Group Theory in Quantum Mechanics Lecture $17_{(3.16 .17)}$

(Review of Lectures 15-16 with more detailed and rigorous derivations)

Projector algebra and Hamiltonian local-symmetry eigensolution

```
(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)
(PSDS-Ch.4)
```

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
Review: General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}^{\mu_{j k}}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
Details omitted from Lecture 15-16
$D^{\mu_{j k}}(g)$ orthogonality relations Class projector character formulae \mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}

Review: Details of Mock-Mach relativity-duality for D3 groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Review: Hamiltonian and D 3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

```
General formulae for spectral decomposition (D3 examples)
    Weyl g-expansion in irep D }\mp@subsup{}{jk}{\mu}(g)\mathrm{ and projectors }\mp@subsup{\mathbf{P}}{jk}{\mp@subsup{\mu}{jk}{}
            P}\mp@subsup{}{j}{}\mp@subsup{}{jk}{}\mathrm{ transforms right-and-left
            P}\mp@subsup{}{}{\mu}\mp@subsup{}{jk}{}\mathrm{ -expansion in g-operators
    D 尔 (g) orthogonality relations
    Class projector character formulae
        \mp@subsup{P}{}{\mu}\mathrm{ in terms of }\kappa\textrm{g}\mathrm{ and }\kappa\textrm{g}\mathrm{ in terms of }\mp@subsup{\mathbb{P}}{}{\mu}
```

 Details of Mock-Mach relativity-duality for \(D_{3}\) groups and representations
 Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
 Compare Global vs Local |g)-basis and Global vs Local |P \(\left.{ }^{(\mu)}\right\rangle\)-basis
 Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

See Lect. 16 p. 2-23

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

See Lect. 16 p. 2-23

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Class-sum κ_{k} invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\boldsymbol{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad$ (Class completeness)
$\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbb{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$

See Lect. 16 p. 2-20

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{K}_{1}=\mathbf{1} \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+\mathbf{1} \cdot \mathbf{P}^{E}=\mathbf{1} \quad$ (Class completeness)
$\mathbf{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathrm{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}$

+ $+\mathbf{i}_{2}+\mathbf{i}_{3}$
$\boldsymbol{\kappa}_{i}$
$\boldsymbol{\kappa}_{i}$
$+3 \boldsymbol{\kappa}_{r}$

$\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathrm{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Class projectors:
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$

See Lect. 16 p. 2-22

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{\kappa}_{1}=\mathbf{1} \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+\mathbf{1} \cdot \mathbf{P}^{E}=\mathbf{1} \quad$ (Class completeness)
$\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}$
D_{3} Algebra

$\mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Class projectors:
$\mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{r}+\mathbf{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{r}-\mathbf{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$
Class characters:

χ_{k}^{α}	χ_{1}^{α}	χ_{r}^{α}	χ_{i}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

See Lect. 16 p. 2-25

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}^{\mu}(g)$ and projectors $\mathbf{P}_{j k}^{\mu_{j k}}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in g-operators
$D_{j k}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local |gो-basis and Global vs Local |P($\left.{ }^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
Class-sum $\mathbf{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$ $\boldsymbol{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbb{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad$ (Class completeness)
$\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbb{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Subgroup $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$ relabels irreducible class projectors:
Class projectors:
$\mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{r}+\mathbf{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \rightarrow \mathbf{P}^{A_{l}=\mathbf{P}_{020_{2}}^{A_{l}}}$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \rightarrow \mathbb{P}^{A_{2}}=\mathbb{P}_{1212}^{A_{2}}$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$

Class characters:

χ_{k}^{α}	χ_{1}^{α}	χ_{r}^{α}	χ_{i}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

Subgroup $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$ relabels irreducible class projectors:
$\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathrm{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Class projectors:
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}+\mathbf{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \rightarrow \mathbf{P}^{A_{l}=\mathbf{P}_{020_{2}}^{A_{l}}}$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \rightarrow \mathbb{P}^{A_{2}}=\mathbb{P}_{122}^{A_{2}}$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$
Class characters:

χ_{k}^{α}	χ_{1}^{α}	χ_{r}^{α}	χ_{i}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
D_{3} Algebra

Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group:

$$
\left({ }^{\circ} D_{3}=6\right)
$$

${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$ $\boldsymbol{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad$ (Class completeness)

$$
\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}
$$

$$
\mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
$$

$\mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{r}+\mathbf{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \rightarrow \mathbf{P}^{A_{l}=\mathbf{P}_{020_{2}}^{A_{l}}}$
Subgroup $C_{3}=\left\{\mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$
Class projectors:

Subgroup $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$ relabels irreducible class projectors: does similarly:
$\mathbf{P}^{A_{l}}=\mathbf{P}_{030_{3}}^{A_{l}}$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \rightarrow \mathbb{P}^{A_{2}}=\mathbb{P}_{1212}^{A_{2}}$

$$
\mathbb{P}^{A_{2}}=\mathbb{P}_{030_{3}}^{A_{2}}
$$

$$
\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Class characters:

χ_{k}^{α}	χ_{1}^{α}	χ_{r}^{α}	χ_{i}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

$\leadsto$$\mathbf{P}_{0_{0}, 2}^{E}=\mathbf{P}^{E} \mathbf{p}^{0_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ $+\mathbf{P}_{0_{1,1}=}^{E}=\mathbf{P}^{E} \mathbf{p}^{1_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)$	
	$=\frac{1}{3}\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}\right)$
	$\frac{1}{3}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{\prime}+\varepsilon \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right)$
	$+\mathbf{P}_{2,2}^{E}=\mathbf{P}^{E} \mathbf{p}^{23}=\mathbf{P}^{E} \frac{1}{3}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right)$
	$={ }_{3}^{1}\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}\right)$

都

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$D_{j k}{ }_{j k}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and κ_{g} in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
 Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D 3_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamiltonian local-symmetry eigensolution

Weyl expansion of \mathbf{g} in irep $D_{j k}^{\mu_{j k}}(g) \mathbf{P}_{j k}^{\mu_{j k}}$ Irreducible idempotent completeness $\mathbf{1}=\mathbf{P}^{A_{1}}+\mathbf{P}^{A_{2}}+\mathbf{P}_{x x}^{E_{1}}+\mathbf{P}_{y y}^{E_{1}}$ completely expands group by $\mathbf{g}=\mathbf{1} \cdot \mathrm{g} \cdot \mathbf{1}$

$$
\begin{aligned}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \mathbf{1}= & \sum_{\mu} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \begin{array}{l}
\text { For irreducibleclass idempotents } \\
\\
\text { sub-indices } x x \text { or }
\end{array}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
\text { where: } & \text { sub-indices xx or } \begin{array}{l}
\text { are optional }
\end{array}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
\end{array}
$$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}},
$$

For split idempotents
sub-indices $x x$ or $y y$ are essential

$$
\mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$$
\begin{aligned}
& \text { Previous notation: } \\
& \mathbf{P}_{021}^{A_{1}}=\mathbf{P}_{x x}^{A_{1}} \\
& \mathbf{P}_{0202}^{E_{1}=\mathbf{P}_{x x}^{E_{1}}} \quad \mathbf{P}_{02 l 2}^{E_{1}=} \mathbf{P}_{x y}^{E_{l}} \\
& \mathbf{P}_{1202}^{E_{1}=} \mathbf{P}_{y x}^{E_{1}} \quad \mathbf{P}_{12 l 2}^{E_{1}=} \mathbf{P}_{y y}^{E_{y}}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducible class idempotents }
\end{array}+\quad+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}} .
$$

$\left(\begin{array}{l}\text { Previous notation: } \\ \mathbf{P}_{0202}^{A_{l}}=\mathbf{P}_{x x}^{A_{l}} \\ \mathbb{P}_{212}^{A_{2}}=\mathbf{P}_{y y}^{A_{2}} \\ \mathbf{P}_{02}^{E_{2}}=\mathbf{P}_{x x}^{E_{1}} \\ \mathbf{P}_{0212}^{E_{l}}=\mathbf{P}_{x y}^{E_{l}} \\ \mathbf{P}_{120}^{E_{2}}=\mathbf{P}_{y x}^{E_{l}} \\ \mathbf{P}_{1212}^{E_{l}}=\mathbf{P}_{y y}^{E_{l}}\end{array}\right.$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}},
$$

For split idempotents
sub-indices xx or yy are essential

$$
\mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{t_{1}}$

Weyl expansion of \mathbf{g} in irep $D_{j k}^{\mu_{j k}}(g) \mathbf{P}_{j k}^{\mu_{j k}}$
where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$ sub-indices xx or yy are optional

$\mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}$ $\mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\mathbf{P}_{y x} \text {, and } \mathbf{P}_{x y}^{E_{1}}
$$

where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{1}} \mathbf{P}_{x x}^{E_{1}} \quad \mathbf{P}_{v 2 l 2}^{E_{1}=\mathbf{P}_{x y} E_{v}}$
$\mathbf{P}_{12 d=}^{E_{1}}=\mathbf{P}_{v x}^{E_{1}} \quad \mathbf{P}_{12 l 2}^{E_{1}=} \mathbf{P}_{v i}^{E_{y}}$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}
$$

$\begin{aligned} & \text { For split idempotents } \\ & \text { sub-indices } x \text { or }\end{aligned} \quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}} \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\boldsymbol{P}_{x x}^{E_{1}} \text { and } \mathbf{P}_{x y}^{E_{1}}
$$

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes...
where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{l}}=\mathbf{P}_{x x}^{E_{1}} \quad \mathbf{P}_{0212}^{E_{l}}=\mathbf{P}_{x y}^{E}$
$\left.\mathbf{P}_{122}^{E_{1}=} \mathbf{P}_{y x}^{E_{1}} \quad \mathbf{P}_{12 l 2}^{E_{1}=} \mathbf{P}_{2 k}^{E_{y}}\right)$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}
$$

For split idempotents $\quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g)^{\prime} \mathbf{P}_{y x}^{E_{1}}, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\boldsymbol{P}_{x x}^{E_{1}} \text {, and } \mathbf{P}_{x y}^{E_{1}}
$$

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes to idempotent/nilpotent orthogonality
known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{1}=\mathbf{P}_{x x}^{E_{1}}} \quad \mathbf{P}_{22 l 2}^{E_{1}=} \mathbf{P}_{x y}^{E_{1}}$
$\left.\mathbf{P}_{12 d 2}^{E_{1}=} \mathbf{P}_{y x}^{E_{1}} \quad \mathbf{P}_{12 l 2}^{E_{1}=} \mathbf{P}_{y y}^{E_{y}}\right)$

$$
\begin{aligned}
& \mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For split idempotents } \\
& \text { sub-indices } x x \text { or } y y \text { are essential } \quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}} \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
\end{aligned}
$$

Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$ Group product table boils down to simple projector matrix algebra there arise two nilpotent projectors

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{y y}^{A_{2}}$	\cdot	$\mathbf{P}_{y y}^{A_{2}}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{x x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{y x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$
$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$

where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{1}=} \mathbf{P}_{x x}^{E_{1}} \quad \mathbf{D}_{02 l 2}^{E_{1}=\mathbf{P}_{x v}} \mathbf{P}_{1}^{E_{1}}$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}
$$

For split idempotents
sub-indices $x x$ or y are essential $\quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y 1}^{E_{1}}, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$ Group product table boils down to simple projector matrix algebra there arise two nilpotent projectors

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

$\underset{\mathbf{g}=}{\text { Coefficients }} D_{\mathbf{1}_{1}}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (reps) of $\underset{\mathbf{i}_{\mathbf{2}}}{\mathbf{i}_{\mathbf{1}}} \mathbf{g}$


```
Review: Spectral resolution of D D Center (Class algebra) and its subgroup splitting
```

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}{ }_{j k}(g)$ and projectors $\mathbf{P}^{\mu_{j k}}$
$\geqslant \mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
$D^{\mu_{j k}}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
$\mathbf{P}^{\mu}{ }_{m n}$ transforms $^{\text {left }}{ }_{m}$-and-right ${ }_{n}$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.
$\mathrm{g}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu}$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{m n}$ transforms $^{\text {left }}{ }_{m}$-and-right ${ }_{n}$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.
$\mathbf{P}^{\mu}{ }_{m n}$ transforms $^{\text {left }}{ }_{m}$-and-right ${ }_{n}$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& =\sum_{m^{\prime}}^{\mu^{\prime \prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{m n}$ transforms $^{\text {left }}{ }_{m}$-and-right ${ }_{n}$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime \prime}} D_{m^{\prime \prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& =\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\mathrm{g} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

$\mathbf{P}^{\mu}{ }_{m n}$ transforms $^{\text {left }}{ }_{m}$-and-right ${ }_{n}$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime \prime}} D_{m^{\prime \prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& =\sum_{m^{\prime}}^{\mu^{\prime \prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l|l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$\mathbf{P}^{\mu}{ }_{m n}$ transforms $^{\text {left }}{ }_{m}$-and-right ${ }_{n}$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(g \delta_{S^{\mu^{\prime} \mu}} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n^{\prime}}\right. \\
& =\sum_{m^{\prime}}^{\mu^{\prime \mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }{ }^{*}}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\begin{array}{ll}
\sum_{\mu^{\prime}} & \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}
\end{array}\right) \mathbf{P}_{m n}^{\mu} \quad \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
$$

$\mathbf{P}^{\mu}{ }_{m n}$ transforms $^{\text {left }}{ }_{m}$-and-right ${ }_{n}$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\begin{array}{ll}
\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}
\end{array}\right) \mathbf{P}_{m n}^{\mu} \quad\binom{\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality }}{\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} u} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}}
$$

Left-action transforms irep-ket $\left.\mathrm{g} \mid{ }_{m n}^{\mu}\right)=\frac{\mathrm{gP}_{m=1}^{\mu}|1\rangle}{n o r m}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\text { in Lect. } 16 \text { p.99-103 }
$$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} u} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu} g=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\mu \mu} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\alpha^{\prime} \mu^{\prime}} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\mu \mu} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}}^{\mu^{\mu}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime \mu} \delta_{n^{\prime} m}^{\prime}} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime \prime}}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Projector conjugation

$$
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m|
$$

$$
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g} & =\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\left.\mathrm{g} \left\lvert\, \begin{array}{c}\mu \\ m\end{array}\right.\right)=\frac{\mathbf{g P}_{m=1}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \quad$ Right-action transforms irep-bra $\left\langle{ }_{m n}^{\mu}\right| \mathbf{g}^{\dagger}=\frac{\langle 1| \mathbf{P}_{n m}^{\mu} \mathrm{g}^{\dagger}}{\text { norm }^{\dagger}}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{array}{rlr}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\begin{array}{cc}
\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}
\end{array}\right) \mathbf{P}_{m n}^{\mu} & \begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} & \begin{array}{r}
\text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{array} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} &
\end{array}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g} & =\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\begin{array}{c}\mu^{\prime}{ }_{m^{\prime} n^{\prime}}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }} \text {. } . ~ . ~ . ~\end{array}\right.$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mathrm{u}}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}}^{\mu^{\mu}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}} \\
& =\sum_{m^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime}}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Projector conjugation

$$
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m|
$$

$$
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g} & =\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \quad$ Right-action transforms irep-bra $\left\langle\begin{array}{l}\mu n \\ m n\end{array}\right| \mathbf{g}^{\dagger}=\frac{\langle\mathbf{1}| \mathbf{P}_{n m}^{\mu} g^{\dagger}}{\text { norm }^{*}}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A less-simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }{ }^{\mu} \text {. }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mathrm{u}}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}}^{\mu^{\mu}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}} \\
& =\sum_{m^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime \prime}}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Projector conjugation

$$
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m|
$$

$$
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g} & =\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \quad$ Right-action transforms irep-bra $\left\langle\begin{array}{l}\mu \\ m n\end{array}\right| \mathbf{g}^{\dagger}=\frac{\langle\mathbf{1}| \mathbf{P}_{n m}^{\mu} \mathbf{g}^{\dagger}}{\text { norm }^{*}}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A less-simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathrm{g}^{\dagger}\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)
$$

...requires proper normalization: $\left\langle\begin{array}{c}\mu^{\prime}{ }_{m^{\prime} n^{\prime}}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }} \text {. } . ~ . ~ . ~\end{array}\right.$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
$$

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl g-expansion in irep $D_{j k}^{\mu}(g)$ and projectors $\mathbf{P}_{j k}^{\mu_{j k}}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\rightarrow \mathbf{P}_{j k}^{\mu_{k j}}$-expansion in \mathbf{g}-operators
$D_{j k}{ }_{j k}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
$\mathbf{P} \mu_{m n}-$ expansion in \boldsymbol{o}^{-}-operators Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
$\mathbf{P} \mu_{m n}$-expansion in \mathbf{o}-operators Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}
$$

$\mathbf{P} \mu_{m n}$-expansion in \boldsymbol{o}-operators Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathbf{g}=\mathbf{f}^{-1} \mathbf{h},
$$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

Regular representation of $D_{3} \sim C_{3 v}$

 Derive coefficients $p_{m n}^{u}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{g}^{\circ} p_{m n}^{u}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\vdots} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})
$$

Regular representation of $D_{3} \sim C_{3 v}$

$$
\begin{aligned}
& R^{G}(\mathbb{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{G} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})
$$

Regular representation of $D_{3} \sim C_{3 v}$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}}} \sum_{n^{\prime}}^{\mu^{\prime \prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{G} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\vdots} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation of $D_{3} \sim C_{3 v}$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathrm{g}=\left(\sum_{\mu} \sum_{m}^{\prime \prime \prime} \sum_{n}^{\prime \prime \prime} \sum_{n}^{\prime \prime} D_{m m^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right)$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathrm{g}=\left(\sum_{\mu} \sum_{m}^{\prime \prime \prime} \sum_{n}^{\prime \prime \prime} \sum_{n}^{\prime \prime} D_{m m^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G}} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathrm{g}=\left(\sum_{\mu} \sum_{m}^{\prime \prime \prime} \sum_{n}^{\prime \prime \prime} \sum_{n}^{\prime \prime} D_{m m^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \text { Trace } R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right)
$$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathrm{g}=\left(\sum_{\mu} \sum_{m}^{\prime \prime \prime} \sum_{n}^{\prime \prime \prime} \sum_{n}^{\prime \prime} D_{m m^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \text { Trace } R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right)
$$

$$
\text { Use: } \operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{G} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu} \ell_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{G} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}^{G} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}
$$

$\mathbf{P}^{\mu}{ }_{m n}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}}} \sum_{n^{\prime}}^{\mu^{\prime \prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{u}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{u}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or 0 for off-diagonal $\mathbf{P}_{m n}^{\mu}$

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}{ }^{\ell} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
&=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \quad \text { Use: Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)} \\
&=\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right) \quad\left(=\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathbf{f}) \text { for unitary } D_{n m}^{\mu}\right) \\
& \mathbf{P}_{m n}^{\mu}= \frac{\ell^{(\mu)}{ }^{\circ} G}{}{ }^{\circ}{ }_{\mathbf{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad\left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{}{ }^{\circ} G\right. \\
& \mathbf{g} \\
& D_{m n}{ }^{*}(g) \mathbf{g}\text { for unitary } \left.D_{n m}^{\mu}\right)
\end{aligned}
$$

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
$\square D_{j k}^{\mu_{j}}(g)$ orthogonality relations
Class projector character formulae
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{kg}$ in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_{3} groups and representations
 Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
 Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
 Hamiltonian local-symmetry eigensolution

$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :
$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}^{\mu}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :

$$
\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad \text { Useful Identity for later }
$$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}^{\mu}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad \text { Useful identity for later } \\
& \text { Then put in g-expansion of } \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}
\end{aligned}
$$

$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{array}{ll}
\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow \underbrace{\mu_{m n}^{\prime}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}}_{m^{\prime} n^{\prime}} & \text { Useful identity for later } \\
\text { Then put in g-expansion of } \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} & \mathbf{P}_{m n}^{\mu}=\frac{\ell^{\circ}}{{ }^{\circ} G} \sum_{\mathrm{g}}^{(\mu)} D_{m n}^{\mu^{*}}(g) \mathrm{g} \\
\left(\text { for unitary } D_{n m}^{\mu}\right)
\end{array}
$$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad \text { Useful identity for later } \\
& \text { Then put in } \mathbf{g} \text {-expansion of } \underbrace{\mathbf{P}_{m n}^{\mu}=} \underbrace{\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g} \\
& D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left.\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} u} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\widetilde{{ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}{ }^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}}\right) \\
& \text { (for unitary } D_{n m}^{\mu} \text {) }
\end{aligned}
$$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}^{\mu}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.
Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad \text { Useful identity for later } \\
& \text { Then put in } \mathbf{g} \text {-expansion of } \underbrace{\mathbf{P}_{m n}^{\mu}=} \underbrace{\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g} \\
& D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\overline{\ell^{(\mu)} \sum_{\mathrm{g}}{ }^{\circ} G} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right) \\
& \text { (for unitary } D_{n m}^{\mu} \text {) }
\end{aligned}
$$

$$
\delta^{\mu^{\prime} u} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow \underbrace{D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}} \begin{array}{cc}
\text { Useful identity for later } \\
\text { Then put in } \mathbf{g} \text {-expansion of } \mathbf{P}_{m n}^{\mu}=\frac{\mathbf{P}^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\mu} D_{m n}^{\mu^{*}}(g) \mathbf{g} \sum_{\mathbf{g}}^{*} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}
\end{array}
\end{aligned}
$$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left.\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} u} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{{ }^{\ell^{(\mu)} G} \sum_{\mathrm{g}}{ }^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}}\right)
$$

$$
\delta^{\mu^{\prime} \mu^{\prime}} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{}{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} u} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$\underbrace{$| (Begin search for |
| :---: |
| much less famous |
| $D^{\mu} \text { completeness }$ |
| relation) |}\(_{\left(\begin{array}{c}\left.for unitary D_{n m}^{\mu}\right)

\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})

Famous D^{\mu} orthogonality relation\end{array}\right.}\)
$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \quad$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g}) \quad \text { or: }
$$

$\left(\right.$ for unitary $\left.D_{n m}^{\mu}\right)$
$\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{\circ}(\mu)}{}{ }^{\circ} G \sum_{\mathrm{g}} \sum_{m n} D_{m}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})$
Famous D^{μ} orthogonality relation

Famous D^{μ} orthogonality relation

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

D^{μ} completeness relation)
$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g}) \quad \text { or: }
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}{ }^{\circ} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

Famous D^{μ} orthogonality relation

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \\
& \mathbf{g}=\sum_{\mu} \sum_{m} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \underbrace{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}}^{(\mu)} D_{n m}^{{ }^{\circ} G}\left(g^{\prime-1}\right) \\
& \mathbf{g}^{\prime} \\
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}} \sum_{\mu} \sum^{\ell^{\circ} G} \sum_{m} \sum_{n}^{(\mu)} \sum_{m n}^{\mu} D^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
\end{aligned}
$$

D^{μ} completeness relation)
$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{n m}^{\mu}\left(g^{-1}\right)} \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g}) \quad \text { or: }
$$

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation

D^{μ} completeness relation)

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \\
& \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \\
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}} \sum_{\mu} \frac{\ell^{(\mu)} \ell^{\prime}}{\ell^{\mu}} \sum_{m}^{\ell^{\mu}} \sum_{n} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \\
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{{ }^{\circ} G} \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{(\mu)}} \sum_{m}^{\ell^{\mu}} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}
\end{aligned}
$$

$\mathrm{D}_{j k}{ }_{j k}$-orthogonality relations
$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in g-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{}{ }^{\circ} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right)} \mathrm{g} \quad \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g}) \quad \text { or: }
$$

$$
\begin{gathered}
\text { (for unitary } \left.D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{u^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
$\overbrace{\ell^{(\mu)}{ }^{\circ} G}^{\text {Put } \mathbf{g}^{\prime} \text {-expansion of } \mathbf{P} \text { into } \mathbf{P} \text {-expansion of } \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu},{ }^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}}$
$\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}$
$\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}$
$\mathbf{g}=\sum_{\mathbf{g}^{\prime}} \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{(\mu)}} \sum_{m}^{\mu} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}$
$\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{{ }^{\circ} G} \sum_{\mu} \frac{\ell^{(\mu)} \ell^{\mu}}{\ell^{\mu}} \sum_{m} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}$
$\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{{ }^{\circ} G} \sum_{\mu} \frac{\ell^{(\mu)}}{{ }^{(\mu)}} \chi^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in \mathbf{g}-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathbf{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g}) \quad \text { or: }
$$

$$
\begin{gathered}
\text { (for unitary } \left.D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
$\overbrace{\ell^{(\mu)}{ }^{\circ} G}^{\text {Put } \mathbf{g}^{\prime} \text {-expansion of } \mathbf{P} \text { into } \mathbf{P} \text {-expansion of } \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}}$
$\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}$

$$
\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{(\mu)}} \sum_{m}^{\mu} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu}^{\circ} \frac{\ell^{(\mu)} G}{\ell^{\mu}} \sum_{m}^{\mu} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \begin{gathered}
\text { Interesting character } \\
\text { sum-rule }
\end{gathered}
$$

$$
\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{\circ} \sum_{\mu} \frac{\ell^{(\mu)}}{{ }^{(\mu)}} \chi^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \Rightarrow\left(\sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{(\mu)}} \chi^{\mu}\left(g g^{\prime-1}\right)=\delta_{g^{\prime}}^{g^{-1}}\right.
$$

$\mathrm{D}_{j k-o r t h o g o n a l i t y ~ r e l a t i o n s ~}$

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in \mathbf{g}-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{n m}^{\mu}\left(g^{-1}\right)} \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\left(\text { for unitary } D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
$\overbrace{\ell^{(\mu)}{ }^{\circ} G}^{\text {Put } \mathbf{g}^{\prime} \text {-expansion of } \mathbf{P} \text { into } \mathbf{P} \text {-expansion of } \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}}$
(Begin search for much less famous

$$
\mathbf{g}=\sum \sum \sum D_{m n}^{\ell^{\mu} \ell^{\mu}}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{\circ} \sum D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \begin{gathered}
D^{\mu} \text { completeness } \\
\text { relation })
\end{gathered}
$$

$\chi_{k}^{\mu}\left(D_{3}\right)$	χ_{i}^{μ}	χ_{i}^{μ}	χ_{i}^{μ}
$\mu=A_{1}$	$\ell^{A_{1}}=1$	1	1
$\mu=A_{2}$	$\ell_{1}^{A_{2}}=1$	1	-1
$\mu=E_{1}$	$\ell^{E_{1}}=2$	-1	0

$\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{{ }^{\circ} G} \sum_{\mu} \frac{\ell^{(\mu)} \ell^{\mu}}{\ell^{\mu}} \sum_{m} \quad D_{m m}^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime}$| $\mu=E_{1} \quad \ell^{\ell^{\prime}}=2-1$ |
| :---: |
| $\begin{array}{c}\text { Interesting character } \\ \text { sum-rule }\end{array}$ |

$\mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{{ }^{\circ} G} \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{(\mu)}} \chi^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \Rightarrow \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{\circ} G} \chi^{\mu}\left(g g^{\prime-1}\right)=\delta_{g^{\prime}}^{g^{-1}}$

$\mathrm{D}^{\mu}{ }_{j k}$-orthogonality relations

$\mathbf{g}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}$ is a valid expansion of any combination of \mathbf{g} including \mathbf{P}.

Simply substitute \mathbf{P} for \mathbf{g} :

$\mathbf{P}_{m n}^{\mu}=\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \Rightarrow D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left(\mathbf{P}_{m n}^{\mu}\right)=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ Useful identity for later
Then put in \mathbf{g}-expansion of $\underbrace{\mathbf{P}_{m n}^{\mu}}=\underbrace{\frac{\ell^{(\mu)} G}{{ }^{\circ} G} \sum_{\mathbf{g}}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}$

$$
D_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \widetilde{\left(\mathbf{P}_{m n}^{\mu}\right)}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\left({ }^{\ell^{(\mu)} G} \sum_{\mathbf{g}}^{\circ} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}\right)
$$

$$
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
$$

or:

$$
\begin{gathered}
\text { (for unitary } \left.D_{n m}^{\mu}\right) \\
\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(\mathrm{g})
\end{gathered}
$$

Famous D^{μ} orthogonality relation
$\overbrace{\ell^{(\mu)}{ }^{\circ} G}^{\text {Put } \mathbf{g}^{\prime} \text {-expansion of } \mathbf{P} \text { into } \mathbf{P} \text {-expansion of } \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu},{ }^{\mu}{ }^{\mu}{ }^{\mu}{ }^{\mu}}$
(Begin search for much less famous
$\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}} D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}$

$$
\begin{aligned}
& \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}^{\prime}}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \\
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}} \sum_{\mu} \frac{\ell^{\circ}{ }^{\circ} G}{} \sum_{m} \sum_{n} \sum_{m n}^{\mu} D_{m}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime}
\end{aligned}
$$

D^{μ} completeness relation)

Character sum-rule becomes
Diophantine relation if $\mathbf{g}^{\prime}=\mathbf{g}^{-1}$

$$
\sum_{\mu} \frac{\left(\ell^{(\mu)}\right)^{2}}{{ }^{\circ} G}=1
$$

$$
\begin{aligned}
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}} \sum_{\mu} \frac{\ell^{(\mu)} \ell^{\mu}}{\ell^{\mu}} \sum_{m} \sum_{n}^{\mu} D_{m n}^{\mu}(g) D_{n m}^{\mu}\left(g^{\prime-1}\right) \mathbf{g}^{\prime} \\
& \begin{array}{c|ccc}
\chi_{k}^{\mu}\left(D_{3}\right) & \chi_{i}^{\mu} & \chi_{r}^{\mu} & \chi_{i}^{\mu} \\
\hline \mu=A_{1} & \ell^{A_{1}}=1 & 1 & 1 \\
\mu=A_{2} & \ell^{A_{2}}=1 & 1 & -1 \\
\mu=E_{1} & \ell^{E_{1}}=2 & -1 & 0 \\
\hline
\end{array} \\
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{{ }^{\circ} G} \sum_{\mu} \frac{\ell^{(\mu)} G}{\ell^{\mu}} \sum_{m}^{\mu} \quad D_{m m}^{\mu}\left({g g^{\prime}}^{-1}\right) \mathbf{g}^{\prime} \quad \text { Interesting character } \\
& \mathbf{g}=\sum_{\mathbf{g}^{\prime}}^{{ }^{\circ} G} \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{\circ} G} \chi^{\mu}\left(g g^{\prime-1}\right) \mathbf{g}^{\prime} \quad \Rightarrow \quad \sum_{\mu} \frac{\ell^{(\mu)} G}{{ }^{\circ} G} \chi^{\mu}\left(g g^{\prime-1}\right)=\delta_{g^{\prime}}^{g^{-1}}
\end{aligned}
$$

Review: Spectral resolution of D_{3} Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
$D_{j k}{ }_{j k}(g)$ orthogonality relations
\square Class projector character formulae And review of all-commuting class sums \mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$ and $\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in \boldsymbol{G}} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G / /_{\text {Kg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbf{h}^{-1}={ }^{\circ}{ }_{g} \mathbf{k}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathrm{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbf{C h}^{-1}=\mathbb{C}$.

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in \boldsymbol{G}} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G / /_{\text {kg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbf{g h}^{-1}={ }^{\circ}{ }_{g} \mathbf{K}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathrm{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{G}} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \longleftarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{G}} \mathbb{C} \quad \text { (Trivial assumption) }
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14)
Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G / /_{\text {Kg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{\circ} \mathbf{h g h}^{-1}={ }^{\circ} n_{g} \mathbf{K}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of g-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}^{-1}=\mathrm{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{gathered}
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathbf{g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \longleftarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbb{C} \quad \text { (Trivial assumption) } \\
=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ}} \mathbf{h}\left(\sum_{\mathrm{g}=1}{ }^{\circ} C_{g} \mathbf{g}\right) \mathbf{h}^{-1}
\end{gathered}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in \boldsymbol{G}} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G / /_{\text {kg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{\circ} \mathbf{h g h}^{-1}={ }^{\circ} n_{g} \mathbf{K}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of g-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}^{-1}=\mathrm{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g} & =\frac{1}{{ }^{\circ} G}{ }^{\circ} \sum_{\mathbf{h}=1} \mathbf{h} \mathrm{Ch}^{-1} \quad \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbb{C} \quad \text { (Trivial assumption) } \\
& =\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{G}} \mathbf{h}\left(\sum_{\mathrm{g}=1}{ }^{\circ} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
& =\sum_{\mathrm{g}=1}^{{ }^{G}} C_{g} \frac{1}{{ }^{\circ}{ }^{\circ} G} \sum_{\mathbf{h}=1} \mathbf{h g h}^{-1}
\end{aligned}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in \boldsymbol{G}} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G / /_{\text {kg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{\circ} \mathbf{h g h}^{-1}={ }^{\circ} n_{g} \mathbf{K}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of g-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}^{-1}=\mathrm{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C}$ or $\mathbf{h} \mathbb{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
& \mathbb{C}=\sum_{\mathbf{g}=1}^{{ }^{\circ} G} C_{g} \mathbf{g}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbf{h} \mathbb{C h}^{-1} \longleftarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{\circ} G} \mathbb{C} \quad \text { (Trivial assumption) } \\
& =\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h}\left(\sum_{\mathbf{g}=1}^{{ }^{\circ} G} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
& =\sum_{\mathbf{g}=1}^{\circ} C_{g} \frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h g} \mathbf{h}^{-1} \\
& =\sum_{\mathbf{g}=1}^{{ }^{\circ} G} C_{g} \frac{{ }^{\circ} n_{g}}{{ }^{\circ} G} \boldsymbol{\kappa}_{g}
\end{aligned}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G / /_{\text {кg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{\circ} \mathbf{h g h}^{-1}={ }^{\circ} n_{g} \mathbf{K}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of g-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}^{-1}=\mathrm{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C} \mathbf{h}$ or $\mathbf{h} \mathrm{Ch}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
& \mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g}=\frac{1}{\left.{ }^{\circ}{ }_{G}{ }_{\mathbf{o}}{ }_{\mathbf{h}=1} \mathbf{h} \mathbb{C h}^{-1} \rightleftarrows \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{G} G} \mathbb{C} \text { (Trivial assumption) }\right) ~} \\
& =\frac{1}{{ }^{\circ}}{ }_{G} \sum_{\mathbf{h}=1}{ }^{G} \mathbf{h}\left(\sum_{g=1}^{{ }^{\circ} G} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
& =\sum_{\mathrm{g}=1}^{{ }^{G} G} C_{g} \frac{1}{{ }^{\circ}{ }_{G}} \sum_{\mathbf{h}=1}^{\circ} \mathbf{h g h}^{-1} \\
& =\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \frac{{ }^{\circ} n_{g}}{{ }^{\circ} G} \mathbf{K}_{g}
\end{aligned}
$$

Precise combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathrm{~g}=\sum_{\mathrm{g}=1}^{\circ} G C_{g} \frac{\mathbf{\kappa}_{g}}{{ }_{{ }^{\circ} \boldsymbol{\kappa}_{g}}}
$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect. 14 p.14) Total-G-transformation $\Sigma_{\mathbf{h} \in G} \mathbf{h} \mathbf{g h}^{-1}$ of \mathbf{g} repeats its class-sum κ_{g} an integer number ${ }^{\circ} n_{g}={ }^{\circ} G /{ }_{\text {Kgg }}$ of times.

$$
\sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbf{g h}^{-1}={ }^{\circ}{ }_{g} \mathbf{K}_{g}, \quad \text { where: }{ }^{\circ} n_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { order of } \mathbf{g} \text {-self-symmetry group }\left\{\mathbf{n} \text { such that } \mathbf{n g n}{ }^{-1}=\mathrm{g}\right\}
$$

Suppose all-commuting operator $\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}$ commutes with all \mathbf{h} in group G so $\mathbf{h} \mathbb{C}=\mathbb{C} \mathbf{h}$ or $\mathbf{h} \mathbf{C h}^{-1}=\mathbb{C}$. Then \mathbb{C} must be the following linear combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\begin{aligned}
\mathbb{C}=\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \mathbf{g} & =\frac{1}{{ }^{\circ} G}{ }^{\circ}{ }_{\mathbf{h}=1} \mathbf{h} \mathbf{C} \mathbf{h}^{-1} \longleftrightarrow \mathbb{C}=\frac{1}{{ }^{\circ} G} \sum_{\mathbf{h}=1}^{{ }^{G} G} \mathbb{C} \quad \text { (Trivial assumption) } \\
& =\frac{1}{{ }^{\circ} G}{ }_{\mathbf{h}=1}^{{ }^{G}} \mathbf{h}\left(\sum_{\mathbf{g}=1}^{{ }^{\circ} G} C_{g} \mathbf{g}\right) \mathbf{h}^{-1} \\
& =\sum_{\mathrm{g}=1} C_{g} \frac{1}{{ }^{\circ} G}{ }^{\circ}{ }_{\mathbf{G}=1} \mathbf{h g h}^{-1} \\
& =\sum_{\mathrm{g}=1}^{{ }^{\circ} G} C_{g} \frac{{ }^{\circ} n_{g}}{{ }^{\circ} G} \mathbf{K}_{g}
\end{aligned}
$$

Precise combination of class-sums $\boldsymbol{\kappa}_{g}$.

$$
\mathbb{C}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \mathrm{~g}=\sum_{\mathrm{g}=1}^{\circ} C_{g} \frac{\mathbf{\kappa}_{g}}{{ }_{\mathrm{\kappa}_{g}}}
$$

$$
\begin{aligned}
& \text { (Simple D3 example) } \\
& \mathbb{C}=8 \mathbf{r}^{1}+8 \mathbf{r}^{2} \\
& =8\left(\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 2+8\left(\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 2 \\
& =8\left(\kappa_{\mathbf{r}}\right) / 2+8\left(\kappa_{\mathbf{r}}\right) / 2 \\
& =8 \kappa_{\mathbf{r}}
\end{aligned}
$$

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
$D_{j k}{ }_{j k}(g)$ orthogonality relations
Class projector character formulae
$\geqslant \mathbb{P}^{\mu}$ in terms of κ_{g} and κ_{g} in terms of \mathbb{P}^{μ}
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
\mathbb{P}^{μ} in terms of κ_{g}
$\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors $_{\left({ }^{(\mu)}{ }^{\circ}{ }_{G} \text { vs. } g\right.}^{*}$ $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}$
for unitary $D_{n m}^{\mu}$ $D_{m n}^{u^{*}}(g)=D_{n m}^{u}\left(g^{-1}\right)$
$\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors $_{\left({ }^{(\mu)}{ }^{\circ}{ }_{G} \text { vs. } g\right.}^{*}$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{(\mu} G} \sum_{\mathrm{g}}^{\circ} G D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathrm{g}
$$

$$
\begin{gathered}
\text { for unitary } D_{n m}^{\mu} \\
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
\end{gathered}
$$

$\kappa \mathrm{g}$ in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\text {th }}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \chi^{u^{*}}(g) \mathrm{g}
$$

$\mathbb{P}^{\mu}=\sum_{\text {classesk } \mathrm{K}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}}{\mathbf{k}_{\mathrm{g}}}$, where: $\chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

$$
\begin{aligned}
& \text { irep projectors vs. } \mathbf{g} \\
& \qquad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}
\end{aligned}
$$

$$
\text { for unitary } D_{n m}^{\mu}
$$

$$
D_{m n}^{u^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
$$

Kg in terms of \mathbb{P}^{μ}
\mathbb{P}^{μ} in terms of kg
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathbf{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} \chi^{u^{*}}(g) \mathrm{g}
$$

$$
\text { for unitary } D_{n m}^{u}
$$

$\mathbb{P}^{\mu}=\sum_{\text {classes }_{\mathrm{g}}} \frac{\ell^{\mu}}{}{ }^{\circ} \chi_{g}^{\mu_{g}^{*}} \mathbf{\kappa}_{\mathrm{g}}$, where: $\chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

$$
\begin{aligned}
& \text { irep projectors vs. } \mathbf{g} \\
& \qquad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}}^{\mu_{m n} \mu^{*}}(g) \mathrm{g}
\end{aligned}
$$

$$
D_{m n}^{u^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
$$

K_{g} in terms of \mathbb{P}^{μ}
Find all-commuting class $\boldsymbol{\kappa}_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. g

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
$$

$\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} \sum_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{{ }^{\circ} G}{ }_{G} G}{} \sum_{\mathrm{g}} \chi^{u^{*}}(g) \mathbf{g}$
$\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{K}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{u^{*}} \mathbf{\kappa}_{\mathrm{g}}$, where: $\chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$
for unitary $D_{n m}^{\mu}$ $D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)$
κ_{g} in terms of \mathbb{P}^{μ}
Find all-commuting class $\boldsymbol{\kappa}_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
\mathbb{P}^{μ} in terms of kg
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of

$$
\begin{aligned}
& \mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \chi^{u^{*}}(g) \mathrm{g} \\
& \mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}{ }^{\circ} G}{} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}, \text { where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { irep projectors vs. } \mathbf{g} \\
& \qquad \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\mu_{m n}} D^{*}(g) \mathbf{g}
\end{aligned}
$$

for unitary $D_{n m}^{\mu}$ $D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)$
K_{g} in terms of \mathbb{P}^{μ}
Find all-commuting class $\boldsymbol{\kappa}_{\mathrm{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)$
\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv$ Trace $D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of

$$
\begin{aligned}
& \mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}}{{ }^{\circ} G} \sum_{\mathrm{g}}^{\circ} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathrm{g} \\
& \mathbb{P}^{\mu}=\sum_{{ }_{\text {classes } \mathbf{k}_{\mathrm{g}}}} \frac{\ell^{\mu}{ }^{\mu}}{} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}
\end{aligned}, \text { where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g \mathbf { h } ^ { - 1 })}\right.
$$

$$
\begin{aligned}
& \text { irep projectors vs. } \mathbf{g} \\
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
\end{aligned}
$$

for unitary $D_{n m}^{\mu}$

$$
D_{m n}^{u^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
$$

Kg in terms of \mathbb{P}^{μ}
Find all-commuting class κ_{g} in terms of \mathbb{P}^{μ} given g vs. irep projectors $\mathbf{P}_{m n}^{\mu}$:

$$
\mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
$$ $D_{m n}^{\mu}\left(\mathrm{K}_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :

$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)$
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\mathrm{\kappa}_{\mathrm{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\mathrm{\kappa}_{\mathrm{g}}\right)$
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv$ Trace $D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of

$$
\begin{aligned}
& \mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\circ} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} \chi^{\mu^{*}}(g) \mathrm{g} \\
& \mathbb{P}^{\mu}=\sum_{{ }_{\text {classes } \mathbf{k}_{\mathrm{g}}}} \frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}
\end{aligned}, \text { where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h} \mathbf{g h}^{-1}\right) .
$$

$$
\begin{aligned}
& \text { irep projectors vs. } \mathbf{g} \\
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}
\end{aligned}
$$

for unitary $D_{n m}^{u}$

$$
D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)
$$

Kg in terms of \mathbb{P}^{μ}

Find all-commuting class $\boldsymbol{\kappa}_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\mathrm{K}_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathrm{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathrm{g}}\right)$
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)$
$D_{a p}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad \delta_{c r}=\delta_{a p}^{d=1} \quad D_{r c}^{\mu}\left(\mathrm{K}_{\mathrm{g}}\right)$
\mathbb{P}^{μ} in terms of $\kappa \mathrm{g}$
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv$ Trace $D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors vs. g

$$
\mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} \chi^{u^{*}}(g) \mathrm{g}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}
$$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}, \text { where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)
$$

for unitary $D_{n m}^{u}$ $D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)$

Kg in terms of \mathbb{P}^{μ}

Find all-commuting class $\boldsymbol{k}_{\mathrm{g}}$ in terms of \mathbb{P}^{μ} given g vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\mathrm{K}_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathrm{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathrm{g}}\right)$
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)$
$D_{a p}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad \delta_{c r}={ }^{d=1} \delta_{a p} \quad D_{r c}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad$ So: $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ is multiple of ℓ^{μ}-by- ℓ^{μ} unit matrix:

$$
D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)=\delta_{m n} \frac{\chi^{\mu}\left(\kappa_{\mathrm{g}}\right)}{\ell^{\mu}}=\delta_{m n} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}
$$

\mathbb{P}^{μ} in terms of κ_{g}
$(\mu)^{\mathrm{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv \operatorname{Trace} D^{\mu}(\mathbf{g})=\sum_{m=1}^{\ell^{\mu}} D_{m m}^{\mu}(\mathbf{g})$
$(\mu)^{\text {th }}$ all-commuting class projector given by sum $\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}_{22}^{\mu}+\ldots+\mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu}$ of irep projectors $^{\mu}$ vs. g

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}}^{u_{m n}}{ }^{*}(g) \mathrm{g}
$$

$$
\begin{aligned}
& \mathbb{P}^{\mu}=\sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{m m}^{\mu}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathrm{g}} \sum_{m=1}^{\ell^{\mu}} D_{m m}^{u^{*}}(g) \mathrm{g}=\frac{\ell^{\mu}{ }^{\circ}{ }^{\circ} G}{} \sum_{\mathbf{g}} \chi^{u^{*}}(g) \mathrm{g} \\
& \mathbb{P}^{\mu}=\sum_{\text {classesk } \mathbf{K}_{\mathrm{g}}} \frac{\ell^{\mu}{ }^{\circ}{ }_{G}}{\chi_{g}^{u^{*}} \boldsymbol{\kappa}_{\mathrm{g}}}, \text { where: } \chi_{g}^{\mu}=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)
\end{aligned}
$$

for unitary $D_{n m}^{\mu}$ $D_{m n}^{\mu^{*}}(g)=D_{n m}^{\mu}\left(g^{-1}\right)$

Kg in terms of \mathbb{P}^{μ}

Find all-commuting class $\boldsymbol{\kappa}_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors $\mathbf{P}_{m n}^{\mu}: \mathbf{g}=\sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}$ $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ commutes with $D_{m n}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\delta_{m p} \delta_{n r}$ for all p and r :
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathrm{g}}\right) D_{b c}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right)=\sum_{d=1}^{\ell^{\mu}} D_{a d}^{\mu}\left(\mathbf{P}_{p r}^{\mu}\right) D_{d c}^{\mu}\left(\kappa_{\mathrm{g}}\right)$
$\sum_{b=1}^{\ell^{\mu}} D_{a b}^{\mu}\left(\kappa_{\mathbf{g}}\right) \delta_{b p} \delta_{c r}=\sum_{d=1}^{\ell^{\mu}} \delta_{a p} \delta_{d r} \quad D_{d c}^{\mu}\left(\kappa_{\mathbf{g}}\right)$
$D_{a p}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad \delta_{c r}={ }^{d=1} \delta_{a p} \quad D_{r c}^{\mu}\left(\kappa_{\mathrm{g}}\right) \quad$ So: $D_{m n}^{\mu}\left(\kappa_{\mathrm{g}}\right)$ is multiple of ℓ^{μ}-by- ℓ^{μ} unit matrix:

$$
\mathbf{K}_{\mathbf{g}}=\sum_{\mu}^{{ }^{\circ} \mathbb{K}_{g} \chi_{g}^{\mu}} \frac{\mathbb{P}^{\mu}}{\ell^{\mu}}
$$

$$
D_{m n}^{\mu}\left(\kappa_{\mathbf{g}}\right)=\delta_{m n} \frac{\chi^{\mu}\left(\mathbf{\kappa}_{\mathbf{g}}\right)}{\ell^{\mu}}=\delta_{m n} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}
$$

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

```
General formulae for spectral decomposition (D3 examples)
    Weyl g-expansion in irep D }\mp@subsup{|}{jk}{(g)
        P}\mp@subsup{}{j}{jk}\mathrm{ transforms right-and-left
        P}\mp@subsup{}{}{\mu}\mp@subsup{}{jk}{}\mathrm{ -expansion in g-operators
```



```
    Class projector character formulae
        \mp@subsup{P}{}{\mu}}\mathrm{ in terms of }\kappa\textrm{g}\mathrm{ and }\kappa\textrm{g}\mathrm{ in terms of }\mp@subsup{\mathbb{P}}{}{\mu
```

1 Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

[^0]> "Give me a place to stand... and I will move the Earth"

Ideas of duality/relativity go way back (...vanvleck, Casimiri... Mach, Newton, Archimedes..) Lab-fixed(Extrinsic-Global)R,S...vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}, \overline{\mathbf{S}}, .$.

Body Based Operations

...for one state |1) only!
...But how do you actually make the \mathbf{R} and $\overline{\mathbf{R}}$ operations?

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

$\dot{1}_{1} \dot{1}_{2}|\boldsymbol{1}\rangle=\underset{\text { wave packet moves }}{\sim}|\boldsymbol{1}\rangle=|\mathbf{r}\rangle$
$\mathrm{i}_{1} \mathrm{i}_{2}=\mathbf{r}$
Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)
$\mathrm{i}_{1} \mathrm{i}_{2}=\mathrm{r}$
implies:
$\bar{i}_{1} \bar{i}_{2}=\overline{\mathrm{r}}$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$\overline{\mathbf{i}}_{2}|\mathbf{i}\rangle=\left|\mathbf{i}_{2}\right\rangle$

$\overline{\mathrm{F}}_{1} \overline{\mathrm{~F}}_{2}|\boldsymbol{1}\rangle=\overline{\mathrm{F}}_{1}\left|\dot{\mathbf{l}}_{2}\right\rangle$ $\xrightarrow[\text { while lab axes move }]{\text { wave packet fixed }}$
$\begin{array}{cl}\text { SAME GROUP TABLE. } & \boldsymbol{i}_{1} \bar{i}_{2}=\mathrm{r} \\ \text {...and Mock-Mach principle } \overline{\mathbf{g}}|\mathbf{1}\rangle=\mathbf{g}^{-1}|\mathbf{1}\rangle & \text { immplies }_{\mathrm{i}_{1}}=\overline{\mathrm{i}}=\overline{\mathrm{r}}\end{array}$

$\begin{array}{ll}\text { SAME GROUP TABLE. } & \mathbf{i}_{1} \mathbf{i}_{2}=\mathbf{r} \\ & \text { implies: }^{\text {Mock-Mach principle } \overline{\mathbf{g}}|\mathbf{1}\rangle=\mathbf{g}^{-1}|\mathbf{1}\rangle} \\ \overline{\mathrm{i}}_{1} \overline{\mathrm{i}}_{2}=\overline{\mathrm{r}}\end{array}$

...but, THEY OBEY THE

Review: Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra) and its subgroup splitting

```
General formulae for spectral decomposition (D3 examples)
    Weyl g-expansion in irep D }\mp@subsup{|}{jk}{(g)
        P}\mp@subsup{}{j}{jk}\mathrm{ transforms right-and-left
        P}\mp@subsup{}{}{\mu}\mp@subsup{}{jk}{}\mathrm{ -expansion in g-operators
```



```
    Class projector character formulae
        \mp@subsup{P}{}{\mu}}\mathrm{ in terms of }\kappa\textrm{g}\mathrm{ and }\kappa\textrm{g}\mathrm{ in terms of }\mp@subsup{\mathbb{P}}{}{\mu
```

Details of Mock-Mach relativity-duality for D_{3} groups and representations
\rightarrow Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} globall	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
group	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
product	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	
table	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{13}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

Change Global to Local by switching
...column-g with column-g ${ }^{\dagger}$
....and row-g with row-g ${ }^{\dagger}$

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} global	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{13}
group	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{13}	\mathbf{i}_{1}	\mathbf{i}_{2}
product	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
table	\mathbf{i}_{1}	\mathbf{i}_{13}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
i_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

$\mathrm{D}_{3} \text { global }$	D,	${ }^{4}$	$\left\|\mathbf{P}_{v x}^{E} \mathbf{P}_{x y}^{E}\right\| \mathbf{P}_{v x}^{E} \mathbf{P}_{v y}^{E}$	
	$\mathbf{P}_{\text {x }}^{4}$	\mathbf{P}_{x}^{41}		
	P	\mathbb{P}		
	$\mathbf{P}_{x x}^{E}$		$\mathbb{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	
product	\mathbf{p}_{10}^{E}		$\mathbb{P}_{y x}^{E} \mathbf{P}_{\underline{y y}}^{E}$	
	\mathbf{p}_{1}^{E}			$\mathbb{P}_{x x}^{E} \mathbf{p}_{x y}^{E}$
	\mathbf{P}_{v}^{t}			$\mathbf{P}_{y}^{E} \quad \mathbf{P}$

Change Global to Local by switching $\mathbf{P}_{a b}^{(m)} \mathbf{P}_{c d}^{(n)}=\delta^{m n} \delta_{b c} \mathbf{P}_{a d}^{(n)}$

...column-P with column-P ${ }^{\dagger}$

and row-P with row-P ${ }^{\dagger}$

Compare Global vs Local |gो-basis

Example of RELATIVITY-DUALITY for $D_{3} \underline{-C}_{3 v}$

To represent external $\{. . \mathrm{T}, \mathrm{U}, \mathbf{V}, \ldots\}$ switch $\mathbf{g} \underset{\mathbf{g}^{\dagger}}{ }$ on top of group table

$$
\begin{aligned}
& R^{G}(\mathbb{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{r} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{1} |
| \mathbf{r} | $\mathbf{1}$ | \mathbf{r}^{2} | $\left(\mathbf{i}_{3}\right.$ | \mathbf{i}_{1} | \mathbf{i}_{2} |
| \mathbf{r}^{2} | \mathbf{r} | $\mathbf{1}$ | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{1} |
| \mathbf{i}_{1} | \mathbf{i}_{13} | \mathbf{i}_{2} | $\mathbf{1}$ | \mathbf{r} | \mathbf{r}^{2} |
| \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{i}_{3} | \mathbf{r}^{2} | $\mathbf{1}$ | \mathbf{r} |
| \mathbf{i}_{3} | \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{r} | \mathbf{r}^{2} | $\mathbf{1}$ |

D_{3} global
gg ${ }^{\dagger}$-table

Compare Global vs Local $|\mathbf{g}\rangle$-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

A	A	A	A		
$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{13}
\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{13}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

D_{3} global

$$
\begin{aligned}
& R^{G}(\mathbb{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}(\mathbf{i})=
\end{aligned}
$$

> RESULT:
> Any R (T)
> commute (Even if T and U do not...) with any $R(\mathbf{U})$..

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\boldsymbol{\sim}}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL \mathbf{g} operators in ${\underset{E}{e}}^{D_{3}}$

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(m)}$ for GLOBAL \mathbf{g} operators in ${\underset{E}{E}}^{D_{3}}$

$$
\begin{aligned}
& \overline{\mathbf{P}}_{a b}^{(n)} \ldots \text { for LOCAL } \overline{\mathrm{g}} \text { operators in } \bar{D}_{3}
\end{aligned}
$$

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL \mathbf{g} operators in D_{3}

$\overline{\mathbf{P}}_{d b}^{(1) . . . f o r ~ L O C A L} \overline{\bar{g}}$ operators in $\overline{D_{3}}$

Note how any global g-matrix commutes with any local g-matrix

$$
\begin{aligned}
& \left|\begin{array}{cc:cc}
a \boldsymbol{A} & b \boldsymbol{A} & a \boldsymbol{B} & b \boldsymbol{B} \\
c \boldsymbol{A} & d \boldsymbol{A} & c \boldsymbol{B} & d \boldsymbol{B} \boldsymbol{B} \\
\hdashline a \boldsymbol{C} & b \boldsymbol{C} & a \boldsymbol{D} & b \boldsymbol{D} \\
c \boldsymbol{C} & d \boldsymbol{C} & c \boldsymbol{D} & d \boldsymbol{D}
\end{array}\right|=\left|\begin{array}{cc:cc}
A a & A b & B a & B b \\
A c & A d & B c & B d \\
\hdashline \boldsymbol{C a} & C b & \boldsymbol{D a} & \boldsymbol{D} b \\
\boldsymbol{C c} & \boldsymbol{C d} d & D c & D d
\end{array}\right|
\end{aligned}
$$

```
Review: Spectral resolution of \(\mathbf{D}_{3}\) Center (Class algebra) and its subgroup splitting
```

```
General formulae for spectral decomposition (D3 examples)
    Weyl g-expansion in irep D}\mp@subsup{|}{jk}{\mu}(g)\mathrm{ and projectors }\mp@subsup{\mathbf{P}}{jk}{\mu
            P}\mp@subsup{}{jk}{
            P}\mp@subsup{}{jk}{}\mp@subsup{}{jk}{}\mathrm{ -expansion in g-operators
        D }\mp@subsup{}{jk}{\prime}(g) orthogonality relations
    Class projector character formulae
            \mp@subsup{P}{}{\mu}}\mathrm{ in terms of }\kappa\textrm{g}\mathrm{ and }\kappa\textrm{g}\mathrm{ in terms of }\mp@subsup{\mathbb{P}}{}{\mu
```

Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local |gो-basis and Global vs Local |P($\left.{ }^{(\mu)}\right\rangle$-basis
\boldsymbol{H} Hamiltonian and D 3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamiltonian local-symmetry eigensolution

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathbf{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle_{\text {norm }}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\begin{array}{l}\mu^{\prime}, \\ m^{\prime} n^{\prime}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad \text { where: norm }=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}} \sqrt{{ }^{(\mu)}}\end{array}\right.$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathbf{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathbf{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\begin{array}{l}\mu^{\prime}, \\ m^{\prime} n^{\prime}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad \text { where: norm }=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}} \sqrt{{ }^{(\mu)}}\end{array}\right.$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot{ }^{\circ}{ }^{\circ} G{ }^{G} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle \quad$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu n \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\begin{aligned}
\overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{{ }^{(}(\mu)}}{}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{\circ}}{\ell^{(\mu)}}} \begin{array}{c}
\text { Use } \\
\text { Mock-Mach } \\
\text { commutation }
\end{array} \text { and }
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\left.\begin{array}{rl}
\overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \begin{array}{c}
\text { Mocke-ach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{array}\right] \begin{gathered}
\text { inverse }
\end{gathered}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle \quad$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \\
& \begin{array}{l}
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G}}{\ell^{(\mu)}}} \begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
=\mathbf{P}_{m n}^{\mu} \mathbf{g}^{\text {and }} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{\circ}}{\ell^{(\mu)}}} \longleftarrow \text { inverse }
\end{array}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original get $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{c}\mu^{\prime} \\ \left.m^{\prime} n^{\prime}\right|_{m n} ^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle \quad$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\left.\begin{array}{rl}
\overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{\circ}}{\ell^{(\mu)}}} \begin{array}{c}
\text { Use } \\
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{array}\right]
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{i n^{\prime}}^{\mu} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\overline{\mathbf{g}}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\bar{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \begin{array}{c}
\text { Mock-Mach } \\
\stackrel{\text { and }}{\text { commutation }}
\end{array} \\
& \begin{array}{l}
=\mathbf{P}_{m n}^{\mu^{\prime}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\frac{G}{\ell^{(\mu)}}}}{\ell^{(\mu)}}} \stackrel{\text { inverse }}{ } \\
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}^{G}}{\ell^{(\mu)}}}
\end{array}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu n \\ { }_{m}\end{array}\right\rangle$ is quite different

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\left.\left.\begin{array}{rl}
\overline{\mathbf{g}}\left|{ }_{m n}^{\mu}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G_{G}}}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \begin{array}{c}
\text { Use } \\
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{array}\right] \begin{array}{rl}
\text { inverse }
\end{array}\right]
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle$ is quite different

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{\frac{G}{(\mu)}}}{}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\bar{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \begin{array}{c}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{array} \\
& \begin{array}{l}
=\mathbf{P}_{m n^{\prime}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \longleftarrow \text { inverse } \\
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime \prime}}^{\mu}|\boldsymbol{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{(\mu}}{\ell^{(\mu)}}}
\end{array} \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right\rangle
\end{aligned}
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{c}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\begin{array}{l}\mu^{\prime}, \\ m^{\prime} n^{\prime} \mid \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}u n \\ m\end{array}\right\rangle$
Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle$ is quite different

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\overline{\mathbf{g}}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\bar{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right\rangle
\end{aligned}
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l|l}
\mu & \sigma & \mu \\
m^{\prime} n & \boldsymbol{g} & m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathrm{g}}$-matrix component

$$
\left\langle\begin{array}{c}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

$R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}=$				
$\left\|\mathbf{P}_{x x}^{A_{1}}\right\rangle$	$\left\|\mathbf{P}_{y y}^{A_{2}}\right\rangle$	$\left\|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y x}^{E_{1}}\right\rangle$	$\left\|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y y}^{E_{1}}\right\rangle$	
$\left(D^{A_{1}}(\mathbf{g}) \mid\right.$				$\left\|\mathbf{P}^{(\mu)}\right\rangle$-base ordering to concentrate
	$D^{A_{2}}(\mathbf{g})$			
		$\begin{array}{ll} D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} \end{array}$. .	
,			$\begin{array}{cc}D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}$	D-matrices

Global g-matrix component
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}=$

$\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle$	$\left\|\mathbf{P}_{y y}^{A_{2}}\right\rangle$	$\left\|\mathbf{P}_{x x}^{E_{1}}\right\rangle$	$\left\|\mathbf{P}_{y x}^{E_{1}}\right\rangle$	$\left\|\mathbf{P}_{x y}^{E_{1}}\right\rangle$	$\left\|\mathbf{P}_{y y}^{E_{1}}\right\rangle$
$\left(\begin{array}{c\|c\|cc\|cc}D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}\right)$					

$$
\left.\left|\begin{array}{|c|c|c|c|}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{A_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y x}^{E_{1}}\right\rangle
\end{array}\right| \mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle
$$

$$
\left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\
\cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\
\cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}
\end{array}\right)
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis $R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=$

$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$
here
Local $\overline{\mathbf{g}}$-matrix
is not concentrated

Global g-matrix component
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\begin{aligned}
& R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}=
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x(}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\
\cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\
\cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}
\end{array}\right) \\
& \bar{R}^{P}(\mathbf{g})=\bar{T} R^{G}(\mathbf{g}) \bar{T}^{\dagger}=
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}} & \cdot & D_{x y}^{E_{1}} \\
\hline \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}} & \cdot & D_{y y}^{E_{1}}
\end{array}\right) \\
& \begin{array}{cccccc}
R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}= \\
\left|\mathbf{P}_{x x}^{1_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{\mathbf{P}_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array} \\
& \text { here } \\
& \text { Local } \overline{\mathbf{g}} \text {-matrix } \\
& \text { is not concentrated } \\
& \text { here } \\
& \text { global } \mathbf{g} \text {-matrix } \\
& \text { ais not concentrated }
\end{aligned}
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu & \mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{c}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left.\begin{array}{l}
R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}= \\
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\left|\begin{array}{|l|l|l|}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y x}^{E_{1}}\right\rangle
\end{array}\right| \mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\begin{array}{|}
\mathbf{P}_{y y}
\end{array}\right\rangle
$$

$$
\bar{R}^{P}(\overline{\mathbf{g}})=\bar{T} R^{G}(\overline{\mathbf{g}}) \bar{T}^{\dagger}=
$$

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{A_{2}}\right\rangle
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

```
Review: Spectral resolution of D}\mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra) and its subgroup splitting
General formulae for spectral decomposition (D3 examples)
    Weyl g-expansion in irep D }\mp@subsup{|}{jk}{(g)
        P}\mp@subsup{}{j}{jk}\mathrm{ transforms right-and-left
        P}\mp@subsup{}{}{\mu}\mp@subsup{}{jk}{}\mathrm{ -expansion in g-operators
    D }\mp@subsup{}{jk(g)}{(g)}\mathrm{ orthogonality relations
    Class projector character formulae
            \mp@subsup{P}{}{\mu}}\mathrm{ in terms of }\kappa\textrm{g}\mathrm{ and }\kappa\textrm{g}\mathrm{ in terms of }\mp@subsup{\mathbb{P}}{}{\mu
Details of Mock-Mach relativity-duality for D D groups and representations
    Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
    Compare Global vs Local |g\rangle-basis and Global vs Local |\mp@subsup{\mathbf{P}}{}{(\mu)}\rangle\mathrm{ -basis}
```

Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
\rightarrow Hamiltonian local-symmetry eigensolution

$$
\begin{aligned}
& \mathbf{H} \text { matrix in } \\
& |\mathbf{g}\rangle \text {-basis: } \\
& \mathbf{H})_{G}=\sum_{g=1}^{o} r_{g} \\
& r_{g} \\
& \mathbf{g}
\end{aligned}=\left(\begin{array}{cccccc}
r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\
r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\
r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\
i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\
i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\
i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}
\end{array}\right) \quad \begin{aligned}
& \mathbf{H} \text { matrix in } \\
& \left|\mathbf{P}^{(\mu)}\right\rangle \text {-basis: }
\end{aligned}
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y} E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle \mid \mathbf{P}_{y, E_{i}}
$$

$$
\underset{(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{llllll}
r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\
r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\
r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\
i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\
i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\
i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}
\end{array}\right), ~\left(\begin{array}{ll}
\text { asis: }
\end{array}\right)}{ }
$$

$$
\begin{aligned}
& \mathbf{H} \text { matrix in } \\
& \left|\mathbf{P}^{(\mu)}\right\rangle \text {-basis: }
\end{aligned}
$$

$$
(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=
$$

$\left(\begin{array}{c|c|cc|cc}H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}}\end{array}\right)$

$$
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{y y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}^{E}}\right\rangle
$$

\mathbf{H} matrix in $\|\mathbf{g}\rangle$-basis:	$\left(\begin{array}{llllll}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & & r_{0} & i_{2} & i_{2} & \end{array}\right.$
$(\mathbf{H})_{G}=\sum_{G}^{o_{G}} r_{\mathrm{g}} \overline{\mathrm{~g}}=$	$r_{2} r_{2} r_{1} r_{0} i_{2} i_{3} i_{1}$
	$\begin{array}{lllllll}i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i & i_{3} & r_{2} & & \end{array}$
	$\begin{array}{llllll}i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}$

$\underset{\left|\mathbf{P}^{(\mu)}\right\rangle \text {-basis: }}{\mathbf{H} \text { matrix in }}$
$(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=$
$\left(\begin{array}{c|c|cc|cc}H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}}\end{array}\right)$
$H_{a b}^{a}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{u}\right\rangle$

Let: $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle \equiv\left|\mathbf{P}_{m n}^{\mu}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathbf{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

\mathbf{H} matrix in $\|\mathbf{g}\rangle$-basis:	$\left(\begin{array}{llllll}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2}\end{array}\right.$
$(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} r_{r} \overline{\mathrm{~g}}=$	$\begin{array}{llllll}r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2}\end{array}$
	$\begin{array}{llllll}i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1}\end{array}$
	$\left(\begin{array}{llllll}i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right.$

\mathbf{H} matrix in
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis:
$(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=$
$=\left(\begin{array}{c|c|cc|cc}H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}}\end{array}\right)$

$$
\begin{aligned}
& \text { Projector conjugation p.3 } \\
& (|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
& \left(\mathbf{P}_{n n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{aligned}
$$

$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\begin{array}{r}
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{a m}^{\mu} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H} \mathbf{P}_{a m}^{\mu} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle}{(n o r m)^{2}}{ }_{2}^{2} \\
\text { Mock-Mach } \\
\text { commutation } \\
\mathbf{r} \overline{\mathbf{r}}=\overline{\mathbf{r}} \mathbf{r} \\
(p .89)
\end{array}
$$

$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathbf{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (So, fuggettabout it! cancel out)

$$
\left|\mathbf{P}_{x x}^{P_{1}}\right\rangle\left|\mathbf{P}_{y y}^{s}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}^{E}}\right\rangle\left\langle\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{s}^{E}}\right\rangle
$$

$$
\begin{aligned}
& \underset{\mathbf{| g} \text {)-basis: }}{\mathbf{H} \text { matrix in }} \quad(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} \sum_{g} \bar{g}=\left(\begin{array}{llllll}
r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\
r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\
r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\
i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\
i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\
i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}
\end{array}\right) \\
& \underset{\left|\mathbf{P}^{(\mu)}\right\rangle \text {-basis: }}{\mathbf{H} \text { matrix in }} \\
& (\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=
\end{aligned}
$$

Use $\mathbf{P}_{m n}^{\mu}$-orthonormality

$$
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{(p .18)}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
$$

$$
\left|\mathbf{P}_{x x}^{P_{1}}\right\rangle\left|\mathbf{P}_{y y}^{s}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}^{E}}\right\rangle\left\langle\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{s}^{E}}\right\rangle
$$

$$
\left.\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{(\mu)} \cdot n o r m} \sum_{\mathrm{g}}^{\circ} D_{m n}^{u^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 116-122):
norm $=\sqrt{|\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(u)}}{{ }^{(1)}}}$ (which will cancel out)

$\begin{aligned} & \text { Coef } \\ & \mathrm{g}= \end{aligned}$	ients	$m_{m n}^{u}(g)_{\mathbf{r}^{1}}$ are	$\underset{\mathbf{r}^{2}}{\text { educible }}$	$\mathrm{m}_{\mathbf{i}_{1}}$	$\left.\underset{\mathbf{i}_{2}}{(\text { ireps }}\right) O_{0}$	i_{3}
$D^{A_{1}}(\mathbf{g})=$	1	1 1	1	$\begin{gathered} 1 \\ -1 \end{gathered}$	$\begin{gathered} 1 \\ -1 \end{gathered}$	1
$\begin{aligned} & D^{A_{2}}(\mathbf{g})= \\ & D_{x, y}^{E_{1}}(\mathbf{g})= \end{aligned}$	$\left(\begin{array}{c}1 \\ \left(\begin{array}{ll}1 & \cdot \\ \cdot & 1\end{array}\right)\end{array}\right.$	$\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-1 \\ 1 & 0 \\ 0 & -1\end{array}\right)$

$$
\left|\mathbf{P}_{x x}^{P_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y} E_{j}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \mid \mathbf{P}_{y y}^{E_{i}}
$$

$$
\left.\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{(\mu)} \cdot n o r m} \sum_{\mathrm{g}}^{\circ} D_{m n}^{u^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 116-122):
norm $=\sqrt{|\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(t)}}{{ }^{(t)}}}$ (which will cancel out)

$\begin{aligned} & \text { Coeff } \\ & \mathrm{g}= \end{aligned}$	cients	${ }_{m n}^{u}(g)_{\mathbf{r}^{1}}$ are	$\underset{\mathbf{r}^{2}}{\text { educible }}$	resentatio \mathbf{i}_{1}	(ireps) ${\underset{i}{2}}^{\text {in }}$	\mathbf{i}_{3}
$D^{A_{1}}(\mathbf{g})=$	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ -1 \end{gathered}$	$\begin{gathered} 1 \\ -1 \end{gathered}$	1
$\begin{aligned} & D^{A_{2}}(\mathbf{g})= \\ & D_{x, y}^{E_{1}}(\mathbf{g})= \end{aligned}$	$\left(\begin{array}{ll}1 \\ 1 & \cdot \\ \cdot & 1\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-1 \\ 1 & 0 \\ 0 & -1\end{array}\right)$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$\left.H_{x x}^{\epsilon_{1}}=r_{0} D_{x x}^{t^{*}}(1)+r_{1} D_{x x}^{t^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{t^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{\iota^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{t_{x}^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{t^{*}}\left(i_{3}\right)=(2)_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2$

Coefficients $D_{m n}^{\mu}(g)_{r}$ are irreducible representations (ireps) of g

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

${ }_{\mathrm{g}}=$ Coefficients $_{1} D_{m n}^{\mu}(\mathrm{g})_{\mathbf{r}^{2}}$, are irreducible representations (ireps) of g

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$H^{A_{2}}=r_{0} D^{4_{2}^{*}}(1)+r_{1} D^{4 *}\left(r^{4}\right)+r_{1}^{*} D^{4^{*}}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4 *}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}$

$H_{y y}^{4}=r_{0} D_{y y}^{t^{*}}(1)+r_{1} D_{y y}^{* *}\left(r^{1}\right)+r_{1}^{*} D_{y y}^{v^{*}}\left(r^{2}\right)+i_{1} D_{y y}^{* *}\left(i_{1}\right)+i_{2} D_{y y}^{b_{y}^{* *}}\left(i_{2}\right)+i_{3} D_{y y}^{u^{* *}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}\right) / 2$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\mathbf{P}_{m n}^{(\omega)}=\frac{l^{(\mu)} \sum_{\mathrm{g}} D_{m n}^{(\mu)}(\underline{\mathrm{g}}) \mathrm{g}}{}
$$

Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!

-Local symmetery eigenvalue formulae (Local Symmetry \Rightarrow off-diagonal $=0$)

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states

$$
\begin{aligned}
\stackrel{i}{\mathbf{i}}_{3}|(m)\rangle & =\mathfrak{i}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle \\
& =(-1)^{e}|(m)\rangle
\end{aligned}
$$

Local (BOD) symmetry

$$
\left|\begin{array}{l}
(m) \\
e b
\end{array}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle
$$

$$
\begin{aligned}
& \overline{\overline{\mathbf{i}}_{3}}\left|e_{e b}^{(m)}\right\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{l}_{3}}|1\rangle \\
& =\mathbf{P}_{e b}^{(m) \mathbf{I}_{3} \dagger}|1\rangle=(-1)^{b}|(m)\rangle
\end{aligned}
$$

When there is no there, there...

Nobody Home
where LOCAL and GLOBAL

(a) Local $D_{3} \supset C_{2}\left(i_{3}\right)$ model

MolVibes Web Simulation 3 Atom with C3v symmetry

[^0]: Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
 Hamiltonian local-symmetry eigensolution

