Group Theory in Quantum Mechanics Lecture 21 (4.09.15)

Octahedral $O_h \supset$ *subgroup tunneling parameter modeling*

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS - Ch. 4)

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$

Review Coset factored splitting of $O \supset D_4 \supset C_4$ *projectors*

Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ *projectors and levels*

Subgroup-defined tunneling parameter modeling

Comparing two diagonal $O \supset C_4$ *parameter sets to* SF_6 *spectra*

Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra

Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16)

(a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$

Calculating and Factoring $\mathbf{P}^{T_1}_{I_40_4}$ and $\mathbf{P}^{T_1}_{I_43_4}$

 \rightarrow

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n} (\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n} (\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} \circ G) \sum_{\mathbf{g}} D^{\mu^*}_{m,n} (\mathbf{g}) \mathbf{g}$ Review of $D_3 \supset C_2 \sim C_{3\nu} \supset C_{\nu}$

Calculating and Factoring $\mathbf{P}^{T_1}_{1404}$ and $\mathbf{P}^{T_1}_{1434}$

$$Calculating \mathbf{P}^{E}_{0:0:i} = \mathbf{p}_{0:1}^{C} \mathbf{P}^{E}_{0:0:i} = \mathbf{P$$

 $= \frac{1}{48}(+2)(1,+1,+1,+1) + \frac{1}{48}(+2)(1,+1,+1,+1) + \frac{1}{48}(-1)(1,+1,+1,+1) + \frac{1}{48}(-1)(1,+1,+1,+1) + \frac{1}{48}(-1)(1,+1,+1,+1) + \frac{1}{48}(-1)(1,+1,+1,+1) + \frac{1}{48}(-1)(1,+1,+1,+1) + \frac{1}{48}(-1)(1,+1,+1,+1) + \frac{1}{48}(-1)(+1,1,+1,+1) + \frac{1}{48}(-1)(+1,1$

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{E} = \frac{1}{12} [(1) \cdot \mathbf{1} \mathbf{p}_{\mathbf{0}_{4}} + (1) \cdot \mathbf{\rho}_{x} \mathbf{p}_{\mathbf{0}_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{\mathbf{0}_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{\mathbf{0}_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{\mathbf{0}_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{\mathbf{0}_{4}}]$ Broken-class-ordered sum:

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{E} = \frac{1}{12} (\mathbf{1} \cdot \mathbf{1} - \frac{1}{2}\mathbf{r}_{1} - \frac{1}{2}\mathbf{r}_{2} - \frac{1}{2}\mathbf{r}_{3} - \frac{1}{2}\mathbf{r}_{4} - \frac{1}{2}\mathbf{\tilde{r}}_{1} - \frac{1}{2}\mathbf{\tilde{r}}_{2} - \frac{1}{2}\mathbf{\tilde{r}}_{3} - \frac{1}{2}\mathbf{\tilde{r}}_{4} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{1}{2}\mathbf{\tilde$

$$Calculating \mathbf{P}^{T_{1}}_{0:0} = \mathbf{p}_{0} \mathbf{P}^{T_{1}} = \mathbf{P}^{T_{1}}_{0:0} \mathbf{p}_{0} = \sum_{k=0}^{O} \frac{3}{k} \frac{3}{k} \frac{1}{k} \frac$$

 $=\frac{1}{32}(+3)(1,+1,+1,+1) + \frac{1}{32}(-1)(1,+1,+1,+1) + \frac{1}{32}(0)(1,+1,+1,+1) + \frac{1}{32}(1)(1,+1,+1,+1) + \frac{1}{32}(1)(1,+1,+1,+1,+1) + \frac{1}{32}(1)(1,+1,+1,+1) + \frac{1}{32}(1)(1,+1,+1,+1) + \frac{1}{32}(1)(1,+1,+1,+1) + \frac{1}{32}(1)(1,+1,+1,+1) + \frac{1}{32}(1)(1,+1,+1,+1)$

 $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8} \left[(1) \cdot \mathbf{1} \mathbf{p}_{0_{4}} + (-1) \cdot \mathbf{\rho}_{x} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{r}_{1} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{r}_{2} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{0_{4}} \right]$ Broken-class-ordered sum:

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{T_{1}} = \frac{1}{8} \left(\mathbf{1} \cdot \mathbf{1} + \mathbf{0} + \mathbf{0}$

 $= \frac{1}{32}(+3)(1, -1, +i, -i) + \frac{1}{32}(-1)(1, -1, +i, -i) + \frac{1}{32}(0)(1, -1, +i, -i) + \frac{1}{32}(0)(-1, 1, -i, +i) + \frac{1}{32}(-1)(-i, +i, 1, -1) + \frac{1}{32}(-1)(-i, +i, -i, -1, 1) + \frac{1}{32}(-1)(+i, -i, -1, 1) + \frac{1}{32}(-1)($

Coset-factored sum:

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{1_{4}} + (0)\cdot\mathbf{p}_{x}\mathbf{p}_{1_{4}} + (\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}]$ Broken-class-ordered sum:

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} + \frac{i}{2}\mathbf{r}_{1} + \frac{i}{2}\mathbf{r}_{2} - \frac{i}{2}\mathbf{r}_{3} - \frac{i}{2}\mathbf{r}_{4} - \frac{i}{2}\mathbf{\tilde{r}}_{1} - \frac{i}{2}\mathbf{\tilde{r}}_{2} + \frac{i}{2}\mathbf{\tilde{r}}_{3} + \frac{i}{2}\mathbf{\tilde{r}}_{4} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{\tilde{R}}_{x} + \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{i}{2}\mathbf{\tilde{r}}_{1} - \frac{i}{2}\mathbf{\tilde{r}}_{2} + \mathbf{0}\mathbf{\tilde{r}}_{3} + \mathbf{0}\mathbf{\tilde{r}}_{4} - \frac{i}{2}\mathbf{\tilde{r}}_{3} - \frac{i}{2}$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling Comparing two diagonal $O \supset C_4$ parameter sets to SF₆ spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF₆ spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Irreducible idemp	otent proje	ectors $\mathbf{P}^{\mu}_{m,m}$	$a of O \supset C_4 \sim 2$	$T_d \supset C_{4i}$						
Factoring out O	C_4 subgro	oup cosets:								
$1C_4 = 1\left\{1, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z\right\}$	$\boldsymbol{\rho}_{x}\boldsymbol{C}_{4}=\left\{\boldsymbol{\rho}_{x},\boldsymbol{\rho}_{y}\right\}$	$,\mathbf{i}_4,\mathbf{i}_3 \Big\} \mathbf{r}_1 C_4 =$	$\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$	$\mathbf{r}_2 C_4 = \left\{ \mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_3 \right\}$	$_{2},\tilde{\mathbf{R}}_{y}$ $\left[\tilde{\mathbf{r}}_{1}C_{4}=\left\{\tilde{\mathbf{r}}_{1},\tilde{\mathbf{r}}_{3},\tilde{\mathbf{R}}_{x}\right\}\right]$	$\left[\mathbf{i}_{6}\right] \mathbf{\tilde{r}}_{2}C$	$f_4 = \{i$	$\tilde{\mathbf{r}}_2, \tilde{\mathbf{r}}_4,$	\mathbf{R}_{x} ,	\mathbf{i}_5
Coset-factored A	1 <i>-SUM:</i>									
$\mathbf{P}_{0_40_4}^{A_1} = \frac{1}{12} [(1) \cdot 1 \mathbf{p}_{0_4}]$ Coset-factored A	+(1)· $\rho_x \mathbf{p}_{0_4}$	$+(1) \cdot r_{1} p_{0_{4}}$	$+(1) \cdot r_2 p_{0_4}$	$+(1)\cdot \tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}}$	$+(1)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{0_{4}}]$	$p_{m_4} = 2$	$\sum_{n=0}^{3} \frac{e^{2\pi i}}{2}$	$\frac{m \cdot p}{4}$	\mathbf{R}_{z}^{p} :	_
$\mathbf{P}_{2_{4}2_{4}}^{A_{2}} = \frac{1}{12} [(1) \cdot 1 \mathbf{p}_{2_{4}}]$	+(1)· $\rho_x \mathbf{p}_{2_4}$	+(1)· r ₁ p ₂₄	$+(1) \cdot \mathbf{r}_{2} \mathbf{p}_{2_{4}}$	$+(1)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{2_{4}}$	$+(1)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{2_{4}}]$	$\int \mathbf{p}_{0_{4}}$	=(1+]	\mathbf{R}_{z} + ρ	$p_z + \tilde{R}$	(k _z)/4
$\mathbf{P}_{0_{4}0_{4}}^{E} = \frac{1}{12} [(1) \cdot 1 \mathbf{p}_{0_{4}}]$	+(1)· $\rho_x \mathbf{p}_{0_4}$	$+(-\frac{1}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}}$	$+(-\frac{1}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}}$	$+(-\frac{1}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}}$	$+(-\frac{1}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{0_{4}}]$	$\begin{cases} \mathbf{p}_{1_4} \\ \mathbf{p}_{1_4} \end{cases}$	=(1+i)	$\mathbf{R}_z - \rho_z$	_z -iÃ	$(x_z)/4$
$\mathbf{P}_{2_{4}2_{4}}^{E} = \frac{1}{12} [(1) \cdot 1 \mathbf{p}_{2_{4}}]$ Coset-factored T ₁	+(1)· $\rho_x \mathbf{p}_{2_4}$ -SUM:	$+(-\frac{1}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{2_{4}}$	$+(-\frac{1}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{2}$	$+(-\frac{1}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{2_{4}}$	$+(-\frac{1}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{2_{4}}]$	\mathbf{p}_2 \mathbf{p}_3	=(1-i]	$\mathbf{R}_{z} + \boldsymbol{\rho}_{z}$	$\int_{z}^{z} -\mathbf{R}$	$(x_z)/4$
$\mathbf{P}_{1_4 1_4}^{T_1} = \frac{1}{8} [(1) \cdot 1 \mathbf{p}_{1_4}]$	+(0)· $\boldsymbol{\rho}_{x}\mathbf{p}_{1_{4}}$	$+(\underline{\mathbf{r}}_{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}}$	$+(\underline{\mathbf{r}}_{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}}$	$+(-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}}$	$+(-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}]$	L - 4	ł			
$\mathbf{P}_{3_43_4}^{T_1} = \frac{1}{8} [(1) \cdot \mathbf{1p}_{3_4}]$	+(0)· $\rho_x \mathbf{p}_{3_4}$	$+(-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}}$	$+(-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}}$	$+(\underline{\mathbf{r}}_{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}}$	$+(\underline{\mathbf{r}}_{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}]$					
$\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8} \left[(1) \cdot 1 \mathbf{p}_{0_{4}} \right]$	$+(-1)\cdot\rho_{x}\mathbf{p}_{0_{4}}$	+(0)· $r_1p_{0_4}$	$+(0) \cdot r_2 p_{0_4}$	$+(0)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}}$	$+(0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}]$	C_4 : $\chi^{\mu}_{\mathbf{g}}$	g=1	R _z	ρ_z	$\tilde{\mathbf{R}}_{z}$
<i>Coset-factored</i> T ₂	-sum:					μ= <mark>0</mark> 4	1	1	1	1
$\mathbf{P}_{1_{4}1_{4}}^{T_{2}} = \frac{1}{8} [(1) \cdot 1\mathbf{p}_{1_{4}}]$	+(0)· $\rho_x \mathbf{p}_{1_4}$	$+(-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}}$	$+\left(-\frac{i}{2}\right)\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}}$	$+(-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}}$	$+(-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}]$	14	1	- <i>i</i>	-1	i
$\mathbf{P}_{3_43_4}^{T_2} = \frac{1}{8} [(1) \cdot \mathbf{1p}_{3_4}]$	$+(0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{3_{4}}$	$+(+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}}$	$+(\underline{\mathbf{r}}_{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}}$	$+(\underline{\mathbf{r}}_{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}}$	$+(\underline{\mathbf{r}}_{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}]$	24	1	-1	1	-1
$\mathbf{P}_{2_4 2_4}^{T_2} = \frac{1}{8} [(1) \cdot 1 \mathbf{p}_{2_4}]$	$+(1)\cdot \rho_x \mathbf{p}_{2_4}$	+(0)· $r_1 p_{2_4}$	$+(0)\cdot \mathbf{r}_{2}\mathbf{p}_{2_{4}}$	$+(0)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{2_{4}}$	$+(0)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{2_{4}}]$	34	1	- <i>i</i>	-1	- <i>i</i>

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_{1}}_{0404} \mathbf{P}^{T_{1}}_{1414} \mathbf{P}^{T_{2}}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Irreducible idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ *of* $O \supset C_4 \sim T_d \supset C_{4i}$ *Broken-class-ordered* \mathbf{A}_1 *-sum:*

 $\mathbf{P}_{0_{4}0_{4}}^{A_{1}} = \frac{1}{24} (\mathbf{1} \cdot \mathbf{1} + \mathbf{1}\mathbf{r}_{1} + \mathbf{1}\mathbf{r}_{2} + \mathbf{1}\mathbf{r}_{3} + \mathbf{1}\mathbf{r}_{4} + \mathbf{1}\mathbf{r}_{3} + \mathbf{1}\mathbf{r}_{4} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{y} + \mathbf{1}\mathbf{\rho}_{z} + \mathbf{1}\mathbf{R}_{y} + \mathbf{1}\mathbf{R}_{z} + \mathbf{1}\mathbf{R}_{y} + \mathbf{1}\mathbf{R}_{z} + \mathbf{1}\mathbf{R}_{y} + \mathbf{1}\mathbf{R}_{z} + \mathbf{1}\mathbf{i}_{1} + \mathbf{1}\mathbf{i}_{2} + \mathbf{1}\mathbf{i}_{3} + \mathbf{1}\mathbf{i}_{4} + \mathbf{1}\mathbf{i}_{5} + \mathbf{1}\mathbf{i}_{6})$ *Broken-class-ordered* A₂-sum:

 $\mathbf{P}_{2_{4}2_{4}}^{A_{2}} = \frac{1}{24} (\mathbf{1} \cdot \mathbf{1} + \mathbf{1} \mathbf{r}_{1} + \mathbf{1} \mathbf{r}_{2} + \mathbf{1} \mathbf{r}_{3} + \mathbf{1} \mathbf{r}_{4} + \mathbf{1} \mathbf{\rho}_{x} + \mathbf{1} \mathbf{\rho}_{y} + \mathbf{1} \mathbf{\rho}_{z} - \mathbf{1} \mathbf{R}_{y} - \mathbf{1} \mathbf{R}_{z} - \mathbf{1} \mathbf{R}_{y} - \mathbf{1} \mathbf{R}_{z} - \mathbf{1} \mathbf{R$

 $\mathbf{P}_{0_{4}0_{4}}^{E} = \frac{1}{12} (\mathbf{1} \cdot \mathbf{1} - \frac{1}{2}\mathbf{r}_{1} - \frac{1}{2}\mathbf{r}_{2} - \frac{1}{2}\mathbf{r}_{3} - \frac{1}{2}\mathbf{r}_{4} - \frac{1}{2}\mathbf{\tilde{r}}_{1} - \frac{1}{2}\mathbf{\tilde{r}}_{2} - \frac{1}{2}\mathbf{\tilde{r}}_{3} - \frac{1}{2}\mathbf{\tilde{r}}_{4} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{1}{2}\mathbf{\tilde{r}}_{1} - \frac{1}{2}\mathbf{i}_{2} + \mathbf{1}\mathbf{i}_{3} + \mathbf{1}\mathbf{i}_{4} - \frac{1}{2}\mathbf{i}_{5} - \frac{1}{2}\mathbf{i}_{6})$ $\mathbf{P}_{2_{4}2_{4}}^{E} = \frac{1}{12} (\mathbf{1} \cdot \mathbf{1} - \frac{1}{2}\mathbf{r}_{1} - \frac{1}{2}\mathbf{r}_{2} - \frac{1}{2}\mathbf{r}_{3} - \frac{1}{2}\mathbf{\tilde{r}}_{2} - \frac{1}{2}\mathbf{\tilde{r}}_{3} - \frac{1}{2}\mathbf{\tilde{r}}_{4} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} - \mathbf{1}\mathbf{R}_{x} + \frac{1}{2}\mathbf{R}_{y} - \mathbf{1}\mathbf{R}_{z} + \frac{1}{2}\mathbf{\tilde{R}}_{x} + \frac{1}{2}\mathbf{\tilde{R}}_{y} - \mathbf{1}\mathbf{\tilde{R}}_{z} + \frac{1}{2}\mathbf{i}_{1} + \frac{1}{2}\mathbf{i}_{2} - \mathbf{1}\mathbf{i}_{3} - \mathbf{1}\mathbf{i}_{4} + \frac{1}{2}\mathbf{i}_{5} + \frac{1}{2}\mathbf{i}_{6})$

Broken-class-ordered T₁-*sum:*

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8} (\mathbf{1} \cdot \mathbf{1} + \frac{i}{2} \mathbf{r}_{1} + \frac{i}{2} \mathbf{r}_{2} - \frac{i}{2} \mathbf{r}_{3} - \frac{i}{2} \mathbf{r}_{4} - \frac{i}{2} \tilde{\mathbf{r}}_{1} - \frac{i}{2} \tilde{\mathbf{r}}_{2} + \frac{i}{2} \tilde{\mathbf{r}}_{3} + \frac{i}{2} \tilde{\mathbf{r}}_{4} + \mathbf{0} \rho_{x} + \mathbf{0} \rho_{y} - \mathbf{1} \rho_{z} + \frac{1}{2} \mathbf{R}_{x} + \frac{1}{2} \mathbf{R}_{y} + \mathbf{i} \mathbf{R}_{z} + \frac{1}{2} \tilde{\mathbf{R}}_{x} + \frac{1}{2} \tilde{\mathbf{R}}_{y} - \mathbf{i} \tilde{\mathbf{R}}_{z} - \frac{1}{2} \mathbf{i}_{1} - \frac{1}{2} \mathbf{i}_{2} + \mathbf{0} \mathbf{i}_{3} + \mathbf{0} \mathbf{i}_{4} - \frac{1}{2} \mathbf{i}_{5} - \frac{1}{2} \mathbf{i}_{6}) \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8} (\mathbf{1} \cdot \mathbf{1} - \frac{i}{2} \mathbf{r}_{1} - \frac{i}{2} \mathbf{r}_{2} + \frac{i}{2} \mathbf{r}_{3} + \frac{i}{2} \tilde{\mathbf{r}}_{1} + \frac{i}{2} \tilde{\mathbf{r}}_{2} - \frac{i}{2} \tilde{\mathbf{r}}_{3} - \frac{i}{2} \tilde{\mathbf{r}}_{3} - \frac{i}{2} \tilde{\mathbf{r}}_{3} - \frac{i}{2} \tilde{\mathbf{r}}_{3} - \frac{i}{2} \tilde{\mathbf{r}}_{4} + \mathbf{0} \rho_{x} + \mathbf{0} \rho_{y} - \mathbf{1} \rho_{z} + \frac{1}{2} \mathbf{R}_{x} + \frac{1}{2} \mathbf{R}_{y} - \mathbf{i} \mathbf{R}_{z} + \frac{1}{2} \tilde{\mathbf{R}}_{x} + \frac{1}{2} \tilde{\mathbf{R}}_{y} + \mathbf{i} \tilde{\mathbf{R}}_{z} - \frac{1}{2} \mathbf{i}_{1} - \frac{1}{2} \mathbf{i}_{2} + \mathbf{0} \mathbf{i}_{3} + \mathbf{0} \mathbf{i}_{4} - \frac{1}{2} \mathbf{i}_{5} - \frac{1}{2} \mathbf{i}_{6}) \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8} (\mathbf{1} \cdot \mathbf{1} - \frac{1}{2} \mathbf{r}_{1} - \frac{1}{2} \mathbf{r}_{2} + \frac{1}{2} \mathbf{r}_{4} + \frac{i}{2} \tilde{\mathbf{r}}_{1} + \frac{i}{2} \tilde{\mathbf{r}}_{2} - \frac{i}{2} \tilde{\mathbf{r}}_{3} - \frac{i}$

Broken-class-ordered T₂-sum:

 $\mathbf{P}_{1_{4}1_{4}}^{T_{2}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} - \frac{i}{2}\mathbf{r}_{1} - \frac{i}{2}\mathbf{r}_{2} + \frac{i}{2}\mathbf{r}_{3} + \frac{i}{2}\mathbf{r}_{4} + \frac{i}{2}\tilde{\mathbf{r}}_{1} + \frac{i}{2}\tilde{\mathbf{r}}_{2} - \frac{i}{2}\tilde{\mathbf{r}}_{3} - \frac{i}{2}\tilde{\mathbf{r}}_{4} + \mathbf{0}\rho_{x} + \mathbf{0}\rho_{y} - \mathbf{1}\rho_{z} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{R}_{y} + i\mathbf{R}_{z} - \frac{1}{2}\tilde{\mathbf{R}}_{x} - \frac{1}{2}\tilde{\mathbf{R}}_{x} - \frac{1}{2}\tilde{\mathbf{R}}_{y} - i\tilde{\mathbf{R}}_{z} + \frac{1}{2}\mathbf{i}_{1} + \frac{1}{2}\mathbf{i}_{2} + \mathbf{0}\mathbf{i}_{3} + \mathbf{0}\mathbf{i}_{4} + \frac{1}{2}\mathbf{i}_{5} + \frac{1}{2}\mathbf{i}_{6})$ $\mathbf{P}_{3_{4}3_{4}}^{T_{2}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} + \frac{i}{2}\mathbf{r}_{1} + \frac{i}{2}\mathbf{r}_{2} - \frac{i}{2}\mathbf{r}_{3} - \frac{i}{2}\tilde{\mathbf{r}}_{2} + \frac{i}{2}\tilde{\mathbf{r}}_{3} + \frac{i}{2}\tilde{\mathbf{r}}_{3} + \frac{i}{2}\tilde{\mathbf{r}}_{4} + \mathbf{0}\rho_{x} + \mathbf{0}\rho_{y} - \mathbf{1}\rho_{z} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{R}_{y} - i\mathbf{R}_{z} - \frac{1}{2}\tilde{\mathbf{R}}_{x} - \frac{1$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

$O \supset C_4$	0 ₄ 1	4	2 ₄ 3 ₄	$1 \cdot \mathbf{P}^{\alpha} =$	=(p ₀₄	+ \mathbf{p}_{1_2}	$+ \mathbf{p}_{2_4} +$	p ₃₄)	\mathbf{P}^{α}	1	where	$\mathbf{n} = \frac{1}{2} \sum_{p=1}^{3} e^{i m \cdot p/4} \mathbf{R}^{p}$
$A_1 \downarrow C_4$	1	•	•••	$1 \cdot \mathbf{P}^{A_1} =$	$= \mathbf{P}_{0_{4}0_{4}}^{A_{1}}$	+ 0	+ 0 +	0	Sum	marv	of	$\mathbf{P}_{m_4} 4 p=0$
$A_2 \downarrow C_4$	•	•	1 ·	$1 \cdot \mathbf{P}^{A_2}$	= 0	+ 0	+ $\mathbf{P}_{2_4 2_4}^{A_2}$ +	0	0	$\supset C_4$	0)	$\mathbf{p}_{0_4} = (1 + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z) / 4$
$E \downarrow C_4$	1	•	1 ·	$1 \cdot \mathbf{P}^E$ =	$= \mathbf{P}_{0_40_4}^E \cdot$	+ 0	+ $\mathbf{P}_{2_4 2_4}^E$ +	0	dia	gonal	p =	$\left\{ \mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z) / 4 \right\}$
$T_1 \downarrow C_4$	1	1	· 1	$1 \cdot \mathbf{P}^{T_1} =$	$= \mathbf{P}_{0_4 0_4}^{T_1}$	+ $\mathbf{P}_{1_41}^{T_1}$	$_{4} + 0 + 2$	$\mathbf{P}_{3_43_4}^{T_1}$	iden	npoter	$(t)^{m_4}$	$\mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z) / 4$
$T_2 \downarrow C_4$	•	1	1 1	$1 \cdot \mathbf{P}^{T_2} =$	= 0 -	+ $\mathbf{P}_{1_4 1_4}^{T_2}$	$+ \mathbf{P}_{2_4 2_4}^{T_2} + 1$	$\mathbf{P}_{3_43_4}^{T_2}$	proj	jector, D u	S	$\left[\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \rho_z + i\mathbf{R}_z) / 4 \right]$
$\mathbf{P}_{n_4n_4}^{(\alpha)}(O$	$O \supset C_4)$	1	$r_1 r_2 \tilde{r}_3 \tilde{r}_4$	$\tilde{r}_1\tilde{r}_2r_3r_4$	$\rho_x \rho_y$	$ ho_z$	$R_x \tilde{R}_x R_y \tilde{R}_y$	R_{z}	\tilde{R}_{z}	$i_1 i_2 i_5 i_6$	$i_3 i_4$	
24·I	$\mathbf{P}_{0_{4}0_{4}}^{A_{1}}$	1	1	1	1	1	1	1	1	+1	(+1)	
24·I	$P^{A_2}_{2_4 2_4}$	1	1	1	1	1	-1	-1	-1	-1	-1	$\frac{1}{i_{16}} \frac{1}{i_{16}} \frac{1}{i_{16}}$
12·I	$E 0_4 0_4$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	(+1)	split split
12· I	E 2_42_4	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	$\mathbf{P}_{0_40_4}^{A_1} \underline{+1} \qquad \underbrace{+1}_{\mathbb{F}} \mathbf{P}_{0_40_4}^{A_1} \mathbf{P}_{0_40_4}^{E} \underline{+1}$
8 · ₽	T_{1} $1_{4}1_{4}$	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	<i>—i</i>	+i	$-\frac{1}{2}$	0	
8 · P	$\begin{array}{c} T_1 \\ 3_4 3_4 \end{array}$	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	+i	-i	$-\frac{1}{2}$	0	\mathbf{P}^{T_1} 0
8 · P	${}^{T_{1}}_{0_{4}0_{4}}$	1	0	0	-1	1	0	1	1	0	(-1)	
8 · P	$\begin{array}{c} T_2 \\ 1_4 1_4 \end{array}$	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	-i	+i	$+\frac{1}{2}$	0	$\mathbf{P}_{0_40_4}^E = \frac{-1/2}{2}$
8 · P	T_{2} $3_{4}3_{4}$	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	-i	$+\frac{1}{2}$	0	$-1 \mathbf{P}_{0_4 0_4}^{T_1}$
8 · P	$T_{2}^{T_{2}}$	1	0	0	-1	1	0	-1	-1	0	1	

0 chara	ators	I	5 0	class sun	ıs (E	Each com	mutes	with all 24 ope	erator	s in O)		1 3
0 churu	$O: \chi_{g}^{\mu}$	g=	$\begin{array}{c} \mathbf{r}_{1-4} \\ \mathbf{\tilde{r}}_{1-4} \end{array}$	ρ_{xyz} $\hat{\mathbf{F}}$	xyz xyz	i ₁₋₆					1	where:	$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{5} e^{im \cdot p/4} \mathbf{R}_z^p$
SAC	$\mu = A_1$	1	1	1	1	1							$\mathbf{p}_{0_{z}} = (1 + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z}) / 4$
jectu	A_2	1	1	1	-1	-1							$\mathbf{p}_{1} = (1 + i\mathbf{R} - \rho - i\mathbf{\tilde{R}})/4$
, pro	E	2	-1	2	0	0						$p_{m_4} =$	$\begin{cases} \mathbf{r}_{1_4} (\mathbf{r}_z \mathbf{r}_z \mathbf{r}_z) \\ \mathbf{r}_{-1_4} (\mathbf{r}_z \mathbf{r}_z) \mathbf{r}_{-1_4} \end{cases}$
5 Pt	T_1		0	-l	1	-l 1							$\mathbf{p}_{2_4} = (\mathbf{I} - \mathbf{K}_z + \boldsymbol{p}_z - \mathbf{K}_z)/4$
	I_2	3	10	-1 split-cla	-1 ISS S	ums (Ead	ch con	nmutes with all	4 ope	rators	in C ₄)		$\left(\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \rho_z + i\mathbf{R}_z) / 4 \right)$
			2	3		4	5	~ 6 ~	7	8~	9	10	
$\mathbf{P}_{n_4n_4}^{(\alpha)}(\boldsymbol{O})$	$\supset C_4)$	1	$r_1 r_2 \tilde{r}_3 \tilde{r}_4$	$\tilde{r}_1 \tilde{r}_2 r_3$	$_{3}r_{4}$	$\rho_x \rho_y$	$ ho_z$	$R_x R_x R_y R_y$	R_{z}	R_{z}	$i_1 i_2 i_5 i_6$	$i_3 i_4$	
24 · P	$A_1 I 0_4 0_4 I$	1	1	1		1	1	1	1	1	+1	(+1)	T l = 0 + c l = t = t
$24 \cdot \mathbf{P}_2$	$A_{2} \\ A_{2} \\ A_{2$	1	1	1		1	1	-1	-1	-1	-1	-1	$\frac{1}{i_{16}} \frac{1}{i_{34}}$
$12 \cdot \mathbf{P}_0$	$\frac{E}{0_4 0_4}$ 3	1	$-\frac{1}{2}$	$-\frac{1}{2}$		1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	(+1)	split split
$\frac{12}{P_2} \cdot \mathbf{P}_2$	$\frac{E}{2_4 2_4}$ 4	1	$-\frac{1}{2}$	$-\frac{1}{2}$	-	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	$\mathbf{P}_{0_40_4}^{A_1} \underline{+1} \qquad \underbrace{+1}_{B_{0_40_4}} \mathbf{P}_{0_40_4}^{E} \underline{+1}$
$\begin{bmatrix} 0 & 0 \\ 0 $	¹ ₁ 5	1	$-\frac{i}{2}$	$+\frac{i}{2}$		0	-1	$+\frac{1}{2}$	<i>—i</i>	+i	$-\frac{1}{2}$	0	
$\mathbf{\hat{e}} 8 \cdot \mathbf{P}_{3_4}^T$	¹ ₄ 3 ₄ 6	1	$+\frac{i}{2}$	$-\frac{i}{2}$		0	-1	$+\frac{1}{2}$	+i	-i	$-\frac{1}{2}$	0	$\mathbf{P}_{1}^{T_{1}} = 0$
$8 \cdot \mathbf{P}_{0_4}^{7}$, 1 ₄ 0 ₄ 7	1	0	0		-1	1	0	1	1	0	(-1)	
$8 \cdot \mathbf{P}_{1_4}^7$	⁷ ₂ 8	1	$+\frac{i}{2}$	$-\frac{i}{2}$		0	-1	$-\frac{1}{2}$	-i	+i	$+\frac{1}{2}$	0	$\mathbf{P}_{0_4 0_4}^E = \frac{-1/2}{2}$
$8 \cdot \mathbf{P}_{3_4}^T$	² ₄₃₄ 9	1	$-\frac{i}{2}$	$+\frac{i}{2}$		0	-1	$-\frac{1}{2}$	+i	-i	$+\frac{1}{2}$	0	$-1 \mathbf{P}_{0_4 0_4}^{T_1}$
$8 \cdot \mathbf{P}_{2_{4}}^{T}$		1	0	0		-1	1	0	-1	-1	0	1	

O change		I	5	class s	sums (E	Each commute	s with all 2	4 operato	rs in O)		1 3
0 chara	$O: \chi_{g}^{\mu}$	g=	\mathbf{r}_{1-4} \mathbf{r}_{1-4}	ρ_{xyz}	\mathbf{R}_{xyz} $\tilde{\mathbf{R}}_{xyz}$	i ₁₋₆				И	where:	$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{5} e^{i m \cdot p/4} \mathbf{R}_z^p$
S.IO.	$\mu = A_1$	1	1	1	1	1						$\left[p_{0_{4}} = (1 + R_{z} + \rho_{z} + \tilde{R}_{z}) / 4 \right]$
oject	A ₂	1	1	1	-1	-1						$\mathbf{p}_1 = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$
nd no	E T_1	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	-1 0	2 -1	0	0 -1					$\mathbf{p}_{m_4} =$	$\begin{cases} \mathbf{p}_{2}^{4} = (1 - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z}) / 4 \end{cases}$
S	T_2	3	0 10	-1) <i>split-</i>	-1 class s	1 ums (Each co	mmutes wit	h all 4 op	erators	t in C4)		$\begin{bmatrix} \mathbf{p}_{2_4} + i\mathbf{R}_z - \rho_z + i\mathbf{\tilde{R}}_z \end{bmatrix} / 4$
$\mathbf{P}_{n_4n_4}^{(\alpha)}(\boldsymbol{O})$	$\supset C_4)$	1	$r_1 r_2 \tilde{r}_3 \tilde{r}_3$	$\tilde{r}_4 \tilde{r}_1 \tilde{r}_1$	$\tilde{r}_{2}r_{3}r_{4}$	$\begin{array}{ccc} 4 & 5\\ \rho_x \rho_y & \rho_z \end{array}$	$\left R_{x}\tilde{R}_{x}^{6}R_{y}\right $	\tilde{R}_{y} \tilde{R}_{z}	\tilde{R}_{z}	$\frac{9}{i_1i_2i_5i_6}$	$\frac{10}{i_{3}i_{4}}$	Adding nous of
$24 \cdot \mathbf{P}_0$	$A_1 = 1$]	1	1	1	1] 1	1	1 1	1	+1]	+1	eigenvalue table
$24 \cdot \mathbf{P}_2$	A_{2} 2		1		1	1 1	-1	1 -1	-1	-1]	-1	collapses it back
$12 \cdot P_0^{T}$	$\frac{E}{40_4}$ 3	$\frac{1}{2}$	$-\frac{1}{2}$	1	$-\frac{1}{2}$	1 1	$-\frac{1}{2}$	\int^{1}	1	$-\frac{1}{2}$) ⁺¹	to O-characters
$12 \cdot \mathbf{P}_2^{T}$	E 4	T	$-\frac{1}{2}$	- 1	$-\frac{1}{2}$	$1 \stackrel{\checkmark}{=} 1$	$+\frac{1}{2}$	U -1	-1	$+\frac{1}{2}$	-1	
$\begin{array}{c} \overline{b} \\ $	¹ ₁₄ 5	1	$-\frac{i}{2}$		$+\frac{i}{2}$	0 -1	$+\frac{1}{2}$	<i>—i</i>	+i	$-\frac{1}{2}$	0	
$\frac{\mathbf{P}_{\mathbf{Q}}}{\mathbf{Q}} = 8 \cdot \mathbf{P}_{\mathbf{Q}_{4}}^{T}$	¹ ₁ ₃₄ 6	3	$+\frac{i}{2}$	0	$-\frac{i}{2}$	0 _]-1	$+\frac{1}{2}$	1 + i	<i>—i</i>	$-\frac{1}{2}$] 0	
$8 \cdot \mathbf{P}_{0_4}^{T_1}$	0 ₄ 7	1	0		0	-1 1	0	1	1	0	-1	
$8 \cdot \mathbf{P}_{1_4}^{T}$	² ₁₄ 8	1	$+\frac{i}{2}$		$-\frac{i}{2}$	0 -1	$-\frac{1}{2}$	— <i>i</i>	+i	$+\frac{1}{2}$	0	
$8 \cdot \mathbf{P}_{3_4}^T$	9 2 3 ₄	3	$-\frac{i}{2}$	0	$+\frac{i}{2}$	0 _ 1-1	$-\frac{1}{2}$	_]+ <i>i</i>	—i	$+\frac{1}{2}$	0	
$8 \cdot \mathbf{P}_{2_4}^{T_2}$		1	0		0	-1 1	0	-1	-1	0	1	

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

*C*₄ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O \supset C_4$	0°	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$		$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\varepsilon_{0_{4}}^{A_{1}} =$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{\mathrm{II}}$
$\varepsilon^{E}_{0_4}$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy} - R_z$	$-2i_{\mathrm{I}}+2i_{\mathrm{II}}$
1_4	•	•	•		
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{\mathrm{I}}$
$\varepsilon_{1_4}^{T_1}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_4	•		•		
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{T_2}$	g_0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\mathrm{II}}$
$arepsilon^{A_2}_{2_4}$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{I}}$ $-2i_{\mathrm{II}}$
3_4	•	•	•	•	•
$arepsilon_{3_4}^{T_2}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$-\overline{R_{xy}+2I_z}$	$+2i_{\mathrm{I}}$
$\varepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{\mathrm{I}}$

*C*₄ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

4

$O \supset C_4$	0°	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\epsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	g_0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{\mathrm{II}}$
$\varepsilon^{E}_{0_4}$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy} - R_z$	$-2i_{\mathrm{II}}+2i_{\mathrm{II}}$
1_4	•		•		
$\varepsilon_{1_4}^{T_2}$	<i>g</i> 0	$+2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{I}$
$arepsilon_{\mathbf{1_4}}^{T_1}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_4	•		•		
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{T_2}$	g_0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\mathrm{II}}$
$arepsilon^{A_2}_{2_4}$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{I}} - 2i_{\mathrm{II}}$
3_4	•	•		•	
$arepsilon_{\mathbf{3_4}}^{T_2}$	<i>g</i> ₀	$-2m_{\mathrm{I}}$	$- ho_z$	$-\overline{R_{xy}+2I_z}$	$+2i_{\mathrm{I}}$
$arepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{I}$

Int.J.Mol.Sci, 14, 714(2013)

 \mathcal{S}_4

Sunday, April 12, 2015

*C*⁴ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O \supset C_4$	0°	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = {\rm Re}r_{1234}$		$R_z = \text{Re}R_z$	$i_{\mathrm{I}} = i_{1256}$
04		$m_{\rm I} = {\rm Im}r_{1234}$		$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\epsilon_{0_4}^{A_1} =$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	<i>g</i> 0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{\mathrm{II}}$
$\varepsilon_{0_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy} - R_z$	$-2i_{\mathrm{I}}+2i_{\mathrm{II}}$
1_4	•	•	•	•	•
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy}-2I_z$	$+2i_{\mathrm{I}}$
$\varepsilon_{1_4}^{T_1}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_4	•	•	•	•	•
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{I}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{T_2}$	g_0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{II}$
$arepsilon^{A_2}_{2_4}$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{I}}$ $-2i_{\mathrm{II}}$
3_4	•	•	•	•	
$arepsilon_{\mathbf{3_4}}^{T_2}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy} + 2I_z$	$+2i_{\mathrm{I}}$
$arepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\rm I}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{I}$

Int.J.Mol.Sci, 14, 714(2013)

 \mathcal{J}_4

Sunday, April 12, 2015

*C*⁴ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O \supset C_4$	0°	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\epsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	g_0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{ m II}$
$\varepsilon^{E}_{0_4}$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy} - R_z$	$-2i_{\mathrm{I}}+2i_{\mathrm{II}}$
1_4	•	•	•		
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy} - 2I_z$	$+2i_{\mathrm{I}}$
$\varepsilon_{1_4}^{T_1}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_4	•		•		
$\varepsilon^{E}_{2_{4}}$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{II}}-2i_{\mathrm{III}}$
$\varepsilon_{2_4}^{T_2}$	g_0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{II}$
$arepsilon^{A_2}_{2_4}$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{II}} - 2i_{\mathrm{II}}$
3_4	•	•	•	•	•
$\varepsilon_{3_4}^{T_2}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy} + 2I_z$	$+2i_{\mathrm{I}}$
$arepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{\mathrm{I}}$

*C*₄ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O \supset C_4$	0°	$r_n 120^{\circ}$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$		$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\epsilon_{0_4}^{A_1} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$arepsilon_{0_4}^{T_1}$	g_0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{ m II}$
$\varepsilon_{0_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy} - R_z$	$-2i_{\mathrm{I}}+2i_{\mathrm{II}}$
1_4	•	•	•		
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy} - 2I_z$	$+2i_{\mathrm{I}}$
$arepsilon_{1_4}^{T_1}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_4	•		•		
$\varepsilon_{2_4}^E$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{II}}-2i_{\mathrm{III}}$
$\varepsilon_{2_4}^{T_2}$	g_0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\mathrm{II}}$
$arepsilon^{A_2}_{2_4}$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{II}} - 2i_{\mathrm{II}}$
3_4	•	•	•	•	•
$arepsilon_{\mathbf{3_4}}^{T_2}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$-\overline{R_{xy}+2I_z}$	$+2i_{\mathrm{I}}$
$arepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{\mathrm{I}}$

*C*⁴ *Subgroup-defined tunneling parameter modeling*

Table 11. Splittings of $O \supset C_4$ given sub-class structure.

$O \supset C_4$	0°	$r_n 120^{\circ}$	$ ho_n 180^\circ$	$R_n 90^{\circ}$	$i_n 180^\circ$
0.		$r_{\rm I} = \operatorname{Re} r_{1234}$		$R_z = \text{Re}R_z$	$i_{\rm I} = i_{1256}$
04		$m_{\rm I}={\rm Im}r_{1234}$	-	$I_z = \mathrm{Im}R_z$	$i_{ m II}=i_{34}$
$\varepsilon_{0_{4}}^{A_{1}} =$	<i>g</i> 0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$+4R_{xy}+2R_z$	$+4i_{\mathrm{I}}+2i_{\mathrm{II}}$
$\varepsilon_{0_4}^{T_1}$	g_0	0	$-2\rho_{xy}+\rho_z$	$+2R_z$	$-2i_{ m II}$
$\varepsilon^{E}_{0_4}$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy} - R_z$	$-2i_{\mathrm{I}}+2i_{\mathrm{II}}$
1_{4}	•	•	•		
$\varepsilon_{1_4}^{T_2}$	g_0	$+2m_{\rm I}$	$- ho_z$	$-R_{xy} - 2I_z$	$+2i_{\mathrm{I}}$
$\varepsilon_{1_4}^{T_1}$	g_0	$-2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}-2I_z$	$-2i_{\mathrm{I}}$
2_4	•		•		
$\varepsilon^{E}_{2_{4}}$	g_0	$-2r_{\mathrm{I}}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	$+2i_{\mathrm{II}}-2i_{\mathrm{II}}$
$\varepsilon_{2_4}^{T_2}$	g_0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$+2i_{\mathrm{II}}$
$\varepsilon^{A_2}_{2_4}$	g_0	$+8r_{\rm I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	$-4i_{\mathrm{I}}-2i_{\mathrm{II}}$
3_4	•	•	•	•	•
$\varepsilon_{3_4}^{T_2}$	<i>g</i> 0	$-2m_{\mathrm{I}}$	$- ho_z$	$-R_{xy} + 2I_z$	$+2i_{\mathrm{I}}$
$\varepsilon_{3_4}^{T_1}$	<i>g</i> 0	$+2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}+2I_z$	$-2i_{\mathrm{I}}$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Table 12. Splittings of $O \supset C_3$ given sub-class structure. *C*₃ Subgroup-defined tunneling parameter modeling

$O \supset C_3$	0°	$r_n 120^\circ$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$									
0.		$r_{\mathrm{I}}=Re(r_{1})$ $i_{\mathrm{I}}=Im(r_{1})$	0 - 0	$R_n = Re(R_{xyz})$	$i_{ m I}=i_{136}$									
03		$r_{ m II} = Re(r_{234}) ~~i_{ m I} = Im(r_{234})$	$\rho = \rho_{xyz}$	$I_n = Im(R_{xyz})$	$i_{ m II}=i_{245}$									
$arepsilon^{m{A_1}}_{0_3}$	g 0	$2r_{\mathrm{I}}$ + $6r_{\mathrm{II}}$	3 ho	$6R_n$	$3i_{\mathrm{I}}+3i_{\mathrm{I}}$									
$arepsilon^{A_2}_{0_3}$	g_0	$2r_{\mathrm{I}}$ + $6r_{\mathrm{II}}$	3 ho	$-6R_n$	$-3i_{ m I}-3i_{ m II}$									
$arepsilon_{0_3}^{T_1}$	g 0	$2r_{\mathrm{I}} - 2r_{\mathrm{II}}$	- ho	$2R_n$	$i_{\mathrm{I}}-3i_{\mathrm{II}}$									
$\varepsilon_{0_3}^{T_2}$	g_0	$2r_{\mathrm{I}} - 2r_{\mathrm{II}}$	- ho	$-2R_n$	$-i_{ m I}+3i_{ m II}$									
13														
$arepsilon_{1_3}^E$	g_0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}+3\sqrt{3}i_{\mathrm{II}}$	3 ho	0	0									
$arepsilon^{T_1}_{1_3}$	g 0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}-\sqrt{3}i_{\mathrm{II}}$	- ho	$2R_n + 2\sqrt{3}I_n$	$-2i_{1}$									
$arepsilon^{T_2}_{1_3}$	g_0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}-\sqrt{3}i_{\mathrm{II}}$	- ho	$-2R_n - 2\sqrt{3}I_n$	$2i_{ m I}$									
2_3														
$arepsilon_{2_3}^E$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}-3\sqrt{3}i_{\mathrm{II}}$	3 ho	0	0									
$arepsilon^{T_1}_{2_3}$	g 0	$-r_{ ext{I}}-\sqrt{3}i_{ ext{I}}+r_{ ext{II}}+\sqrt{3}i_{ ext{II}}$	- ho	$2R_n - 2\sqrt{3}I_n$	$-2i_{I}$									
$arepsilon_{2_3}^{\mathbf{T_2}}$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}+\sqrt{3}i_{\mathrm{II}})$	- ho	$-2R_n+2\sqrt{3}I_n$	$2i_{\rm I}$ Int.	I.Mol.	Sci, 1	Sci, 14,	Sci, 14, 7	Sci, 14, 714	Sci, 14, 714(2	Sci, 14, 714(20	Sci, 14, 714(20	Sci, 14, 714(20.

Table 12. Splittings of $O \supset C_3$ given sub-class structure. *C*₃ Subgroup-defined tunneling parameter modeling

$O \supset C_3$	0°	$r_n 120^\circ$	$ ho_n 180^\circ$	R_n90°	$i_n 180^\circ$														
0.		$r_{\mathrm{I}}=Re(r_{1})$ $i_{\mathrm{I}}=Im(r_{1})$	0 - 0	$R_n = Re(R_{xyz})$	$i_{ m I}=i_{136}$														
03		$r_{ m II} = Re(r_{234}) ~~i_{ m I} = Im(r_{234})$	$\rho = \rho_{xyz}$	$I_n = Im(R_{xyz})$	$i_{ m II}=i_{245}$														
$arepsilon^{m{A_1}}_{0_3}$	g_0	$2r_{\mathrm{I}}$ + $6r_{\mathrm{II}}$	3 ho	$6R_n$	$3i_{\mathrm{I}}+3i_{\mathrm{I}}$														
$arepsilon^{A_2}_{0_3}$	g_0	$2r_{\mathrm{I}}$ + $6r_{\mathrm{II}}$	3 ho	$-6R_n$	$-3i_{\mathrm{I}}-3i_{\mathrm{II}}$														
$arepsilon_{0_3}^{T_1}$	g_0	$2r_{\mathrm{I}} - 2r_{\mathrm{II}}$	- ho	$2R_n$	i_{I} - $3i_{\mathrm{II}}$														
$\varepsilon_{0_3}^{T_2}$	g 0	$2r_{ m I} - 2r_{ m II}$	- ho	$-2R_n$	$-i_{ m I}+3i_{ m II}$														
13																			
$arepsilon_{1_3}^E$	g_0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}+3\sqrt{3}i_{\mathrm{II}}$	3 ho	0	0														
$arepsilon^{T_1}_{1_3}$	g_0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}-\sqrt{3}i_{\mathrm{II}}$	- ho	$2R_n + 2\sqrt{3}I_n$	$-2i_{ extsf{T}}$														
$arepsilon_{1_3}^{T_2}$	g 0	$-r_{\mathrm{I}}+\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}-\sqrt{3}i_{\mathrm{II}}$	- ho	$-2R_n - 2\sqrt{3}I_n$	$2i_{\mathrm{I}}$														
2_3																			
$arepsilon_{2_3}^E$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}-3r_{\mathrm{II}}-3\sqrt{3}i_{\mathrm{II}}$	3 ho	0	0														
$arepsilon^{T_1}_{2_3}$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}+\sqrt{3}i_{\mathrm{II}}$	- ho	$2R_n - 2\sqrt{3}I_n$	$-2i_{I}$														
$arepsilon_{2_3}^{T_2}$	g_0	$-r_{\mathrm{I}}-\sqrt{3}i_{\mathrm{I}}+r_{\mathrm{II}}+\sqrt{3}i_{\mathrm{II}})$	- ho	$-2R_n + 2\sqrt{3}I_n$	$2i_{\rm I}$ Int.	I.Mol.Sci	i, 14	i, <i>14,</i> 1	i, <i>14, 71</i>	i, <i>14, 714(</i>	i, 14, 714(20	i, 14, 714(20	i, 14, 714(20)	i, 14, 714(201	i, <i>14, 714(201</i>				

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $g \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Why $O \supset C_2$ *parameter sets require off-diagonal nilpotent* $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

С	$D \supset C_2$	(i ₁)	02	12	$O \supset C_2$	(ρ_z)	02	12		
	$A_{\rm l}\downarrow C$	\mathbb{Z}_2	1	•	$A_1 \downarrow C$	$\overline{2}_2$	1	•		
	$A_2 \downarrow 0$	C_2	.	1	$A_2 \downarrow 0$	C_2	1			
	$E \downarrow C$	$\tilde{2}$	1	1	$E\downarrow C$	$\tilde{2}$	2	•		
	$T_1 \downarrow C$	$\frac{7}{2}$	1	2	$T_1 \downarrow C$	$\frac{7}{2}$	1	2		
	$T_2 \downarrow C$	\mathbb{Z}_2	2	1	$T_2 \downarrow C$	\mathbb{Z}_2	1	2		
							1		_	
$O_h \supset C_{2v}^i$	A'	<i>B</i> ′	A'''	<i>B</i> ″′	$O_h \supset C_{2v}^z$	A '	<i>B</i> ′	A‴	<i>B</i> ″′	$\mathbf{\tilde{r}_{1}}$ $\mathbf{\tilde{r}_{1}}$ $\mathbf{\tilde{r}_{2}}$ $\mathbf{Local} C_{2}$
$A_{lg} \downarrow C_{2v}^i$	1		•	•	$A_{1g} \downarrow C_{2v}^z$	1				
$A_{2g} \downarrow C_{2v}^i$		1		•	$A_{2g} \downarrow C_{2v}^z$	1	•	•		G 3 G x G 4 G 2
$E_g \downarrow C_{2v}^i$	1	1			$E_g \downarrow C_{2v}^z$	2				\mathbb{R}_{z} \mathbb{O}_{4} 1 1 \mathbb{O}_{2}
$T_{1g} \downarrow C_{2v}^i$		1	1	1	$T_{1g} \downarrow C_{2v}^z$	•	1	1	1	$\begin{array}{c c} 1_{2} & 0_{x} + z & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} & 0_{y} \\ 0_{x} + z & 0_{y} & 0_{y} \\ 0_{y} & 0_{y} \\ 0_{y} & 0_{y} & 0_{y} \\ 0$
$T_{2g} \downarrow C_{2v}^i$	1	•	1	1	$T_{2g} \downarrow C_{2v}^z$		1	1	1	$\overline{O_3 R_2} \overline{V_1}$
$A_{1g} \downarrow C_{2v}^i$		•	1	•	$A_{lg} \downarrow C_{2v}^{z}$		•	1	•	Local C.
$A_{2u} \downarrow C_{2v}^i$		•	•	1	$A_{2u} \downarrow C_{2v}^z$		•	1		4v
$E_u \downarrow C_{2v}^i$		•	1	1	$E_u \downarrow C_{2v}^z$		•	2		
$T_{1u} \downarrow C_{2v}^i$	1	1	•	1	$T_{1u} \downarrow C_{2v}^z$	1	1		1	
$T_{2u} \downarrow C_{2v}^i$	1	1	1	•	$T_{2u} \downarrow C_{2v}^z$	1	1		1	

3

9

 $F_{2}T_{2}T_{2}T_{2}$

 ϵ_8

3+6

 T_2T_2

3+6

3 + 3 + 3

 ϵ_{11}

3+3+3

ε,

ε₈,

ε

9

 ϵ_6

3+6

ε₅

3+6

ε5

 ϵ_7

3+3+3

B, B

 ϵ_8

3+3+3

ε9

 $\epsilon_{\underline{6}}$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$

Fundamental
$$\mathbf{P}^{\mu}_{m,n}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm}\mathbf{g}\mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu}\sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G}\sum_{\mathbf{g}}^{\circ G} D^{\mu^{*}}_{mn}(\mathbf{g})\mathbf{g}$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$

Fundamental
$$\mathbf{P}^{\mu}_{m,n}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm}\mathbf{g}\mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu}\sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G}\sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g})\mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mn} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$

 $\mathbf{P}_{mm}^{\mu}\mathbf{g}\mathbf{P}_{nn}^{\mu}=(?)\mathbf{P}_{mn}^{\mu}$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm}\mathbf{g}\mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu}\sum_{m,n}^{\ell^{\mu}}D^{\mu}_{mn}(\mathbf{g})\mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G}\sum_{\mathbf{g}}^{^{\circ}G}D^{\mu^{*}}_{mn}(\mathbf{g})\mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(g)$ by operator transformations:

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu} (\mathbf{g}) \mathbf{P}_{kn}^{\mu}$$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ (*m* \neq *n*)

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: $\mathbf{g}\mathbf{P}^{\mu}_{mn} = \sum_{i}^{\ell^{\mu}} D^{\mu}_{km}(\mathbf{g})\mathbf{P}^{\mu}_{kn}$

or by projector nomalization: $\mathbf{P}_{mn}^{\mu}\mathbf{P}_{mn}^{\mu\dagger} = \mathbf{P}_{mn}^{\mu}\mathbf{P}_{nm}^{\mu} = \mathbf{P}_{mm}^{\mu}$
Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$
Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: $\mathbf{g}\mathbf{P}^{\mu}_{mn}$
or by projector nomalization: $\mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu\dagger}_{mn} = \mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu}_{nm} = \mathbf{P}^{\mu}_{mm}$
or by ket-vector transformations: \mathbf{g}

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu}(\mathbf{g})\mathbf{P}_{kn}^{\mu}$$
$$\mathbf{g}\left|\mathbf{P}_{mn}^{\mu}\right\rangle = \sum_{k}^{\ell^{\mu}} D_{km}^{\mu}(\mathbf{g})\left|\mathbf{P}_{kn}^{\mu}\right\rangle$$

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{{}^{\circ}G} \sum_{\mathbf{g}}^{{}^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: or by projector nomalization: $\mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu\dagger}_{mn} = \mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu}_{nm} = \mathbf{P}^{\mu}_{mm}$ or by ket-vector transformations: $\mathbf{g} |\mathbf{P}^{\mu}_{mn}\rangle = \sum_{k}^{\ell^{\mu}} D^{\mu}_{kn}(\mathbf{g}) |\mathbf{P}^{\mu}_{kn}\rangle$

or by direct (*k*,*m*)-matrix elements for any (*n*) that gives nonzero value: $\langle \mathbf{P}_{kn}^{\mu} | \mathbf{g} | \mathbf{P}_{mn}^{\mu} \rangle^{k} = D_{km}^{\mu}(\mathbf{g})$

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{{}^{\circ}G} \sum_{\mathbf{g}}^{{}^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: or by projector nomalization: $\mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu\dagger}_{mn} = \mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu}_{nm} = \mathbf{P}^{\mu}_{mm}$ or by ket-vector transformations: $\mathbf{g} | \mathbf{P}^{\mu}_{mn} \rangle = \sum_{k}^{\ell^{\mu}} D^{\mu}_{km}(\mathbf{g}) | \mathbf{P}^{\mu}_{kn} \rangle$ or by direct (k,m)-matrix elements for any (n) that gives nonzero value: $\langle \mathbf{P}^{\mu}_{kn} | \mathbf{g} | \mathbf{P}^{\mu}_{mn} \rangle^{k} = D^{\mu}_{km}(\mathbf{g})$

Hint: Sub-group chain factoring helps. Since \mathbf{P}^{μ} is *all-commuting*: $\mathbf{p}_{m_4}\mathbf{P}^{\mu} = \mathbf{P}_{m_4m_4}^{\mu} = \mathbf{P}^{\mu}\mathbf{p}_{m_4}$

Fundamental
$$\mathbf{P}^{\mu}_{mn}$$
 definitions:
(1) $\mathbf{P}^{\mu}_{mm} \mathbf{g} \mathbf{P}^{\mu}_{nn} = D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (2) $\mathbf{g} = \sum_{\mu} \sum_{m,n}^{\ell^{\mu}} D^{\mu}_{mn}(\mathbf{g}) \mathbf{P}^{\mu}_{mn}$ (3) $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{\mu}}{{}^{\circ}G} \sum_{\mathbf{g}}^{{}^{\circ}G} D^{\mu^{*}}_{mn}(\mathbf{g}) \mathbf{g}$

Problem: Need to derive *both* $\mathbf{P}^{\mu}_{m,n}$ *and* $D^{\mu}_{m,n}(g)$ for unequal $(m \neq n)$ values.

Solution: First use $\mathbf{P}^{\mu}_{m,m}$ in (1) to get something proportional to $\mathbf{P}^{\mu}_{m,n}$ Then find $D^{\mu}_{m,n}(\mathbf{g})$ by operator transformations: or by projector nomalization: $\mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu\dagger}_{mn} = \mathbf{P}^{\mu}_{mn}\mathbf{P}^{\mu}_{nm} = \mathbf{P}^{\mu}_{mm}$ or by ket-vector transformations: $\mathbf{g} | \mathbf{P}^{\mu}_{mn} \rangle = \sum_{k}^{\ell^{\mu}} D^{\mu}_{km}(\mathbf{g}) | \mathbf{P}^{\mu}_{kn} \rangle$ or by direct (k,m)-matrix elements for any (n) that gives nonzero value: $\langle \mathbf{P}^{\mu}_{kn} | \mathbf{g} | \mathbf{P}^{\mu}_{mn} \rangle^{k} = D^{\mu}_{km}(\mathbf{g})$ *Hint:* Sub-group chain factoring helps. Since \mathbf{P}^{μ} is *all-commuting*: $\mathbf{P}_{m4}\mathbf{P}^{\mu} = \mathbf{P}^{\mu}_{m4}\mathbf{q} = \mathbf{P}^{\mu}\mathbf{P}_{m4}\mathbf{q}$ This reduces to a smaller object $\mathbf{P}_{m4}\mathbf{g}\mathbf{P}_{n4}$ to calculate: Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{T}_{10404} \mathbf{P}^{T}_{1414} \mathbf{P}^{T}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu})^{\circ} G \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

rre	ducible	nilp	oten	t pro	jectors $\mathbf{P}^{\mu}_{m,m}$	$_{\rho}(m \neq n) \qquad \rho^{\mu} \underline{\circ G}$
Re	view of	D_3	$C_2 \sim$	$-C_{3v}$	$\supset C_v$	$\mathbf{P}_{mn}^{\mu} = \frac{1}{\circ G} \sum_{\mathbf{g}} D_{mn}^{\mu^*}(\mathbf{g})$
	$D_3:\chi_k^{\alpha}$	χ_1^{lpha}	χ^{lpha}_r	χ^{lpha}_{i}		8
-	$\alpha = A_1$	1	1	1	Given: \mathbf{P}^{E}	$E = \frac{1}{2}(2\mathbf{c}_1 - \mathbf{c}_2 + 0)$
	$\alpha = A_2$	1	1	-1		3 < 1 r
-	$\alpha = E$	2	-1	0		$=\frac{1}{3}(2\mathbf{I}-\mathbf{r}-\mathbf{r}^{2})$

First do $C_2 = \{1, i_3\}$ splitting: $\mathbf{P}_{0_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{0_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} + \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$ $\mathbf{P}_{1_2 1_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} - \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)$

Then find nilpotent proportional to: $\mathbf{P}_{1_20_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} \mathbf{r} \mathbf{p}_{0_2}$

Finally, must set \pm signs of off-diagonal components...

$$\pm \mathbf{P}_{0_{2}1_{2}}^{E} = \frac{1}{3} \left(\frac{\sqrt{3}}{2} \mathbf{r} - \frac{\sqrt{3}}{2} \mathbf{r}^{2} - \frac{\sqrt{3}}{2} \mathbf{i}_{1} + \frac{\sqrt{3}}{2} \mathbf{i}_{2} \right)$$
$$\pm D_{0_{2}1_{2}}^{E^{*}}(r) = \frac{\sqrt{3}}{2}, etc.$$

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3: \chi_k^{\alpha}$	χ^{lpha}_1	χ^{lpha}_r	χ^{lpha}_{i}	
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^{E} = \frac{1}{2}(2\mathbf{c}_{1} - \mathbf{c}_{2} + 0)$
$\alpha = A_2$	1	1	-1	
$\alpha = E$	2	-1	0	$=\frac{1}{3}(21-r-r^2)$

i₁ First do $C_2 = \{1, i_3\}$ splitting: **1**₂ $\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{0_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})$ axis axis $\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$ Then find nilpotent proportional to: $\mathbf{P}_{1_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} \mathbf{r} \mathbf{p}_{0_{2}} = \mathbf{P}^{E} \frac{1}{2} \cdot \frac{1}{2} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{1} & \mathbf{r} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{r} + \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{ccc} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{r} + \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{i}_{3} & \mathbf{r} + \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \end{array} \right) = \frac{1}{4} \mathbf{P}^{E} \left(\begin{array}{c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ \mathbf{$ Make group space vectors: 1 1 1 1

$$|\mathbf{P}_{0_{2}0_{2}}^{E}\rangle = \frac{1}{2\sqrt{3}} (2|\mathbf{1}\rangle - |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle - |\mathbf{i}_{2}\rangle + 2|\mathbf{i}_{3}\rangle)$$

$$|\mathbf{P}_{1_{2}0_{2}}^{E}\rangle = \frac{1}{2} (0|\mathbf{1}\rangle + |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + |\mathbf{i}_{2}\rangle + 0|\mathbf{i}_{3}\rangle)$$

+**ri**₃

axis

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}(m\neq n)$ *Review of* $D_3 \supset C_2 \sim C_{3v} \supset C_v$ axis axi **i**₁ First do $C_2 = \{1, i_3\}$ splitting: **1**₂ $\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{0_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})$ axis ax1s $\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (21 - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (1 - \mathbf{i}_{3}) = \frac{1}{6} (21 - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$ $\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (21 - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (1 - \mathbf{i}_{3}) = \frac{1}{6} (21 - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$ $\mathbf{Then find nilpotent proportional to: } \mathbf{P}_{1_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} \mathbf{r} \mathbf{p}_{0_{2}} = \mathbf{P}^{E} \frac{1}{2} \cdot \frac{1}{2} \left[\begin{array}{c|c} \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ 1 & \mathbf{r} + \mathbf{r} \mathbf{i}_{3} \\ -\mathbf{i}_{3} & -\mathbf{i}_{3} \mathbf{r} & -\mathbf{i}_{3} \mathbf{r} \mathbf{i}_{3} \end{array} \right] \mathbf{Now} \text{ to set } \pm \text{ signs...}$ Make group space vectors: Do desired **g=r** transformation: $\left|\mathbf{P}_{0_{2}0_{2}}^{E}\right\rangle = \frac{1}{2\sqrt{2}}\left(2\left|\mathbf{1}\right\rangle - \left|\mathbf{r}\right\rangle - \left|\mathbf{r}^{2}\right\rangle - \left|\mathbf{i}_{1}\right\rangle - \left|\mathbf{i}_{2}\right\rangle + 2\left|\mathbf{i}_{3}\right\rangle\right)$

$$\left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 \left| \mathbf{1} \right\rangle + \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + \left| \mathbf{i}_{2} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle)$$

$$\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + 2 \left| \mathbf{i}_{2} \right\rangle)$$

$$\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle + \left| \mathbf{i}_{1} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle)$$

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3: \chi_k^{\alpha}$	χ^{lpha}_1	χ^{lpha}_r	χ^{lpha}_{i}	
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^{E} = \frac{1}{2}(2\mathbf{c}_{1} - \mathbf{c}_{2} + 0)$
$\alpha = A_2$	1	1	-1	
$\alpha = E$	2	-1	0	$=\frac{1}{3}(21-r-r^2)$

First do $C_2 = \{\mathbf{1}, \mathbf{i}_3\}$ splitting: $\mathbf{P}_{0_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{0_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} + \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$ $\mathbf{P}_{1_2 1_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} - \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)$ Then find nilpotent proportional to: $\mathbf{P}_{1_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} \mathbf{r} \mathbf{p}_{0_2} = \mathbf{P}^E \frac{1}{2} \cdot \frac{1}{2} \left(\frac{1}{2} - \mathbf{P}_{0_2 1_2}^E - \frac{1}{3}(-\frac{\sqrt{3}}{2}\mathbf{r} + \frac{\sqrt{3}}{2}\mathbf{r}^2 - \frac{\sqrt{3}}{2}\mathbf{i}_1 + \frac{\sqrt{3}}{2}\mathbf{i}_2)$ Now, to set \pm signs...

$$\frac{\mathbf{r} + \mathbf{r}_{3}}{\mathbf{r}_{202}} = \mathbf{P}^{E} \mathbf{p}_{12} \mathbf{r} \mathbf{p}_{02} = \mathbf{P}^{E} \frac{1}{2} \cdot \frac{1}{2} \left(\begin{array}{c|c} \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r} + \mathbf{r}_{2} \\ \mathbf{r} + \mathbf{r}_{2} \\ \mathbf{r} + \mathbf{r}_{2} \\ \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r} + \mathbf{r}_{4} \\ \mathbf{r} + \mathbf{r}_{2} \\ \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r} + \mathbf{r}_{4} \\ \mathbf{r} + \mathbf{r}_{2} \\ \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r} + \mathbf{r}_{4} \\ \mathbf{r} + \mathbf{r}_{2} \\ \mathbf{r} + \mathbf{r}_{3} \\ \mathbf{r} + \mathbf{r}_{4} \\ \mathbf{r} + \mathbf{r}_$$

Make group space vectors:

$$\left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2|\mathbf{1}\rangle - |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle - |\mathbf{i}_{2}\rangle + 2|\mathbf{i}_{3}\rangle)$$

$$\left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0|\mathbf{1}\rangle + |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + |\mathbf{i}_{2}\rangle + 0|\mathbf{i}_{3}\rangle)$$

Set up to find matrix of g=r transformation: $\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (-|\mathbf{1}\rangle + 2|\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + 2|\mathbf{i}_{2}\rangle - |\mathbf{i}_{3}\rangle)$ $\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (-|\mathbf{1}\rangle + 0|\mathbf{r}\rangle + |\mathbf{r}^{2}\rangle + |\mathbf{i}_{1}\rangle + 0|\mathbf{i}_{3}\rangle - |\mathbf{i}_{3}\rangle)$ Do desired **g=r** transformation:

$$\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + 2 \left| \mathbf{i}_{2} \right\rangle)$$
$$\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle + \left| \mathbf{i}_{1} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle)$$

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3: \chi_k^{\alpha}$	χ_1^{lpha}	χ^{lpha}_r	χ^{lpha}_{i}		
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^E = \frac{1}{2}(2\mathbf{c})$	$(1 - \mathbf{c}_{1} + 0)$
$\alpha = A_2$	1	1	-1	3	1 r
$\alpha = E$	2	-1	0	$=\frac{1}{3}(21)$	$-\mathbf{r}-\mathbf{r}^2$)

First do $C_2 = \{1, i_3\}$ splitting: $\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{0_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})$ $\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}_{1_{2}} = \frac{1}{3} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2}) \frac{1}{2} (\mathbf{1} - \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$

Then find nilpotent proportional to:
$$\mathbf{P}_{1_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} \mathbf{r} \mathbf{p}_{0_2} = \mathbf{P}^E \frac{1}{2} \cdot \frac{1}{2} \left[\pm \mathbf{P}_{0_2 1_2}^E = \frac{1}{3} \left(-\frac{\sqrt{3}}{2} \mathbf{r} + \frac{\sqrt{3}}{2} \mathbf{r}^2 - \frac{\sqrt{3}}{2} \mathbf{i}_1 + \frac{\sqrt{3}}{2} \mathbf{i}_2 \right) \text{ Now, to set } \pm \text{ signs...} \right]$$

Make group space vectors: Do desired \mathbf{g}

$$\mathbf{P}_{0_{2}0_{2}}^{E} \left\rangle = \frac{1}{2\sqrt{3}} (2|\mathbf{1}\rangle - |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle - |\mathbf{i}_{2}\rangle + 2|\mathbf{i}_{3}\rangle)$$

$$\mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0|\mathbf{1}\rangle + |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + |\mathbf{i}_{2}\rangle + 0|\mathbf{i}_{3}\rangle)$$

Set up to find matrix of **g=r** transformation: $\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} \left(-\left| \mathbf{1} \right\rangle + 2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + 2 \left| \mathbf{i}_{2} \right\rangle - \left| \mathbf{i}_{3} \right\rangle \right)$ $\mathbf{r} \left| \mathbf{P}_{1_2 0_2}^E \right\rangle = \frac{1}{2} \left(-\left| \mathbf{1} \right\rangle + 0 \right| \mathbf{r} \right) + \left| \mathbf{r}^2 \right\rangle + \left| \mathbf{i}_1 \right\rangle + 0 \left| \mathbf{i}_3 \right\rangle - \left| \mathbf{i}_3 \right\rangle \right)$

$$\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + 2 \left| \mathbf{i}_{2} \right\rangle)$$
$$\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle + \left| \mathbf{i}_{1} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle)$$

$$\left\langle \mathbf{P}_{0_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 - 1 - 1 - 1 - 1 + 2) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = -1/2 \left\langle \mathbf{P}_{1_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 + 1 - 1 - 1 + 1 + 0) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = \sqrt{3}/2$$

Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$

$D_3: \chi_k^{\alpha}$	χ^{lpha}_1	χ^{lpha}_r	χ^{lpha}_{i}	
$\alpha = A_1$	1	1	1	Given: $\mathbf{P}^{E} = \frac{1}{2}(2\mathbf{c}_{1} - \mathbf{c}_{2} + 0)$
$\alpha = A_2$	1	1	-1	
$\alpha = E$	2	-1	0	$=\frac{1}{3}(21-r-r^2)$

First do $C_2 = \{\mathbf{1}, \mathbf{i}_3\}$ splitting: $\mathbf{P}_{0_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{0_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} + \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$ $\mathbf{P}_{1_2 1_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} = \frac{1}{3}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)\frac{1}{2}(\mathbf{1} - \mathbf{i}_3) = \frac{1}{6}(2\mathbf{1} - \mathbf{r} - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)$ Then find nilpotent proportional to: $\mathbf{P}_{1_2 0_2}^E = \mathbf{P}^E \mathbf{p}_{1_2} \mathbf{r} \mathbf{p}_{0_2} = \mathbf{P}^E \frac{1}{2} \cdot \frac{1}{2}$ $\pm \mathbf{P}_{0_2 1_2}^E = \frac{1}{3}(-\frac{\sqrt{3}}{2}\mathbf{r} + \frac{\sqrt{3}}{2}\mathbf{r}^2 - \frac{\sqrt{3}}{2}\mathbf{i}_1 + \frac{\sqrt{3}}{2}\mathbf{i}_2)$ Now, to set \pm signs...

$$\mathbf{r}_{2} = \mathbf{P}_{2}^{E} \mathbf{r}_{3}^{-1} \mathbf{r}_{3}^{-1} = \frac{\mathbf{r}_{3}^{-1} \mathbf{r}_{3}^{-1} \mathbf{r}_{3}^{-1}$$

Make group space vectors:

$$|\mathbf{P}_{0_{2}0_{2}}^{E}\rangle = \frac{1}{2\sqrt{3}} (2|\mathbf{1}\rangle - |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle - |\mathbf{i}_{2}\rangle + 2|\mathbf{i}_{3}\rangle)$$

$$|\mathbf{P}_{1_{2}0_{2}}^{E}\rangle = \frac{1}{2} (0|\mathbf{1}\rangle + |\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + |\mathbf{i}_{2}\rangle + 0|\mathbf{i}_{3}\rangle)$$

Set up to find matrix of **g=r** transformation: $\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (-|\mathbf{1}\rangle + 2|\mathbf{r}\rangle - |\mathbf{r}^{2}\rangle - |\mathbf{i}_{1}\rangle + 2|\mathbf{i}_{2}\rangle - |\mathbf{i}_{3}\rangle)$ $\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (-|\mathbf{1}\rangle + 0|\mathbf{r}\rangle + |\mathbf{r}^{2}\rangle + |\mathbf{i}_{1}\rangle + 0|\mathbf{i}_{3}\rangle - |\mathbf{i}_{3}\rangle)$ The D₀₁ ± sign is (-) This checks with p. 56 Do desired **g=r** transformation:

$$\mathbf{r} \left| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 \left| \mathbf{r} \right\rangle - \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle - \left| \mathbf{i}_{1} \right\rangle + 2 \left| \mathbf{i}_{2} \right\rangle)$$
$$\mathbf{r} \left| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 \left| \mathbf{r} \right\rangle + \left| \mathbf{r}^{2} \right\rangle - \left| \mathbf{1} \right\rangle - \left| \mathbf{i}_{3} \right\rangle + \left| \mathbf{i}_{1} \right\rangle + 0 \left| \mathbf{i}_{3} \right\rangle)$$

$$\left\langle \mathbf{P}_{0_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 - 1 - 1 - 1 - 1 + 2) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = -1/2 = D_{0_{2}0_{2}}^{E}(r)$$

$$\left\langle \mathbf{P}_{1_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{0_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 + 1 - 1 - 1 + 1 + 0) \cdot \frac{1}{2\sqrt{3}} (-1 + 2 - 1 - 1 + 2 - 1) = \sqrt{3}/2 = D_{1_{2}0_{2}}^{E}(r)$$

$$\left\langle \mathbf{P}_{0_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2\sqrt{3}} (2 - 1 - 1 - 1 - 1 + 2) \cdot \frac{1}{2} (-1 + 0 + 1 + 1 + 0 - 1) = -\sqrt{3}/2 = D_{0_{2}1_{2}}^{E}(r)$$

$$\left\langle \mathbf{P}_{1_{2}0_{2}}^{E} \left| \mathbf{r} \right| \mathbf{P}_{1_{2}0_{2}}^{E} \right\rangle = \frac{1}{2} (0 + 1 - 1 - 1 + 1 + 0) \cdot \frac{1}{2} (-1 + 0 + 1 + 1 + 0 - 1) = -1/2 = D_{1_{2}1_{2}}^{E}(r)$$

This amounts to the world's most complicated derivation of: $\cos 120^\circ = -1/2$ and: $\sin 120^\circ = \sqrt{3/2}$

$$D^{E}(\mathbf{r}) = D^{E}(120^{\circ}) = \begin{pmatrix} \cos(120^{\circ}) & -\sin(120^{\circ}) \\ \sin(120^{\circ}) & \cos(120^{\circ}) \end{pmatrix} = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}$$

$$\mathbf{P}_{0_{2}1_{2}}^{E} = \frac{1}{3} \left(-\frac{\sqrt{3}}{2}\mathbf{r} + \frac{\sqrt{3}}{2}\mathbf{r}^{2} - \frac{\sqrt{3}}{2}\mathbf{i}_{1} + \frac{\sqrt{3}}{2}\mathbf{i}_{2} \right) = \mathbf{P}_{1_{2}0_{2}}^{E\dagger}$$

Sunday, April 12, 2015

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ calculations of $\mathbf{P}^{\mu}_{m,n}$ and $D^{\mu}_{m,n}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra Comparing off-diagonal $O \supset C_2$ parameter sets to CH_4 models with "cluster-crossings"

Coset-factored T₁-sum: (First display idempotent projectors $\mathbf{P}_{kk}^{T_1}$ and diagonal components $D_{kk}^{T_1*}(\mathbf{g})$ $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8} [(1) \cdot \mathbf{1} \mathbf{p}_{1_{4}}]$ $+(\mathbf{0})\cdot\mathbf{\rho}_{x}\mathbf{p}_{1_{4}}$ $+(\frac{i}{2})\cdot \mathbf{r}_{1}\mathbf{p}_{1}$ $+(_{+\frac{i}{2}})\cdot \mathbf{r}_{2}\mathbf{p}_{1_{4}}$ $+(-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1}$ $+(-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}]$ $\mathbf{P}_{3_43_4}^{T_1} = \frac{1}{8} [(1) \cdot \mathbf{1} \mathbf{p}_{3_4}]$ $+(\mathbf{0})\cdot \underline{\mathbf{\rho}}_{x}\mathbf{p}_{3_{4}}$ $+(-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}}$ $+(-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}}$ $+(\underline{\mathbf{r}}_{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{3_{4}}$ $+(\underline{\mathbf{r}}_{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}}]$ $+(-1)\cdot\rho_x\mathbf{p}_{0_4}$ $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{T_{1}} = \frac{1}{8} \left[(1) \cdot \mathbf{1} \mathbf{p}_{\mathbf{0}_{4}} \right]$ $+(0) \cdot r_2 p_{0_4}$ $+(\mathbf{0})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{\mathbf{0}_{4}}$ $+(0)\cdot \mathbf{r}_{1}\mathbf{p}_{0_{4}}$ $+(\mathbf{0})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{\mathbf{0}_{4}}]$ (a) Vector T. Representati $R_1^2 =$ $\mathcal{T}_{1}(1) =$ $\frac{-i}{2}$ $\frac{-i}{2}$ $\sqrt{2}$ $\mathbf{P}_{mn}^{T_1} = \frac{\ell^{T_1} = 3}{{}^{\circ}G = 24} \sum_{a}^{{}^{\circ}G} D_{mn}^{T_1*}(\mathbf{g})\mathbf{g}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\frac{i}{2}$ $\frac{-i}{2}$ Vector $\mathcal{D}^{T_1}(R_3^2) =$ $R_{2}^{2} =$ *x,y,z* $\frac{-i}{2}$ $O \supset C_4$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ *left cosets* $\frac{-i}{2}$ $\left\{\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\right\}$ $\frac{-1}{\sqrt{2}}$ C_4 $\sqrt{2}$ $\{\boldsymbol{\rho}_x, \boldsymbol{\rho}_y, \boldsymbol{i}_4, \boldsymbol{i}_3\}$ $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$ $\mathscr{D}^{T_1}(R_3) =$ $i_4 - D_4$ $R_1^3 =$ $R_{1} =$ $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{y}\right\}$ $\left\{ \tilde{\mathbf{r}}_{1}, \tilde{\mathbf{r}}_{3}, \tilde{\mathbf{R}}_{x}, \mathbf{i}_{6} \right\}$ $\left\{\tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$ $\sqrt{2}$ $\mathbf{p}_{0_{4}} = (1 + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4$ $\mathcal{D}^{T_1}(R_3^3) =$ $\mathbf{p}_{1_4} = (1 - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4$ $\overline{2}$ 2 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\begin{array}{c|c} O: & T_1 \\ \text{basis} & D_4: & E \\ C_4: & 1_4 \end{array} \begin{vmatrix} T_1 \\ E \\ 3_4 \end{vmatrix} \begin{vmatrix} T_1 \\ A_2 \\ 0_4 \end{vmatrix}$ $\mathbf{p}_{2_{4}} = (1 - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4$ 2 $\mathbf{p}_{3_{A}} = (\mathbf{1} + i\mathbf{R}_{z} - \rho_{z} - i\tilde{\mathbf{R}}_{z})/4$

 $\begin{array}{l} Coset-factored \ \mathbf{T}_{1}-sum: (Now find nilpotent projectors \ \mathbf{P}_{jk}^{T_{1}} and off-diagonal \ D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{1_{4}} + (\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\mathbf{\rho}_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} \\ + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}] \end{array}$

Calculating: $\mathbf{P}_{1_41_4}^{T_1} \mathbf{r}_1 \mathbf{P}_{0_40_4}^{T_1} = D_{1_40_4}^{T_1} (\mathbf{r}_1) \mathbf{P}_{1_40_4}^{T_1} = \mathbf{P}_{1_4}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{0_4}$

 $O \supset C_4$ $left \ cosets$ $\{\mathbf{1}, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z\}$ $\{\mathbf{\rho}_x, \mathbf{\rho}_y, \mathbf{i}_4, \mathbf{i}_3\}$ $\{\mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y\}$ $\{\mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_2, \mathbf{\tilde{R}}_y\}$ $\{\mathbf{\tilde{r}}_1, \mathbf{\tilde{r}}_3, \mathbf{\tilde{R}}_x, \mathbf{i}_6\}$ $\{\mathbf{\tilde{r}}_2, \mathbf{\tilde{r}}_4, \mathbf{R}_x, \mathbf{i}_5\}$

$$\mathbf{p}_{m_{4}} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_{4} \cdot p}{4}} \mathbf{R}_{z}^{p} = \begin{cases} \mathbf{p}_{0_{4}} = (\mathbf{1} + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{1_{4}} = (\mathbf{1} - i\mathbf{R}_{z} - \rho_{z} + i\tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{2_{4}} = (\mathbf{1} - i\mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{2_{4}} = (\mathbf{1} - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{3_{4}} = (\mathbf{1} + i\mathbf{R}_{z} - \rho_{z} - i\tilde{\mathbf{R}}_{z})/4 \end{cases}$$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}] \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}}] \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{0_{4}}] \end{cases}$

Calculating: $\mathbf{P}_{1_{4}1_{4}}^{T_{1}}\mathbf{r}_{1}\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = D_{1_{4}0_{4}}^{T_{1}}(\mathbf{r}_{1})\mathbf{P}_{1_{4}0_{4}}^{T_{1}} = \mathbf{P}^{T_{1}}\mathbf{p}_{1_{4}}\mathbf{r}_{1}\mathbf{p}_{0_{4}}$

 $O \supset C_4$ $left \ cosets$ $\{1, \rho_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z\}$ $\{\rho_x, \rho_y, \mathbf{i}_4, \mathbf{i}_3\}$ $\{\mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y\}$ $\{\mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_2, \mathbf{\tilde{R}}_y\}$ $\{\mathbf{\tilde{r}}_1, \mathbf{\tilde{r}}_3, \mathbf{\tilde{R}}_x, \mathbf{i}_6\}$ $\{\mathbf{\tilde{r}}_2, \mathbf{\tilde{r}}_4, \mathbf{R}_x, \mathbf{i}_5\}$

Then find nilpotent proportional to: $\mathbf{p}_{1_4}\mathbf{r}_1\mathbf{p}_{0_4}$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

Consistent with standard:
$$\mathbf{P}_{m_4 m_4}^{\mu} = \sum_{p=0}^{0} \frac{\ell^{\mu}}{\circ G} D_{m_4 m_4}^{\mu*}(g) \mathbf{g}$$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}] \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}}] \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{0_{4}}] \end{cases}$

Calculating: $\mathbf{P}_{1_{4}1_{4}}^{T_{1}}\mathbf{r}_{1}\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = D_{1_{4}0_{4}}^{T_{1}}(\mathbf{r}_{1})\mathbf{P}_{1_{4}0_{4}}^{T_{1}} = \mathbf{P}^{T_{1}}\mathbf{p}_{1_{4}}\mathbf{r}_{1}\mathbf{p}_{0_{4}}$

$$\frac{\mathbf{r}_{1} \quad \mathbf{r}_{4} \quad \mathbf{i}_{1} \quad \mathbf{R}_{y}}{\mathbf{1} \quad \mathbf{r}_{1} \quad \mathbf{r}_{4} \quad \mathbf{i}_{1} \quad \mathbf{R}_{y}}$$
Then find nilpotent proportional to: $\mathbf{p}_{1_{4}}\mathbf{r}_{1}\mathbf{p}_{0_{4}} = \frac{1}{16} - \mathbf{\rho}_{z}$

$$-\mathbf{r}_{3} \quad -\mathbf{r}_{2} \quad -\mathbf{\tilde{R}}_{y} \quad -\mathbf{i}_{2}$$

$$-i\mathbf{R}_{z} \quad -i\mathbf{\tilde{R}}_{z} \quad -i\mathbf{\tilde{R}}_{x} \quad -i\mathbf{\tilde{R}}_{x} \quad -i\mathbf{\tilde{r}}_{1} \quad -i\mathbf{\tilde{r}}_{3}$$

$$+i\mathbf{\tilde{R}}_{z} \quad +i\mathbf{R}_{x} \quad +i\mathbf{i}_{5} \quad +i\mathbf{\tilde{r}}_{4} \quad +i\mathbf{\tilde{r}}_{2}$$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

 $\tilde{\mathbf{R}}_{x} =$

Re an

86

AL

Rz

R 27

R.

R

P

82

2B

 $O \supset C_4$

left cosets

 $\left\{1, \rho_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z\right\}$

 $\left\{ \boldsymbol{\rho}_{x}, \boldsymbol{\rho}_{y}, \boldsymbol{i}_{4}, \boldsymbol{i}_{3} \right\}$

 $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$

 $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{y}\right\}$

 $\left\{ \tilde{\mathbf{r}}_{1}, \tilde{\mathbf{r}}_{3}, \tilde{\mathbf{R}}_{x}, \mathbf{i}_{6} \right\}$

 $\left\{\tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\mathbf{p}_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}] \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\mathbf{p}_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}] \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\mathbf{p}_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}] \end{cases}$

Calculating: $\mathbf{P}_{1_41_4}^{T_1} \mathbf{r}_1 \mathbf{P}_{0_40_4}^{T_1} = D_{1_40_4}^{T_1} (\mathbf{r}_1) \mathbf{P}_{1_40_4}^{T_1} = \mathbf{P}_{1_4}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{0_4}$

Then find nilpotent proportional to:
$$\mathbf{p}_{1_4}\mathbf{r}_1\mathbf{p}_{0_4} = \frac{I}{I6} - \rho_z$$

 $-i\mathbf{R}_z$
 $+i\mathbf{\tilde{R}}_z$
 $-i\mathbf{R}_z$
 $+i\mathbf{\tilde{R}}_z$
 $-i\mathbf{R}_z$
 $+i\mathbf{R}_x$ $+i\mathbf{i}_5$ $+i\mathbf{\tilde{r}}_4$ $-i\mathbf{\tilde{r}}_5$
 $-i\mathbf{r}_6$ $-i\mathbf{\tilde{R}}_x$ $-i\mathbf{\tilde{r}}_1$ $-i\mathbf{\tilde{r}}_3$
 $+i\mathbf{\tilde{R}}_z$
 $+i\mathbf{R}_x$ $+i\mathbf{r}_5$ $+i\mathbf{\tilde{r}}_4$ $+i\mathbf{\tilde{r}}_2$
 $= [(\mathbf{r}_1 + \mathbf{r}_4 + \mathbf{i}_1 + \mathbf{R}_y) - (\mathbf{r}_2 + \mathbf{r}_3 + \mathbf{i}_2 + \mathbf{\tilde{R}}_y) - i(\mathbf{\tilde{r}}_1 + \mathbf{\tilde{r}}_3 + \mathbf{\tilde{R}}_x + \mathbf{i}_6) + i(\mathbf{\tilde{r}}_2 + \mathbf{\tilde{r}}_4 + \mathbf{R}_x + \mathbf{i}_5)]/16$
 $= [\mathbf{r}_1\mathbf{p}_{0_4} - \mathbf{r}_2\mathbf{p}_{0_4} - i\mathbf{\tilde{r}}_1\mathbf{p}_{0_4} + i\mathbf{\tilde{r}}_2\mathbf{p}_{0_4}]/4$

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$

 $O \supset C_4$

left cosets

 $\left\{\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\right\}$

 $\left\{ \boldsymbol{\rho}_{x}, \boldsymbol{\rho}_{y}, \boldsymbol{i}_{4}, \boldsymbol{i}_{3} \right\}$

 $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$

 $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{y}\right\}$

 $\left\{ \tilde{\mathbf{r}}_{1}, \tilde{\mathbf{r}}_{3}, \tilde{\mathbf{R}}_{x}, \mathbf{i}_{6} \right\}$

 $\left\{\tilde{\mathbf{r}}_{2},\tilde{\mathbf{r}}_{4},\mathbf{R}_{x},\mathbf{i}_{5}\right\}$

$-1 \mathbf{P}_{1_4 1_4}^{T_1} \mathbf{r}_1 \mathbf{I}_{1_4 1_4}$	$P_{0_40_4}^{T_1} = D_{1_40}^{T_1}$	$\mathbf{P}_{1_4}(\mathbf{r}_1)\mathbf{P}_{1_4}^{\mathbf{T}}$	$\int_{0_4}^1 = \mathbf{P}^{T_1} \mathbf{p}$	${}_{1_4} {\bf r}_1 {\bf p}_{0_4}$	7	Relatin	g off-diagona	1 14 <mark>0</mark> 4 componen	nts $D_{1_40_4}^{T_1}(\mathbf{g})$
$\frac{1}{\sqrt{2}}\mathbf{p}_{1_4}\mathbf{r}_1\mathbf{p}_{1_4}$	$_{0_4} = \frac{1}{\sqrt{2}} \lfloor -$	$\mathbf{r}_{1}\mathbf{p}_{0_{4}}+\mathbf{r}_{1}$	$\mathbf{r}_{2}\mathbf{p}_{0_{4}}+i\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}}$	$\mathbf{p}_{0_4} - i\tilde{\mathbf{r}}_2\mathbf{p}$	0 ₄]=	to coer	The first of $\frac{1}{\sqrt{2}}$	$\mathbf{p}_{1_4}\mathbf{r}_1\mathbf{p}_{0_4}$	
$\frac{1}{\sqrt{2}}\left[-(\mathbf{r}_1+$	$-\mathbf{r}_4 + \mathbf{i}_1 + \mathbf{F}_2$	$(\mathbf{r}_{y}) + (\mathbf{r}_{2})$	$+ \mathbf{r}_{3} + \mathbf{i}_{2} + \mathbf{i}_{3}$	$-\tilde{\mathbf{R}}_{y})+i($	$\tilde{\mathbf{r}}_1 + \tilde{\mathbf{r}}_3 + \tilde{\mathbf{R}}_3$	$(\mathbf{i}_{4}+\mathbf{i}_{6})-i(\mathbf{i}_{6})$	$\tilde{\mathbf{r}}_2 + \tilde{\mathbf{r}}_4 + \mathbf{R}_x + \mathbf{i}_x$	₅)]	
(a) Vector T_1 Re	presentation		``	Ĺ	-,	and a second			
$\mathcal{D}^{r_1}(1) = \left \begin{array}{ccc} 1 & \cdot & 0 \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{array} \right $	$R_1^2 = \left \begin{array}{ccc} \cdot & -1 & 0 \\ -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{array} \right $	$r_{1} = \left \begin{array}{c} -i & i \\ \hline 2 & \frac{i}{2} \end{array} \right $ $\left \begin{array}{c} -i & i \\ \hline -i & \frac{i}{2} \\ \hline -i & -i \\ \hline \sqrt{2} & \sqrt{2} \end{array} \right $	$ \begin{array}{c c} r_2 = \\ \hline \hline \hline \hline \sqrt{2} \\ \hline \hline \sqrt{2} \\ \hline \hline \sqrt{2} \\ \hline \hline \sqrt{2} \\ \hline \\ \hline \end{array} \left \begin{array}{c} -i \\ \hline -i \\ \hline \hline 2 \\ \hline \hline -i \\ \hline 2 \\ \hline \hline \hline 2 \\ \hline \hline 2 \\ \hline 2 \hline 2$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} i \\ \frac{i}{2} \\ \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{vmatrix} $	$=$ $\frac{i}{2} \frac{i}{2} \frac{-i}{\sqrt{2}}$ $\frac{-i}{2} \frac{-i}{2} \frac{-i}{\sqrt{2}}$ $\frac{1}{\sqrt{2}} \frac{-1}{\sqrt{2}} .$	T ₁ Vector		
$\mathcal{D}^{T_1(R_3^2)} = \begin{bmatrix} -1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ C_4	$R_2^2 = \begin{vmatrix} & 1 & 0 \\ 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$r_4 = \begin{bmatrix} \frac{i}{2} & \frac{-i}{2} \\ \frac{i}{2} & \frac{-i}{2} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{bmatrix}$	$ \begin{array}{c c} r_3 = \\ \hline \hline \hline \sqrt{2} \\ \hline \end{array} $	$ \begin{array}{c c} r_{3}^{2} = \\ \hline \frac{-i}{2} & \frac{1}{\sqrt{2}} & \frac{-i}{2} \\ \frac{-i}{2} & \frac{-1}{\sqrt{2}} & \frac{i}{2} \\ \frac{-i}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{2}} \end{array} $	$ \begin{array}{c c} -i & i \\ \hline \hline 2 & \sqrt{2} \\ \hline i \\ \hline 2 & \sqrt{2} \\ \hline -1 \\ \hline \sqrt{2} & \cdot \\ \hline \sqrt{2} & \cdot \\ \hline \end{array} $	$ \begin{array}{c} -i \\ \hline 2 \\ \hline \sqrt{2} \\ \hline \end{array} $) <i>x,y,z</i>		
$\mathcal{D}^{T_1}(R_3) = \left \begin{array}{cc} -i & 0 \\ \cdot & i \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \\ \end{array} \right $	$i_4 = D_4$ $\begin{vmatrix} & -i & 0 \\ i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$ \begin{split} i_1 = & \\ \begin{vmatrix} -1 & -1 \\ 2 & 2 \\ \\ -1 & -1 \\ \hline 2 & 2 \\ \\ -1 & 2 \\ \hline -1 & 1 \\ \hline \sqrt{2} & \sqrt{2} \end{split} $	$i_{2} = \frac{-1}{\sqrt{2}} \begin{vmatrix} -1 & -1 & -1 \\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & -1 \\ \frac{-1}{2} & \frac{-1}{2} & -1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{vmatrix}$	$R_{1}^{3} = \frac{-1}{2} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{2} -\frac{1}{2} -\frac{1}{\sqrt{2}} -\frac{1}{$	$ \begin{array}{c} -1 \\ \hline i \\ \sqrt{2} \\ \hline \frac{1}{2} \\ \hline \frac{i}{\sqrt{2}} \\ \hline \frac{i}{\sqrt{2}} \\ \hline \frac{i}{\sqrt{2}} \\ \hline \frac{i}{\sqrt{2}} \\ \hline \end{array} $	$\frac{1}{2} -\frac{1}{2} -\frac{i}{\sqrt{2}} -\frac{i}{\sqrt{2}} -\frac{1}{2} -\frac{i}{\sqrt{2}} -\frac$			
$\mathcal{D}^{T_1}(R_3^3) = \begin{bmatrix} i & \cdot & 0 \\ \cdot & -i & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$	$ \begin{vmatrix} \cdot & i & 0 \\ -i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix} $	$\begin{array}{c c} R_2 = & \\ \hline 1 & 1 \\ \hline 2 & 1 \\ \hline 1 & 1 \\ \hline 2 & 2 \\ \hline 1 & -1 \\ \hline \sqrt{2} & \sqrt{2} \end{array}$	$R_2^3 = \begin{bmatrix} -1\\ \sqrt{2}\\ 1\\ \sqrt{2}\\ 1\\ \sqrt{2}\\ \frac{1}{\sqrt{2}}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{-1}{\sqrt{2}}\\ \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix}$	$i_{6} = \frac{1}{12} \frac{1}{\sqrt{2}} \frac{-1}{2} \\ \frac{1}{\sqrt{2}} \frac{-1}{\sqrt{2}} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \frac{-1}{\sqrt{2}} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \frac{-i}{\sqrt{2}} \end{cases}$	$ \frac{1}{2} \frac{i}{\sqrt{2}} \\ \frac{-1}{2} \frac{i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \frac{-i}{\sqrt{2}} \\ \frac{-i}{$	$ \frac{-1}{2} \frac{1}{2} \frac{-i}{\sqrt{2}} \\ \frac{1}{2} \frac{-1}{2} \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \frac{i}{\sqrt{2}} . $	$\begin{array}{c c} O: & T_1 \\ \text{basis } D_4: & E \\ C_4: & 1_4 \end{array} \begin{vmatrix} T_1 \\ E \\ 3_4 \end{vmatrix} \begin{vmatrix} T_1 \\ A_2 \\ 0_4 \end{vmatrix}$		

Sunday, April 12, 2015

 $Coset-factored \mathbf{T}_{1}-sum: (Now find nilpotent projectors \mathbf{P}_{jk}^{T_{1}} and off-diagonal D_{jk}^{T_{1}^{*}}(\mathbf{g}) \\ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}] \\ \mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}] \\ \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}] \end{cases}$

 $\begin{array}{ll} Calculating: \ \mathbf{P}_{1_{4}1_{4}}^{T_{1}} \mathbf{r}_{1} \mathbf{P}_{0_{4}0_{4}}^{T_{1}} = D_{1_{4}0_{4}}^{T_{1}} (\mathbf{r}_{1}) \mathbf{P}_{1_{4}0_{4}}^{T_{1}} = \mathbf{P}^{T_{1}} \mathbf{p}_{1_{4}} \mathbf{r}_{1} \mathbf{p}_{0_{4}} & \begin{cases} \tilde{\mathbf{r}}_{1}, \tilde{\mathbf{r}}_{3}, \tilde{\mathbf{R}}_{x}, \mathbf{i}_{6} \end{cases} \\ & \\ \hline \mathbf{NOTE: These projectors} \\ still have phase errors \\ as of 4.12.15 \\ (However final tables OK) \end{cases} & \begin{array}{c} \mathbf{r}_{1} & \mathbf{r}_{4} & \mathbf{i}_{1} & \mathbf{R}_{y} \\ \hline \mathbf{1} & \mathbf{r}_{1} & \mathbf{r}_{4} & \mathbf{i}_{1} & \mathbf{R}_{y} \\ \hline \mathbf{1} & \mathbf{r}_{1} & \mathbf{r}_{4} & \mathbf{i}_{1} & \mathbf{R}_{y} \\ \hline \mathbf{1} & \mathbf{r}_{1} & \mathbf{r}_{4} & \mathbf{i}_{1} & \mathbf{R}_{y} \\ \end{array} \\ \text{Then find nilpotent proportional to: } \mathbf{p}_{1_{4}}\mathbf{r}_{1}\mathbf{p}_{0_{4}} = \begin{array}{c} \underline{l} - \rho_{z} \\ - I & -I & -I & -I & -I \\ \hline \mathbf{r}_{3} & -I & -I & -I \\ \hline \mathbf{r}_{4} & -I & I & -I \\ \hline \mathbf{r}_{5} & -I & I & -I \\ \hline \mathbf{r}_{5} & -I & I \\ \hline \mathbf{r}_{6} & -I & I \\ \hline \mathbf{r}_{7} & -I \\ \hline \mathbf{r}_{8} & -I & I \\ \hline \mathbf{r}_{8} & -I \\ \hline \mathbf{r}_{8} & -I & I \\ \hline \mathbf{r}_{8} & -I \\$

$$= [\mathbf{r}_1 \mathbf{p}_{0_4} - \mathbf{r}_2 \mathbf{p}_{0_4} + i \tilde{\mathbf{r}}_1 \mathbf{p}_{0_4} - i \tilde{\mathbf{r}}_2 \mathbf{p}_{0_4}]/4 = (\mathbf{r}_1 - \mathbf{r}_2 + i \tilde{\mathbf{r}}_1 - i \tilde{\mathbf{r}}_2) \mathbf{p}_{0_4}/4$$

Result is nicely factored: $\mathbf{P}_{1_4 \mathbf{0}_4}^{T_1} = \mathbf{P}^{T_1} \mathbf{p}_{1_4} \mathbf{r}_1 \mathbf{p}_{\mathbf{0}_4} \sim (?) \cdot (\mathbf{r}_1 \mathbf{p}_{\mathbf{0}_4} - \mathbf{r}_2 \mathbf{p}_{\mathbf{0}_4} + i \tilde{\mathbf{r}}_1 \mathbf{p}_{\mathbf{0}_4} - i \tilde{\mathbf{r}}_2 \mathbf{p}_{\mathbf{0}_4})$

 $\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$ Consistent with standard: $\mathbf{P}_{m_4 m_4}^{\mu} = \sum_{p=0}^{9} \frac{\ell^{\mu}}{\circ G} D_{m_4 m_4}^{\mu*}(g) \mathbf{g}$

 $O \supset C_4$

left cosets

 $\left\{1,\rho_z,\mathbf{R}_z,\mathbf{\tilde{R}}_z\right\}$

 $\{\boldsymbol{\rho}_x, \boldsymbol{\rho}_y, \boldsymbol{i}_4, \boldsymbol{i}_3\}$

 $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$

 $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{y}\right\}$

$$Coset-factored \mathbf{T}_{1}-sum:$$

$$\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{1_{4}} + (0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}]$$

$$\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{3_{4}} + (0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{3_{4}}]$$

$$\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{0_{4}} + (-1)\cdot\mathbf{\rho}_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{0_{4}}]$$

Calculating:
$$\mathbf{P}_{0_4 0_4}^{T_1} \tilde{\mathbf{r}}_1 \mathbf{P}_{1_4 1_4}^{T_1} = D_{0_4 1_4}^{T_1} (\tilde{\mathbf{r}}_1) \mathbf{P}_{0_4 1_4}^{T_1} = \mathbf{P}^{T_1} \mathbf{p}_{0_4} \tilde{\mathbf{r}}_1 \mathbf{p}_{1_4}$$

$$O \supset C_4$$
left cosets

$$\{\mathbf{1}, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z\}$$

$$\{\mathbf{\rho}_x, \mathbf{\rho}_y, \mathbf{i}_4, \mathbf{i}_3\}$$

$$\{\mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y\}$$

$$\{\mathbf{r}_2, \mathbf{r}_3, \mathbf{i}_2, \mathbf{\tilde{R}}_y\}$$

$$\{\mathbf{\tilde{r}}_1, \mathbf{\tilde{r}}_3, \mathbf{\tilde{R}}_x, \mathbf{i}_6\}$$

Sunday, April 12, 2015

$$\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \begin{cases} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{1_4} = (\mathbf{1} - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - i\mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z)/4 \\ \mathbf{p}_{3_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4 \end{cases}$$
Consistent with standard:
$$\mathbf{P}_{m_4 m_4}^{\mu} = \sum_{q=0}^{9} \frac{\ell^{\mu}}{\circ G} D_{m_4 m_4}^{\mu^*}(g) \mathbf{g}$$

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$

$$Coset-factored \mathbf{T}_{1}-sum:$$

$$\mathbf{P}_{1_{a}1_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{1_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (+\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{1_{4}}]$$

$$\mathbf{P}_{3_{4}3_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{3_{4}} + (0)\cdot\rho_{x}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{3_{4}} + (-\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{3_{4}} + (+\frac{i}{2})\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{3_{4}}]$$

$$\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{0_{4}} + (-1)\cdot\rho_{x}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\mathbf{r}_{2}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{1}\mathbf{p}_{0_{4}} + (0)\cdot\tilde{\mathbf{r}}_{2}\mathbf{p}_{0_{4}}]$$

$$Calculating: \mathbf{P}_{0_{4}0_{4}}^{T_{1}}\tilde{\mathbf{r}}_{1}\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = D_{0_{4}1_{4}}^{T_{1}}(\tilde{\mathbf{r}}_{1})\mathbf{P}_{0_{4}1_{4}}^{T_{1}} = \mathbf{P}^{T_{1}}\mathbf{p}_{0_{4}}\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}}$$

$$NOTE: These projectors$$

$$still have phase errors$$

$$as of 4.12.15$$

$$(However final tables OK)$$

$$\mathbf{I} = \mathbf{r}_{1}\mathbf{r}_{3} - i\mathbf{r}_{3} - i\mathbf{r}_{3}\mathbf{r}_{x} + i\mathbf{t}_{6}$$
Then find nilpotent proportional to: $\mathbf{p}_{0_{4}}\tilde{\mathbf{r}}_{1}\mathbf{p}_{1_{4}} = \frac{1}{L}\rho_{2}$

$$\mathbf{r}_{4} - \mathbf{r}_{2} - i\mathbf{t}_{5} + i\mathbf{R}_{x}$$

Then find nilpotent proportional to:
$$\mathbf{p}_{0_4} \tilde{\mathbf{r}}_1 \mathbf{p}$$

$$\begin{aligned} \mathbf{R}_{z} & | \tilde{\mathbf{R}}_{y} - \mathbf{i}_{2} - i\mathbf{r}_{2} + i\mathbf{r}_{3} \\ \tilde{\mathbf{R}}_{z} & | \tilde{\mathbf{R}}_{y} - \mathbf{i}_{2} - i\mathbf{r}_{2} + i\mathbf{r}_{3} \\ \mathbf{i}_{1} - \mathbf{R}_{y} - i\mathbf{r}_{4} + i\mathbf{r}_{1} \end{aligned}$$

$$= (\tilde{\mathbf{r}}_{1} + \tilde{\mathbf{r}}_{4} + \tilde{\mathbf{R}}_{y} + \mathbf{i}_{1}) - (\tilde{\mathbf{r}}_{3} + \tilde{\mathbf{r}}_{2} + \mathbf{k}_{2} + \mathbf{R}_{y}) - i(\tilde{\mathbf{R}}_{x} + \mathbf{i}_{5} + \mathbf{r}_{2} + \mathbf{r}_{4}) + i(\mathbf{i}_{6} + \mathbf{R}_{x} + \mathbf{r}_{3} + \mathbf{r}_{1})$$

$$= \mathbf{p}_{0_{4}} \tilde{\mathbf{r}}_{1} - \mathbf{p}_{0_{4}} \tilde{\mathbf{r}}_{3} - i\mathbf{p}_{0_{4}} \tilde{\mathbf{R}}_{x} + i\mathbf{p}_{0_{4}} \mathbf{i}_{6}$$

$$\mathbf{p}_{m_{4}} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{-2\pi i m_{4} \cdot p}{4}} \mathbf{R}_{z}^{p} = \begin{cases} \mathbf{p}_{0_{4}} = (\mathbf{1} + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{1_{4}} = (\mathbf{1} - i\mathbf{R}_{z} - \rho_{z} + i\tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{2_{4}} = (\mathbf{1} - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{3_{4}} = (\mathbf{1} - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4 \\ \mathbf{p}_{3_{4}} = (\mathbf{1} + i\mathbf{R}_{z} - \rho_{z} - i\tilde{\mathbf{R}}_{z})/4 \end{cases}$$

 $O \supset C_4$ left cosets $\left\{\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\right\}$ $\left\{ \boldsymbol{\rho}_{x}, \boldsymbol{\rho}_{y}, \boldsymbol{i}_{4}, \boldsymbol{i}_{3} \right\}$ $\left\{\mathbf{r}_{1},\mathbf{r}_{4},\mathbf{i}_{1},\mathbf{R}_{y}\right\}$ $\left\{\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{i}_{2},\mathbf{\tilde{R}}_{y}\right\}$ $\left\{ \tilde{\mathbf{r}}_{1}, \tilde{\mathbf{r}}_{3}, \tilde{\mathbf{R}}_{x}, \mathbf{i}_{6} \right\}$ $\left\{\tilde{\mathbf{r}}_{2},\tilde{\mathbf{r}}_{4},\mathbf{R}_{x},\mathbf{i}_{5}\right\}$

$$\begin{aligned} Irreducible nilpotent projectors \mathbf{P}^{\mu}_{m,n} & \mathbf{P}^{T_{1}}_{1,3,i} = \mathbf{P}^{T} \mathbf{p}_{1,i} \mathbf{r}_{1} \mathbf{p}_{3,i} \sim (?) \cdot (\mathbf{r}_{1} \mathbf{p}_{3,i} + \mathbf{r}_{2} \mathbf{p}_{3,i} + \mathbf{\tilde{r}}_{2} \mathbf{p}_{3,i}) & \stackrel{O \supset C_{i}}{left cosets} \\ Icoset-factored T_{1-sum:} & \{\mathbf{1}_{p,i}, i \in (1) + \mathbf{p}_{1,i} + (0) \cdot \mathbf{p}_{p,i_{i}} + ((\frac{1}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{1,i} + ((\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{1,i} + ((\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{1,i}) \\ & \mathbf{p}_{3,i}^{T_{i}} = \frac{1}{i} (1) + \mathbf{p}_{i,i} + (0) \cdot \mathbf{p}_{p,i_{i}} + ((\frac{1}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{i,i} + ((\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{i,i} + ((\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{i,i} + ((\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{i,i}) \\ & \mathbf{P}_{4,i,i}^{T_{i}} = \frac{1}{i} (1) + \mathbf{p}_{i,i} + ((1) \cdot \mathbf{p}_{i,i} + (0) \cdot \mathbf{r}_{1} \mathbf{p}_{i,i} + ((\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{i,i} + ((\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{i,i}) \\ & \mathbf{P}_{4,i,i}^{T_{i}} = \frac{1}{i} (1) + \mathbf{p}_{i,i} + ((1) \cdot \mathbf{p}_{1,i} + (0) \cdot \mathbf{r}_{1} \mathbf{p}_{i,i} + ((0) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{i,i} + ((0) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{i,i}) \\ & \mathbf{P}_{4,i,i}^{T_{i}} = \mathbf{P}_{4,i,i}^{T_{i}} \mathbf{r}_{1} \mathbf{P}_{3,i}^{T_{i}} = \mathbf{P}_{4,i,i}^{T_{i}} \mathbf{p}_{3,i} \\ & \mathbf{Calculating:} \mathbf{P}_{4,i,i}^{T_{i}} \mathbf{r}_{1} \mathbf{P}_{3,i}^{T_{i}} = \mathbf{D}_{4,i,i}^{T_{i}} (\mathbf{r}_{1}) \mathbf{P}_{4,i}^{T_{i}} = \mathbf{P}_{4,i}^{T_{i}} \mathbf{p}_{3,i} \\ & \mathbf{NOTE: These projectors \\ still have phase errors \\ still have phase errors \\ as of 4.12.15 \\ (However final tables OK) \\ & \text{Then find nilpotent proportional to:} \mathbf{p}_{1,i} \mathbf{r}_{1} \mathbf{p}_{3,i} = \frac{L}{L} - \mathbf{p}_{i} \\ & -i \mathbf{R}_{x} + i \mathbf{i}_{5} & -\mathbf{\tilde{r}_{4}} + \mathbf{\tilde{r}_{2} \\ & -i \mathbf{R}_{x} + i \mathbf{\tilde{r}_{5}} & -\mathbf{\tilde{r}_{4} + \mathbf{\tilde{r}_{2}} \\ & -i \mathbf{R}_{x} + i \mathbf{\tilde{r}_{5}} & -\mathbf{\tilde{r}_{4} + \mathbf{\tilde{r}_{5}} \\ & = [(\mathbf{r}_{1} - \mathbf{r}_{4} - i\mathbf{\tilde{r}_{4}} \mathbf{r}_{2} \mathbf{p}_{3,i} + \mathbf{\tilde{r}_{2}} \mathbf{p}_{3,i} + \mathbf{\tilde{r}_{2}} \mathbf{p}_{3,i})] 4 \\ \\ & \text{Result is nicely factored quite like } \mathbf{P}_{4,i}^{T_{1}} \\ & \mathbf{P}_{4,i}^{T_{1}} = \mathbf{P}_{4,i}^{T_{1}} \mathbf{p}_{3,i} - (2) ((\mathbf{r}_{1} \mathbf{p}_{3,i} + \mathbf{r}_{2} \mathbf{p}_{$$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{T}_{10404} \mathbf{P}^{T}_{1414} \mathbf{P}^{T}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu})^{\circ} G \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4\nu}$, $O_h \supset D_{3h} \supset C_{3\nu}$, $O_h \supset C_{2\nu}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

Ireps for $O \supset D_4 \supset C_4$ *subgroup chain*

(a) Vector T_1 Representation		(b) Tensor T ₂ Representation
$\mathcal{D}^{T_1}(1) = \qquad R_1^2 =$	$r_1 = r_2 = r_1^2 = r_2^2 =$	$\mathscr{D}^{T_2}(1) = R_1^2 = r_1 = r_2 = r_1^2 = r_2^2 =$
$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \qquad \begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} -i & i & -1 \\ \hline 2 & i & -1 \\ \hline -i & i & 1 \\ \hline -i & i & 1 \\ \hline -i & i & 1 \\ \hline \sqrt{2} & \sqrt{2} & \cdot \end{vmatrix} \begin{vmatrix} -i & i & 1 \\ \hline 2 & i & -1 \\ \hline 2 & i & -1 \\ \hline \sqrt{2} & \sqrt{2} & \cdot \end{vmatrix} \begin{vmatrix} i & i & -1 \\ \hline -i & i & -1 \\ \hline \sqrt{2} & \sqrt{2} & \cdot \end{vmatrix} \begin{vmatrix} i & i & i & -1 \\ \hline -i & -i & i \\ \hline \sqrt{2} & \sqrt{2} & \cdot \end{vmatrix} \begin{vmatrix} i & i & -1 \\ \hline 2 & i & -i & i \\ \hline \sqrt{2} & \sqrt{2} & \cdot \end{vmatrix} \begin{vmatrix} i & i & -1 \\ \hline 2 & i & \sqrt{2} \\ \hline -1 & 1 & \sqrt{2} \\ \hline \sqrt{2} & \sqrt{2} & \cdot \end{vmatrix} \begin{vmatrix} i & i & -i & -i \\ \hline 2 & 2 & \sqrt{2} \\ \hline -1 & 1 & \sqrt{2} \\ \hline \sqrt{2} & \sqrt{2} & \cdot \end{vmatrix} \begin{vmatrix} i & -i & -i & -i \\ \hline 2 & 2 & \sqrt{2} \\ \hline 1 & -1 & \sqrt{2} \\ \hline \sqrt{2} & \sqrt{2} \\ \hline \end{vmatrix} Vector$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{i}{2} & \frac{-i}{2} & \frac{1}{\sqrt{2}} \\ \frac{i}{2} & \frac{-i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{2} & \frac{i}{2} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ -i$
$\mathscr{D}^{T_1}(R_3^2) = \qquad R_2^2 =$	$r_4 = r_3 = r_3^2 = r_4^2 = X, V, Z$	$\mathscr{D}^{T_2}(R_3^2) = R_2^2 = r_4 = r_3 = r_3^2 = r_4^2 = VZ, XZ, XV$
$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} i & -i & -i \\ \overline{2} & \overline{2} & -\overline{1} \\ \overline{2} & \overline{2} & \overline{\sqrt{2}} \\ i & -i & 1 \\ \overline{2} & \overline{2} & \overline{\sqrt{2}} \\ i & i & -i \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} & \cdot \end{vmatrix} \begin{vmatrix} i & -i & -i \\ \overline{2} & \overline{2} & \overline{\sqrt{2}} \\ i & 1 & \overline{2} & \overline{2} & \overline{\sqrt{2}} \\ i & 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} & \cdot \end{vmatrix} \begin{vmatrix} -i & -i & -i \\ \overline{2} & \overline{2} & \overline{\sqrt{2}} \\ i & 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} & \cdot \end{vmatrix} \begin{vmatrix} -i & -i & -i \\ \overline{2} & 1 & \overline{\sqrt{2}} \\ i & 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} \\ \cdot \end{vmatrix} \begin{vmatrix} -i & -i & -i \\ \overline{\sqrt{2}} & 1 \\ \overline{\sqrt{2}} & 1 \\ \overline{\sqrt{2}} & 1 \\ \overline{\sqrt{2}} \\ \cdot \end{vmatrix} \begin{vmatrix} -i & -i & -i \\ \overline{\sqrt{2}} & 1 \\ \overline{\sqrt{2}} \\ \cdot \end{vmatrix} \begin{vmatrix} -i & -i & -i \\ \overline{\sqrt{2}} \\ \cdot \\ \overline{\sqrt{2}} \\ \cdot \end{vmatrix} \end{vmatrix}$	$ \begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} -i & i & -1 \\ 1 & \cdot & \cdot \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} -i & i & 1 \\ -i & \frac{i}{2} & \frac{1}{\sqrt{2}} \\ -i & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-i}{2} & \frac{i}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \\$
$\mathscr{D}^{T_1}(R_3) = i_4 = \mathbf{D} ,$	$i_1 = i_2 = R_1^3 = R_1 =$	$\mathscr{D}^{T_2}(R_3) = i_4 = i_1 = i_2 = R_1^3 = R_1 = i_2$
$\begin{vmatrix} -i & \cdot & \cdot \\ \cdot & i & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & -i & \cdot \\ i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$ \begin{vmatrix} -1 & -1 & -1 \\ \hline 2 & -1 & -1 \\ \hline -1 & 2 & \sqrt{2} \\ \hline -1 & -1 & 1 \\ \hline 2 & 2 & \sqrt{2} \\ \hline -1 & 2 & \sqrt{2} \\ \hline -1 & 1 & \sqrt{2} \\ \hline \sqrt{2} & \sqrt{2} \\ \hline -1 & 1 & \sqrt{2} \\ \hline \sqrt{2} & \sqrt{2} \\ \hline -1 & \sqrt{2} & \sqrt{2} \\ \hline \sqrt{2} & 2$	$\begin{vmatrix} -i & \cdot & \cdot \\ \cdot & i & \cdot \\ \cdot & \cdot & -1 \end{vmatrix} \begin{vmatrix} \cdot & -i & \cdot \\ i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & $
$\mathcal{D}^{T_1}(R_3^3) = \qquad i_3 =$	$R_2 = R_2^3 = i_6 = i_5 =$	$\mathscr{D}^{T_2}(R_3^3) = i_3 = R_2 = R_2^3 = i_6 = i_5 =$
$\begin{vmatrix} i & \cdot & \cdot \\ \cdot & -i & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & i & \cdot \\ -i & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$ \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{i}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{i}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{1}{2} & \frac{-1}{2} & \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & \cdot \end{vmatrix} O: T_1 E T_1 T_1 E T_1 E T_1 T_1 T_1 E T_1 T$	$\begin{vmatrix} i & \cdot & \cdot \\ \cdot & -i & \cdot \\ \cdot & -1 \end{vmatrix} \begin{vmatrix} \cdot & i & \cdot \\ -i & \cdot & \cdot \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{-1}{2} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{$

1=[1][2	$R_1^2 = [13][24]$	$r_1 = [132]$	$r_2 = [124]$	$r_1^2 = [123]$	$r_2^2 = [142]$							
$\left(\begin{array}{rrr}1&0\\0&1\end{array}\right)$	$\left.\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left \begin{array}{cccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array} \right $	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	E			r ₁₋₄		R _{xyz}	
$R_3^2 = [12]$	$R_2^2 = [14][23]$	$r_4 = [234]$	$r_3 = [124]$	$r_3^2 = [134]$	$r_4^2 = [243]$	Tensor	$O: \chi_{\mathbf{g}}^{\mu}$	g=l	ĩ	ρ_{xyz}	Ď	i ₁₋₆
(10	$\left(\begin{array}{c} 1 & 0 \end{array} \right)$	$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{array}\right)$	$\left(\begin{array}{c} -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{array} \right)$	$\left(\begin{array}{cc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \end{array}\right)$	$x^2 + 1y^2 - 2z^2$			1 1−4		K _{xyz}	
(01		$\left(\begin{array}{cc} +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{c} +\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\int \left(-\frac{\sqrt{3}}{2} - \frac{1}{2} \right)$	$(x^2 - y^2)\sqrt{3}$	$\mu = A_1$	1	1	1	1	1
$R_3 = [14]$	$i_4 = [12]$	i ₁ = [14]	$i_2 = [23]$	$R_1^3 = [1432]$	$R_1 = [1234]$		4	1	1	1	_1	_1
$ \left(\begin{array}{ccc} 1 & 0\\ 0 & - \end{array}\right) $	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$		E	2	-1	2	-1 0	-1
$R_3^3 = [13]$	$i_3 = [34]$	$R_2 = [1243]$	$R_2^3 = [1342]$	$i_6 = [24]$	$i_5 = [13]$		T_1	3	0	-1	1	-1
$\left(\begin{array}{cc} 1 & 0\\ 0 & -\end{array}\right)$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & +\frac{\sqrt{3}}{2} \\ +\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & +\frac{1}{2} \end{array}\right)$	$ \begin{array}{c c c} O & E \\ basis: D_4 & A_1 \\ C_4 & 0_4 \end{array} $ $ \begin{array}{c c c} E \\ B_1 \\ C_4 \end{array} $	T_2	3	0	-1	-1	1

Sunday, April 12, 2015

Ireps for $O \supset D_4 \supset D_2$ *subgroup chain*

$\mathscr{D}^{T_2}(1) = R_1^2 =$	$r_1 = r_2 =$	$r_1^2 = r_2^2 =$		$\mathcal{D}^{T_2}(1) =$	$R_1^2 =$	<i>r</i> ₁ =	<i>r</i> ₂ =	$r_1^2 =$	$r_2^2 =$
$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix} \begin{vmatrix} \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & -1 \\ \cdot & \cdot \\ -1 & \cdot \end{vmatrix}$	$\begin{pmatrix} 1 & \cdot \\ & 1 \\ & \cdot \end{pmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{vmatrix}$
$\mathscr{D}^{T_2}(R_3^2) = R_2^2 =$	<i>r</i> ₄ = <i>r</i> ₃ =	$r_3^2 = r_4^2 =$		$\mathcal{D}^{T_2}(R_3^2) =$	$R_{2}^{2} =$	<i>r</i> ₄ =	<i>r</i> ₃ =	$r_3^2 =$	$r_4^2 =$
$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix} \qquad \begin{vmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{vmatrix}$		$\begin{vmatrix} -1 & \cdot \\ \cdot & -1 \\ \cdot & \cdot \end{vmatrix}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{vmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{vmatrix}$
$\mathscr{D}^{T_2}(R_3) = i_4 =$	$i_1 = i_2 =$	$R_1^3 = R_1 =$		$\mathcal{D}^{T_2}(R_3) =$	$i_4 =$	$i_1 =$	<i>i</i> ₂ =	$R_1^3 =$	$R_1 =$
$\begin{vmatrix} & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix} \begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \end{vmatrix} \begin{vmatrix} -1 & \cdot \\ \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\left \begin{array}{c} \cdot \\ -1 \\ \cdot \end{array} \right $	$\begin{vmatrix} \cdot & -1 \\ 1 & \cdot \\ \cdot & \cdot & - \end{vmatrix}$	$ \begin{array}{c c} \cdot \\ \cdot \\ -1 \end{array} \begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} $	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \end{vmatrix}$
$\mathscr{D}^{T_2}(R_3^3) = i_3 =$	$R_2 = R_2^3 =$	i ₆ = i ₅ =	See .	$\mathcal{D}^{T_2}(R_3^3) =$	<i>i</i> ₃ =	$R_2 =$	$R_2^3 =$	$i_6 =$	<i>i</i> ₅ =
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{vmatrix} \qquad \begin{vmatrix} 1 & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\left \begin{array}{c} \cdot \\ -1 \\ \cdot \end{array} \right $	$\begin{array}{ccc} \cdot & 1 \\ -1 & \cdot \\ \cdot & \cdot & - \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \end{vmatrix}$
$\mathbf{T}_{1} \overset{Vector}{_{x,y,z}}$	$\begin{array}{c c} O & T_1 \\ \text{basis:} D_4 & E \\ D_2 & B_1 \end{array}$	$ \begin{array}{c c} \mathbf{T}_1 \\ \mathbf{E} \\ B_2 \end{array} \begin{vmatrix} \mathbf{T}_1 \\ A_2 \\ A_2 \end{vmatrix} $		Τ	7 2 y	Fensor z,xz,xy	basis	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\left.\begin{array}{c} \mathbf{T_2} \\ \mathbf{B_2} \\ \mathbf{A_2} \end{array}\right\rangle$

$\begin{array}{c} \mathcal{D}^{E}(1) \\ \left \begin{array}{c} R_{1}^{2} = \\ 1 \\ 0 \end{array} \right \\ \left \begin{array}{c} 1 \\ 0 \end{array} \right \\ \left \begin{array}{c} 1 \\ 0 \end{array} \right \\ \left \begin{array}{c} 0 \\ 1 \end{array} \right \\ \left \begin{array}{c} 1 \\ 0 \end{array} \right \\ \left \begin{array}{c} 0 \\ 1 \end{array} \right \\ \left \left \begin{array}{c} 0 \\ 1 \end{array} \right \\ \left \left \begin{array}{c} 0 \\ 1 \end{array} \right \\ \left $	$ \begin{array}{c cccc} r_1 = & r_2 = \\ & \left \begin{array}{c} -1 & -\sqrt{3} \\ \hline 2 & \frac{-\sqrt{3}}{2} \\ \hline \sqrt{3} & -1 \\ \hline 2 & 2 \end{array} \right & \left \begin{array}{c} -1 & -\sqrt{3} \\ \hline 2 & 2 \\ \hline \sqrt{3} & -1 \\ \hline 2 & 2 \end{array} \right \\ \hline \end{array} $	$r_{1}^{2} = r_{2}^{2} = \left \begin{array}{ccc} -1 & \sqrt{3} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & -1 \\ \hline 2 & 2 \end{array} \right \left \begin{array}{ccc} -1 & \sqrt{3} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & -1 \\ \hline 2 & 2 \end{array} \right $	E
$\mathcal{D}^{E}(R_{3}^{2}) \qquad R_{2}^{2} = \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right \qquad \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right $	$ \begin{array}{c ccc} r_4 = & r_3 = \\ & \left \begin{array}{c} -1 & -\sqrt{3} \\ 2 & -1 \\ \hline \sqrt{3} & -1 \\ 2 & -1 \end{array} \right & \left \begin{array}{c} -1 & -\sqrt{3} \\ 2 & -1 \\ \hline \sqrt{3} & -1 \\ 2 & -1 \\ \hline \sqrt{3} & -1 \\ 2 & -1 \end{array} \right $	$r_{3}^{2} = r_{4}^{2} = \left \begin{array}{cc} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array} \right \left \begin{array}{c} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array} \right $	Tensor $x^2+y^2-2z^2$
$\mathcal{D}^{E}(R_{3})$ $i_{4} =$	$i_1 = i_2 =$ $\begin{vmatrix} -1 & \sqrt{3} \end{vmatrix} = \begin{vmatrix} -1 & \sqrt{3} \end{vmatrix}$	$\begin{array}{ccc c} R_1^3 = & R_1 = \\ & & \\ & -1 & -\sqrt{3} & & -1 & -\sqrt{3} & \end{array}$	(x^2-y^2) \vee 3
$\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$	$\begin{vmatrix} \frac{2}{2} & \frac{2}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix} \qquad \begin{vmatrix} \frac{2}{2} & \frac{2}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$\begin{vmatrix} \hline 2 & \hline 2 \\ -\sqrt{3} & 1 \\ \hline 2 & 2 \end{vmatrix} \begin{vmatrix} \hline 2 & \hline 2 \\ -\sqrt{3} & 1 \\ \hline 2 & 2 \end{vmatrix} \begin{vmatrix} \hline -\sqrt{3} & 1 \\ \hline 2 & 2 \end{vmatrix}$	$O \mid E \mid E \mid E$ basis: $D_4 \mid A_1 \mid B_1$
$\mathscr{D}^{E}(\mathbb{R}^{3})$ $i_{2} =$	$R_2 = R_2^3 =$	<i>i</i> ₆ = <i>i</i> ₅ =	D_{1} D_{2} A_{1} A_{2}
- (13)			

$O: \chi_g^{\mu}$	g=1	\mathbf{r}_{1-4} $\mathbf{\tilde{r}}_{1-4}$	$\mathbf{\rho}_{xyz}$	$f R_{xyz}$ $f \widetilde R_{xyz}$	i ₁₋₆
$\mu = A_1$	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

Ireps for $O \supset D_3 \supset C_2$ *subgroup chain*

$\begin{bmatrix} \frac{2}{2} & \frac{6}{-\sqrt{8}} \\ \frac{-\sqrt{8}}{3} \end{bmatrix}$	$ \frac{3}{-1} \begin{vmatrix} \frac{6}{\sqrt{6}} & \frac{6}{-\sqrt{2}} & \frac{3}{1} \\ \frac{\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \end{vmatrix} $ <i>Vector u</i> , <i>v</i> , <i>w</i>	$\begin{vmatrix} \overline{6} & \overline{6} & \overline{3} \\ \overline{\sqrt{6}} & \sqrt{2} & -1 \\ \overline{3} & \overline{\sqrt{2}} & -1 \\ \overline{3} & \overline{3} \end{vmatrix}$ $\begin{vmatrix} O \\ T_1 \\ E \\ C_2 \\ 0_2 \end{vmatrix}$	$\begin{vmatrix} 6 & 6 & 3 \\ -\sqrt{6} & -\sqrt{2} & 1 \\ \hline 3 & -\sqrt{2} & 1 \\ \hline 1_2 & A_2 \\ \hline 1_$	$\begin{bmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{-\sqrt{6}}{3} & \frac{-\sqrt{3}}{6} \end{bmatrix}$	$\begin{array}{c c} \hline 1\\ \hline 2\\ \hline 1\\ \hline 2\\ \hline \\ \end{array} & \begin{vmatrix} \hline 3\\ \hline 3\\ \hline 6\\ \hline -\sqrt{6}\\ \hline 6\\ \hline \\ \hline$	$\begin{vmatrix} \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$ $\begin{array}{c} O \\ basis: D_3 \\ C_2 \\ 0_2 \\ \end{array}$	$\begin{vmatrix} \overline{3} & \overline{6} & \overline{6} \\ \cdot & -\sqrt{3} & -1 \\ \hline 2 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{vmatrix}$ $\begin{vmatrix} T_2 \\ E \\ 0_2 \end{vmatrix} \begin{vmatrix} T_2 \\ E \\ 1_2 \end{vmatrix}$
$r_{3}^{2} = [134]$ $\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{6} \\ \sqrt{3} & -1 \end{vmatrix}$	$\begin{vmatrix} i_1 = [14] \\ \frac{-\sqrt{6}}{3} \\ \sqrt{2} \end{vmatrix} \qquad \begin{vmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{6} & \frac{\sqrt{6}}{3} \\ -\sqrt{3} & -5 & -\sqrt{2} \end{vmatrix}$	$r_{4}^{2} = [243]$ $\begin{vmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} & . \\ -\sqrt{3} & -1 & -\sqrt{8} \end{vmatrix}$	$R_{2} = [1243]$ $\begin{vmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} & \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & \sqrt{8} \end{vmatrix}$	$r_{3}^{2} = [134]$ $\begin{vmatrix} -\frac{1}{3} & \frac{\sqrt{8}}{3} \\ -\sqrt{2} & -1 \end{vmatrix}$	$i_{1} = [14]$ $\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} & -\frac{\sqrt{6}}{3} \\ -\sqrt{3} & -\sqrt{2} & 5 & -\sqrt{3} \end{vmatrix}$	$r_4^2 = [243]$ $\begin{vmatrix} -1 & -\sqrt{2} & \sqrt{6} \\ 3 & 3 & 3 \\ \sqrt{8} & -1 & \sqrt{3} \end{vmatrix}$	$R_{2} = [1243]$ $\begin{vmatrix} -1 & -\sqrt{2} & \sqrt{6} \\ 3 & -3 & -\frac{\sqrt{6}}{3} \\ \sqrt{8} & -1 & \sqrt{3} \end{vmatrix}$
$r_{2} = [124]$ $\begin{vmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{6} \\ -\frac{\sqrt{3}}{6} & \frac{5}{6} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{2}}{3} \end{vmatrix}$	$R_{1} = [1234]$ $\frac{-\sqrt{6}}{3}$ $\frac{\sqrt{2}}{3}$ $\frac{\sqrt{2}}{-1}$ $\frac{1}{3}$ $\frac{\sqrt{3}}{2} + \frac{1}{6} + \frac{-\sqrt{2}}{3}$ $\frac{\sqrt{8}}{3} + \frac{1}{3}$	$r_{3} = [143]$ $\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & . \\ \frac{\sqrt{3}}{6} & \frac{-1}{6} & \frac{-\sqrt{8}}{3} \\ \frac{-\sqrt{6}}{3} & \frac{\sqrt{2}}{3} & \frac{-1}{3} \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} \\ -\frac{\sqrt{2}}{3} & \frac{5}{6} \\ -\frac{\sqrt{6}}{3} & \frac{-\sqrt{3}}{6} \end{vmatrix}$	$\frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{6} \\ -\frac{1}{2} \\ \frac{\sqrt{3}}{6} \\ \frac{-1}{2} \\ \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{2}}{3} \\ \frac{-\sqrt{2}}{6} \\ \frac{-\sqrt{3}}{6} \\ \frac{-\sqrt{3}}{6} \\ \frac{-\sqrt{3}}{6} \\ \frac{-\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{6} \\ \frac{-\sqrt{3}}{6$	$\begin{vmatrix} -1 & -\sqrt{2} & -\sqrt{6} \\ 3 & -1 & -\sqrt{3} \\ \frac{\sqrt{8}}{3} & \frac{-1}{6} & \frac{-\sqrt{3}}{6} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} & -\frac{\sqrt{6}}{3} \\ \frac{\sqrt{8}}{3} & \frac{-1}{6} & \frac{-\sqrt{3}}{6} \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix}$
$R_2^2 = [14][23]$ $\begin{vmatrix} -\sqrt{3} & -\frac{\sqrt{3}}{3} \\ -\sqrt{3} & -\frac{2}{3} \\ -\sqrt{6} & \frac{\sqrt{2}}{3} \\ -\sqrt{6} & \frac{\sqrt{2}}{3} \\ -\sqrt{6} & -\frac{\sqrt{2}}{3} \\ -\sqrt{6} & -\frac{\sqrt{6}}{3} \\ -\sqrt{6} & -\frac{\sqrt{6}{3} \\ -\sqrt{6} & -\frac{\sqrt{6}}{3} \\ -\sqrt{6} & -\frac{\sqrt{6}}{3} \\ -\sqrt{6}$	$R_{3}^{3} = [1324]$ $\frac{-\sqrt{6}}{3}$ $\frac{\sqrt{2}}{3}$ $\frac{-1}{3}$ $\frac{-1}{3}$ $\frac{-\sqrt{3}}{3}$ $\frac{-\sqrt{3}}{3}$ $\frac{2}{3}$ $\frac{-\sqrt{2}}{3}$ $\frac{-\sqrt{2}}{3}$ $\frac{-\sqrt{2}}{3}$ $\frac{-\sqrt{2}}{3}$ $\frac{-\sqrt{2}}{3}$ $\frac{-\sqrt{2}}{3}$	$R_{3}^{2} = [12][34]$ $\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \frac{1}{3} & \frac{-\sqrt{8}}{3} \\ \cdot & \frac{-\sqrt{8}}{3} & \frac{-1}{3} \end{vmatrix}$	$i_{3} = [34]$ $\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \frac{-1}{3} & \frac{\sqrt{8}}{3} \\ \cdot & \frac{\sqrt{8}}{3} & \frac{1}{3} \end{vmatrix}$ $P^{3} = [1432]$	$R_2^2 = [14][23]$ $\begin{vmatrix} -1 & -\sqrt{2} \\ 3 & -\sqrt{2} \\ -\sqrt{2} & -2 \\ 3 & -\sqrt{2} \\ -\sqrt{6} & \sqrt{3} \\ -\sqrt{6} & \sqrt{3} \\ 3 & -\sqrt{6} \\ -3 & -1241 \end{vmatrix}$	$R_{3}^{3} = [1324]$ $\frac{-\sqrt{6}}{3} \qquad \qquad \left \begin{array}{c} -1 & -\sqrt{2} & \sqrt{6} \\ \hline 3 & & \\ \frac{\sqrt{3}}{3} \\ \hline \\ \cdot \\ \cdot \\ \end{array} \right \qquad \left \begin{array}{c} -1 & -\sqrt{2} & \sqrt{6} \\ \hline 3 & & 3 \\ \hline \\ -\sqrt{2} & -2 & \sqrt{3} \\ \hline 3 & & 3 \\ \hline \\ -\sqrt{6} & \sqrt{3} \\ \hline \\ 3 & & \frac{\sqrt{3}}{3} \\ \hline \\ R_{1} = [1234] \end{array}$	$R_{3}^{2} = [12][34]$ $\begin{vmatrix} -1 & \sqrt{8} & \\ 3 & 3 & \\ \frac{\sqrt{8}}{3} & \frac{1}{3} & \\ \frac{\sqrt{8}}{3} & \frac{1}{3} & \\ \frac{1}{3} & \frac{1}{3} & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ $	$i_{3} = [34]$ $\begin{vmatrix} -1 & \sqrt{8} & \\ 3 & 3 & \\ \sqrt{8} & \frac{1}{3} & \\ 0 & 0 & 1 \end{vmatrix}$ $R_{1}^{3} = [1432]$
$r_1^2 = [123]$ $\begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \\ 0 & 0 \end{vmatrix}$	$i_{2} = [23]$ $ D_{3} \begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} & \cdot \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$r_2^2 = [142]$ $\begin{vmatrix} -\frac{1}{2} & -\sqrt{3} & \sqrt{6} \\ \frac{\sqrt{3}}{6} & \frac{5}{6} & \frac{\sqrt{2}}{3} \\ \frac{-\sqrt{6}}{3} & \frac{\sqrt{2}}{3} & \frac{-1}{3} \end{vmatrix}$	$R_2^3 = [1342]$ $\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{6} & \frac{-\sqrt{6}}{3} \\ \frac{-\sqrt{3}}{2} & \frac{1}{6} & \frac{-\sqrt{2}}{3} \\ \frac{\sqrt{8}}{3} & \frac{1}{3} \end{vmatrix}$	$r_{1}^{2} = [123]$ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \cdot & \frac{-\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix}$	$i_{2} = [23]$ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \cdot & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$r_2^2 = [142]$ $\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{3} & \frac{5}{6} & -\frac{\sqrt{3}}{6} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & -\frac{1}{2} \end{vmatrix}$	$R_2^3 = [1342]$ $\begin{vmatrix} -\frac{1}{3} & \frac{\sqrt{8}}{3} \\ -\frac{\sqrt{2}}{3} & -\frac{1}{6} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & -\frac{1}{2} \end{vmatrix}$
$r_{1} = [132]$ $\begin{vmatrix} -1 & -\sqrt{3} \\ 2 & 2 \\ \sqrt{3} & -1 \\ 2 & 2 \\ \cdot & \cdot \\ \end{vmatrix}$	$i_{5} = [13]$ $\cdot \\ \cdot \\ 1 \qquad \qquad \begin{vmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} & \cdot \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$r_{4} = [234]$ $\begin{vmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{6} & \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{3}}{2} & \frac{-1}{6} & \frac{\sqrt{2}}{3} \\ \frac{-\sqrt{8}}{3} & \frac{-\sqrt{8}}{3} & \frac{-1}{3} \end{vmatrix}$	$i_{6} = [24]$ $\begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{6} & \frac{-\sqrt{6}}{3} \\ \frac{\sqrt{3}}{6} & \frac{-5}{6} & \frac{-\sqrt{2}}{3} \\ \frac{-\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \end{vmatrix}$	$r_{1} = [132]$ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \cdot & \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix}$	$i_{5} = [13]$ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \cdot & \frac{-\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$r_{4} = [234]$ $\begin{vmatrix} \frac{-1}{3} & \frac{\sqrt{8}}{3} & \cdot \\ \frac{-\sqrt{2}}{3} & \frac{-1}{6} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & \frac{1}{2} \end{vmatrix}$	$i_{6} = [24]$ $\begin{vmatrix} -1 & -\sqrt{2} & \sqrt{6} \\ 3 & -\sqrt{2} & \frac{5}{6} & \frac{\sqrt{3}}{6} \\ -\sqrt{2} & \frac{5}{6} & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{6} & \frac{1}{2} \end{vmatrix}$
$\mathcal{D}^{T_{1}}(1) = $ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{array}{c c} i_4 = [12] \\ C_2 & \begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$R_{1}^{2} = [13][24]$ $\begin{vmatrix} \cdot & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{-2}{3} & \frac{\sqrt{2}}{3} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{2}}{3} & \frac{-1}{3} \end{vmatrix}$	$R_{3} = [1423]$ $\begin{vmatrix} \cdot & \frac{-\sqrt{3}}{3} & \frac{-\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{2}{3} & \frac{-\sqrt{2}}{3} \\ \frac{\sqrt{6}}{3} & \frac{-\sqrt{2}}{3} & \frac{1}{3} \end{vmatrix}$	$\mathcal{D}^{T2}(1) = $ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$i_4 = [12]$ $\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$R_{1}^{2} = [13][24]$ $\begin{vmatrix} \frac{-1}{3} & \frac{-\sqrt{2}}{3} & \frac{\sqrt{6}}{3} \\ \frac{-\sqrt{2}}{3} & \frac{-2}{3} & \frac{-\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & \frac{-\sqrt{3}}{3} & \frac{-\sqrt{3}}{3} \end{vmatrix}$	$R_{3} = [1423]$ $\begin{vmatrix} -\frac{1}{3} & -\frac{\sqrt{2}}{3} & -\frac{\sqrt{4}}{3} \\ -\frac{\sqrt{2}}{3} & \frac{-2}{3} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & \frac{-\sqrt{3}}{3} & \cdot \end{vmatrix}$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{T}_{10404} \mathbf{P}^{T}_{1414} \mathbf{P}^{T}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu})^{\circ} G \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$

Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{T}_{10404} \mathbf{P}^{T}_{1414} \mathbf{P}^{T}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$

Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424}

Comparing Local C_4 , C_3 , and C_2 symmetric spectra

When Local C₂ *symmetry dominates*

Comparing off-diagonal $O \supset C_2$ parameter sets to CH_4 models with "cluster-crossings"

Examples of off-diagonal tunneling coefficients D^{E}_{0424}

$$\begin{array}{c|c|c|c|c|c|c|c|} & I = I(I) = I($$

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $g \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu}/{}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$

Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424}

Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates

Comparing off-diagonal $O \supset C_2$ parameter sets to CH_4 models with "cluster-crossings"

Comparing Local C_4 , C_3 , and C_2 symmetric spectra

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{E}_{2424} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ Review Coset factored splitting of $O \supset D_4 \supset C_4$ projectors Review Broken-class-ordered splitting of $O \supset D_4 \supset C_4$ projectors and levels Subgroup-defined tunneling parameter modeling

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$) Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu})^{\circ} G \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_{3} \supset C_{2} \sim C_{3\nu} \supset C_{\nu}$

Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^E_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra When Local C_2 symmetry dominates Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

When Local C₂ symmetry dominates

Review Calculating idempotent projectors $\mathbf{P}^{\mu}_{m,m}$ of $O \supset C_4 \mathbf{P}^{E}_{0404} \mathbf{P}^{T_1}_{0404} \mathbf{P}^{T_1}_{1414} \mathbf{P}^{T_2}_{2424}$ *Review Coset factored splitting of* $O \supset D_4 \supset C_4$ *projectors Review Broken-class-ordered splitting of* $O \supset D_4 \supset C_4$ *projectors and levels Subgroup-defined tunneling parameter modeling*

> Comparing two diagonal $O \supset C_4$ parameter sets to SF_6 spectra Comparing two diagonal $O \supset C_3$ parameter sets to SF_6 spectra Why $O \supset C_2$ parameter sets require off-diagonal nilpotent $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Irreducible nilpotent projectors $\mathbf{P}^{\mu}_{m,n}$ ($m \neq n$)

Using fundamental $\mathbf{g} \rightleftharpoons \mathbf{P}^{\mu}_{m,n}$ relations: (from Lecture 16) (a) $\mathbf{P}^{\mu}_{m,m} \mathbf{g} \mathbf{P}^{\mu}_{n,n} = D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (b) $\mathbf{g} = \sum_{\mu} \sum_{m,n} D^{\mu}_{m,n}(\mathbf{g}) \mathbf{P}^{\mu}_{m,n}$ (c) $\mathbf{P}^{\mu}_{n,n} = (\ell^{\mu} / {}^{\circ}G) \sum_{\mathbf{g}} D^{\mu^{*}}_{m,n}(\mathbf{g}) \mathbf{g}$ Review of $D_3 \supset C_2 \sim C_{3v} \supset C_v$ Calculating and Factoring $\mathbf{P}^{T_{1}}_{1404}$ and $\mathbf{P}^{T_{1}}_{1434}$

Structure and applications of various subgroup chain irreducible representations $O_h \supset D_{4h} \supset C_{4v}$, $O_h \supset D_{3h} \supset C_{3v}$, $O_h \supset C_{2v}$ Comparing $O_h \supset D_{4h} \supset D_{2h}$ and $O_h \supset D_{3d} \supset C_2$ representations (T_1 vector-type) Examples of off-diagonal tunneling coefficients D^{E}_{0424} Comparing Local C_4 , C_3 , and C_2 symmetric spectra *When Local* C₂ *symmetry dominates* Comparing off-diagonal $O \supset C_2$ parameter sets to CH₄ models with "cluster-crossings"

When Local C₂ *symmetry dominates*

$O \supset C_2(\mathbf{i}_1)$	02	12
$A_1 \downarrow C_2$	1	•
$A_2 \downarrow C_2$	•	1
$E \downarrow C_2$	1	1
$T_1 \downarrow C_2$	1	2
$T_2 \downarrow C_2$	2	1

Table 13. Splittings of $O \supset C_2(i_4)$ given sub-class structure.

$O \supset D_4$	0°	$r_{-}120^{\circ}$	<i>a</i> _180°	<i>B</i> 90°	<i>i</i> 180°
$\supset C_2(i_4)$	Ŭ	<i>r</i> _n 120	$p_n = 0$	10,00	<i>v</i> _n 100
02					
$arepsilon_{0_2}^{A_1}$	g_0	$4r_{12} + 4r_{34}$	$2\rho_{xy} + \rho_z$	$4R_{xy} + 2R_z$	$4i_{1256} + i_3 + i_4$
$\varepsilon_{0_2}^{E}$	g_0	$-2r_{12} - 2r_{34}$	$2\rho_{xy} + \rho_z$	$-2R_{xy}+2R_z$	$-2i_{1256} + i_3 + i_4$
$arepsilon_{0_2}^{T_1}$	g_0	$-2r_{12}+2r_{34}$	$- ho_z$	$2R_{xy}$	$-2i_{1256} - i_3 + i_4$
$\varepsilon_{0_2}^{T_{2_E}}$	g 0	$2r_{12} - 2r_{34}$	$- ho_z$	$-2R_{xy}$	$2i_{1256} - i_3 + i_4$
$\varepsilon_{0_2}^{T_{2_{A_1}}}$	a_0	0	$-2\rho_{xy}+\rho_z$	$-2R_z$	$i_{3} + i_{4}$
02	30				
1_2	50				
$\frac{1_2}{\varepsilon_{1_2}^{A_2}}$	<i>g</i> ₀	$4r_{12} + 4r_{34}$	$2\rho_{xy} + \rho_z$	$-4R_{xy}-2R_z$	$-4i_{1256} - i_3 - i_4$
$\begin{array}{c} \overline{}\\ 1_2\\ \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	<i>g</i> ₀ <i>g</i> ₀	$\begin{array}{c} 4r_{12}+4r_{34}\\ -2r_{12}-2r_{34} \end{array}$	$\frac{2\rho_{xy} + \rho_z}{2\rho_{xy} + \rho_z}$	$-4R_{xy} - 2R_z$ $2R_{xy} - 2R_z$	$\begin{array}{c} -4i_{1256}-i_3-i_4\\ 2i_{1256}-i_3-i_4\end{array}$
$\begin{array}{c} & & \\ & & 1_2 \\ & & \varepsilon_{1_2}^{A_2} \\ & & \varepsilon_{1_2}^E \\ & & \varepsilon_{1_2}^{T_{1_E}} \\ & & \varepsilon_{1_2}^{T_{1_E}} \end{array}$	<i>g</i> ₀ <i>g</i> ₀ <i>g</i> ₀	$\begin{array}{r} 4r_{12}+4r_{34}\\ -2r_{12}-2r_{34}\\ 2r_{12}-2r_{34} \end{array}$	$2\rho_{xy} + \rho_z$ $2\rho_{xy} + \rho_z$ $-\rho_z$	$-4R_{xy} - 2R_z$ $2R_{xy} - 2R_z$ $2R_z$	$\begin{array}{r} -4i_{1256}-i_3-i_4\\ 2i_{1256}-i_3-i_4\\ -2i_{1256}+i_3-i_4\end{array}$
$\begin{array}{c} \overline{} \\ \overline{} \\ \overline{} \\ \varepsilon^{A_2}_{1_2} \\ \varepsilon^{E_1}_{1_2} \\ \varepsilon^{T_{1_E}}_{1_2} \\ \varepsilon^{T_{1_{A_2}}}_{1_2} \\ \varepsilon^{T_{1_{A_2}}}_{1_2} \end{array}$	<i>g</i> 0 <i>g</i> 0 <i>g</i> 0 <i>g</i> 0 <i>g</i> 0	$4r_{12} + 4r_{34} \\ -2r_{12} - 2r_{34} \\ 2r_{12} - 2r_{34} \\ 0$	$2\rho_{xy} + \rho_z$ $2\rho_{xy} + \rho_z$ $-\rho_z$ $-2\rho_{xy} + \rho_z$	$\begin{array}{c} -4R_{xy}-2R_z\\ 2R_{xy}-2R_z\\ 2R_z\\ -2R_z\end{array}$	$\begin{array}{c} -4i_{1256}-i_3-i_4\\ 2i_{1256}-i_3-i_4\\ -2i_{1256}+i_3-i_4\\ -i_3-i_4\end{array}$

Int.J.Mol.Sci, 14, 714(2013)

Sunday, April 12, 2015

Comparing off-diagonal $O \supset C_2$ parameter sets to CH_4 models with "cluster-crossings"

Table 14. Matrix that converts tunneling strengths to cluster splitting energies

02	1	r_{12}, i_{1256}	r_{34}, R_{xy}	$ ho_{xy}, R_z$	$ ho_z, i_3$
$arepsilon^{A_1}_{0_2}$	1	4	4	2	1
$\varepsilon_{0_2}^{E}$	1	-2	-2	2	1
$\varepsilon_{0_2}^{T_1}$	1	$^{-2}$	2	0	$^{-1}$
$\varepsilon_{E,0_2}^{T_2}$	1	2	-2	0	$^{-1}$
$arepsilon_{A_1,0_2}^{T_2}$	1	0	0	-2	1

Table	Matrix t	hat converts	cluster	splitting	energies	to tunneling	g strengt
-------	----------------------------	--------------	---------	-----------	----------	--------------	-----------

02	$arepsilon^{A_1}_{0_2}$	$arepsilon_{0_2}^{E}$	$arepsilon_{0_2}^{T_1}$	$arepsilon_{E,0_2}^{T_2}$	$arepsilon_{A_1,0_2}^{T_2}$
1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
r_{12}, i_{1256}	$\frac{1}{12}$	$-\frac{1}{12}$	$-\frac{1}{8}$	$\frac{1}{8}$	0
r_{34}, R_{xy}	$\frac{1}{12}$	$-\frac{1}{12}$	$\frac{1}{8}$	$-\frac{1}{8}$	0
$ ho_{xy}, R_z$	$\frac{1}{12}$	$\frac{1}{6}$	0	0	$-\frac{1}{4}$
$ ho_z, i_3$	$\frac{1}{12}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$

Figure 30. The plot focuses on the lowest $0_2(C_2)\uparrow O$ cluster in the previous energy plot (Figure 29) of the $T^{[4,6]}$ Hamiltonian for J = 30. The inside plot has been magnified 100 times. The inside diagram also centers the levels around their center-of-energy, showing only the splittings and ignoring the shifts of the cluster. Symmetry species are colored as before: A_1 : red, A_2 : orange, E_2 : green, T_1 : dark blue, and T_2 : light blue. The vertical lines on inside plot draw attention to specific clustering patterns described in the text. $1_2(C_2)\uparrow O$ clusters have similar superfine structure but with A_2 replacing A_1 and T_1 switched with T_2 .

Sunday, April 12, 2015

End of Lecture 21

$0 \supset C_4$	04	14	2 ₄	34	
$A_1 \downarrow C_4$	1	•	•	•	
$A_2 \downarrow C_4$	•	•	1	•	
$E \downarrow C_4$	1	•	1	•	
$T_1 \downarrow C_4$	1	1	•	1	
$T_2 \downarrow C_4$	•	1	1	1	

$0 \supset C_3$	03	13	23
$A_1 \downarrow C_3$	1	•	•
$A_2 \downarrow C_3$	1	•	•
$E \downarrow C_3$	•	1	1
$T_1 \downarrow C_3$	1	1	1
$T_2 \downarrow C_3$	1	1	1

$O \supset C_2(\mathbf{i}_1)$	02	12
$A_1 \downarrow C_2$	1	•
$A_2 \downarrow C_2$		1
$E \downarrow C_2$	1	1
$T_1 \downarrow C_2$	1	2
$T_2 \downarrow C_2$	2	1

$O \supset C_2(\rho_z)$	02	12
$A_1 \downarrow C_2$	1	•
$A_2 \downarrow C_2$	1	
$E \downarrow C_2$	2	•
$T_1 \downarrow C_2$	1	2
$T_2 \downarrow C_2$	1	2

$O \neg C$	1'	D'	\ ''	D″	$\boldsymbol{\Gamma}$	$0 \neg C$	11	1"	$\boldsymbol{\Gamma}$		$O_h \supset C_{2v}^i$	A '	B'	A‴	<i>B</i> ″′		$O_h \supset C_{2v}^z$	A '	<i>B</i> ′	A‴	<i>B</i> ″′
$O_h \square C_{4v}$	A	D	A	D	L	$O_h \square C_{3v}$	A	A	L												
$A_{1g} \downarrow C_{4v}$	1	•	•		•	$A_{1g} \downarrow C_{3v}$	1	•			$A_{1g} \downarrow C_{2v}$	1	•	•	•		$A_{1g} \downarrow C_{2v}^2$	1	•	•	•
$A_{2g} \downarrow C_{4v}$	•	1	•	•	•	$A_{2g}\downarrow C_{3v}$		1	•		$A_{2g} \downarrow C_{2v}^i$	•	1	•	•		$A_{2g} \downarrow C_{2v}^{z}$	1	•	•	
$E_g \downarrow C_{4v}$	1	1	•	•	•	$E_g \downarrow C_{3v}$		•	1		$E_g \downarrow C_{2v}^i$	1	1	•	•		$E_g \downarrow C_{2v}^z$	2	•	•	•
$T_{1g} \downarrow C_{4v}$	•	•	1	•	1	$T_{1g}\downarrow C_{3v}$		1	1		$T_{1g} \downarrow C_{2v}^i$	•	1	1	1		$T_{1g} \downarrow C_{2v}^z$	•	1	1	1
$T_{2g}\downarrow C_{4v}$	•	•	•	1	1	, $T_{2g} \downarrow C_{3v}$	1		1	,	$T_{2g} \downarrow C_{2v}^i$	1	•	1	1	,	$T_{2g} \downarrow C_{2v}^z$	•	1	1	1
$A_{1g}\downarrow C_{4\nu}$	•	•	1	•	•	$A_{1g}\downarrow C_{3v}$		1	•		$A_{lg} \downarrow C_{2v}^i$	•		1	•		$A_{lg} \downarrow C_{2v}^{z}$	•		1	
$A_{2u} \downarrow C_{4v}$	•	•	•	1	•	$A_{2u} \downarrow C_{3v}$	1		•		$A_{2u} \downarrow C_{2v}^i$		•		1		$A_{2u} \downarrow C_{2v}^z$			1	
$E_u \downarrow C_{4v}$	•	•	1	1	•	$E_u \downarrow C_{3v}$		•	1		$E_{\mu} \downarrow C_{2\nu}^{i}$		•	1	1		$E_{\mu} \downarrow C_{2\nu}^{z}$		•	2	•
$T_{1u} \downarrow C_{4v}$	1	•	•	•	1	$T_{1u} \downarrow C_{3v}$	1	•	1		$T_{1u} \downarrow C_{2v}^i$	1	1		1		$\frac{1}{T_{1u}} \downarrow C_{2v}^z$	1	1		1
$T_{2u}\downarrow C_{4v}$	•	1	•	•	1	$T_{2u} \downarrow C_{3v}$	•	1	1		$T_{2u} \downarrow C_{2v}^i$	1	1	1	•		$T_{2u} \downarrow C_{2v}^z$	1	1	•	1

Ireps for $O \supset D_4 \supset C_4$ *subgroup chain*

T ₁ Vector x,y,z			T2 Tensor yz,xz,xy
	E Tensor $x^2+y^2-2z^2$ $(x^2-y^2)\sqrt{3}$		

$$\frac{O \supset C_{3} \quad 0_{3} \quad 1_{3} \quad 2_{3}}{A_{1} \downarrow C_{3} \quad 1 \quad \cdots \quad A_{2} \downarrow C_{3} \quad 1 \quad \cdots \quad A_{2} \downarrow C_{3} \quad 1 \quad \cdots \quad 1}{A_{2} \downarrow C_{3} \quad 1 \quad 1 \quad 1}$$

$$\frac{O_{h} \supset C_{3v} \quad A' \quad A'' \quad E}{A_{1g} \downarrow C_{3v} \quad 1 \quad \cdots \quad 1}{A_{2g} \downarrow C_{3v} \quad 1 \quad \cdots \quad 1}$$

$$\frac{O_{h} \supset C_{3v} \quad A' \quad A'' \quad E}{A_{1g} \downarrow C_{3v} \quad 1 \quad \cdots \quad 1}{A_{2g} \downarrow C_{3v} \quad \cdots \quad 1}$$

$$\frac{C_{h} \supset C_{3v} \quad A' \quad A'' \quad E}{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}$$

$$\frac{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}$$

$$\frac{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}$$

$$\frac{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}$$

$$\frac{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}{A_{1g} \downarrow C_{3v} \quad \cdots \quad 1}$$

	$\ell^{A_{I}} = \ell^{A_{2}} = \ell^{E} = \ell^{E}$	$\begin{array}{c} 1 \\ 1 \\ 2 \\ \end{array} \begin{array}{c} C \\ C $	Example Subic-Octa Froup O	€: G= hedral	e <mark>O Cen</mark> t Rant	trum: k:	$\kappa(\mathbf{O}) = \sum_{(\alpha)} (\ell^{\alpha})^{\theta} = 1^{\theta} + 1^{\theta} + 2^{\theta} + 3^{\theta} + 3^{\theta} = 5$ $\rho(\mathbf{O}) = \sum_{(\alpha)} (\ell^{\alpha})^{1} = 1^{1} + 1^{1} + 2^{1} + 3^{1} + 3^{1} = 10$	
	$\ell^{T_{I}} = \frac{1}{\ell^{T_{2}}}$	3 3			Drd	er:	$U(O) = \Sigma_{(\alpha)} (\ell^{-1})^{0} = [2 + [2 + 2^{2} + 3^{2} + 3^{2} = 24]$	
s-orbital r ²	$\chi^{\alpha}_{\kappa_g}$ $\alpha = \mathbf{A}_1$	<i>g</i> = 1	$= 1 \begin{array}{c} r_{1-4} \\ \tilde{r}_{1-4} \\ 1 \end{array}$	ρ_{xyz} 1	$\frac{\tilde{R}_{xyz}}{1}$	$\frac{i_{1-6}}{1}$	$-\frac{\mathbf{P}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{z}}} + \frac{\mathbf{R}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{z}}^{2}} + \frac{\mathbf{R}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{z}}^{2}} + \frac{\mathbf{R}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{z}}} + \frac{\mathbf{R}_{\mathbf{z}}}{\mathbf{P}_{\mathbf{z}}} + \frac{\mathbf{R}_{\mathbf{z}}}{\mathbf{P}_{\mathbf{z}$	1
d-orbitals {x ² +y ² -2z ² ,x ² p-orbitals{x, {xz,vz,xv}	$\begin{array}{c} \mathbf{A}_{2} \\ \mathbf{F}_{2} \\ \mathbf{F}_{2} \\ \mathbf{F}_{2} \\ \mathbf{F}_{1} \\ \mathbf{F}_{2} \\ \mathbf{F}$		$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \end{array} $	$1 \\ 2 \\ -1 \\ -1$	$-1 \\ 0 \\ 1 \\ -1$	$-1 \\ 0 \\ -1 \\ 1$		R
d-orbitals			<u> </u>	-	-	-	$\vec{R}_{x} = \vec{R}_{x} \vec{R}_{x}$	
$O \supset C_4(0)$ A ₁ 1	• (1) ₄ (2)) ₄ (3) ₄		$(0)_3$ (1)	$(2)_{3}$	3=(-1)	$)_{3}^{R_{\frac{3}{r_{1}-r_{1}}}}$	
$\begin{bmatrix} A_2 \\ E \end{bmatrix} $	• 1	•	A ₂ E	1	• • 1 1		i ₃ R _z	
$\begin{array}{c} T_1 \\ T_2 \end{array}$	1 • 1 1	1	T ₁ T ₂	1 1	1 1 1 1		ALS ISS	

Octahedral O and spin- $O \subset U(2)$ rotation nomogram from Fig. 4.1.3-4 Principles of Symmetry, Dynamics and Spectroscopy

Sunday, April 12, 2015

Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral-cubic O symmetry $Order \circ O = 6$ he = 8 oc = 12 li

Order $^{\circ}O=6$ hexahedron squares \cdot 4 pts =24 =8 octahedron triangles \cdot 3 pts =24 =12 lines \cdot 2 pts =24 positions

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral groups $O_h \supset O \sim T_d$ and $O_h \supset T_h \supset T$

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h , T_d , and O. The Abelian D_2 subgroup of T is indicated also.

Fig. 4.1.5 from Principles of Symmetry, Dynamics and Spectroscopy
1	5	- M	Y=0	K2	Carlo Carlo	1E 18 ¹ 2 ¹ 3 ¹ 4	0°CLASS ⁱ 5 ⁱ 6				(- PR-	R ² Y			R3		1	E	A 15		-14	>	١
Z	=x3			F	num	;) / X=	= <i>x</i> 1			5	R2 R2 =x3	Rite		Rz	R	22 -R3	<i>K=x</i> 1	Z	x ₂	2	11	2	1	
	[111]	+ <u>1</u>	20°	[±1±	$\begin{bmatrix} 1 \pm 1 \end{bmatrix}$	-12 [11]	0° [111][111	$\frac{\pm 18}{\begin{bmatrix}1 & 0 \end{bmatrix}}$	0°X 010	YZ [0 0 1]	+9	0° XY [0 1 0]		-9 [100]	0° <u>X</u> [010]	Z [0 0 1]	[1 0 1]	[10 <mark>1</mark>]	±180 [110]	°ik [110]	γ [01]	[011]	
1	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> ₄	r_{1}^{2}	r_{2}^{2}	r_{3}^{2}	r_{4}^{2}	R_{1}^{2}	R_{2}^{2}	R_3^2	R_1	R_2	R_3	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	i ₁	i ₂	i ₃	i ₄	i ₅	i ₆	
r_1	r_1^2	$-r_{4}^{2}$	$-r_{2}^{2}$	$-r_{3}^{2}$	-1	$-R_{2}^{2}$	$-R_{3}^{2}$	$-R_{1}^{2}$	$-r_{2}$	$-r_{3}$	$-r_{4}$	i ₃	i ₆	i_1	$-R_3$	$-R_1$	$-R_2$	R_{1}^{3}	<i>i</i> ₅	R_{2}^{3}	i_2	$-i_4$	R_{3}^{3}	
r ₂	$-r_{3}^{2}$	r_{2}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	R_{2}^{2}	-1	R_{1}^{2}	$-R_{3}^{2}$	<i>r</i> ₁	r_4	$-r_{3}$	R_3	$-R_{1}^{3}$	i_2	i ₃	$-i_5$	R_{2}^{3}	i ₆	$-R_1$	R_2	$-i_1$	R_{3}^{3}	<i>i</i> ₄	
r ₃	$ -r_4^2$	$-r_{1}^{2}$	r_{3}^{2}	$-r_{2}^{2}$	R_3^2	$-R_{1}^{2}$	-1	R_{2}^{2}	$-r_4$	r_1	r_2	$-i_4$	R_1	$-R_{2}^{3}$	R_{3}^{3}	<i>i</i> ₆	<i>i</i> ₂	i ₅	$-R_{1}^{3}$	<i>i</i> ₁	R_2	$-i_{3}$	R_3	
r ₄	$ -r_2^2$	$-r_{3}^{2}$	$-r_1^2$	r_{4}^{2}	R_{1}^{2}	R_{3}^{2}	$-R_{2}^{2}$	-1	<i>r</i> ₃	$-r_{2}$	<i>r</i> ₁	$-R_{3}^{3}$	-i ₅	R_2	$-i_{4}$	R_{1}^{3}	<i>i</i> ₁	R_1	<i>i</i> ₆	$-i_{2}$	R_{2}^{3}	R_3	<i>i</i> ₃	
r_1^2	-1	R_{1}^{2}	R_{2}^{2}	R_{3}^{2}	$-r_{1}$	r_3	r_4	r_2	r_4^2	r_{2}^{2}	r_{3}^{2}	R_2^3	R_3^3	R_{1}^{3}	$-i_1$	$-i_{3}$	$-i_{6}$	$-R_3$	$-i_4$	$-R_1$	<i>i</i> ₅	$-i_{2}$	$-R_2$	
r_{2}^{2}	$ -R_1^2 $	-1	R_3^2	$-R_{2}^{2}$	<i>r</i> ₄	$-r_{2}$	r_1	<i>r</i> ₃	$-r_{3}^{2}$	$-r_{1}^{2}$	r_4^2	<i>i</i> ₂	$-i_3$	$-R_1$	R_2	$-R_{3}^{3}$	$-i_{5}$	<i>i</i> ₄	$-R_3$	$-R_{1}^{3}$	$-i_6$	R_2^3	$-i_1$	
r_3^2	$ -R_{2}^{2} $	$-R_{3}^{2}$	-1	R_1^2	r_2	r_4	$-r_{3}$	r_1	r_2^2	$-r_{4}^{2}$	$-r_{1}^{2}$	$-R_2$	$-i_4$	$-i_{6}$	<i>i</i> ₂	R_3	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	<i>i</i> ₅	R_1	$-i_1$	$-R_{2}^{3}$	
r_4^2	$-R_{3}^{2}$	R_2^2	$-R_{1}^{2}$	-1	<i>r</i> ₃	r_1	<i>r</i> ₂	$-r_{4}$	$-r_1^2$	r_3^2	$-r_{2}^{2}$	$-i_{1}$	$-R_3$	$-i_{5}$	$-R_{2}^{3}$	$-i_4$	R_1	$-R_{3}^{3}$	<i>i</i> ₃	- <i>i</i> ₆	R_1^3	R_2	$-i_{2}$	
R_1^2	$-r_4$	r_3	$-r_{2}$	r_1	r_{2}^{2}	$-r_{1}^{2}$	r_{4}^{2}	$-r_{3}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	R_1^3	<i>i</i> ₁	$-i_{4}$	$-R_1$	<i>i</i> ₂	$-i_{3}$	$-R_2$	$-R_{2}^{3}$	R_{3}^{3}	R_3	$-i_{6}$	<i>i</i> ₅	
R_2^2	$-r_{2}$	r_1	r_4	$-r_{3}$	r_{3}^{2}	$-r_{4}^{2}$	$-r_1^2$	r_{2}^{2}	$-R_{3}^{2}$	-1	R_{1}^{2}	$-i_{5}$	R_2^3	<i>i</i> ₃	$-i_{6}$	$-R_2$	$-i_4$	$-i_{2}$	<i>i</i> ₁	$-R_3$	R_3^3	R_1	R_1^3	
R_3^2	$-r_{3}$	$-r_{4}$	<i>r</i> ₁	<i>r</i> ₂	r_4^2	r_3^2	$-r_{2}^{2}$	$-r_{1}^{2}$	R_2^2	$-R_{1}^{2}$	-1	<i>i</i> ₆	<i>i</i> ₂	R_3^3	$-i_{5}$	$-i_1$	$-R_3$	R_2^3	$-R_2$	<i>i</i> ₄	$-i_{3}$	R_1^3	$-R_1$	
R_1	<i>i</i> ₁	$-R_{2}^{3}$	$-i_{2}$	R_2	R_{3}^{3}	$-i_{3}$	$-R_3$	<i>i</i> ₄	R_1^3	i ₆	i_5	R_{1}^{2}	r_1	$-r_{4}^{2}$	-1	$-r_{3}$	r_{2}^{2}	$-r_{4}$	r_2	r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_{3}^{2}	
R_2	<i>i</i> ₃	R_3	$-R_{3}^{3}$	i_4	R_{1}^{3}	i 5	$-i_6$	$-R_1$	- <i>i</i> ₂	R_{2}^{3}	i_1	$-r_{2}^{2}$	R_{2}^{2}	r_1	r_{3}^{2}	-1	$-r_{4}$	R_{1}^{2}	R_{3}^{2}	$-r_2$	$-r_{3}$	$-r_{4}^{2}$	r_{1}^{2}	
R_3	i ₆	i5	R_1	$-R_{1}^{3}$	R_{2}^{3}	$-R_2$	$-i_{2}$	$-i_1$	· i3	<i>i</i> ₄	R_{3}^{3}	r_1	$-r_{3}^{2}$	R_{3}^{2}	$-r_{2}$	r_{4}^{2}	-1	r_{1}^{2}	r_{2}^{2}	R_{2}^{2}	$-R_{1}^{2}$	$-r_{4}$	$-r_{3}$	
R_1^3	$-R_2$	$-i_{2}$	R_{2}^{3}	i_1	$-i_{3}$	$-R_{3}^{3}$	<i>i</i> ₄	R_3	$-R_1$	<i>i</i> ₅	$-i_{6}$	-1	$-r_{4}$	r_{3}^{2}	$-R_{1}^{2}$	r_2	$-r_{1}^{2}$	$-r_{1}$	r_3	r_{2}^{2}	$-r_{4}^{2}$	$-R_{3}^{2}$	$-R_{2}^{2}$	
R_2^3	$-R_3$	i3	i_4	R_{3}^{3}	$-i_6$	R_1	$-R_{1}^{3}$	i ₅	$-i_1$	$-R_2$	$-i_{2}$	r_{4}^{2}	-1	$-r_{2}$	$-r_{1}^{2}$	$-R_{2}^{2}$	<i>r</i> ₃	$-R_{3}^{2}$	R_{1}^{2}	$-r_{1}$	$-r_{4}$	$-r_{2}^{2}$	r_{3}^{2}	
R_{3}^{3}	$-R_1$	R_{1}^{3}	i ₆	i ₅	$-i_1$	$-i_{2}$	R_2	$-R_{2}^{3}$	<i>i</i> ₄	$-i_{3}$	$-R_3$	$-r_{3}$	r_{2}^{2}	-1	<i>r</i> ₄	$-r_1^2$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}$	$-r_{1}$	
<i>i</i> ₁	R_3^3	$-i_{4}$	<i>i</i> ₃	R_3	$-R_1$	$-i_{6}$	- <i>i</i> ₅	$-R_{1}^{3}$	R_2^3	<i>i</i> ₂	$-R_2$	r_{1}^{2}	R_{3}^{2}	$-r_{4}$	r_{4}^{2}	$-R_{1}^{2}$	$-r_1$	-1	$-R_{2}^{2}$	$-r_{3}$	r_2	r_{3}^{2}	r_{2}^{2}	
i2	<i>i</i> ₄	R_{3}^{3}	R_3	$-i_3$	$-i_{5}$	R_{1}^{3}	R_1	$-i_{6}$	R_2	$-i_1$	R_{2}^{3}	$-r_{3}^{2}$	$-R_{1}^{2}$	$-r_{3}$	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_2^2	-1	r_4	$-r_{1}$	r_{1}^{2}	r_{4}^{2}	
i3	R_1^3	R_1	$-i_{5}$	i ₆	$-R_2$	$-R_{2}^{3}$	$-i_1$	i_2	$-R_3$	R_{3}^{3}	$-i_{4}$	$-r_{2}$	r_{1}^{2}	R_{1}^{2}	$-r_1$	r_{2}^{2}	$-R_{2}^{2}$	r_{3}^{2}	$-r_{4}^{2}$	-1	R_{3}^{2}	r_3	$-r_{4}$	
<i>i</i> ₄	$-i_{5}$	i_6	$-R_{1}^{3}$	$-R_1$	$-i_2$	i_1	$-R_{2}^{3}$	$-R_2$	$-R_{3}^{3}$	$-R_3$	<i>i</i> ₃	<i>r</i> ₄	r_{4}^{2}	R_2^2	<i>r</i> ₃	r_{3}^{2}	R_{1}^{2}	$-r_{2}^{2}$	r_{1}^{2}	$-R_{3}^{3}$	-1	r_1	$-r_{2}$	
i5	<i>i</i> ₂	$-R_2$	i_1	$-R_{2}^{3}$	i_4	$-R_3$	<i>i</i> ₃	$-R_3^3$	<i>i</i> ₆	$-R_{1}^{3}$	$-R_1$	R_3^2	r_2	r_{2}^{2}	R_{2}^{2}	r_4	r_{4}^{2}	$-r_{3}$	$-r_1$	$-r_{3}^{2}$	$-r_{1}^{2}$	-1	$-R_{1}^{2}$	
16	R_2^3	<i>i</i> ₁ .	R_2	i2	$-R_3$	$-i_4$	$-R_{3}^{3}$	$-i_3$	-i5	$-R_1$	R_{1}^{3}	R_2^2	$-r_{3}$	r_{1}^{2}	$-R_{3}^{2}$	$-r_1$	r_{3}^{2}	$-r_{2}$	$-r_{4}$	r_{4}^{2}	r_2^2	R_{1}^{2}	-1	

Octahedral O and spin- $O \subset U(2)$ rotation product Table F.2.1 from Principles of Symmetry, Dynamics and Spectroscopy