
Group Theory in Quantum Mechanics 
Lecture 17 (3.16.17) 

(Review of Lectures 15-16 with more detailed and rigorous derivations)  
Projector algebra and Hamiltonian local-symmetry eigensolution 

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 5 Ch. 15 ) 
(PSDS - Ch. 4 ) 

Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

Review: General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 

Details omitted from Lecture 15-16  

Dµjk(g) orthogonality relations         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Review: Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Review: Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 

                             
         



Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 
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Review:Spectral resolution of D3 Center (Class algebra) 

1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

→

κ 1 = 1 κ r = r + r
2 κ i = i1 + i2 + i3

κ 1 κ 1 κ r κ i

κ r κ r 2κ 1 +κ r 2κ i

κ i κ i 2κ i 3κ 1 + 3κ r

Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

Class-sum κk commutes with all gt

See Lect.16 p. 2-23 
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Review:Spectral resolution of D3 Center (Class algebra) 

1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

→

κ 1 = 1 κ r = r + r
2 κ i = i1 + i2 + i3

κ 1 κ 1 κ r κ i

κ r κ r 2κ 1 +κ r 2κ i

κ i κ i 2κ i 3κ 1 + 3κ r

Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

Class-sum κk commutes with all gt

κ1 =1·P
A1 + 1·PA2 +  1·PE =1    (Class completeness)

See Lect.16 p. 2-23 
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See Lect.16 p. 2-20 



D3 Algebra

i
1

i
2 i

3

κκ
1
=1κκ
1
=1

κκ
i
= i
1
+ i
2
+i
3

κκ
i
= i
1
+ i
2
+i
3 κκ

r
= r2 + rκκ
r
= r2 + r

D3 Center
(All-commuting

operators)

r2

r

A Maximal Set of Commuting

Operators

PA1
PA2
PE1

PE
xx yy
PE

PE
11

22
PE

PE
xy yx
PE

PE
12

21
PE

Another

Maximal Set

of Commuting

Operators(All-commuting
operators)

PA1
PA2
PE1

Review:Spectral resolution of D3 Center (Class algebra) 

1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

→

κ 1 = 1 κ r = r + r
2 κ i = i1 + i2 + i3

κ 1 κ 1 κ r κ i

κ r κ r 2κ 1 +κ r 2κ i

κ i κ i 2κ i 3κ 1 + 3κ r

Class-sum κ k  invariance:               gtκ k = κ kgt  
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P A1 = (κ1 + κ r + κ i )/6 = (1+ r + r2 + i1 + i2 + i3)/6
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Class projectors:

See Lect.16 p. 2-22 
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 



Subgroup C2={1,i3} relabels  
irreducible class projectors:  
PA1=PA1 

PA2=PA2
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See Lect.16 p. 72-77 

Class projectors:

Class characters:

and its subgroup splitting 



...and splits reducible projector PE1=PE1+PE1 0202       1212
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See Lect.16 p. 80-85 
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 



   

g = 1⋅g⋅1=
µ
∑

m
∑ Dmn

µ g( )
n
∑ Pmn

µ = Dxx
A1 g( )P A1 + Dyy

A2 g( )P A2 + Dxx
E1 g( )Pxx

E1 + Dxy
E1 g( )Pxy

E1  

                                                                                               + Dyx
E1 g( )Pyx

E1 + Dyy
E1 g( )Pyy

E1

Irreducible idempotent completeness                                         completely expands group by g=1·g·1
   
1= P A1 + P A2 + Pxx

E1 + Pyy
E1

For irreducible class idempotents 
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation: 
PA1=PA1 

PA2=PA21212       yy

0202       xx

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

See Lect.16 p. 91-95 
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“g-equals-1·g·1-trick”Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation: 
PA1=PA1 

PA2=PA21212       yy

0202       xx

0202       xxPE1=PE1 PE1=PE1 0212         xy
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For split idempotents 
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See Lect.16 p. 92-98 
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For split idempotents 
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See Lect.16 p. 93-98 
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Idempotent projector orthogonality… 

Generalizes to idempotent/nilpotent orthogonality 
known as Simple Matrix Algebra:

   
P A1,P A2,Pxx

E1, and Pyy
E1 Group product table boils down 

to simple projector matrix algebra
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E1, and Pxy
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Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation: 
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Weyl expansion of g in irep Dµjk(g)Pµjk
Irreducible idempotent completeness                                         completely expands group by g=1·g·1

   

 where:  
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“g-equals-1·g·1-trick”

Pi Pj = δij Pi = Pj Pi 

  
Pjk
µ Pmn

ν = δ µνδ kmPjn
µ

Idempotent projector orthogonality… 

Generalizes to idempotent/nilpotent orthogonality 
known as Simple Matrix Algebra:

   
P A1,P A2,Pxx

E1, and Pyy
E1 Group product table boils down 

to simple projector matrix algebra

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( ) irreducible representations (ireps)
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Previous notation: 

0202       xxPE1=PE1 PE1=PE1 0212         xy
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1 ⋅
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⎜
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⎟
⎟
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⎟
⎟
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⎟

For split idempotents 
sub-indices xx or yy are essential

See Lect.16 p. 97-99 



Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 
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Use Pmn
µ -orthonormality

P ʹm ʹn
ʹµ Pmn

µ = δ ʹµ µδ ʹn mP ʹm n
µ

Pµmn transforms leftm-and-rightn

Spectral decomposition defines left and right irep transformation due to  
spectrally decomposed g acting on left and right side of projector Pµ

mn.
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 
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























RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

Pµmn -expansion in g-operators



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

   
g =

ʹµ
∑

ʹm

ℓµ

∑ D ʹm ʹn
ʹµ g( )

ʹn

ℓµ

∑ P ʹm ʹn
ʹµ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( )

1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1

























,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

























,

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

























,

⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

























,

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

























,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

























RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

Pµmn -expansion in g-operators



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

   
g =

ʹµ
∑

ʹm

ℓµ

∑ D ʹm ʹn
ʹµ g( )

ʹn

ℓµ

∑ P ʹm ʹn
ʹµ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( )

1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1

























,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

























,

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

























,

⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

























,

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

























,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

























RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

Pµmn -expansion in g-operators



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

   
g =

ʹµ
∑

ʹm

ℓµ

∑ D ʹm ʹn
ʹµ g( )

ʹn

ℓµ

∑ P ʹm ʹn
ʹµ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1

























,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

























,

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

























,

⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

























,

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

























,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

























RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

Pµmn -expansion in g-operators



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

   
g =

ʹµ
∑

ʹm

ℓµ

∑ D ʹm ʹn
ʹµ g( )

ʹn

ℓµ

∑ P ʹm ʹn
ʹµ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension l(µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅



























=

1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅

⋅ ⋅

⋅ ⋅ ⋅

1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1

























A1
A2

E
xy

Dyx
D

D
xx

yy

DE
xy

Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

Dxx
A1 Dyy

A2 Dxx
E

Dxy
E Dyx

E Dyy
E

Pµmn -expansion in g-operators

ℓ(µ )



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

   
g =

ʹµ
∑

ʹm

ℓµ

∑ D ʹm ʹn
ʹµ g( )

ʹn

ℓµ

∑ P ʹm ʹn
ʹµ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension l(µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmnℓ

(µ)

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅



























=

1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅

⋅ ⋅

⋅ ⋅ ⋅

1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

























+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1

























A1
A2

E
xy

Dyx
D

D
xx

yy

DE
xy

Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

Dxx
A1 Dyy

A2 Dxx
E

Dxy
E Dyx

E Dyy
E

Pµmn -expansion in g-operators

ℓ(µ )



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G
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Pµmn -expansion in g-operators

ℓ(µ )



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G
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Pµmn -expansion in g-operators

ℓ(µ )



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G
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∑ gDerive coefficients             of inverse Weyl expansion:
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Pµmn -expansion in g-operators

ℓ(µ )



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G
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µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:
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Left action by operator f in group G ={1,…, f, g, h,…}: 
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 

And review of all-commuting class sums



Class projector and character formulae
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 
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Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 
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        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 



Details of Mock-Mach relativity-duality for D3 groups and representations

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed(Extrinsic-Global)R,S,..vs.Body-fixed (Intrinsic-Local)R,S,..

...But how do you actually make the R and R operations?

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

allR,S,..
commute with
allR,S,..

R|1〉=R-1|1〉
S|1〉=S-1|1〉
...for one state |1) only!

...

“Mock-Mach”
relativity principles
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Compare Global vs Local ⏐g〉-basis
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Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

To represent internal {..T,U,V,... } switch g g† on side of group table
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RESULT:
Any R(T)
commute
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(Even if T and U do not...)

...and T·U=V if & only if T·U=V.
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting 

General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left 
                  Pµjk -expansion in g-operators 
          Dµjk(g) orthogonality relations 
         Class projector character formulae 
                   Pµ in terms of κg and κg  in terms of  Pµ  

Details of Mock-Mach relativity-duality for D3 groups and representations 
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) 
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis 
                    
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis       
        Hamiltonian local-symmetry eigensolution 
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E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
=

ℓ(µ )

°G ⋅norm
Dmn
µ*

g( )
g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 =
ℓ(µ )

°G
(which will cancel out) 
So, fuggettabout it!

Let:
   mn
µ ≡ Pmn

µ = Pmn
µ 1

norm
1



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
=

ℓ(µ )

°G ⋅norm
Dmn
µ*

g( )
g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 =
ℓ(µ )

°G
(which will cancel out) 
So, fuggettabout it!

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

Projector conjugation  p.31
(norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Mock-Mach 
commutation 

    
mn
µ = Pmn

µ 1
norm

1
=

ℓ(µ )

°G ⋅norm
Dmn
µ*

g( )
g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 =
ℓ(µ )

°G
(which will cancel out) 
So, fuggettabout it!

r r = r r
(p.89)

(norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

   

Use Pmn
µ -orthonormality

P ʹm ʹn
ʹµ Pmn

µ = δ ʹµ µδ ʹn mP ʹm n
µ

(p.18)

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟

    
mn
µ = Pmn

µ 1
norm

1
=

ℓ(µ )

°G ⋅norm
Dmn
µ*

g( )
g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 =
ℓ(µ )

°G
(which will cancel out) 
So, fuggettabout it!

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

µ*

g( ) = rg
g=1

°G

∑ Dab

µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟

    
mn
µ = Pmn

µ 1
norm

1
=

ℓ(µ )

°G ⋅norm
Dmn
µ*

g( )
g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 =
ℓ(µ )

°G
(which will cancel out) 
So, fuggettabout it!

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)=r0 +r1+r1
*+i1+i2 +i3   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx

E1
= r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx

E*
(r2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0 -r1-r1

*-i1-i2 +2i3)/2 

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx

E1
= r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx

E*
(r2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0 -r1-r1

*-i1-i2 +2i3)/2      

Hxy

E1
= r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy

E*
(r2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx

E1
= r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx

E*
(r2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0 -r1-r1

*-i1-i2 +2i3)/2      

Hxy

E1
= r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy

E*
(r2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  

Hyy

E1
= r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy

E*
(r2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0 -r1-r1

*+i1+i2 -2i3)/2     

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn
µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx

E1
= r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx

E*
(r2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0 -r1-r1

*-i1-i2 +2i3)/2      

Hxy

E1
= r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy

E*
(r2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  

Hyy

E1
= r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy

E*
(r2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0 -r1-r1

*+i1+i2 -2i3)/2     

Hxx

E1 Hxy

E1

Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=
1
2

2r0 -r1-r1
*-i1-i2+2i3 3(-r1+r1

*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx

E1
= r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx

E*
(r2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0 -r1-r1

*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3
Hxy

E1
= r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy

E*
(r2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  =0

Hyy

E1
= r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy

E*
(r2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0 -r1-r1

*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx

E1 Hxy

E1

Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

1
2

2r0 -r1-r1
*-i1-i2 +2i3 3(-r1+r1

*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
For:r1 =r1

*and: i1 =i2

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Choosing local C2={1,i3} symmetry with 
local constraints r1=r1*=r2 and i1=i2  

(norm)2 (norm)2 (norm)2



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab

α*
g( ) = rg

g=1

°G

∑ Dab

α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P =T H( )G T
† =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1
⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1
⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx

E1
= r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx

E*
(r2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0 -r1-r1

*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3
Hxy

E1
= r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy

E*
(r2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  =0

Hyy

E1
= r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy

E*
(r2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0 -r1-r1

*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx

E1 Hxy

E1

Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

1
2

2r0 -r1-r1
*-i1-i2 +2i3 3(-r1+r1

*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
For:r1 =r1

*and: i1 =i2

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2
i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Choosing local C2={1,i3} symmetry with 
local constraints r1=r1*=r2 and i1=i2  

C2={1,i3}  
Local symmetry 
determines all levels 
and eigenvectors with 
just 4 real parameters

(norm)2 (norm)2 (norm)2



PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2
x,x
y,x

PA1= ( 1 1 1 1 1 1)/6x,x
PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i1 i2 i3

PE =( 0 -1 1 -1 +1 0)/√3/2
PE =( 2 -1 -1+1 +1 -2)/6
x,y
y,y

1 r1 r2 i1 i2 i3 1 r1 r2 i1 i2 i3

H r r i i i1 2 1 2 3
- - - - +H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

√3
2
( + - +r r i i1 2 1 2

)-

√3
2
( - - +r r i i1 2 1 2

)+ - - + + -H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

A1-block

A2-block

(Local Symmetry=>off-diagonal=0)

H r r i i i1 2 1 2 3

3

r1=r2=r1*=r, i1=i2=i1*= i
+ + +r i i2 2 3HA1-level:
+ - -r i i2 2 3HA2-level:
- - +r i i3HEx-level:
- + -r iHEy-level: i

gives:

mn (g)l(µ)
°G mn

(µ)= ΣgD
(µ)* g

Pµmn g-expansion 
in Lect.17 p. 35-51

From Left 16 p. 101



i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -
-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉Exy | 〉Eyy

| 〉Exx | 〉Eyx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉



i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -
-
+

-

-

+

-
+

-

| 〉A1xx

| 〉A2yy

| 〉Exy | 〉Eyy

| 〉Exx | 〉Eyx

| 〉E1xy

| 〉E1xx | 〉

| 〉A1xx

| 〉A2yy

E1
yx

| 〉E1yy

When there is no there, there...

ii3 global (y)
anti-symmetry

ii3 global (y)
anti-symmetry

ii3 global
(x) symmetry

ii3 local
(x) symmetry

ii3 local (y)
anti-symmetry

Nobody Home
where LOCAL
and GLOBAL

clash!clash!!

clash!clash!!

clash!clash!!

clash!clash!!
clash!clash!!



MolVibes Web Application: http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html MolVibes Web Simulation 
 3 Atom with C3v symmetry

http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3


MolVibes Web Simulation 
 3 Atom with C3v symmetry

http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3

