(i ₁)	02	12	$O \supset C_2$	(ρ_z)	02	12		
	$A_1 \downarrow C$	C_2	1	•	$A_1 \downarrow 0$	<i>C</i> ₂	1	•		
	$A_2 \downarrow 0$	C_2	•	1	$A_2 \downarrow$	C_2	1	•		
	$E \downarrow C$	$\frac{7}{2}$	1	1	$E \downarrow \mathbf{C}$	\mathbb{Z}_2	2	•		
	$T_1 \downarrow C$	$\frac{7}{2}$	1	2	$T_1 \downarrow C$	\mathbb{Z}_2	1	2		
	$T_2 \downarrow C$	\mathbb{Z}_2	2	1	$T_2 \downarrow 0$	C_2	1	2		
									_	
$O_h \supset C_{2v}^i$	A'	B'	$A^{\prime\prime}$	<i>B''</i>	$O_h \supset C_{2v}^z$	<i>A</i> ′	B'	A''	<i>B</i> ″′	$\mathbf{\tilde{r}}_{1} \mathbf{\tilde{r}}_{1} \mathbf{r}_{1} Local C_{2}$
$A_{1g} \downarrow C_{2v}^i$	1	•	•	•	$A_{lg} \downarrow C_{2v}^z$	1	•			102
$A_{2g} \downarrow C_{2v}^i$		1	•	•	$A_{2g}\downarrow C_{2v}^{z}$	1	•	•	•	G 3 G x G 4 G 2
$E_g \downarrow C_{2v}^i$	1	1	•	•	$E_g \downarrow C_{2v}^z$	2	•	•		\mathbb{R}_{3} \mathbb{O}_{4} \mathbb{I} \mathbb{O}_{2}
$T_{1g} \downarrow C_{2v}^i$		1	1	1	$T_{1g} \downarrow C_{2v}^z$.	1	1	1	$\begin{array}{c c} 1_{2} & 0_{\mathbf{x}} + z & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 1_{1} \\ 0_{\mathbf{y}} + z & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 1_{1} \\ 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} \\ 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} \\ 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} \\ 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} & 0_{\mathbf{y}} \\ 0_{\mathbf{y}} \\ 0_{\mathbf{y}} & 0_{\mathbf{y}} \\ 0_{\mathbf{y}} \\ 0_{$
$T_{2g} \downarrow C_{2v}^i$	1	•	1	1	$T_{2g} \downarrow C_{2v}^z$		1	1	1	$\overline{O_3 R_2} \overline{V_1 1}$
$A_{1g} \downarrow C_{2v}^i$		•	1	•	$A_{lg} \downarrow C_{2v}^z$		•	1	•	Local C
$A_{2u} \downarrow C_{2v}^i$		•	•	1	$A_{2u} \downarrow C_{2v}^z$		•	1	•	4v
$E_u \downarrow C_{2v}^i$.		1	1	$E_u \downarrow C_{2v}^z$.	•	2		
$T_{1u} \downarrow C_{2v}^i$	1	1	•	1	$T_{1u} \downarrow C_{2v}^z$	1	1	•	1	
$T_{2u} \downarrow C_{2v}^i$	1	1	1	•	$T_{2u} \downarrow C_{2v}^z$	1	1	•	1	

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu})^{\circ} G \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{\circ} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$

Fundamental
$$\mathbf{P}^{\mu}_{m,n}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm}\mathbf{g}\mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu}\sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G}\sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g})\mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Fundamental \mathbf{P}^{μ}_{mn} definitions: (1) $\mathbf{P}^{\mu}_{mn} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$

 $\mathbf{P}_{mm}^{\mu}\mathbf{g}\mathbf{P}_{nn}^{\mu}=(?)\mathbf{P}_{mn}^{\mu}$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Fundamental \mathbf{P}^{μ}_{mn} definitions: (1) $\mathbf{P}^{\mu}_{mn} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(g)$ by operator transformations:

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu} (\mathbf{g}) \mathbf{P}_{kn}^{\mu} = (?) \cdot \mathbf{P}_{mn}^{\mu}$$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Fundamental \mathbf{P}^{μ}_{mn} definitions: (1) $\mathbf{P}^{\mu}_{mn} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$. Then find $D^{\mu}_{m,n}(g)$ by operator transformations:

or by projector nomalization: $\mathbf{P}_{mn}^{\mu}\mathbf{P}_{mn}^{\mu\dagger} = \mathbf{P}_{mn}^{\mu}\mathbf{P}_{nm}^{\mu} = \mathbf{P}_{mm}^{\mu}$

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu} (\mathbf{g}) \mathbf{P}_{kn}^{\mu}$$
Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$
Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: $\mathbf{g}\mathbf{P}^{\mu}_{mn}$
or by projector nomalization: $\mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu\dagger}_{mn} = \mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu}_{nm} = \mathbf{P}^{\mu}_{mm}$
or by ket-vector transformations: \mathbf{g}

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu} (\mathbf{g}) \mathbf{P}_{kn}^{\mu}$$
$$\mathbf{g} \left| \mathbf{P}_{mn}^{\mu} \right\rangle = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu} (\mathbf{g}) \left| \mathbf{P}_{kn}^{\mu} \right\rangle$$

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive both $\mathbf{P}^{\mu}_{m,n}$ and $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: $\mathbf{g}\mathbf{P}^{\mu}_{mn} = \sum_{i=1}^{\ell^{\mu}} D^{\mu}_{km}(\mathbf{g})\mathbf{P}^{\mu}_{kn}$ or by projector nomalization: $\mathbf{P}_{mn}^{\mu}\mathbf{P}_{mn}^{\mu\dagger} = \mathbf{P}_{mn}^{\mu}\mathbf{P}_{nm}^{\mu} = \mathbf{P}_{mm}^{\mu}$ or by ket-vector transformations: $\mathbf{g} | \mathbf{P}_{mn}^{\mu} \rangle = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu} (\mathbf{g}) | \mathbf{P}_{kn}^{\mu} \rangle$ or by direct (k,m)-matrix elements for any (n) that gives nonzero value: $\langle \mathbf{P}_{kn}^{\mu} | \mathbf{g} | \mathbf{P}_{mn}^{\mu} \rangle = D_{km}^{\mu} (\mathbf{g})$

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive both $\mathbf{P}^{\mu}_{m,n}$ and $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: $\mathbf{g}\mathbf{P}^{\mu}_{mn} = \sum_{k=1}^{\ell^{\mu}} D^{\mu}_{km}(\mathbf{g})\mathbf{P}^{\mu}_{kn}$ or by projector nomalization: $\mathbf{P}_{mn}^{\mu}\mathbf{P}_{mn}^{\mu\dagger} = \mathbf{P}_{mn}^{\mu}\mathbf{P}_{nm}^{\mu} = \mathbf{P}_{mm}^{\mu}$ or by ket-vector transformations: $\mathbf{g} | \mathbf{P}_{mn}^{\mu} \rangle = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu} (\mathbf{g}) | \mathbf{P}_{kn}^{\mu} \rangle$ or by direct (k,m)-matrix elements for any (n) that gives nonzero value: $\langle \mathbf{P}_{kn}^{\mu} | \mathbf{g} | \mathbf{P}_{mn}^{\mu} \rangle = D_{km}^{\mu} (\mathbf{g})$

Hint: Sub-group chain factoring helps. Since \mathbf{P}^{μ} is *all-commuting*: $\mathbf{p}_{m_4}\mathbf{P}^{\mu}=\mathbf{P}_{m_4m_4}^{\mu}=\mathbf{P}^{\mu}\mathbf{p}_{m_4}$

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: or by projector nomalization: $\mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu\dagger}_{mn} = \mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu}_{nm} = \mathbf{P}^{\mu}_{mm}$ or by ket-vector transformations: $\mathbf{g} | \mathbf{P}^{\mu}_{mn} \rangle = \sum_{k}^{\ell^{\mu}} D^{\mu}_{km}(\mathbf{g}) | \mathbf{P}^{\mu}_{kn} \rangle$ or by direct (k,m)-matrix elements for any (n) that gives nonzero value: $\langle \mathbf{P}^{\mu}_{kn} | \mathbf{g} | \mathbf{P}^{\mu}_{mn} \rangle = D^{\mu}_{km}(\mathbf{g})$ *Hint:* Sub-group chain factoring helps. Since \mathbf{P}^{μ} is all-commuting: $\mathbf{P}_{m4}^{\mu} \mathbf{g} \mathbf{P}^{\mu}_{n4} = \mathbf{P}^{\mu} \mathbf{P}_{m4}$ This reduces to a smaller object $\mathbf{P}_{m4} \mathbf{g} \mathbf{P}_{n4}$ to calculate: Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra Comparing off-diagonal $O \supset C_2$ parameter sets to CH4 models with "cluster-crossings" Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n} (m \neq n)$ Review of $D_3 \supset C_2 \sim C_{3\nu} \supset C_{\nu}$ $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{{}^\circ G} \sum_{\mathbf{g}}^{\circ G} D_{mn}^{\mu^*}(\mathbf{g}) \mathbf{g}$ $\frac{D_3 : \chi_k^{\alpha}}{\alpha = A_1} \frac{\chi_1^{\alpha}}{1} \frac{\chi_r^{\alpha}}{\alpha} \frac{\chi_i^{\alpha}}{\alpha}}{1}$ $\alpha = A_2 \frac{1}{1} \frac{1}{1} - 1}{\alpha = E} \frac{1}{2} - 1 0$ Given: $\mathbf{P}^E = \frac{1}{3}(2\mathbf{c}_1 - \mathbf{c}_r + 0)$ $= \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)$

First do $C_2 = \{\mathbf{1}, \mathbf{i}_3\}$ splitting: $\mathbf{P}_{0_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{0_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} + \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$ $\mathbf{P}_{1_2 1_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} - \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)$

Then find nilpotent proportional to: $\mathbf{P}_{1_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} \mathbf{r} \mathbf{p}_{0_2}$

Finally, must set \pm signs of off-diagonal components...

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3: \chi_k^{lpha}$	χ^{lpha}_1	χ^{lpha}_r	χ^{lpha}_i	
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^{E} = \frac{1}{2}(2\mathbf{c}_{1} - \mathbf{c}_{n} + 0)$
$\alpha = A_2$	1	1	-1	
$\alpha = E$	2	-1	0	$=\frac{1}{3}(21-r-r^2)$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$$
Then find nilpotent proportional to:
$$\mathbf{P}_{1_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} \mathbf{r} \mathbf{p}_{0_{2}} = \mathbf{P}^{E} \frac{1}{2} \cdot \frac{1}{2} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \hline \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ -\mathbf{i}_{3} & \mathbf{r} - \mathbf{i}_{3} \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \hline \mathbf{1} & \mathbf{r} + \mathbf{i}_{2} \\ -\mathbf{i}_{3} & -\mathbf{i}_{3} \mathbf{r} & -\mathbf{i}_{3} \mathbf{r} \mathbf{i}_{3} \\ -\mathbf{i}_{3} & \mathbf{r} - \mathbf{i}_{3} \mathbf{r} \mathbf{i}_{3} \end{array} \right)$$

Make group space vectors:

$$\left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} \left(2 \left| \mathbf{1} \right\rangle - \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{i}_{1} \right\rangle - \left| \mathbf{i}_{2} \right\rangle + 2 \left| \mathbf{i}_{3} \right\rangle \right)$$

$$\left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} \left(0 \left| \mathbf{1} \right\rangle + \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + \left| \mathbf{i}_{2} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle \right)$$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}(m \neq n)$ *Review of* $D_3 \supset C_2 \sim C_{3v} \supset C_v$ 11 axi axis First do $C_2 = \{1, i_3\}$ splitting: **1**₁ **1**₂ $\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{0_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})$ axis axis $\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$ $\frac{\mathbf{r}_{2^{1}2}}{\mathbf{r}_{2^{1}2}} = \frac{\mathbf{r}_{2^{1}}}{\mathbf{r}_{2^{1}}} + \frac{\sqrt{3}}{2} \mathbf{r}_{2^{1}} - \frac{\sqrt{3}}{2} \mathbf{i}_{1} + \frac{\sqrt{3}}{2} \mathbf{i}_{2^{1}} \right) \text{ Now, to set } \pm \text{ signs...} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r}_{1} + \mathbf{r}_{3} \\ \mathbf{r}_{1} + \mathbf{r}_{3} \\ \mathbf{r}_{1} + \frac{\sqrt{3}}{2} \mathbf{r}_{2^{1}} + \frac{\sqrt{3}}{2} \mathbf{r}_{2^{1}} \right) \text{ Now, to set } \pm \text{ signs...} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r}_{1} + \mathbf{r}_{3} \\ \mathbf{r}_{3} + \mathbf{r}_{3} \\ \mathbf{r}_{3} + \frac{\sqrt{3}}{2} \mathbf{r}_{3} + \frac{\sqrt{3}}{2} \mathbf{r}_{1} + \frac{\sqrt{3}}{2} \mathbf{r}_{2^{1}} \right) \text{ Now, to set } \pm \text{ signs...} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r}_{1} + \mathbf{r}_{3} \\ \mathbf{r}_{3} \\ \mathbf{r}_{3} + \mathbf{r}_{3} \\ \mathbf{r}_{3} \\ \mathbf{r}_{3} + \mathbf{r}_{3} \\ \mathbf{r}$ Make group space vectors: Do desired **g=r** transformation: $\left|\mathbf{P}_{0_{2}0_{2}}^{E}\right\rangle = \frac{1}{2\sqrt{3}}\left(2\left|\mathbf{1}\right\rangle - \left|\mathbf{r}\right\rangle - \left|\mathbf{i}_{1}\right\rangle - \left|\mathbf{i}_{2}\right\rangle + 2\left|\mathbf{i}_{3}\right\rangle\right) \qquad \mathbf{r}\left|\mathbf{P}_{0_{2}0_{2}}^{E}\right\rangle = \frac{1}{2\sqrt{3}}\left(2\left|\mathbf{r}\right\rangle - \left|\mathbf{r}^{2}\right\rangle - \left|\mathbf{1}\right\rangle - \left|\mathbf{i}_{3}\right\rangle - \left|\mathbf{i}_{1}\right\rangle + 2\left|\mathbf{i}_{2}\right\rangle\right)$ $\left|\mathbf{P}_{1_{2}0_{2}}^{E}\right\rangle = \frac{1}{2}(0\left|\mathbf{1}\right\rangle + \left|\mathbf{r}\right\rangle - \left|\mathbf{r}^{2}\right\rangle - \left|\mathbf{i}_{1}\right\rangle + \left|\mathbf{i}_{2}\right\rangle + 0\left|\mathbf{i}_{3}\right\rangle) \qquad \mathbf{r}\left|\mathbf{P}_{1_{2}0_{2}}^{E}\right\rangle = \frac{1}{2}(0\left|\mathbf{r}\right\rangle + \left|\mathbf{r}^{2}\right\rangle - \left|\mathbf{1}\right\rangle - \left|\mathbf{i}_{3}\right\rangle + \left|\mathbf{i}_{1}\right\rangle + 0\left|\mathbf{i}_{3}\right\rangle)$

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3: \chi_k^{lpha}$	χ^{lpha}_1	χ^{lpha}_r	χ^{lpha}_i	
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^{E} = \frac{1}{2}(2\mathbf{c}_{1} - \mathbf{c}_{n} + 0)$
$\alpha = A_2$	1	1	-1	$\begin{array}{cccc} 3 & 1 & r \\ 1 & 2 & 2 \end{array}$
$\alpha = E$	2	-1	0	$=\frac{1}{3}(21-r-r^2)$

First do
$$C_2 = \{\mathbf{1}, \mathbf{i}_3\}$$
 splitting:
 $\mathbf{P}_{0_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{0_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} + \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$$

Then find nilpotent proportional to: $\mathbf{P}_{1_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} \mathbf{r} \mathbf{p}_{0_2} = \mathbf{P}^E \frac{1}{2} \cdot \frac{1}{2}$ $\pm \mathbf{P}_{0_2 1_2}^E = \frac{1}{3} \left(-\frac{\sqrt{3}}{2} \mathbf{r} + \frac{\sqrt{3}}{2} \mathbf{r}^2 - \frac{\sqrt{3}}{2} \mathbf{i}_1 + \frac{\sqrt{3}}{2} \mathbf{i}_2 \right)$ Now, to set \pm signs...

Make group space vectors:

$$\left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2\left|\mathbf{1}\right\rangle - \left|\mathbf{r}\right\rangle - \left|\mathbf{r}^{2}\right\rangle - \left|\mathbf{i}_{1}\right\rangle - \left|\mathbf{i}_{2}\right\rangle + 2\left|\mathbf{i}_{3}\right\rangle)$$

$$\left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0\left|\mathbf{1}\right\rangle + \left|\mathbf{r}\right\rangle - \left|\mathbf{r}^{2}\right\rangle - \left|\mathbf{i}_{1}\right\rangle + \left|\mathbf{i}_{2}\right\rangle + 0\left|\mathbf{i}_{3}\right\rangle)$$

Set up to find matrix of **g=r** transformation: $\mathbf{r} | \mathbf{P}_{0,2,0,2}^{E} \rangle = \frac{1}{2\sqrt{2}} (-|\mathbf{1}\rangle + 2|\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + 2|\mathbf{i}_{2}\rangle - |\mathbf{i}_{3}\rangle)$

$$\mathbf{r} \left| \mathbf{P}_{1202}^{E} \right\rangle = \frac{1}{2} (-|\mathbf{1}\rangle + 0|\mathbf{r}\rangle + |\mathbf{r}^{2}\rangle + |\mathbf{i}_{1}\rangle + 0|\mathbf{i}_{3}\rangle - |\mathbf{i}_{3}\rangle)$$

$$\mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3}) = \mathbf{P}^{E} \mathbf{1}_{2} \cdot \frac{1}{2} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r}\mathbf{i}_{3} \end{array} \right)$$

Do desired **g=r** transformation:

$$\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + 2 \left| \mathbf{i}_{2} \right\rangle)$$

$$\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle + \left| \mathbf{i}_{1} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle)$$

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3: \chi_k^{lpha}$	χ^{lpha}_1	χ^{lpha}_r	χ^{lpha}_i		
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^E = \mathbf{P}^E$	$\frac{1}{2}(2\mathbf{c}_1 - \mathbf{c}_n + 0)$
$\alpha = A_2$	1	1	-1	- -	$1 \sim 1 \sim 2$
$\alpha = E$	2	-1	0	=	$\frac{1}{3}(21 - r - r^2)$

First do
$$C_2 = \{\mathbf{1}, \mathbf{i}_3\}$$
 splitting:
 $\mathbf{P}_{0_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{0_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} + \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$
 $\mathbf{P}_{1_2 1_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} - \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$$
Then find nilpotent proportional to:
$$\mathbf{P}_{1_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} \mathbf{r} \mathbf{p}_{0_{2}} = \mathbf{P}^{E} \frac{1}{2} \cdot \frac{1}{2} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ -\mathbf{i}_{3} & \mathbf{r} - \mathbf{i}_{3} \mathbf{r} \mathbf{i}_{3} \end{array} = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{i}_{2} \\ -\mathbf{i}_{3} & -\mathbf{i}_{3} \mathbf{r} & -\mathbf{i}_{3} \mathbf{r} \mathbf{i}_{3} \\ -\mathbf{i}_{3} & -\mathbf{i}_{3} \mathbf{r} \mathbf{i}_{3} \end{array} \right)$$

Make group space vectors:

Then find nilpotent proportional to:

$$\left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2|\mathbf{1}\rangle - |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle - |\mathbf{i}_{2}\rangle + 2|\mathbf{i}_{3}\rangle)$$

$$\left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0|\mathbf{1}\rangle + |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + |\mathbf{i}_{2}\rangle + 0|\mathbf{i}_{3}\rangle)$$

Set up to find matrix of **g=r** transformation: $\mathbf{r} \left| \mathbf{P}_{0_2 0_2}^E \right\rangle = \frac{1}{2\sqrt{3}} \left(-\left| \mathbf{1} \right\rangle + 2 \right| \mathbf{r} \right\rangle - \left| \mathbf{r}^2 \right\rangle - \left| \mathbf{i}_1 \right\rangle + 2 \left| \mathbf{i}_2 \right\rangle - \left| \mathbf{i}_3 \right\rangle \right)$ $\mathbf{r} \left| \mathbf{P}_{1_2 0_2}^E \right\rangle = \frac{1}{2} (-\left| \mathbf{1} \right\rangle + 0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^2 \right\rangle + \left| \mathbf{i}_1 \right\rangle + 0 \left| \mathbf{i}_3 \right\rangle - \left| \mathbf{i}_3 \right\rangle)$

Do desired **g=r** transformation:

$$\mathbf{r} \left| \mathbf{P}_{0_2 0_2}^E \right\rangle = \frac{1}{2\sqrt{3}} (2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^2 \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_3 \right\rangle - \left| \mathbf{i}_1 \right\rangle + 2 \left| \mathbf{i}_2 \right\rangle)$$
$$\mathbf{r} \left| \mathbf{P}_{1_2 0_2}^E \right\rangle = \frac{1}{2} (0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^2 \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_3 \right\rangle + \left| \mathbf{i}_1 \right\rangle + 0 \left| \mathbf{i}_3 \right\rangle)$$

$$\left\langle \mathbf{P}_{0_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 - 1 - 1 - 1 - 1 + 2) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = -1/2 \left\langle \mathbf{P}_{1_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 + 1 - 1 - 1 + 1 + 0) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = \sqrt{3}/2$$

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3:\chi_k^{lpha}$	χ^{lpha}_1	χ^{lpha}_r	χ^{lpha}_i	
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^{E} = \frac{1}{2}(2\mathbf{c}_{1} - \mathbf{c}_{n} + 0)$
$\alpha = A_2$	1	1	-1	$\begin{array}{cccc} 3 & 1 & r \\ 1 & 2 & 2 \end{array}$
$\alpha = E$	2	-1	0	$=\frac{1}{3}(2\mathbf{I}-\mathbf{r}-\mathbf{r}^{2})$

First do
$$C_2 = \{\mathbf{1}, \mathbf{i}_3\}$$
 splitting:
 $\mathbf{P}_{0_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{0_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} + \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$
 $\mathbf{P}_{1-1}^E = \mathbf{P}^E \mathbf{p}_1 = \frac{1}{2}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} - \mathbf{i}_2) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_2)$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$$

Then find nilpotent proportional to: $\mathbf{P}_{1_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} \mathbf{r} \mathbf{p}_{0_{2}} = \mathbf{P}^{E} \frac{1}{2} \cdot \frac{1}{2}$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$$
Then find nilpotent proportional to:
$$\mathbf{P}_{1_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} \mathbf{r} \mathbf{p}_{0_{2}} = \mathbf{P}^{E} \frac{1}{2} \cdot \frac{1}{2} \left(\begin{array}{cccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{cccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{i}_{2} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{r} + \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{r} + \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{r} + \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right)$$

Make group space vectors:

$$\left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} \left(2 \left| \mathbf{1} \right\rangle - \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{i}_{1} \right\rangle - \left| \mathbf{i}_{2} \right\rangle + 2 \left| \mathbf{i}_{3} \right\rangle \right)$$

$$\left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} \left(0 \left| \mathbf{1} \right\rangle + \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + \left| \mathbf{i}_{2} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle \right)$$

Set up to find matrix of **g=r** transformation: $\mathbf{r} \left| \mathbf{P}_{0_2 0_2}^E \right\rangle = \frac{1}{2\sqrt{3}} \left(-\left| \mathbf{1} \right\rangle + 2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^2 \right\rangle - \left| \mathbf{i}_1 \right\rangle + 2 \left| \mathbf{i}_2 \right\rangle - \left| \mathbf{i}_3 \right\rangle \right)$ $\mathbf{r} \left| \mathbf{P}_{1_2 0_2}^E \right\rangle = \frac{1}{2} (-\left| \mathbf{1} \right\rangle + 0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^2 \right\rangle + \left| \mathbf{i}_1 \right\rangle + 0 \left| \mathbf{i}_3 \right\rangle - \left| \mathbf{i}_3 \right\rangle)$ The $D_{01} \pm \text{sign is}(-)$ This checks with p. 56

Do desired **g=r** transformation:

$$\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + 2 \left| \mathbf{i}_{2} \right\rangle)$$

$$\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle + \left| \mathbf{i}_{1} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle)$$

$$\left\langle \mathbf{P}_{0_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 - 1 - 1 - 1 - 1 + 2) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = -1/2 = D_{0_{2}0_{2}}^{E} (r)$$

$$\left\langle \mathbf{P}_{1_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 + 1 - 1 - 1 + 1 + 0) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = \sqrt{3}/2 = D_{1_{2}0_{2}}^{E} (r)$$

 $\left\langle \mathbf{P}_{1_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 + 1 - 1 - 1 + 1 + 0) \cdot \frac{1}{2} (-1 + 0 + 1 + 1 + 0 - 1) = -1/2 = D_{1_{2}1_{2}}^{E}(r))$

This amounts to the world's most complicated derivation of: $\cos 120^\circ = -1/2$ and: $\sin 120^\circ = \sqrt{3/2}$

$$D^{E}(\mathbf{r}) = D^{E}(120^{\circ}) = \begin{pmatrix} \cos(120^{\circ}) & -\sin(120^{\circ}) \\ \sin(120^{\circ}) & \cos(120^{\circ}) \end{pmatrix} = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}$$

$$\mathbf{P}_{0_{2}1_{2}}^{E} = \frac{1}{3} \left(-\frac{\sqrt{3}}{2}\mathbf{r} + \frac{\sqrt{3}}{2}\mathbf{r}^{2} - \frac{\sqrt{3}}{2}\mathbf{i}_{1} + \frac{\sqrt{3}}{2}\mathbf{i}_{2} \right) = \mathbf{P}_{1_{2}0_{2}}^{E\dagger}$$

Coeff g=	ficients L	$D_{i,j}^{(\alpha)}(g)$ are in $\mathbf{r}^{(\alpha)}$	<i>rreducible re</i> r ²	presentation i1	s (ireps) of \mathbf{i}_2	g i ₃
$D_{xx}^{A_{1}}(\mathbf{g}) =$ $D_{yy}^{A_{2}}(\mathbf{g}) =$ $D_{x,y}^{E_{1}}(\mathbf{g}) =$	$ \begin{array}{c} 1\\ 1\\ \begin{pmatrix} 1 \\ \cdot \\ 1 \end{pmatrix} \end{array} $	$ \begin{array}{c} 1\\ 1\\ \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ \left(\begin{array}{cc} -\frac{1}{2} & \sqrt{3} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right) $	$ \begin{array}{c} 1 \\ -1 \\ \left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right) $	$ \begin{array}{c} 1\\ -1\\ \left(\begin{array}{cc} -\frac{1}{2} & \sqrt{3}\\ \frac{\sqrt{3}}{2} & \frac{1}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right) $	$ \begin{array}{c} 1\\ -1\\ \begin{pmatrix} 1 & 0\\ 0 & -1 \end{array} \right) $

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ calculations of $\mathbf{P}^{\mu}_{m,n}$ and $D^{\mu}_{m,n}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra Comparing off-diagonal $O \supset C_2$ parameter sets to CH_4 models with "cluster-crossings"

Coset-factored T₁-sum: (First display idempotent projectors $\mathbf{P}_{kk}^{T_1}$ and diagonal components $D_{kk}^{T_1*}(\mathbf{g})$ $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8} [(1) \cdot \mathbf{1}\mathbf{p}_{1_{4}}]$ + (0) $\cdot \rho_x p_{1_4}$ + $(+\frac{i}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{1_{4}}$ + $(\frac{i}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{1}$ + $(-\frac{i}{2})$ · $\tilde{\mathbf{r}}_{1}\mathbf{p}_{1}$ $+(-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}]$ $\mathbf{P}_{3_43_4}^{T_1} = \frac{1}{8} [(1) \cdot \mathbf{1} \mathbf{p}_{3_4}]$ + $(\underline{\mathbf{r}}_{2}) \cdot \tilde{\mathbf{r}}_{1} \mathbf{p}_{3_{4}}$ $+(\underline{\mathbf{r}}_{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}}]$ + (0) $\cdot \rho_x \mathbf{p}_{3_4}$ + $(-\frac{i}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{3_{4}}$ + $(-\frac{i}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{3_{4}}$ $+(\mathbf{0})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{\mathbf{0}_{4}}]$ + (0) $\cdot \tilde{r}_{1} p_{0_{4}}$ $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{T_{1}} = \frac{1}{8} \left[(1) \cdot \mathbf{1} \mathbf{p}_{\mathbf{0}_{4}} \right]$ + $(0) \cdot \mathbf{r}_1 \mathbf{p}_{0_4}$ $+(0) \cdot r_2 p_{0_4}$ $+(-1)\cdot\rho_x\mathbf{p}_0$ (a) Vector Representatio $\mathcal{D}^{T_1}(1) =$ $R_1^2 =$ $\frac{-1}{2}$ 2 $\mathbf{P}_{mn}^{T_1} = \frac{\ell^{T_1} = 3}{{}^{\circ}G = 24} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{T_1*}(\mathbf{g})\mathbf{g}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\frac{-l}{2}$ $\frac{-\iota}{2}$ $\frac{i}{2}$ Vector $\sqrt{2}$ $\mathcal{D}^{T_1}(R_3^2) =$ $R_{2}^{2} =$ *x,y,z* $O \supset C_4$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ *left cosets* $\frac{-i}{2}$ $\frac{i}{2}$ $\frac{1}{2}$ $\left\{\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\right\}$ $\frac{-1}{\sqrt{2}}$ $\frac{-1}{\sqrt{2}}$ $\sqrt{2}$ $\sqrt{2}$ $\left\{ \boldsymbol{\rho}_{x}, \boldsymbol{\rho}_{y}, \boldsymbol{i}_{4}, \boldsymbol{i}_{3} \right\}$ $\sqrt{2}$ $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$ $\mathcal{D}^{T_1}(R_3) =$ $i_4 = R_1^3 =$ $R_{1} =$ D_4 $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{y}\right\}$ $\frac{-1}{2}$ $\frac{1}{\sqrt{2}}$ $\sqrt{2}$ $\sqrt{2}$ $\left\{\tilde{\mathbf{r}}_{1},\tilde{\mathbf{r}}_{3},\tilde{\mathbf{R}}_{x},\mathbf{i}_{6}\right\}$ $\left\{\tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$ $\frac{-i}{5}$ $\sqrt{2}$ $p_{0_1} = (1 + R_z + \rho_z + \tilde{R}_z)/4$ $\mathcal{D}^{T_1}(R^3_3) =$ $R_{2}^{3} =$ $R_{2} =$ $\mathbf{p}_{1_{4}} = (\mathbf{1} \cdot i\mathbf{R}_{z} \cdot \rho_{z} + i\tilde{\mathbf{R}}_{z})/4$ $\frac{1}{\sqrt{2}}$ $\frac{-1}{2}$ $\frac{1}{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\begin{array}{c|c} \sqrt{2} & O : & T_1 \\ \hline -i & & \\ \hline \sqrt{2} & & \\ \sqrt{2} & C_4 : & C_4 : & 1_4 \end{array} \begin{vmatrix} T_1 \\ E \\ T_4 \end{vmatrix} \begin{vmatrix} T_1 \\ E \\ T_4 \end{vmatrix} \begin{vmatrix} T_1 \\ B \\ T_4 \end{vmatrix}$ $\mathbf{p}_{2_{4}} = (1 - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4$ $\frac{-1}{\sqrt{2}}$ 2 $\frac{-1}{2}$ $\mathbf{p}_{3_{A}} = (\mathbf{1} + i\mathbf{R}_{z} - \rho_{z} - i\tilde{\mathbf{R}}_{z})/4$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}] \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}}] \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{0_{4}}] \end{cases}$

Calculating: $\mathbf{P}_{1_4 1_4}^{T_1} \mathbf{r}_1 \mathbf{P}_{0_4 0_4}^{T_1} = D_{1_4 0_4}^{T_1} (\mathbf{r}_1) \mathbf{P}_{1_4 0_4}^{T_1} = \mathbf{P}_{1_4}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{0_4}$

 $\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$

 $O \supset C_4$

left cosets

 $\left\{\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\right\}$

 $\{\boldsymbol{\rho}_x, \boldsymbol{\rho}_y, \boldsymbol{i}_4, \boldsymbol{i}_3\}$

 $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$

 $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{y}\right\}$

 $\left\{\tilde{\mathbf{r}}_{1},\tilde{\mathbf{r}}_{3},\tilde{\mathbf{R}}_{x},\mathbf{i}_{6}\right\}$

 $\left\{ \tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5} \right\}$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}] \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}] \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}] \end{cases}$

Calculating: $\mathbf{P}_{1_4 1_4}^{T_1} \mathbf{r}_1 \mathbf{P}_{0_4 0_4}^{T_1} = D_{1_4 0_4}^{T_1} (\mathbf{r}_1) \mathbf{P}_{1_4 0_4}^{T_1} = \mathbf{P}_{1_4}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{0_4}$

 $O \supset C_4$ *left cosets* $\left\{1, \rho_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z\right\}$ $\left\{\rho_x, \rho_y, \mathbf{i}_4, \mathbf{i}_3\right\}$ $\left\{\mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y\right\}$ $\left\{\mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_2, \mathbf{\tilde{R}}_y\right\}$ $\left\{\mathbf{\tilde{r}}_1, \mathbf{\tilde{r}}_3, \mathbf{\tilde{R}}_x, \mathbf{i}_6\right\}$ $\left\{\mathbf{\tilde{r}}_2, \mathbf{\tilde{r}}_4, \mathbf{R}_x, \mathbf{i}_5\right\}$

Then find nilpotent proportional to: $\mathbf{p}_{1_4}\mathbf{r}_1\mathbf{p}_{0_4}$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$
Consistent with standard:
$$\mathbf{P}_{m_4 m_4}^{\mu} = \sum_{q=0}^{9} \frac{\ell^{\mu}}{^{\circ}G} D_{m_4 m_4}^{\mu^*}(g) \mathbf{g}$$

21

R A

R.

R

Pz

12

86

3

i₁-

 $\widetilde{\mathbf{R}}_{x} =$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}] \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}] \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}] \end{cases}$

Calculating: $\mathbf{P}_{1_4 1_4}^{T_1} \mathbf{r}_1 \mathbf{P}_{0_4 0_4}^{T_1} = D_{1_4 0_4}^{T_1} (\mathbf{r}_1) \mathbf{P}_{1_4 0_4}^{T_1} = \mathbf{P}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{0_4}$

$$\frac{\mathbf{r}_{1} \quad \mathbf{r}_{4} \quad \mathbf{i}_{1} \quad \mathbf{R}_{y}}{\mathbf{r}_{1} \quad \mathbf{r}_{4} \quad \mathbf{i}_{1} \quad \mathbf{R}_{y}}$$
Then find nilpotent proportional to: $\mathbf{p}_{1_{4}}\mathbf{r}_{1}\mathbf{p}_{0_{4}} = \frac{1}{16} - \mathbf{\rho}_{z}$

$$-\mathbf{r}_{3} \quad -\mathbf{r}_{2} \quad -\mathbf{\tilde{R}}_{y} \quad -\mathbf{i}_{2}$$

$$-i\mathbf{R}_{z} \quad -i\mathbf{\tilde{R}}_{z} \quad -i\mathbf{\tilde{R}}_{x} \quad -i\mathbf{\tilde{R}}_{x} \quad -i\mathbf{\tilde{r}}_{1} \quad -i\mathbf{\tilde{r}}_{3}$$

$$+i\mathbf{\tilde{R}}_{z} \quad +i\mathbf{R}_{x} \quad +i\mathbf{i}_{5} \quad +i\mathbf{\tilde{r}}_{4} \quad +i\mathbf{\tilde{r}}_{2}$$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

 $O \supset C_4$

left cosets

 $\left\{\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\right\}$

 $\{\boldsymbol{\rho}_x, \boldsymbol{\rho}_y, \mathbf{i}_4, \mathbf{i}_3\}$

 $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$

 $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{v}\right\}$

 $\left\{\tilde{\mathbf{r}}_{1},\tilde{\mathbf{r}}_{3},\tilde{\mathbf{R}}_{x},\mathbf{i}_{6}\right\}$

 $\left\{\tilde{\mathbf{r}}_{2},\tilde{\mathbf{r}}_{4},\mathbf{R}_{x},\mathbf{i}_{5}\right\}$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g})$ $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}]$ $\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}]$ $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}]$

Calculating: $\mathbf{P}_{1_41_4}^{T_1} \mathbf{r}_1 \mathbf{P}_{0_40_4}^{T_1} = D_{1_40_4}^{T_1} (\mathbf{r}_1) \mathbf{P}_{1_40_4}^{T_1} = \mathbf{P}_{1_4}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{0_4}$

Then find nilpotent proportional to:
$$\mathbf{p}_{1_4}\mathbf{r}_1\mathbf{p}_{0_4} = \frac{1}{16} - \rho_z$$

 $-i\mathbf{R}_z$
 $+i\mathbf{R}_z$
 $+i\mathbf{R}_z$
 $-i\mathbf{R}_z$
 $-i\mathbf{R}_z$
 $+i\mathbf{R}_z$
 $-i\mathbf{R}_z$
 $-i\mathbf{R}_z$
 $-i\mathbf{R}_z$
 $+i\mathbf{R}_z$
 $+i\mathbf{R}_z$
 $-i\mathbf{R}_z$
 $-i\mathbf$

$$= [(\mathbf{r}_{1} + \mathbf{r}_{4} + \mathbf{i}_{1} + \mathbf{R}_{y}) - (\mathbf{r}_{2} + \mathbf{r}_{3} + \mathbf{i}_{2} + \mathbf{R}_{y}) - i(\mathbf{\tilde{r}}_{1} + \mathbf{\tilde{r}}_{3} + \mathbf{R}_{x} + \mathbf{i}_{6}) + i(\mathbf{\tilde{r}}_{2} + \mathbf{\tilde{r}}_{4} + \mathbf{R}_{x} + \mathbf{i}_{5})]/16$$
$$= [\mathbf{r}_{1}\mathbf{p}_{0_{4}} - \mathbf{r}_{2}\mathbf{p}_{0_{4}} - i\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + i\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}]/4$$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

 $O \supset C_4$ *left cosets* $\left\{ \mathbf{1}, \boldsymbol{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z \right\}$

 $\left\{ \boldsymbol{\rho}_{x}, \boldsymbol{\rho}_{y}, \boldsymbol{i}_{4}, \boldsymbol{i}_{3} \right\}$ $\left\{ \boldsymbol{r}_{1}, \boldsymbol{r}_{4}, \boldsymbol{i}_{1}, \boldsymbol{R}_{y} \right\}$ $\left\{ \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \boldsymbol{i}_{2}, \boldsymbol{\tilde{R}}_{y} \right\}$ $\left\{ \boldsymbol{\tilde{r}}_{1}, \boldsymbol{\tilde{r}}_{3}, \boldsymbol{\tilde{R}}_{x}, \boldsymbol{i}_{6} \right\}$

 $\left\{\tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g})$ $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}]$ $\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}}]$ $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{0_{4}}]$

Calculating:
$$\mathbf{P}_{1_{4}1_{4}}^{T_{1}} \mathbf{r}_{1} \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = D_{1_{4}0_{4}}^{T_{1}} (\mathbf{r}_{1}) \mathbf{P}_{1_{4}0_{4}}^{T_{1}} = \mathbf{P}^{T_{1}} \mathbf{p}_{1_{4}} \mathbf{r}_{1} \mathbf{p}_{0_{4}}$$

NOTE: These projectors
still have phase errors
as of 4.12.17
(However final tables OK) \mathbf{T} \mathbf{r}_{1} \mathbf{r}_{4} \mathbf{i}_{1} \mathbf{R}_{y}
Then find nilpotent proportional to: $\mathbf{p}_{1_{4}}\mathbf{r}_{1}\mathbf{p}_{0_{4}} = \frac{1}{16} - \rho_{z}$ $-\mathbf{r}_{3}$ $-\mathbf{r}_{2}$ $-\mathbf{\tilde{R}}_{y}$ $-\mathbf{i}_{2}$
 $+i\mathbf{R}_{z}$ $+i\mathbf{\tilde{R}}_{z}$ $+i\mathbf{\tilde{R}}_{x}$ $-i\mathbf{\tilde{R}}_{x}$ $-i\mathbf{\tilde{r}}_{4}$ $-i\mathbf{\tilde{r}}_{2}$

 $= [(\mathbf{r}_{1} + \mathbf{r}_{4} + \mathbf{i}_{1} + \mathbf{R}_{y}) - (\mathbf{r}_{2} + \mathbf{r}_{3} + \mathbf{i}_{2} + \mathbf{\tilde{R}}_{y}) + i(\mathbf{\tilde{r}}_{1} + \mathbf{\tilde{r}}_{3} + \mathbf{\tilde{R}}_{x} + \mathbf{i}_{6}) - i(\mathbf{\tilde{r}}_{2} + \mathbf{\tilde{r}}_{4} + \mathbf{R}_{x} + \mathbf{i}_{5})]/16$ $= [\mathbf{r}_{1}\mathbf{p}_{0_{4}} - \mathbf{r}_{2}\mathbf{p}_{0_{4}} + i\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} - i\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}]/4 = (\mathbf{r}_{1} - \mathbf{r}_{2} + i\mathbf{\tilde{r}}_{1} - i\mathbf{\tilde{r}}_{2})\mathbf{p}_{0_{4}}/4$

Result is nicely factored: $\mathbf{P}_{1_4 0_4}^{T_1} = \mathbf{P}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{0_4} \sim (?) \cdot (\mathbf{r}_1 \mathbf{p}_{0_4} - \mathbf{r}_2 \mathbf{p}_{0_4} + i \tilde{\mathbf{r}}_1 \mathbf{p}_{0_4} - i \tilde{\mathbf{r}}_2 \mathbf{p}_{0_4})$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

Consistent with standard:
$$\mathbf{P}_{m_4 m_4}^{\mu} = \sum_{q=0}^{9} \frac{\ell^{\mu}}{^{\circ}G} D_{m_4 m_4}^{\mu^*}(g) \mathbf{g}$$

 $O \supset C_4$

left cosets

 $\left\{1,\rho_z,\mathbf{R}_z,\mathbf{\tilde{R}}_z\right\}$

 $\{\boldsymbol{\rho}_x, \boldsymbol{\rho}_y, \mathbf{i}_4, \mathbf{i}_3\}$

 $\{\mathbf{r}_1,\mathbf{r}_4,\mathbf{i}_1,\mathbf{R}_{v}\}$

 $\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{v}\}$

 $\left\{\tilde{\mathbf{r}}_{1},\tilde{\mathbf{r}}_{3},\tilde{\mathbf{R}}_{x},\mathbf{i}_{6}\right\}$

 $\left\{\tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$

 $Coset-factored \mathbf{T}_{1}-sum:$ $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}]$ $\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}]$ $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}]$

Calculating:
$$\mathbf{P}_{0_4 0_4}^{T_1} \tilde{\mathbf{r}}_1 \mathbf{P}_{1_4 1_4}^{T_1} = D_{0_4 1_4}^{T_1} (\tilde{\mathbf{r}}_1) \mathbf{P}_{0_4 1_4}^{T_1} = \mathbf{P}_{0_4}^{T_1} \mathbf{p}_{0_4} \tilde{\mathbf{r}}_1 \mathbf{p}_{1_4}$$

NOTE: These projectors still have phase errors as of 4.12.17 (However final tables OK)

Then find nilpotent proportional to: $\mathbf{p}_{0_4} \mathbf{\tilde{r}}_1 \mathbf{p}_{1_4}$

$$O \supset C_4$$
left cosets

$$1, \rho_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z$$

$$\rho_x, \rho_y, \mathbf{i}_4, \mathbf{i}_3$$

$$\mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y$$

$$\mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_2, \mathbf{\tilde{R}}_y$$

$$\mathbf{\tilde{r}}_1, \mathbf{\tilde{r}}_3, \mathbf{\tilde{R}}_x, \mathbf{i}_6$$

 $\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$

Coset-factored \mathbf{T}_{1} -sum: $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{1_{4}} + (0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}]$ $\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{3_{4}} + (0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}]$ $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{0_{4}} + (-1)\cdot\mathbf{\rho}_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}]$ Calculating: $\mathbf{P}_{0_{4}0_{4}}^{T_{1}}\mathbf{\tilde{r}}_{1}\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = D_{0_{4}1_{4}}^{T_{1}}(\mathbf{\tilde{r}}_{1})\mathbf{P}_{0_{4}1_{4}}^{T_{1}} = \mathbf{P}^{T_{1}}\mathbf{p}_{0_{4}}\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}}$ NOTE: These projectors

still have phase errors as of 4.12.15 (However final tables OK) Then find nilpotent proportional to: $\mathbf{p}_{0_4}\tilde{\mathbf{r}}_1\mathbf{p}_{1_4} = \frac{I}{I_0}\rho_z$ \mathbf{R}_z \mathbf{R}_z $\mathbf{$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{\mathbf{0}_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$
Consistent with standard:
$$\mathbf{P}_{m_4 m_4}^{\mu} = \sum_{p=0}^{9} \frac{\ell^{\mu}}{{}^{\circ}G} D_{m_4 m_4}^{\mu*}(g) \mathbf{g}$$

 $O \supset C_4$ *left cosets* $\left\{1, \rho_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z\right\}$ $\left\{\rho_x, \rho_y, \mathbf{i}_4, \mathbf{i}_3\right\}$ $\left\{\mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y\right\}$ $\left\{\mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_2, \mathbf{\tilde{R}}_y\right\}$ $\left\{\mathbf{\tilde{r}}_1, \mathbf{\tilde{r}}_3, \mathbf{\tilde{R}}_x, \mathbf{i}_6\right\}$

 $\left\{\tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$

Result is nicely factored quite like $\mathbf{P}_{1_4 \mathbf{0}_4}^{T_1}$: $\mathbf{P}_{1_4 \mathbf{3}_4}^{T_1} = \mathbf{P}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{3_4} \sim (?) \cdot (\mathbf{r}_1 \mathbf{p}_{3_4} + \mathbf{r}_2 \mathbf{p}_{3_4} + \mathbf{\tilde{r}}_1 \mathbf{p}_{3_4} + \mathbf{\tilde{r}}_2 \mathbf{p}_{3_4})$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

Consistent with standard:
$$\mathbf{P}_{m_4 m_4}^{\mu} = \sum_{q=0}^{9} \frac{\ell^{\mu}}{G} D_{m_4 m_4}^{\mu*}(g) \mathbf{g}$$

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

Ireps for $O \supset D_4 \supset C_4$ *subgroup chain*

(a) Vector T_1 Representation		(b) Tensor T ₂ Representation	
$\mathcal{D}^{T_1}(1) = \qquad R_1^2 =$	$r_1 = r_2 = r_1^2 = r_2^2 =$	$\mathscr{D}^{T_2}(1) = R_1^2 = r_1 = r_2 = r_1^2 = r_2^2 =$	
$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \qquad \begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$ \begin{vmatrix} \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-i}{2} & \frac{i}{2} & \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-i}{2} & \frac{i}{\sqrt{2}} \\ \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{i}{2} & \frac{i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{2} & \frac{-i}{2} & \frac{i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{i}{2} & \frac{i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \end{vmatrix} $	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{i}{2} & \frac{-i}{2} & \frac{1}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{2} & \frac{i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \cdot \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \cdot \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot \\ \end{vmatrix}$	2 sor
$\mathscr{D}^{T_1}(R_3^2) = R_2^2 =$	$r_4 = r_3 = r_3^2 = r_4^2 = X, V, Z$	$\mathscr{D}^{T_2}(R_3^2) = R_2^2 = r_4 = r_3 = r_3^2 = r_4^2 = VZ_*X$	Z.XV
$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} i & -i & -i \\ \frac{i}{2} & \frac{-i}{2} & \frac{-1}{\sqrt{2}} \\ i & \frac{i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{1}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & \cdot \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot \\ \end{vmatrix} \begin{vmatrix} \frac{-i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{2} & \frac{i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}$	$ \begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} -i & i & -1 \\ 1 & \cdot & \cdot \\ -i & i & 1 \\ \hline \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} -i & i & 1 \\ -i & 2 & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ -i & i & -1 \\ \hline \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} i & i & -i \\ \frac{i}{2} & \frac{i}{2} & \frac{-i}{\sqrt{2}} \\ -i & -i & -i \\ \hline \frac{-i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} i & i & -i \\ \frac{i}{2} & \frac{i}{2} & \frac{-i}{\sqrt{2}} \\ -i & \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & \cdot \end{vmatrix} \begin{vmatrix} i & i & -i \\ \frac{-i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} $	_,
$\mathcal{D}^{T_1}(R_3) = \qquad i_4 = \sum_{i_4} i_{i_4} = \sum_$	$i_1 = i_2 = R_1^3 = R_1 =$	$\mathscr{D}^{T_2}(R_3) = i_4 = i_1 = i_2 = R_1^3 = R_1 =$	
$\begin{vmatrix} -i & \cdot & \cdot \\ \cdot & i & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & -i & \cdot \\ i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} -\frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2$	$\begin{vmatrix} -i & \cdot & \cdot \\ \cdot & i & \cdot \\ \cdot & \cdot & -1 \end{vmatrix} \begin{vmatrix} \cdot & -i & \cdot \\ i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & $	
$\mathcal{D}^{T_1}(R_3^3) = \qquad i_3 =$	$R_2 = R_2^3 = i_6 = i_5 =$	$\mathscr{D}^{T_2}(R_3^3) = i_3 = R_2 = R_2^3 = i_6 = i_5 =$	
$\begin{vmatrix} i & \cdot & \cdot \\ \cdot & -i & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & i & \cdot \\ -i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$ \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{i}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{-i}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & $	$\begin{vmatrix} i & \cdot & \cdot \\ \cdot & -i & \cdot \\ \cdot & -1 \end{vmatrix} \begin{vmatrix} \cdot & i & \cdot \\ -i & \cdot & \cdot \\ \cdot & -i & \cdot \\ \cdot & -i & \cdot \\ \cdot & -1 \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{$	$ \begin{vmatrix} T_2 \\ E \\ 3_4 \end{vmatrix} \begin{vmatrix} T_2 \\ B_2 \\ 2_4 \end{vmatrix} $

1=[1][2][3][4]	$R_1^2 = [13][24]$	$r_1 = [132]$	$r_2 = [124]$	$r_1^2 = [123]$	$r_2^2 = [142]$	
$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	E
$R_3^2 = [12][34]$	$R_2^2 = [14][23]$	$r_4 = [234]$	$r_3 = [124]$	$r_3^2 = [134]$	$r_4^2 = [243]$	Tensor
$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$x^2 + y^2 - 2z^2$
$R_3 = [1423]$	$i_4 = [12]$	i ₁ = [14]	i ₂ = [23]	$R_1^3 = [1432]$	$R_1 = [1234]$	$(x - y) = \sqrt{3}$
$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	
$R_3^3 = [1324]$	$i_3 = [34]$	$R_2 = [1243]$	$R_2^3 = [1342]$	$i_6 = [24]$	$i_5 = [13]$	
$\left(\begin{array}{rrr}1&0\\0&-1\end{array}\right)$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$ \begin{array}{c cccc} O & E \\ \text{basis:} & D_4 & A_1 \\ C_4 & 0_4 & 2_4 \end{array} $

$O: \chi_g^{\mu}$	g=1	\mathbf{r}_{1-4} $\mathbf{\tilde{r}}_{1-4}$	ρ_{xyz}	$f R_{xyz}$ $f ilde R_{xyz}$	i ₁₋₆
$\mu = A_1$	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

Ireps for $O \supset D_4 \supset D_2$ *subgroup chain*

$\mathcal{D}^{T_1}(1) =$	$R_1^2 =$	r ₁ -	r ₂ =	$r_1^2 =$	$r_2^2 =$	$\mathcal{D}^{T_2}(1) =$	$R_1^2 =$	<i>r</i> ₁ =	<i>r</i> ₂ =	$r_1^2 =$	$r_2^2 =$
$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 D_2 \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$		$\begin{vmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{array}{ccc} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{array}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot & \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{vmatrix}$
$\mathcal{D}^{T_1}(R_3^2) \simeq$	$R_{2}^{2} =$	r ₄ =	r ₃ =	$r_3^2 -$	$r_4^2 =$	$\mathcal{D}^{T_2}(R_3^2) =$	$R_{2}^{2} =$	<i>r</i> ₄ =	<i>r</i> ₃ =	$r_{3}^{2} =$	$r_4^2 =$
$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} -1 & \cdot \\ \cdot & -1 \\ \cdot & \cdot \end{vmatrix}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{vmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{vmatrix}$
$\mathcal{D}^{T_1}(R_3) =$	$i_4 =$	<i>i</i> ₁ =	$i_2 =$	$R_1^3 =$	$R_1 =$	$\mathscr{D}^{T_2}(R_3) =$	<i>i</i> ₄ =	<i>i</i> ₁ =	<i>i</i> ₂ =	$R_1^3 =$	$R_1 =$
$\begin{vmatrix} \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & - \end{matrix}$	$\left \begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{array} \right $	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 \\ 1 & \cdot \\ \cdot & \cdot \end{vmatrix}$	$\begin{array}{c c} \cdot \\ \cdot \\ -1 \end{array} \begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$ \begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \end{vmatrix} $	$ \begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \end{vmatrix} $
$\mathcal{D}^{T_1}(R_3^3) =$	$i_3 = D4$	R ₂ =	$R_2^3 =$	i ₆ =	$i_5 =$	$\mathcal{D}^{T_2}(R_3^3) =$	i ₃ =	$R_2 =$	$R_2^3 =$	i ₆ =	<i>i</i> ₅ =
$ \begin{vmatrix} \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} $	$\begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{array}{ccc} \cdot & 1 \\ -1 & \cdot \\ \cdot & \cdot \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \end{vmatrix}$
T_1	Vector x,y,z	bas	$\begin{array}{c c c} O & T_1 \\ Sis: D_4 & E \\ D_2 & B_1 \end{array}$	$ \begin{array}{c c} \mathbf{T}_1 \\ \mathbf{E} \\ \mathbf{B}_2 \end{array} \begin{array}{c} \mathbf{T}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_2 \end{array} $		Τ	2 y	Tensor z,xz,xy	basi	$\begin{array}{c c c} O & T_2 \\ s: D_4 & E \\ D_2 & B_1 \end{array} \end{array} \begin{array}{c} T_2 \\ F \\ B_1 \end{array}$	$ \begin{array}{c c} 2 \\ 2 \\ $

$\mathcal{D}^{E}(1) \qquad R_{1}^{2} = \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right \qquad \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right $ $\mathcal{D}^{E}(n^{2}) \qquad n^{2}$	$r_{1} = r_{2} = \left \frac{-1}{2} - \frac{-\sqrt{3}}{2} \right \left \frac{-1}{2} - \frac{-\sqrt{3}}{2} \right \\ \frac{\sqrt{3}}{2} - \frac{-1}{2} \right \left \frac{\sqrt{3}}{2} - \frac{-1}{2} \right $	$\begin{vmatrix} r_1^2 = & r_2^2 = \\ \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & -1 $	E
$\mathcal{D}^{2}(R_{3}^{2}) \qquad R_{2}^{2} = \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right \qquad \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right $	$r_{4} = r_{3} = \left \begin{array}{cc} -1 & -\sqrt{3} \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{array} \right \left \begin{array}{c} \frac{-1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{array} \right $	$ \begin{array}{c} r_{3}^{2} = & r_{4}^{2} = \\ \left \begin{array}{c} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \end{array} \right & \left \begin{array}{c} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \end{array} \right \\ \left \begin{array}{c} -\sqrt{3} & -1 \\ 2 & 2 \end{array} \right \\ \end{array} $	Tensor $x^2+y^2-2z^2$ $(x^2-x^2)\sqrt{2}$
$\mathcal{D}^{E}(R_{3}) \qquad i_{4} =$ $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ $\mathcal{D}^{E}(R_{3}^{3}) \qquad i_{3} =$	$i_{1} = i_{2} = \\ \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix} \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix} \\ R_{2} = R_{2}^{3} =$	$R_{1}^{3} = R_{1} = \\ \begin{vmatrix} -1 & -\sqrt{3} \\ 2 & -\sqrt{3} \\ -\sqrt{3} & 1 \\ 2 & 2 \end{vmatrix} \begin{vmatrix} -1 & -\sqrt{3} \\ 2 & -\sqrt{3} \\ -\sqrt{3} & 1 \\ -\sqrt{3} & 1 \\ -\sqrt{3} & 1 \\ 2 & -\sqrt{3} \\ -\sqrt{3} & 1 \\ 2 & -\sqrt{3} \\ -\sqrt{3} & 1 \\ -3$	$\begin{pmatrix} X^2 - Y^2 \end{pmatrix} \sqrt{3}$ basis: $D_4 \begin{vmatrix} E \\ A_1 \end{vmatrix} \begin{vmatrix} E \\ B_1 \\ A_1 \end{vmatrix}$
$\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$	$\begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix} \qquad \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix}$	$\begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix} \begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$D_2 \mid \mathbf{A}_1 \mid \mathbf{A}_1 \mid$

$\mathrm{O}: \chi_{\mathbf{g}}^{\mu}$	g=1	\mathbf{r}_{1-4} $\mathbf{\tilde{r}}_{1-4}$	$ ho_{xyz}$	$f R_{xyz}$ $f \widetilde R_{xyz}$	i ₁₋₆
$\mu = A_1$	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

Ireps for $O \supset D_3 \supset C_2$ *subgroup chain*

$\mathscr{D}^{T_1}(1) =$	$i_4 = [12]$	$R_1^2 = [13][24]$	$R_3 = [1423]$	DT	2(1) =	$i_4 = [12]$	$R_1^2 = [13][24]$	$R_3 = [1423]$
$\left \begin{smallmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{smallmatrix} \right C_2$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{array}{c cccc} \cdot & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{-2}{3} & \frac{\sqrt{2}}{3} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{2}}{3} & \frac{-1}{3} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · · 1 · · 1	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{bmatrix} \frac{-1}{3} & \frac{-\sqrt{2}}{3} & \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{2}}{3} & \frac{-2}{3} & \frac{-\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & \frac{-\sqrt{3}}{3} & . \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$r_{1} = [132]$ $\begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \cdot \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$i_{5} = [13]$ $\begin{vmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} & \cdot \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$r_{4} = [234]$ $\begin{vmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{6} & \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{3}}{2} & \frac{-1}{6} & \frac{\sqrt{2}}{3} \\ \frac{-\sqrt{8}}{3} & \frac{-1}{3} \end{vmatrix}$	$i_{6} = [24]$ $\begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{6} & \frac{-\sqrt{6}}{3} \\ \frac{\sqrt{3}}{6} & \frac{-5}{6} & \frac{-\sqrt{2}}{3} \\ \frac{-\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \end{vmatrix}$		$= [132]$ $\begin{array}{ccc} \cdot & \cdot \\ -\frac{-1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}$	$i_{5} = [13]$ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \cdot & \frac{-\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$r_{4} = [234]$ $\begin{vmatrix} \frac{-1}{3} & \frac{\sqrt{8}}{3} & .\\ \frac{-\sqrt{2}}{3} & \frac{-1}{6} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & \frac{1}{2} \end{vmatrix}$	$i_{6} = [24]$ $\begin{vmatrix} -1 & -\sqrt{2} & \sqrt{6} \\ 3 & -\sqrt{2} & \frac{5}{3} & \frac{\sqrt{3}}{3} \\ -\sqrt{2} & \frac{5}{6} & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & \frac{1}{2} \end{vmatrix}$
$r_{1}^{2} = [123]$ $\begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} & \cdot \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} D_{3}$	$i_{2} = [23]$ $\begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} & \cdot \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$r_2^2 = [142]$ $\begin{vmatrix} -1 & -\sqrt{3} & \sqrt{6} \\ 1 & -\sqrt{3} & -\sqrt{3} & \sqrt{6} \\ \frac{\sqrt{3}}{6} & -\frac{5}{6} & -\sqrt{2} \\ \frac{\sqrt{3}}{6} & -\sqrt{6} & -\frac{\sqrt{2}}{3} & -\frac{1}{3} \\ \hline -\sqrt{6} & -\sqrt{2} & -\frac{1}{3} \\ \end{vmatrix}$	$R_2^3 = [1342]$ $\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{6} & \frac{-\sqrt{6}}{3} \\ \frac{-\sqrt{3}}{2} & \frac{1}{6} & \frac{-\sqrt{2}}{3} \\ \frac{\sqrt{8}}{3} & \frac{1}{3} \end{vmatrix}$	$\begin{vmatrix} r_1^2 \\ 1 \\ \cdot \\ \cdot \end{vmatrix}$	$= [123]$ $\frac{-1}{2} \frac{\sqrt{3}}{2}$ $\frac{-\sqrt{3}}{2} \frac{-1}{2}$	$i_{2} = [23]$ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \cdot & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$r_2^2 = [142]$ $\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{3} & \frac{5}{6} & -\frac{\sqrt{3}}{6} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & \frac{-1}{2} \end{vmatrix}$	$R_2^3 = [1342]$ $\begin{vmatrix} -\frac{1}{3} & \frac{\sqrt{8}}{3} \\ -\frac{\sqrt{2}}{3} & -\frac{1}{6} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & -\frac{1}{2} \end{vmatrix}$
$R_2^2 = [14][23]$	$R_3^3 = [1324]$	$R_3^2 = [12][34]$	i ₃ = [34]	R_{2}^{2}	= [14][23]	$R_3^3 = [1324]$	$R_3^2 = [12][34]$	<i>i</i> ₃ = [34]
$\begin{array}{c ccc} & -\sqrt{3} & -\sqrt{6} \\ \hline & & 3 & 3 \\ \hline -\sqrt{3} & -2 & \sqrt{2} \\ \hline & 3 & 3 & 3 \\ \hline -\sqrt{6} & \sqrt{2} & -1 \\ \hline & 3 & 3 & 3 \end{array}$	$\begin{array}{c cccc} \cdot & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{3}}{3} & \frac{2}{3} & \frac{-\sqrt{2}}{3} \\ \frac{-\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \\ \end{array}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \frac{1}{3} & \frac{-\sqrt{8}}{3} \\ \cdot & \frac{-\sqrt{8}}{3} & \frac{-1}{3} \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \frac{-1}{3} & \frac{\sqrt{8}}{3} \\ \cdot & \frac{\sqrt{8}}{3} & \frac{1}{3} \end{vmatrix}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} & \frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{3} & \frac{-2}{3} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \sqrt{8} \\ 3 & 3 \\ \sqrt{8} & 1 \\ 3 & 3 \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} -1 & \sqrt{8} \\ 3 & 3 \\ \sqrt{8} & \frac{1}{3} \\ \cdot & \cdot & 1 \end{vmatrix}$
$r_2 = [124]$	$R_1 = [1234]$	r ₃ = [143]	$R_1^3 = [1432]$	<i>r</i> ₂	= [124]	$R_1 = [1234]$	$r_3 = [143]$	$R_1^3 = [1432]$
$\begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{6} & \frac{-\sqrt{6}}{3} \\ \frac{-\sqrt{3}}{6} & \frac{5}{6} & \frac{\sqrt{2}}{3} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{2}}{3} & \frac{-1}{3} \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & \\ \frac{\sqrt{3}}{6} & \frac{-1}{6} & \frac{-\sqrt{8}}{3} \\ \frac{-\sqrt{6}}{3} & \frac{\sqrt{2}}{3} & \frac{-1}{3} \end{vmatrix}$	$\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & \cdot \\ \frac{-\sqrt{3}}{6} & \frac{1}{6} & \frac{\sqrt{8}}{3} \\ \frac{\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \end{vmatrix}$		$ \frac{-1}{3} \frac{-\sqrt{2}}{3} \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{2}}{3} \frac{5}{6} \frac{\sqrt{3}}{6} \\ \frac{-\sqrt{6}}{3} \frac{-\sqrt{3}}{6} \frac{-1}{2} $	$\begin{vmatrix} -\frac{1}{3} & \frac{\sqrt{8}}{3} & \cdot \\ -\frac{\sqrt{2}}{3} & \frac{-1}{6} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{6}}{3} & \frac{-\sqrt{3}}{6} & \frac{-1}{2} \end{vmatrix}$	$\begin{vmatrix} \frac{-1}{3} & \frac{-\sqrt{2}}{3} & \frac{-\sqrt{6}}{3} \\ \frac{\sqrt{8}}{3} & \frac{-1}{6} & \frac{-\sqrt{3}}{6} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$ \begin{bmatrix} -1 & -\sqrt{2} & -\sqrt{6} \\ \overline{3} & \overline{3} & -\frac{1}{3} \\ \frac{\sqrt{8}}{3} & -\frac{1}{6} & -\frac{-\sqrt{3}}{6} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{bmatrix} $
$r_3^2 = [134]$	$i_1 = [14]$	$r_4^2 = [243]$	$R_2 = [1243]$	r_{3}^{2}	= [134]	<i>i</i> ₁ = [14]	$r_4^2 = [243]$	$R_2 = [1243]$
$\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{6} & \frac{-\sqrt{6}}{3} \\ \frac{\sqrt{3}}{2} & \frac{-1}{6} & \frac{\sqrt{2}}{3} \\ \frac{-\sqrt{8}}{3} & \frac{-1}{3} \end{vmatrix}$	$\begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3} \\ -\frac{\sqrt{3}}{6} & \frac{-5}{6} & -\frac{\sqrt{2}}{3} \\ \frac{\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \end{vmatrix}$	$\begin{vmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} & \\ \frac{-\sqrt{3}}{6} & \frac{-1}{6} & \frac{-\sqrt{8}}{3} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{2}}{3} & \frac{-1}{3} \end{vmatrix}$	$\begin{vmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} & \\ \frac{\sqrt{3}}{6} & \frac{1}{6} & \frac{\sqrt{8}}{3} \\ \frac{-\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \end{vmatrix}$	-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{3} & \frac{5}{6} & -\frac{\sqrt{3}}{6} \\ -\frac{\sqrt{6}}{3} & -\frac{\sqrt{3}}{6} & \frac{1}{2} \end{vmatrix}$	$\begin{vmatrix} -1 & -\sqrt{2} & \sqrt{6} \\ 3 & -1 & \sqrt{3} \\ \frac{\sqrt{8}}{3} & \frac{-1}{6} & \frac{\sqrt{3}}{6} \\ \cdot & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$\begin{vmatrix} -1 & -\sqrt{2} & \sqrt{6} \\ 3 & -1 & \sqrt{3} \\ \frac{\sqrt{8}}{3} & \frac{-1}{6} & \frac{\sqrt{3}}{6} \\ . & -\sqrt{3} & -1 \\ . & 2 & 2 \end{vmatrix}$
T_1 Vector u, v, v	Or W	$\begin{array}{c c} O & T_1 \\ \text{basis:} D_3 & E \\ C_2 & 0_2 \end{array}$	$ \begin{array}{c c} T_1 \\ E \\ I_2 \end{array} \middle \begin{array}{c} T_1 \\ A_2 \\ I_2 \end{array} \biggr $		$T_2 v_v$	Tensor v,uw,uv	$\begin{array}{c c} O & T_2 \\ \text{basis:} & D_3 & B_2 \\ C_2 & 0_2 \end{array}$	$\left \begin{array}{c} \mathbf{T}_{2} \\ \mathbf{E} \\ 0_{2} \end{array} \right \left \begin{array}{c} \mathbf{T}_{2} \\ \mathbf{E} \\ 1_{2} \end{array} \right $

$\mathcal{D}^{E}(1) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix},$	$ \begin{array}{c} i_4 = [12] \\ 1 & 0 \\ 0 & -1 \end{array} $	$R_{1}^{2} = [13][24]$ $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$	$R_3 = \begin{bmatrix} 1423 \end{bmatrix}$ $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$
$r_{1} = [132]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ \hline 2 & 2 \\ \hline \sqrt{3} & 1 \\ \hline 2 & 2 \end{vmatrix}$	$i_{5} = [13]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & 1 \\ 2 & 2 \end{vmatrix}$	$r_{4} = [234]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ 2 & 2 \\ \sqrt{3} & -\frac{1}{2} \\ \hline 2 & -\frac{1}{2} \end{vmatrix}$	$i_{6} = [24]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ -\sqrt{3} & \frac{1}{2} \end{vmatrix}$
$r_1^2 = [123]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 1 & 2 & 2 \\ -\sqrt{3} & -1 \\ 1 & 2 & 2 \end{vmatrix}$	$i_{2} = [23]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 1 & 2 & 2 \\ \sqrt{3} & 2 & 1 \\ 1 & 2 & 2 \end{vmatrix}$	$r_{2}^{2} = [142]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 1 & 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \end{vmatrix}$	$R_2^3 = [1342]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$
$R_{2}^{2} = [14][23]$ $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$ $r_{2} = [124]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ 1 & 2 \\ \sqrt{3} & -1 \\ 2 & -1 \\ 2 & 2 \end{vmatrix}$	$R_{3}^{3} = [1324]$ $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ $R_{1} = [1234]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ 1 & -\sqrt{3} \\ -\sqrt{3} & 1 \\ 2 & -\sqrt{3} \end{vmatrix}$	$R_{3}^{2} = [12][34]$ $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$ $r_{3} = [143]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix}$	$i_{3} = [34]$ $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ $R_{1}^{3} = [1432]$ $\begin{vmatrix} -1 \\ 2 \\ -\sqrt{3} \\ 2 \\ 2 \\ \end{vmatrix}$
$r_3^2 = [134]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ \hline 2 & 2 \end{vmatrix}$	$i_1 = [14]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 1 & 2 \\ \sqrt{3} & 2 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$r_4^2 = [243]$ $\begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix}$	$R_{2} = [1243]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 2 & \sqrt{3} \\ \sqrt{3} & 1 \\ 2 & \sqrt{2} \end{vmatrix}$
E u ² (1	Tensor $(+v^2-2w^2)u^2-v^2)\sqrt{3}$	$\begin{array}{c c c} O & E \\ \text{basis:} & D_3 & E \\ C_2 & O_2 & 1_2 \end{array}$	

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$

Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type)

Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type)

Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type)

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$

Comparing $O_h \supset D_{4h} \supset D_{2h}$ *and* $O_h \supset D_{3d} \supset C_2$ *representations (T₁ vector-type)*

Examples of off-diagonal tunneling coefficients D^{E}_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

Examples of off-diagonal tunneling coefficients D^{E}_{0424}

 ϵ_{A}

9

 $T_{2}T_{2}T_{2}$ E E

 ϵ_8

3+6

 $, T_{2}T_{2}$

3+6

 $, T, T_{2}$

ε

3+3+3

 $T_{2}, T_{2}, T_{2}, T_{2}$

 ϵ_{11}

3+3+3

10

 ϵ_{10}

E

 ϵ_8

9

6

3+6

ε₅

 ϵ_6

ε₇

Β.

ε9

 ϵ_8

3+3+3

 ϵ_5

 $\epsilon_{\underline{6}}$

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

Comparing Local C_4 , C_3 , and C_2 symmetric spectra

Int.J.Mol.Sci, 14, 714(2013)

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings

When Local C₂ *symmetry dominates*

Int.J.Mol.Sci, 14, 714(2013)

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH4 models with "cluster-crossings'

When Local C₂ *symmetry dominates*

$O \supset C_2(\mathbf{i}_1)$	02	12
$A_1 \downarrow C_2$	1	•
$A_2 \downarrow C_2$	•	1
$E \downarrow C_2$	1	1
$T_1 \downarrow C_2$	1	2
$T_2 \downarrow C_2$	2	1

Table 13. Splittings of $O \supset C_2(i_4)$ given sub-class structure.

$O \supset D_4 \ \supset C_2(i_4)$	0°	$r_n 120^\circ$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
02					
$arepsilon^{A_1}_{0_2}$	g_0	$4r_{12} + 4r_{34}$	$2\rho_{xy} + \rho_z$	$4R_{xy} + 2R_z$	$4i_{1256} + i_3 + i_4$
$\varepsilon^{E}_{0_2}$	g_0	$-2r_{12} - 2r_{34}$	$2\rho_{xy} + \rho_z$	$-2R_{xy}+2R_z$	$-2i_{1256}+i_3+i_4$
$arepsilon_{0_2}^{T_1}$	g 0	$-2r_{12}+2r_{34}$	$- ho_z$	$2R_{xy}$	$-2i_{1256} - i_3 + i_4$
$\varepsilon_{0_2}^{T_{2_E}}$	g_0	$2r_{12} - 2r_{34}$	$- ho_z$	$-2R_{xy}$	$2i_{1256} - i_3 + i_4$
$arepsilon_{0_2}^{T_{2_{A_1}}}$	g 0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	i_3+i_4
1_2					
$arepsilon_{1_2}^{A_2}$	g 0	$4r_{12} + 4r_{34}$	$2\rho_{xy} + \rho_z$	$-4R_{xy}-2R_z$	$-4i_{1256} - i_3 - i_4$
$arepsilon^{A_2}_{1_2} \ arepsilon^E_{1_2}$	$egin{array}{c} g_0 \ g_0 \ g_0 \end{array}$	$\begin{array}{c} 4r_{12}+4r_{34}\\ -2r_{12}-2r_{34} \end{array}$	$\frac{2\rho_{xy} + \rho_z}{2\rho_{xy} + \rho_z}$	$\begin{array}{c} -4R_{xy}-2R_z\\ 2R_{xy}-2R_z\end{array}$	$\begin{array}{c} -4i_{1256}-i_3-i_4\\ 2i_{1256}-i_3-i_4\end{array}$
$arepsilon_{1_2}^{A_2} \ arepsilon_{1_2}^E \ arepsilon_{1_2}^{T_{1_E}} \ arepsilon_{1_2}^{T_{1_E}} \ arepsilon_{1_2}^{T_{1_E}}$	<i>g</i> 0 <i>g</i> 0 <i>g</i> 0	$\begin{array}{r} 4r_{12}+4r_{34}\\ -2r_{12}-2r_{34}\\ 2r_{12}-2r_{34} \end{array}$	$\begin{array}{c} 2\rho_{xy}+\rho_z\\ 2\rho_{xy}+\rho_z\\ -\rho_z \end{array}$	$-4R_{xy} - 2R_z$ $2R_{xy} - 2R_z$ $2R_z$	$\begin{array}{r} -4i_{1256}-i_3-i_4\\ 2i_{1256}-i_3-i_4\\ -2i_{1256}+i_3-i_4\end{array}$
$arepsilon_{1_2}^{A_2} \ arepsilon_{1_2}^{E} \ arepsilon_{1_2}^{T_{1_E}} \ arepsilon_{1_2}^{T_{1_E}} \ arepsilon_{1_2}^{T_{1_{A_2}}} \ arepsilon_{1_2}^{T_{1_{$	90 90 90 90 90	$\begin{array}{c} 4r_{12}+4r_{34}\\ -2r_{12}-2r_{34}\\ 2r_{12}-2r_{34}\\ 0 \end{array}$	$\begin{array}{c} 2\rho_{xy}+\rho_z\\ 2\rho_{xy}+\rho_z\\ -\rho_z\\ -2\rho_{xy}+\rho_z\end{array}$	$\begin{array}{c} -4R_{xy}-2R_z\\2R_{xy}-2R_z\\2R_z\\-2R_z\end{array}$	$\begin{array}{r} -4i_{1256}-i_3-i_4\\ 2i_{1256}-i_3-i_4\\ -2i_{1256}+i_3-i_4\\ -i_3-i_4\end{array}$
$arepsilon_{1_2}^{A_2} \ arepsilon_{1_2}^{E} \ arepsilon_{1_2}^{T_{1_E}} \ arepsilon_{1_2}^{T_{1_E}} \ arepsilon_{1_2}^{T_{1_{A_2}}} \ arepsilon_{1_2}^{T_{2_E}} \ arepsilon_{1_2}^{T_$	90 90 90 90 90 90	$\begin{array}{c} 4r_{12}+4r_{34}\\ -2r_{12}-2r_{34}\\ 2r_{12}-2r_{34}\\ 0\\ -2r_{12}+2r_{34}\end{array}$	$\begin{array}{c} 2\rho_{xy}+\rho_z\\ 2\rho_{xy}+\rho_z\\ -\rho_z\\ -2\rho_{xy}+\rho_z\\ -\rho_z\end{array}$	$-4R_{xy} - 2R_z$ $2R_{xy} - 2R_z$ $2R_z$ $-2R_z$ $-2R_{xy}$	$\begin{array}{c} -4i_{1256}-i_3-i_4\\ 2i_{1256}-i_3-i_4\\ -2i_{1256}+i_3-i_4\\ -i_3-i_4\\ 2i_{1256}+i_3-i_4\end{array}$

Int.J.Mol.Sci, 14, 714(2013)

Comparing off-diagonal $O \supset C_2$ parameter sets to CH_4 models with "cluster-crossings"

Table 14. Matrix that converts tunneling strengths to cluster splitting energies

02	1	r_{12}, i_{1256}	r_{34}, R_{xy}	$ ho_{xy}, R_z$	$ ho_z, i_3$
$arepsilon_{0_2}^{A_1}$	1	4	4	2	1
$\varepsilon_{0_2}^E$	1	$^{-2}$	-2	2	1
$arepsilon_{0_2}^{T_1}$	1	$^{-2}$	2	0	$^{-1}$
$\varepsilon_{E,0_2}^{T_2}$	1	2	-2	0	$^{-1}$
$arepsilon_{A_1,0_2}^{T_2}$	1	0	0	-2	1

02	$arepsilon^{\pmb{A_1}}_{0_2}$	$arepsilon_{0_2}^E$	$arepsilon_{0_2}^{T_1}$	$arepsilon_{E,02}^{T_2}$	$arepsilon_{A_1,0}^{T_2}$
1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
r_{12}, i_{1256}	$\frac{1}{12}$	$-\frac{1}{12}$	$-\frac{1}{8}$	$\frac{1}{8}$	0
r_{34}, R_{xy}	$\frac{1}{12}$	$-\frac{1}{12}$	$\frac{1}{8}$	$-\frac{1}{8}$	0
$ ho_{xy}, R_z$	$\frac{1}{12}$	$\frac{1}{6}$	0	0	$-\frac{1}{4}$
$ ho_z, i_3$	$\frac{1}{12}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$

Figure 30. The plot focuses on the lowest $0_2(C_2)\uparrow O$ cluster in the previous energy plot (Figure 29) of the $T^{[4,6]}$ Hamiltonian for J = 30. The inside plot has been magnified 100 times. The inside diagram also centers the levels around their center-of-energy, showing only the splittings and ignoring the shifts of the cluster. Symmetry species are colored as before: A_1 : red, A_2 : orange, E_2 : green, T_1 : dark blue, and T_2 : light blue. The vertical lines on inside plot draw attention to specific clustering patterns described in the text. $1_2(C_2)\uparrow O$ clusters have similar superfine structure but with A_2 replacing A_1 and T_1 switched with T_2 .

End of Lecture 21. Following pages contain O_h-related tables given previously

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0⊃0	C_4	04	14	2 ₄	34		$O \supset C_3$	03	13	23		$0 \supset C_2$	$_{2}(\mathbf{i}_{1})$	02	12		0	$\supset C_2(\rho_z)$	02	12		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$A_1 \downarrow 0$	$\begin{bmatrix} 2\\4 \end{bmatrix}$	1	•	•	•		$A_1 \downarrow C_3$	1	•	•		$A_1 \downarrow 0$	<i>C</i> ₂	1	•			$A_1 \downarrow C_2$	1	•		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<i>A</i> ₂ ↓0	C_4	•	•	1	•		$A_2 \downarrow C_3$	1	•	•		$A_2 \downarrow$	C_2		1			$A_2 \downarrow C_2$	1	•		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$E \downarrow C$	- - 4	1	•	1	•		$E \downarrow C_3$.	1	1		$E \downarrow \mathbf{C}$	C_2	1	1			$E \downarrow C_2$	2	•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$T_1 \downarrow C$		1	1	•	1		$T_1 \downarrow C_3$	1	1	1		$T_1 \downarrow 0$	C_2	1	2			$T_1 \downarrow C_2$	1	2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$T_2 \downarrow C$	\mathcal{C}_4	•	1	1	1		$T_2 \downarrow C_3$	1	1	1		$T_2 \downarrow 0$	C_2	2	1			$T_2 \downarrow C_2$	1	2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-										-					_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O_{k}	$\supset C_{4,i}$	A'	B'	$A^{\prime\prime}$	$B^{\prime\prime}$	E		$O_k \supset C_{2n}$	A'	$A^{\prime\prime}$	E		$O_h \supset C_{2v}^i$	A'	B'	A''	<i>B''</i>	_	$O_h \supset C_{2v}^z$	A'	<i>B'</i>	A''	<i>B</i> ″′
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_{1g}	$\frac{4v}{\downarrow C_{4v}}$	1	•	•	•	•		$\frac{A_{1o}\downarrow C_{3v}}{A_{1o}\downarrow C_{3v}}$	1	•	•		$A_{lg} \downarrow C_{2v}^i$	1	•	•	•		$A_{1g} \downarrow C_{2v}^z$	1	•	•	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_{2g}	$\downarrow C_{4v}$	•	1					$A_{2g} \downarrow C_{3v}$	•	1	•		$A_{2g} \downarrow C_{2v}^i$		1	•	•		$A_{2g} \downarrow C_{2v}^z$	1	•	•	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_{g}	$\downarrow C_{4v}$	1	1	•	•	•		$E_g \downarrow C_{3v}$		•	1		$E_g \downarrow C_{2v}^i$	1	1	•	•		$E_g \downarrow C_{2v}^z$	2	•	•	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_{1g}	$\downarrow C_{4v}$	•	•	1		1		$T_{1g} \downarrow C_{3v}$	•	1	1		$T_{1g} \downarrow C_{2v}^i$		1	1	1		$T_{1g} \downarrow C_{2v}^z$		1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_{2g}	$\downarrow C_{4v}$	•	•	•	1	1	,	$T_{2g} \downarrow C_{3v}$	1	•	1	,	$T_{2g} \downarrow C_{2v}^i$	1	•	1	1	,	$T_{2g}\downarrow C_{2v}^z$	•	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_{lg}	$\downarrow C_{4v}$	•	•	1	•	•		$A_{1g} \downarrow C_{3v}$	•	1	•		$A_{lg} \downarrow C_{2v}^i$	•	•	1	•	_	$A_{lg} \downarrow C_{2v}^{z}$	•	•	1	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_{2u}	$\downarrow C_{4v}$	•	•	•	1			$A_{2u} \downarrow C_{3v}$	1	•	•		$A_{2u} \downarrow C_{2v}^i$		•	•	1		$A_{2\mu} \downarrow C_{2\nu}^z$	•	•	1	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_{u}	C_{4v}	•	•	1	1			$E_u \downarrow C_{3v}$	•	•	1		$E_{\mu} \downarrow C_{2\nu}^{i}$.	•	1	1		$E_u \downarrow C_{2v}^z$	•	•	2	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_{1u}	C_{4v}	1	•	•	•	1		$T_{1u} \downarrow C_{3v}$	1	•	1		$\frac{T_{1\nu}}{T_{1\nu}}\downarrow C_{2\nu}^{i}$	1	1		1		$\frac{T_{1}}{T_{1}}\downarrow C_{2}^{z}$	1	1	•	1
	T_{2u}	$\downarrow C_{4v}$	•	1	•	•	1		$T_{2u} \downarrow C_{3v}$	•	1	1		$T_{2\mu} \downarrow C_{2\nu}^i$	1	1	1			$\frac{1}{T_{2y}} \downarrow C_{2y}^{z}$	1	1	•	1

(f) Oglobal*Olocal $\frac{A_{l}}{\epsilon_{1}}$ $\frac{A_2}{\epsilon_2}$ *E E* • • ε₃ • • ٠ ε3 ε₄ ε₄ ε₅ 4 (g) $O \supset D_4$ $A_1 A_2$ $B_1 B_1 B_1$ $E_1 E_2 A_4$ ϵ_{4} ϵ_5 ε₅, • 9 $\frac{A_2}{B_1}$ $E E A_1 B_1$ 9 $\begin{bmatrix} T & T \\ T & T \end{bmatrix}$ $\overline{\epsilon_3}$ $\frac{T_2 T_2 T_2}{B_2 E^2 E^2} E^2$ ε₄ ε₅ ε_{6} $\bar{\epsilon_7}$ 2+2 ϵ_8 (h) $O \supset D_3$ $A_1 A_2$ $E_1 A_2 E_2$ ε₈ . 3+6 $A_2 A_2$ E_2 3+6 E E E E $\begin{bmatrix} T_1 & T_1 \\ A_2 & E \end{bmatrix} \begin{bmatrix} T_1 & T_1 \\ E \end{bmatrix}$ 1 ε₃ $\frac{T_2 T_2 T_2}{A_1 E^2 E^2} E^2$ • ε3 ϵ_4 \mathbf{e}_{6} ε₅ $\overline{4}$ ϵ_7 ε₅ (i) $O \supset D_2(i_3 i_4 \rho_z)$ 8-3+6 $\begin{array}{c}
 A_{1} \\
 A_{1} \\
 \overline{\epsilon_{1}}
\end{array}$ $\frac{A_2}{A_2}$ ϵ_2 3+6 $E E \\ A_1 A_2 \\ \overline{\epsilon_2} \cdot$ $I_2 \frac{T_1}{B_1} I$ ε₃ B_2 $\begin{array}{c} T_2 T_2 T_2 \\ A_1^2 B_1^2 B_2^2 \end{array}$ A ϵ_4 ε₅ ϵ_6 2+2 [ε₈]
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 [
 ϵ_9 ε₇ (j) $O \supset D_2(\rho_x \rho_y \rho_z)$ ϵ_{10} • 3+3+3 $A_2 A_1^2$ 3+3+3 $E E A_1 A_1$ ϵ_2 $\begin{array}{c} T_1 T_1 T \\ A_2 B_1 B \end{array}$ 1 $\begin{bmatrix}
 2_{3} & \epsilon_{4} \\
 \epsilon_{5} & \epsilon_{6}
 \end{bmatrix}$ 2+2 B_{2} $\begin{array}{c} T_2 T_2 T_2 \\ A_2 B_1 B_2 \end{array}$ B_2^2 $\tilde{\epsilon_7}$ $\| \widetilde{\boldsymbol{\epsilon}_{10}}_{10} \\ \cdot \boldsymbol{\epsilon}_{11} \\ \cdot \boldsymbol{\epsilon}_{12}$ ${}^{\prime}\epsilon_{8} \cdot \epsilon_{9}$ 3+3+3 3+3+3

Ireps for $O \supset D_4 \supset C_4$ *subgroup chain*

T ₁ Vector x,y,z	T2 Tensor yz,xz,xy

$O \supset C_3$	03	13	23	
$A_1 \downarrow C_3$	1	•	•	
$A_2 \downarrow C_3$	1	•	•	
$E \downarrow C_3$		1	1	
$T_1 \downarrow C_3$	1	1	1	
$T_2 \downarrow C_3$	1	1	1	
$O_h \supset C_{3v}$	<i>A</i> ′	<i>A</i> "	E	$\mathbf{\tilde{r}}_{1} \mathbf{\tilde{o}}_{5} \mathbf{Local} C_{3v}$
$A_{lg} \downarrow C_{3v}$	1	•	•	
$A_{2g} \downarrow C_{3v}$	•	1		\mathbb{R}_{2} \mathbb{O}_{41} 1 \mathbb{O}_{2}
$E_g \downarrow C_{3v}$	•	•	1	$1_2 \qquad O_x + z \qquad J_ \qquad $
$T_{1g} \downarrow C_{3v}$	•	1	1	V_{03R} V_{1}
, $T_{2g} \downarrow C_{3v}$	1	•	1,	
$A_{1g} \downarrow C_{3v}$		1	•	$Local C_{4v}$
$A_{2u} \downarrow C_{3v}$	1	•	•	
$E_u \downarrow C_{3v}$	•	•	1	
$T_{1} \downarrow C_{2}$		•		

	$O_h \supset C_{3v}$	A'	$A^{\prime\prime}$	E	
	$A_{1g} \downarrow C_{3v}$	1	•	•	
	$A_{2g} \downarrow C_{3v}$		1	•	
	$E_g \downarrow C_{3v}$		•	1	
	$T_{1g} \downarrow C_{3v}$		1	1	
,	$T_{2g} \downarrow C_{3v}$	1		1	,
	$A_{1g} \downarrow C_{3v}$		1	•	
	$A_{2u} \downarrow C_{3v}$	1	•	•	
	$E_u \downarrow C_{3v}$			1	
	$T_{1u} \downarrow C_{3v}$	1		1	
	$T_{2u} \downarrow C_{3v}$	•	1	1	

	$\ell^{A_{I=}}$ $\ell^{A_{2=}}$ $\ell^{E} =$ $\ell^{T_{I=}}$	= 1 = 1 = 2 = 3 = 3	Exa Cub Gro	ample ic-Octa up O	e: G= hedral	= <mark>0</mark> Cen Ran Ord	trum: k: er:	$\kappa(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$ $\rho(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{I}} = 1$ $\circ(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$	$1^{0}+1^{0}+2^{0}+3^{0}$ $1^{1}+1^{1}+2^{1}+3^{1}$ $1^{2}+1^{2}+2^{2}+3^{2}$	$+3^{0}=5$ $+3^{1}=10$ $2^{2}+3^{2}=24$
<i>s-orbital r²</i> <i>d-orbitals</i> {x ² +y ² -2z ² ,x ² <i>p-orbitals</i> {x, {xz,yz,xy} <i>d-orbitals</i>	$O \ grow \\ \chi^{\alpha}_{\kappa_g}$ $\alpha = A$ A_2 $(y, z) T_1$ T_2		g = 1 1 2 3 3	$r_{1-4} \ ilde{r}_{1-4} \ 1 \ 1 \ -1 \ 0 \ 0 \ 0$	$ ho_{xyz}$ 1 1 2 -1 -1 -1	$\begin{array}{c} R_{xyz} \\ \tilde{R}_{xyz} \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array}$	i_{1-6} 1 -1 0 -1 1	P) Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr P	R, r ₂ =r ₂ ² r ₂	
$O \supset C_{4}(0)_{2}$ $A_{1} \begin{bmatrix} 1 \\ \bullet \\ A_{2} \\ \bullet \\ E \\ T_{1} \\ 1 \\ T_{2} \end{bmatrix} \bullet$	4 (1) ₄ (• • 1 1	2) ₄ • 1 1 • 1	(3) ₄ =(- • • 1 1	$O \supset C_3$ A_1 A_2 E T_1 T_2	(0) ₃ (1 1 1 1 1 1	1) ₃ (2) • • 1 1 1 1 1 1	3=(-1)		Ra Par Ra Ra Ra Ra Ra Ra Ra	

Octahedral O and spin- $O \subset U(2)$ rotation nomogram from Fig. 4.1.3-4 Principles of Symmetry, Dynamics and Spectroscopy

$O_h \supset O_1$	$\supset D_4$	$\supset C_4$	sub	ogro	up splitti	ing	D_4 1	ρ	R _z ρ	i _{3,4}								$D_2^{Nm}\{ 1,$	$\mathbf{R}_{z}^{2}, \mathbf{R}$	$\frac{2}{x}$, R	$_{y}^{2}$	
	Tetra	agona	l Stan	ding '	Wave Chain		$A_1 = 1$. 1	1	1 1		Tetrag	onal	Movin	g Wav	ve Chain		$\frac{D_2^{Un}\{1,$	\mathbf{R}_z^2 , i	$_{3}, i_{4}$	}	
C	Octahed	ral	Tet	ragon D4	al Dihedra D2	l al	$ \begin{array}{c c} B_1 & 1 \\ A_2 & 1 \\ B_2 & 1 \end{array} $	1 1 1	-1 1 - -1 -	1 -1 - 1 -1 -1 1	Oct	ahedral O	а () р. лі	Tetrag D	gonal 4	Cyclic C4	:-4	$\begin{array}{c c} A_1 & 1 \\ \hline B_1 & 1 \\ \hline A_2 & 1 \end{array}$	1 1 -1 1 1 -1	1 -1 -1	-	
	A 1			A1	Aı	Ĺ	<i>E</i> 2	2 -2	0	0 0)	A 1		A	1	04		$B_2 = 1$	-1 -1	. 1		1
15	Fach	91	(11)	121	evial of a	1	NOrm	$al D_2$:	= {1, F	$\mathbf{R}_{3}^{2},\mathbf{R}_{1}^{2},\mathbf{R}_{1}^{2}$	² ₂ }								1			-I ₄ =
							$D_4 \downarrow l$	$D_2 \mid A$	$B_1 B_1$	$A_2 B$	2			•				$D_4 \downarrow 0$	$C_4 0_4$	14	24	34
	A2	igne Sant		B 1	A1	A_2	A_1	1	•		I B	A ₂	gin.	E	31	24	<i>d</i> .)	A_1	1	•	•	•
							A_1		•••	1 ·								D_1 A_2	1	•	•	•
	-			A1	A1	3.6	B_2	.	•	1 .	0.0	-		A	1	04	97	B_2		•	1	•
(<u></u>	E	<		B1	A1		E		1	· 1		E	-<	. F	31	24		E	•	1	•	1
			-			- ¹ 2	InOrn	nal D.	= {1.	\mathbf{R}^2 , i , i ,	}			1 600	10 B	10000			$\mathbf{r}, \mathbf{\tilde{r}}_i$	ρ_{rvz}	R,Ã	rv7
	T.			Е	Bı	(Q3) 	ען מ		R	A R	1 2 34	T ₁		J	E	14	<u>iis</u>	0	1 r	\mathbf{R}^2	R ³	i
=	11		===		$\leq B_2$		\mathcal{L}_{4}	² 1	· ·	· · ·	2	11	===	===		34		<u> </u>	1 1	1	1	k
			"	A2	A2	_	B_1		•	1.				A	12	04		A_{2}	1 1	1	-1	-1
	77.0			Е	B1	_	A_2	.	•	1 .		Ta		I	Ξ	14	_	E	2 -1	2	0	0
	12	=======	===		== <u>B2</u>	-	B_2	1	•			12	===	===		34		T ₁	3 0	-1	1	-1
				B2	A2	A_1	E		1	· 1			-	B	32	24	1 0) 	T ₂	3 0	-1	-1	1
		(4.)		2 - 2		/nOrm	al	n ² •	• •													1
NOrma	$al D_2 =$	= {1,1	$\mathbf{R}_{3}^{2},\mathbf{R}$	R_1^2, R_2^2	{} UnOrma	al D_2 =	= { I,	R_{3}^{2}, i	$_{3}, \mathbf{i}_{4}$									1			-	·1 ₄ =
$O \downarrow D_2$	A_1	B_1	A_2	B_2	$O \downarrow D_2$	A_1	B_1	A_2	B_2		$O \downarrow D_4$	A_1	B_1	A_2	B ₂	E	_	$\mathbf{O} \downarrow \mathbf{C}_4$	04	14	24	34
A_1	1	•	•	•	A_1	1	•	•	•		A_1	1	•	•	•	•		A_1	1	•	•	•
A_2	1	•	•	•	A_2	.	•	1	•		A_2		1	•	•	•		A_2	•	•	1	•
E	2	•	•	•	E	1	•	1	•		E	1	1	•	•	•		E	1	•	1	•
T_1	•	1	1	1	T ₁	.	1	1	1		T_1		•	1	•	1		T ₁	1	1	•	1
T_2	•	1	1	1	T ₂	1	1	•	1		T_2	•	•	•	1	1	-	T ₂	•	1	1	1

Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry *Order* $^{\circ}O=6$ *hexahedron squares* \cdot *4 pts* =24 =8 octahedron triangles \cdot 3 pts =24 =12 lines \cdot 2 pts =24 positions 13 R.J R₂² R., B (a) The identity | Pr $\tilde{\mathbf{r}}_2 = \mathbf{r}_2^2$ (b) The 120° rotations R² (d)The 90° rotations 14 Re co 4 r4 r2 R₂ 15 1 (c) The I80° rotations r23 R3 (e) The 180° rotations 722 on 4-fold axes 8 on 2-fold axes 8-6 Ś ۲<u>3</u> i1-R R 12 R₃ R2 $\widetilde{\mathbf{R}}_{x} = \mathbf{C}$ 14 S R_{χ}^{3} R P E as T symmetry T_h symmetry Ih symmetry i2 $\tilde{r}_4 = r_4^2$ (If rectangles have \mathbf{R}_{z} *Golden Ratio* $\underline{1\pm\sqrt{5}}$ **R**2 SB 02

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral groups $O_h \supset O \sim T_d$ and $O_h \supset T_h \supset T$

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h , T_d , and O. The Abelian D_2 subgroup of T is indicated also.

Fig. 4.1.5 from Principles of Symmetry, Dynamics and Spectroscopy
			Y=x	¢2		1E 180	HE 180°CLASS														$Y=x_2$			
	×	-		1.4	-	2 5 4	5.6					1	R ² Y	=x2					/	-	1		>	
1		r.2		1-	2:						/	1				P				-		-14	2	
1!		1	/	1)					1	-R 3				7		K	~		X	K		1
14			X	E	1	1					1	1						1		~	//	1.3	1	1
-	-				1	$\int X =$	= <i>x</i> 1			5	83		-			2	7	+	··.	1	1.	12		$V_{\overline{X}=r_{I}}$
Z	$=x_3$	/	/		1	1				7	$x = x_{x}$	1		Rz			$x = x_1$	$\langle Z \rangle$	= <u>x</u> 3	· · · ·	1 :	1	1	
1	·····				22)	1				-R 3		1:	12		1	· · · ·	15	
	1	13	5	/	/							Ri		1	/	1 3		`	K		-			
	12		200	[±1±	=1±1]	10	00					-	R2.	-R32					-	-	1	P	,	
	[111]	+I	$\underbrace{20^{\circ}}_{[1\overline{1}\overline{1}]}$					1 1 1	± 18	$\int_{0}^{\circ} X$		+9	$0^{\circ} XY$	$Z_{0,0,1}$	-9	$\frac{0^{\circ}XY}{10101}$	$Z_{[0,0,\overline{1}]}$	[101]	[10]]	± 180	${}^{0}i_{k}$	$\begin{bmatrix} 0 & 1 \\ \hline 1 \end{bmatrix}$	[011]	
					2	2	2	2	n ²	D ²					n ³	D ³	D ³			[<u> </u>]				
1	r_1	r_2	r_3	r_4	r_1	r_2^2	$r_{\tilde{3}}$	r_4^2	$R_{\tilde{1}}$	R ₂	R ₃	R_1	<i>R</i> ₂	<i>R</i> ₃	$-R_{-}$	$-R_{2}$	$-R_{3}$	$\frac{l_1}{R^3}$	<i>l</i> ₂	R_3^3	<i>l</i> ₄	-i.	$\frac{l_6}{R_2^3}$	
r_2	$ -r_3^2$	r_{2}^{2}	$-r_{4}^{2}$	$-r_1^2$	R_2^2	-1^{-1}	R_1^2	$-R_{3}^{2}$	r_1	r_{4}	$-r_{3}$	R_3	$-R_{1}^{3}$	<i>i</i> ₁ <i>i</i> ₂	<i>i</i> ₃	$-i_5$	R_2^3	i ₆	$-R_{1}$	R_2	$-i_1$	R_{3}^{3}	<i>i</i> ₄	
r ₃	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{3}^{2}	$-r_{2}^{2}$	R_3^2	$-R_{1}^{2}$	-1	R_2^2	$-r_{4}$	r ₁	r ₂	$-i_{4}$	R_1	$-R_{2}^{3}$	R_3^3	i ₆	i2	i5	$-R_{1}^{3}$	i ₁	R_2	$-i_{3}$	R ₃	
r ₄	$-r_{2}^{2}$	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	R_1^2	R_{3}^{2}	$-R_{2}^{2}$	-1	<i>r</i> ₃	$-r_{2}$	r_1	$-R_{3}^{3}$	$-i_{5}$	R_2	$-i_4$	R_{1}^{3}	i_1	R_1	i_6	$-i_{2}$	R_{2}^{3}	R_3	i ₃	
r_1^2	-1	R_{1}^{2}	R_{2}^{2}	R_{3}^{2}	$-r_1$	r_3	r_4	r_2	r_{4}^{2}	r_{2}^{2}	r_{3}^{2}	R_2^3	R_{3}^{3}	R_{1}^{3}	$-i_1$	$-i_3$	$-i_{6}$	$-R_3$	$-i_4$	$-R_1$	<i>i</i> ₅	$-i_{2}$	$-R_2$	
r_{2}^{2}	$ -R_1^2 $	-1	R_{3}^{2}	$-R_{2}^{2}$	r_4	$-r_{2}$	r_1	<i>r</i> ₃	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	<i>i</i> ₂	$-i_{3}$	$-R_1$	R_2	$-R_{3}^{3}$	- <i>i</i> ₅	<i>i</i> ₄	$-R_3$	$-R_{1}^{3}$	$-i_{6}$	R_{2}^{3}	$-i_1$	
r_{3}^{2}	$ -R_{2}^{2} $	$-R_{3}^{2}$	-1	R_{1}^{2}	<i>r</i> ₂	r_4	$-r_{3}$	r_1	r_{2}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	$-R_2$	$-i_4$	$-i_{6}$	<i>i</i> ₂	R_3	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	<i>i</i> ₅	R_1	$-i_1$	$-R_{2}^{3}$	
r_{4}^{2}	$-R_{3}^{2}$	R_2^2	$-R_{1}^{2}$	-1	<i>r</i> ₃	r_1	<i>r</i> ₂	$-r_{4}$	$-r_1^2$	r_{3}^{2}	$-r_{2}^{2}$	$-i_{1}$	$-R_3$	$-i_{5}$	$-R_{2}^{3}$	$-i_4$	R_1	$-R_{3}^{3}$	<i>i</i> ₃	$-i_{6}$	R_1^3	R_2	$-i_{2}$	
R_1^2	$-r_{4}$	r_3	$-r_{2}$	r_1	r_{2}^{2}	$-r_{1}^{2}$	r_{4}^{2}	$-r_{3}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	R_{1}^{3}	i_1	$-i_4$	$-R_1$	i_2	$-i_{3}$	$-R_2$	$-R_{2}^{3}$	R_{3}^{3}	R_3	$-i_{6}$	<i>i</i> ₅	
R_2^2	$-r_{2}$	r_1	<i>r</i> ₄	$-r_{3}$	r_{3}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{2}^{2}	$-R_{3}^{2}$	-1	R_{1}^{2}	- <i>i</i> ₅	R_{2}^{3}	<i>i</i> ₃	$-i_{6}$	$-R_2$	$-i_4$	$-i_{2}$	<i>i</i> ₁	$-R_3$	R_{3}^{3}	R_1	R_1^3	
R_3^2	$-r_{3}$	$-r_{4}$	<i>r</i> ₁	<i>r</i> ₂	r_{4}^{2}	r_{3}^{2}	$-r_{2}^{2}$	$-r_{1}^{2}$	R_2^2	$-R_{1}^{2}$	-1	i ₆	<i>i</i> ₂	R_3^3	$-i_{5}$	$-i_1$	$-R_3$	R_2^3	$-R_2$	<i>i</i> ₄	$-i_{3}$	R_1^3	$-R_1$	
R_1	<i>i</i> ₁	$-R_{2}^{3}$	$-i_{2}$	R_2	R_{3}^{3}	$-i_{3}$	$-R_3$	<i>i</i> ₄	R_1^3	i_6	i_5	R_{1}^{2}	r_1	$-r_{4}^{2}$	-1	$-r_{3}$	r_{2}^{2}	$-r_{4}$	r_2	r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_{3}^{2}	
R_2	i ₃	R_3	$-R_{3}^{3}$	<i>i</i> ₄	R_{1}^{3}	i 5	$-i_{6}$	$-R_1$	$-i_{2}$	R_{2}^{3}	i_1	$-r_{2}^{2}$	R_{2}^{2}	r_1	r_{3}^{2}	-1	$-r_{4}$	R_{1}^{2}	R_{3}^{2}	$-r_2$	$-r_{3}$	$-r_{4}^{2}$	r_1^2	
R_3	i ₆	i5	R_1	$-R_{1}^{3}$	R_{2}^{3}	$-R_2$	$-i_{2}$	$-i_1$	i 3	i_4	R_{3}^{3}	r_1	$-r_{3}^{2}$	R_{3}^{2}	$-r_{2}$	r_{4}^{2}	-1	r_{1}^{2}	r_{2}^{2}	R_{2}^{2}	$-R_{1}^{2}$	$-r_{4}$	$-r_{3}$	
R_{1}^{3}	$-R_2$	$-i_{2}$	R_{2}^{3}	i_1	$-i_{3}$	$-R_{3}^{3}$	<i>i</i> ₄	R_3	$-R_1$	<i>i</i> ₅	$-i_{6}$	-1	$-r_{4}$	r_{3}^{2}	$-R_{1}^{2}$	r_2	$-r_{1}^{2}$	$-r_{1}$	r_3	r_{2}^{2}	$-r_{4}^{2}$	$-R_{3}^{2}$	$-R_{2}^{2}$	
R_2^3	$-R_3$	i3	<i>i</i> ₄	R_{3}^{3}	$-i_{6}$	R_1	$-R_{1}^{3}$	i ₅	$-i_1$	$-R_2$	$-i_{2}$	r_{4}^{2}	-1	$-r_{2}$	$-r_{1}^{2}$	$-R_{2}^{2}$	<i>r</i> ₃	$-R_{3}^{2}$	R_{1}^{2}	$-r_{1}$	$-r_{4}$	$-r_{2}^{2}$	r_3^2	
R_3^3	$-R_1$	R_{1}^{3}	i ₆	i5	$-i_1$	$-i_{2}$	R_2	$-R_{2}^{3}$	<i>i</i> ₄	$-i_{3}$	$-R_3$	$-r_{3}$	r_{2}^{2}	-1	r_4	$-r_{1}^{2}$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}$	$-r_{1}$	
<i>i</i> ₁	R_3^3	$-i_{4}$	<i>i</i> ₃	R_3	$-R_1$	$-i_{6}$	$-i_{5}$	$-R_{1}^{3}$	R_2^3	<i>i</i> ₂	$-R_2$	r_{1}^{2}	R_{3}^{2}	$-r_{4}$	r_{4}^{2}	$-R_{1}^{2}$	$-r_1$	-1	$-R_{2}^{2}$	$-r_{3}$	r_2	r_{3}^{2}	r_2^2	
i2	i ₄	R_{3}^{3}	R_3	$-i_{3}$	$-i_{5}$	R_{1}^{3}	R_1	$-i_{6}$	R_2	$-i_1$	R_{2}^{3}	$-r_{3}^{2}$	$-R_{1}^{2}$	$-r_{3}$	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_2^2	-1	r_4	$-r_{1}$	r_{1}^{2}	r_4^2	
i3	R_1^3	R_1	$-i_{5}$	i_6	$-R_2$	$-R_{2}^{3}$	$-i_1$	i_2	$-R_3$	R_{3}^{3}	$-i_{4}$	$-r_{2}$	r_{1}^{2}	R_{1}^{2}	$-r_{1}$	r_{2}^{2}	$-R_{2}^{2}$	r_{3}^{2}	$-r_{4}^{2}$	-1	R_3^2	r_3	$-r_4$	
<i>i</i> ₄	- <i>i</i> ₅	i ₆	$-R_{1}^{3}$	$-R_1$	$-i_{2}$	i_1	$-R_{2}^{3}$	$-R_2$	$-R_{3}^{3}$	$-R_3$	<i>i</i> ₃	<i>r</i> ₄	r_{4}^{2}	R_2^2	<i>r</i> ₃	r_{3}^{2}	R_1^2	$-r_{2}^{2}$	r_{1}^{2}	$-R_3$	-1	r_1	$-r_{2}$	
i5	<i>i</i> ₂	$-R_2$	i_1	$-R_{2}^{3}$	<i>i</i> ₄	$-R_3$	<i>i</i> ₃	$-R_3^3$	<i>i</i> ₆	$-R_{1}^{3}$	$-R_1$	R_3^2	r_2	r_{2}^{2}	R_2^2	r_4	r_4^2	$-r_{3}$	$-r_{1}$	$-r_{3}^{2}$	$-r_{1}^{2}$	-1	$-R_{1}^{2}$	
ic	R_2^3	i	Ra	in	$-R_2$	-i	$-R_{2}^{3}$	-ia	-is	$-R_1$	Ri	R_2^2	$-r_2$	r_1^2	$-R_2^2$	$-r_1$	r2	$-r_2$	$-r_{A}$	r_{Λ}^2	r5	R_1^2	-1	

Octahedral O and spin- $O \subset U(2)$ rotation product Table F.2.1 from Principles of Symmetry, Dynamics and Spectroscopy