Group Theory in Quantum Mechanics Lecture 16-DR

(Review of Lectures 15-17 with more detailed and rigorous derivations)

Projector algebra and Hamiltonian local-symmetry eigensolution

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS - Ch. 4)

Review: Spectral resolution of D₃ Center (Class algebra) and its subgroup splitting

Review: General formulae for spectral decomposition (D₃ examples)

Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk}

 \mathbf{P}^{μ}_{jk} transforms right-and-left

 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators

 $D^{\mu}_{jk}(g)$ orthogonality relations Details omitted from Lecture 15-17

Class projector character formulae

 \mathbb{P}^{μ} in terms of κ_g and κ_g in terms of \mathbb{P}^{μ}

Review: Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Review: Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

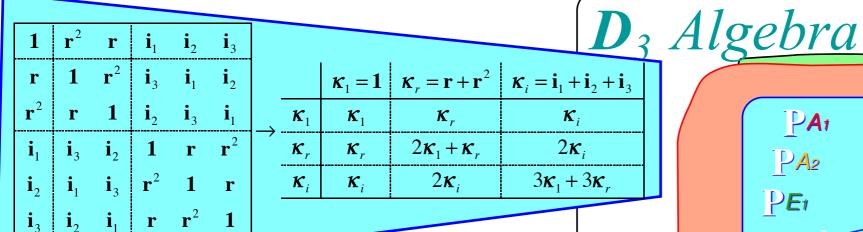
General formulae for spectral decomposition (D_3 examples)

Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators $D^{\mu}_{jk}(g)$ orthogonality relations

Class projector character formulae \mathbb{P}^{μ} in terms of $\kappa_{\mathbf{g}}$ and $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

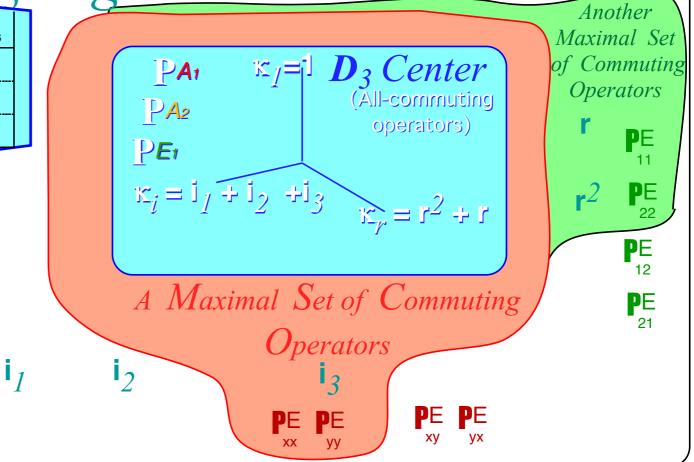


Class-sum κ_k commutes with all \mathbf{g}_t

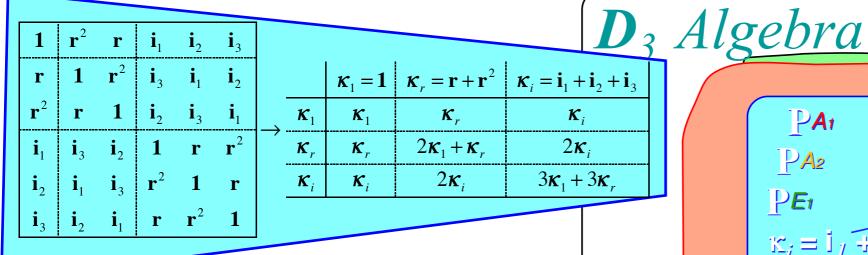
Class-sum $\mathbf{\kappa}_k$ invariance: $\mathbf{g}_t \mathbf{\kappa}_k = \mathbf{\kappa}_k \mathbf{g}_t$

 $^{\circ}G = \text{order of group}$: $(^{\circ}D_3 = 6)$

 ${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$



See Lect.14 p. 2-23



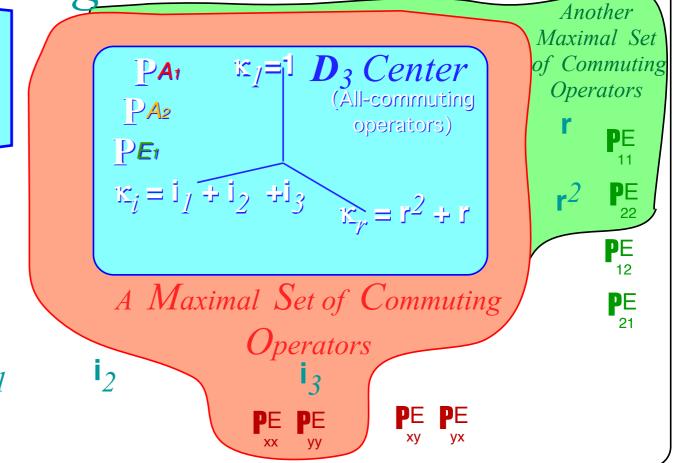
Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum $\mathbf{\kappa}_k$ invariance: $\mathbf{g}_t \mathbf{\kappa}_k = \mathbf{\kappa}_k \mathbf{g}_t$

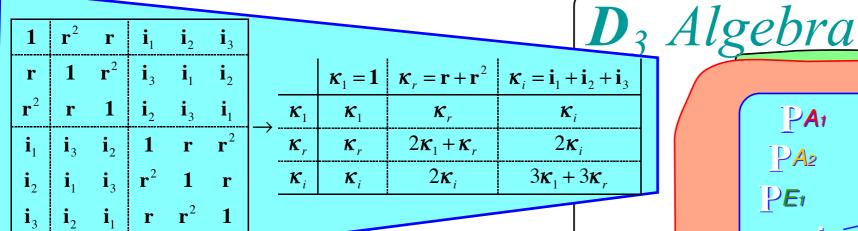
 $^{\circ}G = \text{order of group}$: $(^{\circ}D_3 = 6)$

 ${}^{\circ}\kappa_{k} = \text{order of class } \kappa_{k}$: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

 $\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = \mathbf{1}$ (Class completeness)



See Lect.14 p. 2-23



Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum $\mathbf{\kappa}_k$ invariance: $\mathbf{g}_t \mathbf{\kappa}_k = \mathbf{\kappa}_k \mathbf{g}_t$

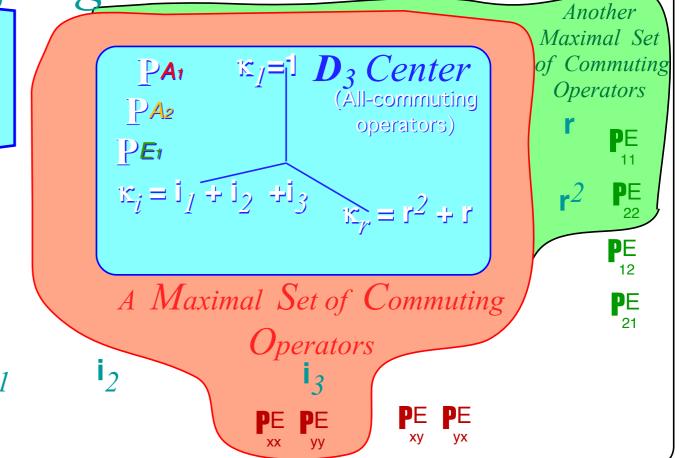
$$^{\circ}G = \text{order of group:}$$
 $(^{\circ}D_3 = 6)$

$${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$$
: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

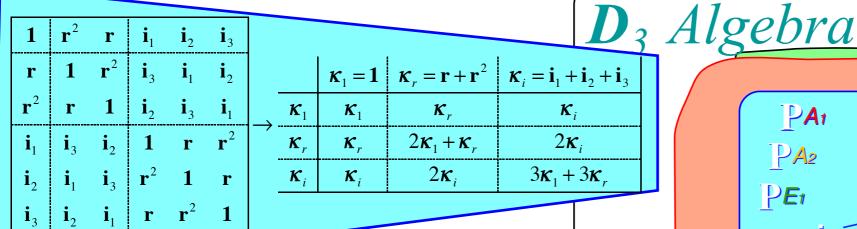
$$\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = \mathbf{1}$$
 (Class completeness)

$$\mathbf{\kappa}_r = 2 \cdot \mathbf{P}^{A_1} + 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\mathbf{\kappa}_{i} = 3 \cdot \mathbf{P}^{A_{1}} - 3 \cdot \mathbf{P}^{A_{2}} + 0 \cdot \mathbf{P}^{E}$$



See Lect.14 p. 2-23



Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum
$$\mathbf{\kappa}_k$$
 invariance: $\mathbf{g}_t \mathbf{\kappa}_k = \mathbf{\kappa}_k \mathbf{g}_t$

$$^{\circ}G = \text{order of group}$$
: $(^{\circ}D_3 = 6)$

$${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$$
: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

$$\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = \mathbf{1}$$
 (Class completeness)

$$\mathbf{\kappa}_r = 2 \cdot \mathbf{P}^{A_1} + 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

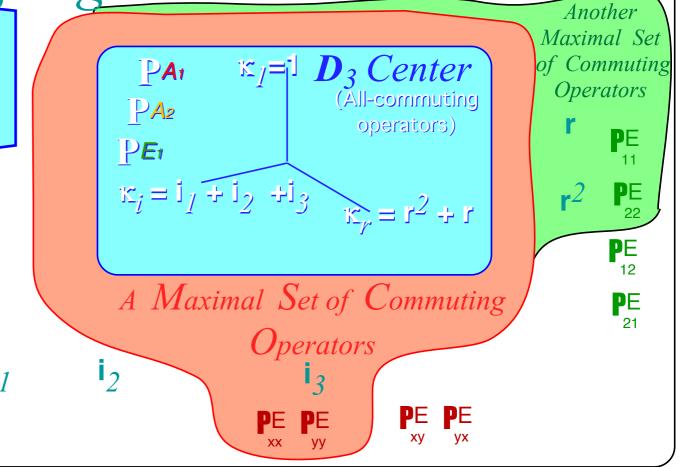
$$\mathbf{\kappa}_{i} = 3 \cdot \mathbf{P}^{A_{1}} - 3 \cdot \mathbf{P}^{A_{2}} + 0 \cdot \mathbf{P}^{E}$$

Class projectors:

$$\mathbf{P}^{A_1} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r + \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6$$

$$\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r - \mathbf{\kappa}_i)/6 = (1 + \mathbf{r} + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6$$

$$\mathbf{P}^E = (2\kappa_1 - \kappa_r + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^2)/3$$



See Lect.14 p. 2-23

1	\mathbf{r}^2	r	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3				
	:				\mathbf{i}_2		$\kappa_1 = 1$	$\mathbf{\kappa}_r = \mathbf{r} + \mathbf{r}^2$	$\boldsymbol{\kappa}_i = \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3$
\mathbf{r}^2	r	1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_1	κ_1	κ_1	K_r	κ_{i}
\mathbf{i}_1	\mathbf{i}_3	\mathbf{i}_2	1	r	\mathbf{r}^2	κ_r	κ_r	$2\boldsymbol{\kappa}_1 + \boldsymbol{\kappa}_r$	$2\kappa_i$
\mathbf{i}_2	\mathbf{i}_1	\mathbf{i}_3	\mathbf{r}^2	1	r	κ_i	κ_{i}	$2\kappa_{i}$	$3\boldsymbol{\kappa}_1 + 3\boldsymbol{\kappa}_r$
i ₃	\mathbf{i}_2	i ₁	r	\mathbf{r}^2	1				

Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum $\mathbf{\kappa}_k$ invariance: $\mathbf{g}_t \mathbf{\kappa}_k = \mathbf{\kappa}_k \mathbf{g}_t$

$$^{\circ}G$$
 = order of group: $(^{\circ}D_3 = 6)$

$${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$$
: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

$$\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = \mathbf{1}$$
 (Class completeness)

$$\mathbf{\kappa}_r = 2 \cdot \mathbf{P}^{A_1} + 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\mathbf{\kappa}_{i} = 3 \cdot \mathbf{P}^{A_{1}} - 3 \cdot \mathbf{P}^{A_{2}} + 0 \cdot \mathbf{P}^{E}$$

Class projectors:

$$\mathbf{P}^{A_1} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r + \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6$$

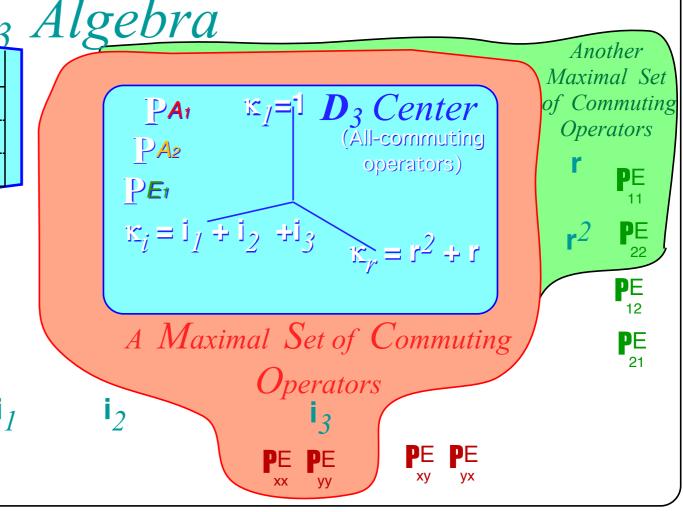
$$\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r - \mathbf{\kappa}_i)/6 = (1 + \mathbf{r} + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6$$

$$\mathbf{P}^E = (2\mathbf{\kappa}_1 - \mathbf{\kappa}_r + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)/3$$

Class characters:

$oldsymbol{\chi}_k^{oldsymbol{lpha}}$	χ_1^{α}	χ_r^{α}	χ_i^{α}
$\alpha = A_1$	1	1	1
$\alpha = \frac{A_2}{A_2}$	1	1	-1
$\alpha = E$	2	-1	0

See Lect.14 p. 2-23




```
General formulae for spectral decomposition (D_3 examples)

Weyl g-expansion in irep D^{\mu}{}_{jk}(g) and projectors \mathbf{P}^{\mu}{}_{jk}

\mathbf{P}^{\mu}{}_{jk} transforms right-and-left

\mathbf{P}^{\mu}{}_{jk} -expansion in g-operators

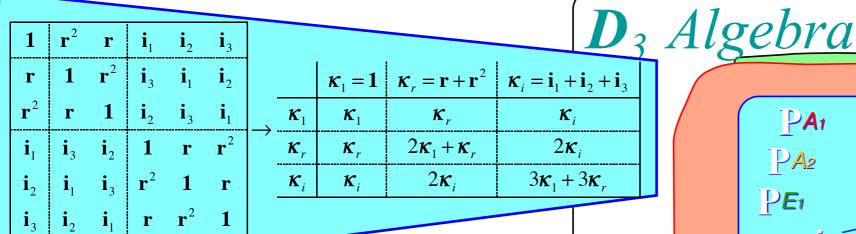
D^{\mu}{}_{jk}(g) orthogonality relations

Class projector character formulae

\mathbb{P}^{\mu}{}_{in} terms of \kappa_{\mathbf{g}} and \kappa_{\mathbf{g}} in terms of \mathbb{P}^{\mu}{}_{in}
```

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution



Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum κ_k invariance: $\mathbf{g}_{t}\mathbf{\kappa}_{k} = \mathbf{\kappa}_{k}\mathbf{g}_{t}$

$$^{\circ}G = \text{order of group}$$
: $(^{\circ}D_3 = 6)$

$${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$$
: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

$$\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = 1$$
 (Class completeness)

$$\mathbf{\kappa}_r = 2 \cdot \mathbf{P}^{A_1} + 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\mathbf{\kappa}_{i} = 3 \cdot \mathbf{P}^{A_{1}} - 3 \cdot \mathbf{P}^{A_{2}} + 0 \cdot \mathbf{P}^{E}$$

Class projectors:

Class projectors: irreducil

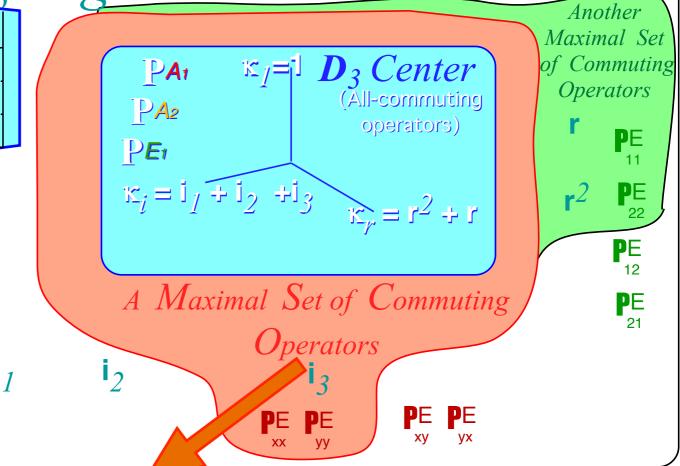
$$\mathbf{P}^{A_1} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r + \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0202}$$

$$\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r - \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_2} = \mathbf{P}^{A_2}_{1212}$$

$$\mathbf{P}^E = (2\kappa_1 - \kappa_r + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^2)/3$$

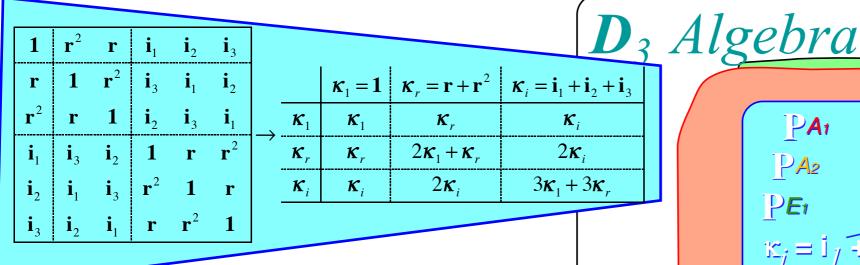
Class characters:

χ_k^{lpha}	χ_1^{α}	χ_r^{α}	χ_i^{α}
$\alpha = A_1$	1	1	1
$\alpha = A_2$	1	1	-1
$\alpha = E$	2	-1	0



Subgroup $C_2 = \{1, i_3\}$ relabels irreducible class projectors:

See Lect.14 p. 36-54



Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum κ_k invariance: $\mathbf{g}_{t}\mathbf{K}_{t} = \mathbf{K}_{t}\mathbf{g}_{t}$

 $^{\circ}G$ = order of group: $(^{\circ}D_{3} = 6)$

 ${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

 $\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = 1$ (Class completeness)

$$\mathbf{\kappa}_r = 2 \cdot \mathbf{P}^{A_1} + 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\mathbf{\kappa}_{i} = 3 \cdot \mathbf{P}^{A_{1}} - 3 \cdot \mathbf{P}^{A_{2}} + 0 \cdot \mathbf{P}^{E}$$

Class projectors:

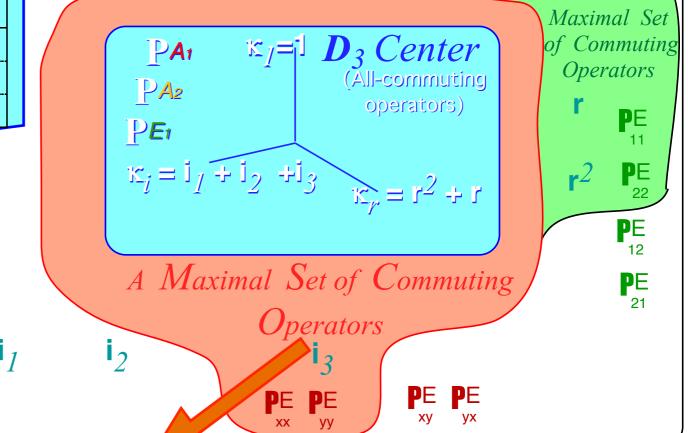
$$\mathbf{P}^{A_1} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r + \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0202}$$

$$\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r - \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_2} = \mathbf{P}^{A_2}_{1212}$$

$$\mathbf{P}^{E} = (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3 \xrightarrow{\text{and splits reducible projector } \mathbf{P}^{E_{1}} = \mathbf{P}_{0202}^{E_{1}} + \mathbf{P}_{1212}^{E_{1}} + \mathbf{P}_{0202}^{E_{1}} = \mathbf{P}_{0202}^{E_{1}} + \mathbf{P}_{1212}^{E_{1}} + \mathbf{P}_{1212}^{E_{1}} + \mathbf{P}_{0202}^{E_{2}} = \mathbf{P}_{0202}^{E_{2}} + \mathbf{P}_{02$$

Class characters:

$oldsymbol{\chi}_k^{oldsymbol{lpha}}$	χ_1^{α}	χ_r^{α}	χ_i^{lpha}
$\alpha = A_1$	1	1	1
$\alpha = A_2$	1	1	-1
$\alpha = E$	2	- 1	0



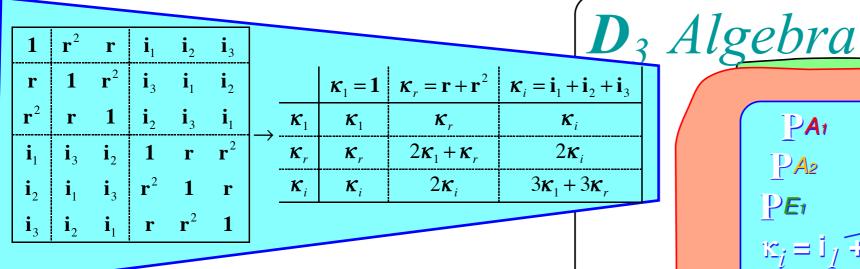
Subgroup $C_2 = \{1, i_3\}$ relabels irreducible class projectors:

$$\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})$$

$$+\mathbf{P}_{1,1,2}^{E} = \mathbf{P}^{E}\mathbf{p}^{1_{2}} = \mathbf{P}^{E}\frac{1}{2}(\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6}(2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$$
$$= \frac{1}{3}(2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2})$$

See Lect.14 p. 36-54

Another



Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum κ_k invariance: $\mathbf{g}_{t}\mathbf{\kappa}_{k} = \mathbf{\kappa}_{k}\mathbf{g}_{t}$

 $^{\circ}G$ = order of group: $(^{\circ}D_{3} = 6)$

 ${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

 $\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = 1$ (Class completeness)

$$\mathbf{\kappa}_r = 2 \cdot \mathbf{P}^{A_1} + 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\mathbf{\kappa}_{i} = 3 \cdot \mathbf{P}^{A_{1}} - 3 \cdot \mathbf{P}^{A_{2}} + 0 \cdot \mathbf{P}^{E}$$

Class projectors:

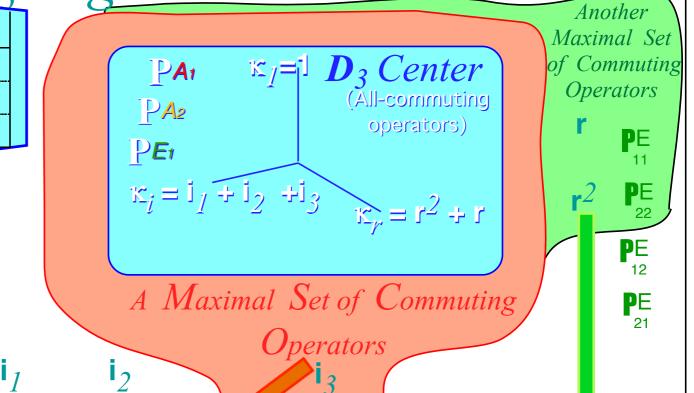
$$\mathbf{P}^{A_1} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r + \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0>0}$$

$$\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r - \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_2} = \mathbf{P}^{A_2}_{121}$$

$$\mathbf{P}^E = (2\mathbf{\kappa}_1 - \mathbf{\kappa}_r + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)/3$$

Class characters:

iracicis.							
$oldsymbol{\chi}_k^{oldsymbol{lpha}}$	χ_1^{α}	χ_r^{α}	χ_i^{α}				
$\alpha = A_1$	1	1	1				
$\alpha = A_2$	1	1	-1				
$\alpha = E$	2	-1	0				



PE PE

Subgroup $C_2 = \{1, i_3\}$ relabels irreducible class projectors:

$$\rightarrow \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0202}$$

$$\mathbf{P}^{E} = (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3 \xrightarrow{\text{and splits reducible projector } \mathbf{P}^{E_{1}} = \mathbf{P}_{0202}^{E_{1}} + \mathbf{P}_{1212}^{E_{1}} \\ \mathbf{P}_{0202}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})$$

$$+\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E}\mathbf{p}^{1_{2}} = \mathbf{P}^{E}\frac{1}{2}(\mathbf{1}+\mathbf{i}_{3}) = \frac{1}{6}(2\mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2\mathbf{i}_{3})$$

$$=\frac{1}{3}(2\mathbf{1}-\mathbf{r}^1-\mathbf{r}^2)$$

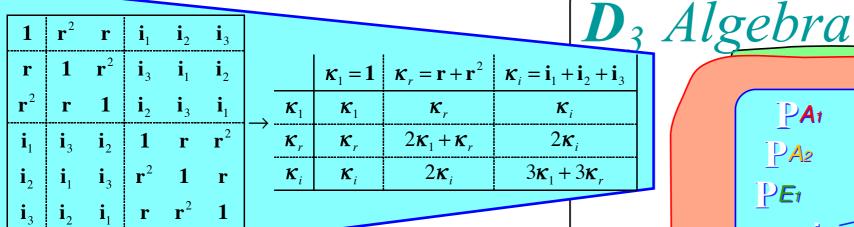
Subgroup $C_3 = \{1, r^1, r^2\}$ does similarly:

$$\mathbf{P}^{A_{1}} = \mathbf{P}_{0303}^{A_{1}}$$

PE PE

$$\mathbf{P}^{A_2} = \mathbf{P}^{A_2}_{0303}$$

See Lect.14 p. 36-54



Class-sum κ_k commutes with all \mathbf{g}_t

Class-sum κ_k invariance: $\mathbf{g}_{t}\mathbf{\kappa}_{k} = \mathbf{\kappa}_{k}\mathbf{g}_{t}$

 $^{\circ}G$ = order of group: $(^{\circ}D_{3} = 6)$

 ${}^{\circ}\kappa_{k} = \text{order of class} \kappa_{k}$: $({}^{\circ}\kappa_{1} = 1, {}^{\circ}\kappa_{r} = 2, {}^{\circ}\kappa_{i} = 3)$

 $\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^{E} = 1$ (Class completeness)

$$\mathbf{\kappa}_r = 2 \cdot \mathbf{P}^{A_1} + 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\mathbf{\kappa}_{i} = 3 \cdot \mathbf{P}^{A_{1}} - 3 \cdot \mathbf{P}^{A_{2}} + 0 \cdot \mathbf{P}^{E}$$

Class projectors:

$$\mathbf{P}^{A_1} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r + \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0202}$$

 $\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r - \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6 \rightarrow \mathbf{P}^{A_2} = \mathbf{P}^{A_2}_{12}$

Class characters:

$\boldsymbol{\chi}_k^{\boldsymbol{\alpha}}$	χ_1^{α}	χ_r^{α}	χ_i^{α}
$\alpha = A_1$	1	1	1
$\alpha = A_2$	1	1	-1
$\alpha = E$	2	-1	0

PAI $\kappa_1 = 1$ **D**₃ Center (All-commuting PA2 operators) PE $\kappa_i = i_1 + i_2 + i_3$ $\kappa_r = r^2 + r$ A Maximal Set of Commuting **Operators i**₂ PE PE PE PE

Subgroup $C_2 = \{1, i_3\}$ relabels irreducible class projectors:

$$\mathbf{P}^{E} = (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{r} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{1} - \mathbf{\kappa}_{1} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{1} - \mathbf{\kappa}_{1} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{1} - \mathbf{\kappa}_{1} + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^{2})/3$$

$$= (2\mathbf{\kappa}_{1} - \mathbf{\kappa}_{1} -$$

$$+\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E}\mathbf{p}^{1_{2}} = \mathbf{P}^{E}\frac{1}{2}(\mathbf{1}+\mathbf{i}_{3}) = \frac{1}{6}(2\mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2\mathbf{i}_{3})$$

$$=\frac{1}{3}(2\mathbf{1}-\mathbf{r}^1-\mathbf{r}^2)$$

 $\mathbf{P}_{1_31_3}^E = \mathbf{P}^E \mathbf{p}^{1_3} = \mathbf{P}^E \frac{1}{3} (\mathbf{1} + \boldsymbol{\varepsilon}^* \mathbf{r}^1 + \boldsymbol{\varepsilon} \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + \boldsymbol{\varepsilon}^* \mathbf{r}^1 + \boldsymbol{\varepsilon} \mathbf{r}^2)$

$$+\mathbf{P}_{2_32_3}^E = \mathbf{P}^E \mathbf{p}^{2_3} = \mathbf{P}^E \frac{1}{3} (\mathbf{1} + \varepsilon \mathbf{r}^1 + \varepsilon^* \mathbf{r}^2) = \frac{1}{3} (\mathbf{1} + \varepsilon \mathbf{r}^1 + \varepsilon^* \mathbf{r}^2)$$

$$=\frac{1}{3}(2\mathbf{1}-\mathbf{r}^1-\mathbf{r}^2)$$

Subgroup $C_3 = \{1, r^1, r^2\}$ does similarly:

Another

Maximal Set of Commuting

Operators

PE

12

PE

$$\mathbf{P}^{A_{I}} = \mathbf{P}^{A_{I}}_{0303}$$

$$\mathbf{P}^{A_2} = \mathbf{P}^{A_2}_{0303}$$

...and splits $\mathbf{P}^{E_{I}} = \mathbf{P}_{0303}^{E_{I}} + \mathbf{P}_{1313}^{E_{I}}$ differently

See Lect.14 p. 36-54

General formulae for spectral decomposition (D_3 examples)

 \mathbf{P}^{μ}_{jk} transforms right-and-left

 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators

 $D^{\mu}_{jk}(g)$ orthogonality relations

Class projector character formulae

 \mathbb{P}^{μ} in terms of κ_g and κ_g in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Compare\ Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

"g-equals-1·g·1-trick"

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{xx}^{E_1} + \mathbf{P}_{yy}^{E_1}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}} \left(\mathbf{g} \right) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}} \left(\mathbf{g} \right) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{E_{1}}$$

For irreducible class idempotents sub-indices xx or yy are optional

 $+ D_{xx}^{E_1}(g) \mathbf{P}_{xx}^{E_1} + D_{xy}^{E_1}(g) \mathbf{P}_{xy}^{E_1} \qquad Previous notation:$ $+ D_{xx}^{E_1}(g) \mathbf{P}_{xx}^{E_1} + D_{xy}^{E_1}(g) \mathbf{P}_{xy}^{E_1} \qquad P_{0202}^{A_1} = \mathbf{P}_{xx}^{A_1}$ $+ D_{yx}^{E_1}(g) \mathbf{P}_{yx}^{E_1} + D_{yy}^{E_1}(g) \mathbf{P}_{yy}^{E_1} \qquad P_{1212}^{E_2} = \mathbf{P}_{yy}^{A_2}$ $\mathbf{P}_{1212}^{A_2} = \mathbf{P}_{yy}^{A_2}$ $\mathbf{P}_{1212}^{A_2} = \mathbf{P}_{yy}^{A_2}$ $\mathbf{P}_{1212}^{A_2} = \mathbf{P}_{yy}^{A_2}$

 $\begin{array}{cccc} \mathbf{P}_{0202}^{E_{1}} = \mathbf{P}_{xx}^{E_{1}} & \mathbf{P}_{0212}^{E_{1}} = \mathbf{P}_{xy}^{E_{1}} \\ \mathbf{P}_{1202}^{E_{1}} = \mathbf{P}_{yx}^{E_{1}} & \mathbf{P}_{1212}^{E_{1}} = \mathbf{P}_{yy}^{E_{1}} \end{array}$

14

"**g-**equals-**1**·**g**·1-trick"

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{E_1}_{vv} + \mathbf{P}^{E_1}_{vv}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g}\right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}} \left(\mathbf{g}\right) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}} \left(\mathbf{g}\right) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}} \left(\mathbf{g}\right) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}} \left(\mathbf{g}\right) \mathbf{P}_{xy}^{E_{1}}$$

For irreducible/class idempotents sub-indices xx or yy are optional

where:

$$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}},$$

For split idempotents sub-indices xx or yy are essential

$$+D_{yx}^{E_1}(g)\mathbf{P}_{yx}^{E_1}+D_{yy}^{E_1}(g)\mathbf{P}_{yy}^{E_1} \begin{vmatrix} \mathbf{P}_{212}^{A_2} = \mathbf{P}_{yy}^{A_2} \\ \mathbf{P}_{212}^{E_1} = \mathbf{P}_{222}^{E_1} \end{vmatrix}$$

$$\mathbf{P}_{xx}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_1} = D_{xx}^{E_1} \left(\mathbf{g} \right) \mathbf{P}_{xx}^{E_1},$$

Previous notation:
$$\mathbf{P}_{0202}^{A_{1}} = \mathbf{P}_{xx}^{A_{1}}$$

$$\mathbf{P}_{0202}^{A_{2}} = \mathbf{P}_{yy}^{A_{2}}$$

$$\mathbf{P}_{0202}^{E_{1}} = \mathbf{P}_{xx}^{E_{1}} \quad \mathbf{P}_{0212}^{E_{1}} = \mathbf{P}_{xy}^{E_{1}}$$

$$\mathbf{P}_{1202}^{E_{1}} = \mathbf{P}_{vx}^{E_{1}} \quad \mathbf{P}_{1212}^{E_{1}} = \mathbf{P}_{vy}^{E_{1}}$$

15

$$\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_1} = D_{yy}^{E_1} \left(\mathbf{g} \right) \mathbf{P}_{yy}^{E_1}$$

"**g-**equals-**1**·**g**·1-trick"

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{E_1}_{vv} + \mathbf{P}^{E_1}_{vv}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}} \left(\mathbf{g} \right) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}} \left(\mathbf{g} \right) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{E_{1}}$$

For irreducible class idempotents

sub-indices xx or yy are optional where:

$$+ D_{yx}^{E_1}(g) \mathbf{P}_{yx}^{E_1} + D_{yy}^{E_1}(g) \mathbf{P}_{yy}^{E_1} \begin{vmatrix} \mathbf{P}_{A2}^{A2} = \mathbf{P}_{yy}^{A2} \\ \mathbf{P}_{B2}^{E_1} = \mathbf{P}_{B2}^{E_1} \end{vmatrix}$$

Previous notation:

$$\mathbf{P}_{0202}^{A_1} = \mathbf{P}_{xx}^{A_1}$$

$$\mathbf{P}_{1212}^{A_2} = \mathbf{P}_{yy}^{A_2}$$

$$\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_1} = D_{yy}^{E_1} \left(\mathbf{g} \right) \mathbf{P}_{yy}^{E_1}$$

$$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}},$$

For split idempotents

sub-indices xx or yy are essential idempotent projectors $\mathbf{P}^{A_1}, \mathbf{P}^{A_2}, \mathbf{P}^{E_1}_{xx}$, and $\mathbf{P}^{E_1}_{yy}$ Besides four *idempotent* projectors

"**g-**equals-**1**·**g**·1-trick"

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{E_1}_{vv} + \mathbf{P}^{E_1}_{vv}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} (g) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}}(g) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}}(g) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}}(g) \mathbf{P}_{xy}^{E_{1}}$$

$$\mathbf{P}_{0202}^{E_{1}} = \mathbf{P}_{xx}^{E_{1}} \quad \mathbf{P}_{0212}^{E_{1}} = \mathbf{P}_{xy}^{E_{1}}$$

$$\mathbf{P}_{0202}^{E_{1}} = \mathbf{P}_{E_{1}}^{E_{1}} \quad \mathbf{P}_{0212}^{E_{1}} = \mathbf{P}_{E_{1}}^{E_{1}}$$

Previous notation:

For irreducible class idempotents sub-indices xx or yy are optional

$$+D_{yx}^{E_{1}}(g)\mathbf{P}_{yx}^{E_{1}}+D_{yy}^{E_{1}}(g)\mathbf{P}_{yy}^{E_{1}} \qquad \mathbf{P}_{yy}^{E_{1}} = \mathbf{P}_{yx}^{E_{1}} \quad \mathbf{P}_{1212}^{E_{1}} = \mathbf{P}_{yy}^{E_{1}}$$

where:

$$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{xy}^{E_{1}}(g) \mathbf{P}_{xy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yx}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{$$

Besides four *idempotent* projectors $\mathbf{P}^{A_1}, \mathbf{P}^{A_2}, \mathbf{P}_{xx}^{E_1}$, and $\mathbf{P}_{yy}^{E_1}$

there arise two *nilpotent* projectors

 $\mathbf{P}_{yx}^{E_1}$, and $\mathbf{P}_{xy}^{E_1}$

"g-equals-1·g·1-trick"

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{E_1}_{vv} + \mathbf{P}^{E_1}_{vv}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu}(g) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}}(g) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}}(g) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}}(g) \mathbf{P}_{xy}^{E_{1}}$$

$$For irreducible class idempotents$$

$$sub-indices xx or yy are optional$$

$$+ D_{yx}^{E_{1}}(g) \mathbf{P}_{yx}^{E_{1}} + D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}$$

Previous notation:

18

sub-indices xx or yy are optional

 $\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{vv}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{vv}^{A_{2}} = D_{vv}^{A_{2}}(g) \mathbf{P}_{vv}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{vv}^{E_{1}} = D_{xy}^{E_{1}}(g) \mathbf{P}_{xy}^{E_{1}}$ sub-indices xx or yy are essential \mathbf{P}^{E_1} , $\mathbf{P}^{E_1}_{yy}$, $\mathbf{P}^{E_1}_{yx} = D^{E_1}_{yx}(g)\mathbf{P}^{E_1}_{yx}$, $\mathbf{P}^{E_1}_{yy} = D^{E_1}_{yy}(g)\mathbf{P}^{E_1}_{yy}$ Besides four *idempotent* projectors \mathbf{P}^{A_1} , \mathbf{P}^{A_2} , $\mathbf{P}^{E_1}_{xx}$, and $\mathbf{P}^{E_1}_{yy}$

there arise two *nilpotent* projectors

 $\mathbf{P}_{vx}^{E_1}$, and $\mathbf{P}_{xv}^{E_1}$

Idempotent projector orthogonality... $(\mathbf{P}_i \mathbf{P}_j = \delta_{ij} \mathbf{P}_i = \mathbf{P}_j \mathbf{P}_i)$

Generalizes...

where:

"g-equals-1·g·1-trick"

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{E_1}_{vv} + \mathbf{P}^{E_1}_{vv}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(g\right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}} \left(g\right) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}} \left(g\right) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}} \left(g\right) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}} \left(g\right) \mathbf{P}_{xy}^{E_{1}}$$
For irreducible class idemnotents

Previous notation: $\mathbf{P}_{0202}^{E_{I}} = \mathbf{P}_{xx}^{E_{I}} \quad \mathbf{P}_{0212}^{E_{I}} = \mathbf{P}_{xy}^{E_{I}}$

19

For irreducible class idempotents sub-indices xx or yy are optional

 $+D_{yx}^{E_{1}}(g)\mathbf{P}_{yx}^{E_{1}}+D_{yy}^{E_{1}}(g)\mathbf{P}_{vv}^{E_{1}} \qquad \mathbf{P}_{zv}^{E_{1}}=\mathbf{P}_{yx}^{E_{1}} \quad \mathbf{P}_{zz}^{E_{1}}=\mathbf{P}_{yy}^{E_{1}}$

where:

$$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{xy}^{E_{1}}(g) \mathbf{P}_{xy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}} = D_{yy}$$

there arise two *nilpotent* projectors

 $\mathbf{P}_{vx}^{E_1}$, and $\mathbf{P}_{xv}^{E_1}$

Idempotent projector orthogonality... $(\mathbf{P}_i \mathbf{P}_i = \delta_{ii} \mathbf{P}_i = \mathbf{P}_i \mathbf{P}_i)$

Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra: $\left(\mathbf{P}_{ik}^{\mu}\mathbf{P}_{mn}^{\nu}=\delta^{\mu\nu}\delta_{km}\mathbf{P}_{jn}^{\mu}\right)$

"**g-**equals**-1**·**g**·1-trick"

Previous notation:

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{E_1}_{xx} + \mathbf{P}^{E_1}_{vv}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g}\right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}} \left(\mathbf{g}\right) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}} \left(\mathbf{g}\right) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}} \left(\mathbf{g}\right) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}} \left(\mathbf{g}\right) \mathbf{P}_{xy}^{E_{1}}$$

 $\mathbf{P}_{0202}^{E_{I}} = \mathbf{P}_{xx}^{E_{I}} \quad \mathbf{P}_{0212}^{E_{I}} = \mathbf{P}_{xy}^{E_{I}}$ $+ D_{yx}^{E_1}(g) \mathbf{P}_{yx}^{E_1} + D_{yy}^{E_1}(g) \mathbf{P}_{vv}^{E_1} \qquad \qquad \mathbf{P}_{l202}^{E_2} \mathbf{P}_{yx}^{E_1} \quad \mathbf{P}_{l212}^{E_2} \mathbf{P}_{yy}^{E_2}$

For irreducible class idempotents sub-indices xx or yy are optional

$$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xy}^{E_{1}} = D_{xy}^{E_{1}}(g) \mathbf{P}_{xy}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}, \quad \mathbf{P}_{yy}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}} = D_{yy}^{E_{$$

Besides four *idempotent* projectors

there arise two *nilpotent* projectors

where:

Idempotent projector orthogonality...
$$(\mathbf{P}_i \ \mathbf{P}_j = \delta_{ij} \ \mathbf{P}_i = \mathbf{P}_j \ \mathbf{P}_i)$$

Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra: $\mathbf{P}^{\mu}_{ik}\mathbf{P}^{\nu}_{mn} = \delta^{\mu\nu}\delta_{km}\mathbf{P}^{\mu}_{jn}$

			, 			
	$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{yy}^{A_2}$	$\mathbf{P}_{\mathbf{xx}}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$
$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{xx}^{A_1}$	•	•	•	•	•
$\mathbf{P}_{yy}^{A_2}$	•	$\mathbf{P}_{yy}^{A_2}$	•	•	•	•
$\mathbf{P}_{\mathbf{xx}}^{E_1}$	•	•	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	•	•
$\mathbf{P}_{yx}^{E_1}$		•	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$	•	•
$\mathbf{P}_{xy}^{E_1}$	•	•	•	•	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$
$\mathbf{P}_{yy}^{E_1}$		•	•	•	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$

to simple projector matrix algebra

"**g**-equals-**1**·**g**·**1**-trick"

Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{E_1}_{vv} + \mathbf{P}^{E_1}_{vv}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}} \left(\mathbf{g} \right) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}} \left(\mathbf{g} \right) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xx}^{E_{1}} + D_{xy}^{E_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{E_{1}}$$

Previous notation:

For irreducible class idempotents sub-indices xx or yy are optional

 $+D_{vx}^{E_1}(g)\mathbf{P}_{vx}^{E_1}+D_{vv}^{E_1}(g)\mathbf{P}_{vv}^{E_1}$

where:

$$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{xy}^{E_{1}}(g) \mathbf{P}_{xy}^{E_{1}}$$

For split idempotents sub-indices xx or yy are essential

, $\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_1} = D_{yx}^{E_1} (g) \mathbf{P}_{yx}^{E_1}$, $\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_1} = D_{yy}^{E_1} (g) \mathbf{P}_{yy}^{E_1}$

Besides four *idempotent* projectors

 $\mathbf{P}^{A_1}, \mathbf{P}^{A_2}, \mathbf{P}_{xx}^{E_1}, \text{ and } \mathbf{P}_{yy}^{E_1}$

Group product table boils down to simple projector matrix algebra

there arise two *nilpotent* projectors

 $\mathbf{P}_{vx}^{E_1}$, and $\mathbf{P}_{xv}^{E_1}$

Idempotent projector orthogonality... $(\mathbf{P}_i \mathbf{P}_i = \delta_{ii} \mathbf{P}_i = \mathbf{P}_j \mathbf{P}_i)$

$$\mathbf{P}_i \mathbf{P}_j = \delta_{ij} \mathbf{P}_i = \mathbf{P}_j \mathbf{P}_i$$

Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$\mathbf{P}^{\mu}_{jk}\mathbf{P}^{\nu}_{mn} = \delta^{\mu\nu}\delta_{km}\mathbf{P}^{\mu}_{jn}$$

Coefficients $D_{mn}^{\mu}(g)_{\mathbf{r}^1}$ are irreducible representations (ireps) of \mathbf{g}

$D^{\frac{A_1}{1}}(\mathbf{g}) =$	1	1 1	1 1	1 -1	1 -1	1
$D^{\frac{A_2}{2}}(\mathbf{g}) =$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{array}\right)$	$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right)$	$\begin{pmatrix} -1 \\ 1 & 0 \end{pmatrix}$
$D_{x,y}^{E_1}(\mathbf{g}) =$	(· 1)	$\left(\begin{array}{cc} \sqrt{3} \\ \frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$ \begin{array}{ccc} & 1 & \\ & -1 & \\ & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \\ & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} $	$\left(\begin{array}{cc} \sqrt{3} & 1 \\ \overline{2} & \overline{2} \end{array}\right)$	0 -1

General formulae for spectral decomposition (D_3 examples) Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk}

 \mathbf{P}^{μ}_{jk} transforms right-and-left

 $D^{\mu}_{jk}(g)$ orthogonality relations

Class projector character formulae

 \mathbb{P}^{μ} in terms of κ_g and κ_g in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

Sunday, March 29, 2015 22

${\bf P}^{\mu}{}_{ik}$ transforms right-and-left

 $\mathbf{g} = \left[\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right]$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed g acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad \begin{pmatrix} \mathbf{Use} \ \mathbf{P}_{mn}^{\mu} - \mathbf{orthonormality} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \end{pmatrix}$$

Use
$$\mathbf{P}_{mn}^{\mu}$$
-orthonormality $\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad \qquad \mathbf{Use} \mathbf{P}_{mn}^{\mu} - \text{orthonormality}$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \qquad \qquad \mathbf{P}_{m'n}^{\mu} = \delta^{\mu'\mu} \delta_{n'm}^{\mu} \mathbf{P}_{m'n}^{\mu}$$

Sunday, March 29, 2015 24

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad \qquad \mathbf{Use} \mathbf{P}_{mn}^{\mu} - \text{orthonormality} \\ = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \\ = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \end{pmatrix}$$

Sunday, March 29, 2015 2

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{m'}^{\mu} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} - \text{orthonormality}$$

$$= \sum_{\mu'} \sum_{m'}^{\mu} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu}$$

$$= \sum_{\mu'} \sum_{m'}^{\mu} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu}$$

$$= \sum_{m'}^{\mu} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \mathbf{P}_{mn}^{\mu} \qquad \text{Use } \mathbf{P}_{mn}^{\mu} - \text{orthonormality} \\
= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \\
= \sum_{m'} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm}$

$$\mathbf{g} \Big| \mu_{mn} \Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \mu_{m'n} \Big\rangle$$

A simple irep expression...

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \mathbf{P}_{mn}^{\mu} \qquad \qquad \mathbf{Use} \mathbf{P}_{mn}^{\mu} - \text{orthonormality} \\
= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \\
= \sum_{m'} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

A simple irep expression...

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

...requires proper normalization: $\left\langle {_{m'n'}^{\mu'}} \right|_{mn}^{\mu} = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'}}{norm} \frac{\mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm*}$ $= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu'} \middle| \mathbf{1} \right\rangle}{|norm.|^{2}}$ $= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad \qquad \mathbf{Use} \mathbf{P}_{mn}^{\mu} - \text{orthonormality} \\
\mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \\
= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \\
= \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

A simple irep expression...

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

...requires proper normalization: $\left\langle {_{m'n'}^{\mu'}} \right|_{mn}^{\mu} = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'}}{norm.} \frac{\mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm*}$ $= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu'} \middle| \mathbf{1} \right\rangle}{|norm.|^{2}}$ $= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ $|norm.|^{2} = \left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad \qquad \mathbf{Use} \mathbf{P}_{mn}^{\mu} - \text{orthonormality}$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$

$$= \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g} = \mathbf{P}_{mn}^{\mu} \left(\sum_{\substack{\lambda' \ m'}} \sum_{n'}^{\mu} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right)$$

$$= \sum_{\substack{\mu' \ m'}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{nm'} \mathbf{P}_{mn'}^{\mu}$$

$$= \sum_{\substack{n' \ n'}}^{\ell^{\mu}} D_{nn'}^{\mu}(g) \mathbf{P}_{mn'}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

A simple irep expression...

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

...requires proper normalization: $\left\langle {}^{\mu'}_{m'n'} \right|^{\mu}_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu'}_{n'm'}}{norm.} \frac{\mathbf{P}^{\mu}_{mn} \middle| \mathbf{1} \right\rangle}{norm.}$ $= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu'}_{n'n} \middle| \mathbf{1} \right\rangle}{|norm.|^{2}}$ $= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ $|norm.|^{2} = \left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{nn} \middle| \mathbf{1} \right\rangle$

${f P}^{\mu}{}_{ik}$ transforms right-and-left

 $\mathbf{g} = \left[\sum_{n'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right]$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed g acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{m'}^{\mu} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad \qquad \mathbf{Use} \ \mathbf{P}_{mn}^{\mu} - \text{orthonormality} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \end{pmatrix}$$

$$= \sum_{\mu'} \sum_{m'}^{\mu} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \qquad \qquad \mathbf{P}_{m'n}^{\mu'} \begin{pmatrix} \mathbf{P}_{mn}^{\mu} \rangle^{\dagger} = |n\rangle\langle m| \\ \mathbf{P}_{mn}^{\mu} \rangle^{\dagger} = \mathbf{P}_{nm}^{\mu} \end{pmatrix}$$

$$= \sum_{m'}^{\mu} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \qquad \qquad (\mathbf{P}_{mn}^{\mu})^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

Use
$$\mathbf{P}_{mn}^{\mu}$$
-orthonormality
$$\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$$

$$Projector\ conjugation$$

$$(|m\rangle\langle n|)^{\dagger} = |n\rangle\langle m|$$

$$(\mathbf{P}_{mn}^{\mu})^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g} = \mathbf{P}_{mn}^{\mu} \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(\mathbf{g}) \mathbf{P}_{m'n'}^{\mu'} \right)$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(\mathbf{g}) \delta^{\mu'\mu} \delta_{nm'} \mathbf{P}_{mn'}^{\mu}$$

$$= \sum_{n'}^{\ell^{\mu}} D_{nn'}^{\mu}(\mathbf{g}) \mathbf{P}_{mn'}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{\mathbf{p}_{norm}}$

Right-action transforms irep-bra $\left\langle {}^{\mu}_{mn} \right| \mathbf{g}^{\dagger} = \frac{\langle \mathbf{1} | \mathbf{P}^{\mu}_{nm} \mathbf{g}^{\dagger} |}{*}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

A simple irep expression...

$$\left\langle \mu\atop m'n \right| \mathbf{g} \right| \mu\atop mn = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

...requires proper normalization: $\langle \mu'_{m'n'} | \mu_{mn} \rangle = \frac{\langle \mathbf{1} | \mathbf{P}^{\mu'}_{n'm'}}{|\mu_{mn}|} \frac{\mathbf{P}^{\mu}_{mn} | \mathbf{1} \rangle}{|\mu_{mn}|}$ $= \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu'} | \mathbf{1} \rangle}{|\mathbf{P}_{n'm}^{\mu'}|^2}$ $=\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ $|norm.|^2 = \langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle$

${f P}^{\mu}{}_{ik}$ transforms right-and-left

 $\mathbf{g} = \begin{bmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} (\mathbf{g}) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed g acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad \qquad \mathbf{Use} \ \mathbf{P}_{mn}^{\mu} - \text{orthonormality} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \end{pmatrix}$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \qquad \qquad \mathbf{P}_{m'n}^{\mu'} \begin{pmatrix} \mathbf{P}_{mn}^{\mu} \rangle^{\dagger} = |n\rangle\langle m| \\ (|m\rangle\langle n|)^{\dagger} = |n\rangle\langle m| \end{pmatrix}$$

$$= \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \qquad \qquad (|\mathbf{P}_{mn}^{\mu}\rangle^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

Use
$$\mathbf{P}_{mn}^{\mu}$$
-orthonormality
$$\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$$

$$Projector\ conjugation$$

$$(|m\rangle\langle n|)^{\dagger} = |n\rangle\langle m|$$

$$(\mathbf{P}_{mn}^{\mu})^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g} = \mathbf{P}_{mn}^{\mu} \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right)$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{nm'} \mathbf{P}_{mn'}^{\mu}$$

$$= \sum_{n'}^{\ell^{\mu}} D_{nn'}^{\mu}(g) \mathbf{P}_{mn'}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{n_{orm}}$

Right-action transforms irep-bra $\left\langle {}^{\mu}_{mn} \right| \mathbf{g}^{\dagger} = \frac{\langle \mathbf{1} | \mathbf{P}^{\mu}_{nm} \mathbf{g}^{\dagger} |}{*}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

$$\left\langle {\mu\atop mn} \right| \mathbf{g}^{\dagger} = \left\langle {\mu\atop m'n} \right| \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}^{\dagger} \right)$$

A simple irep expression...

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

...requires proper normalization: $\langle \mu'_{m'n'} | \mu_{mn} \rangle = \frac{\langle \mathbf{1} | \mathbf{P}^{\mu'}_{n'm'} | \mathbf{P}^{\mu}_{mn} | \mathbf{1} \rangle}{\langle \mathbf{1} | \mathbf{P}^{\mu'}_{n'm'} | \mathbf{P}^{\mu}_{mn} | \mathbf{1} \rangle}$ $= \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu'} | \mathbf{1} \rangle}{|\mathbf{p}_{n'm}|^2}$ $=\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ $|norm.|^2 = \langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu}$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$

$$= \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Use
$$\mathbf{P}_{mn}^{\mu}$$
-orthonormality
$$\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$$

$$Projector\ conjugation$$

$$(|m\rangle\langle n|)^{\dagger} = |n\rangle\langle m|$$

$$(\mathbf{P}_{mn}^{\mu})^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g} = \mathbf{P}_{mn}^{\mu} \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right)$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{nm'} \mathbf{P}_{mn'}^{\mu}$$

$$= \sum_{n'}^{\ell^{\mu}} D_{nn'}^{\mu}(g) \mathbf{P}_{mn'}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm}$

Right-action transforms irep-bra $\left\langle {}^{\mu}_{mn} \right| \mathbf{g}^{\dagger} = \frac{\langle \mathbf{1} | \mathbf{P}^{\mu}_{nm} \mathbf{g}^{\dagger} | \mathbf{g}^{\dagger}}{*}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

$$\left\langle {{\mu}\atop{mn}} \right| \mathbf{g}^{\dagger} = \left\langle {{\mu}\atop{m'n}} \right| \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}^{\dagger} \right)$$

A simple irep expression...

A less-simple irep expression...

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

$$\left\langle \mu \atop mn \right| \mathbf{g}^{\dagger} \right| \mu \atop m'n = D^{\mu}_{m'm} \left(\mathbf{g}^{\dagger} \right)$$

...requires proper normalization:
$$\left\langle {\stackrel{\mu'}{m'n'}} \right| {\stackrel{\mu}{mn}} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu'}_{n'm'} \frac{\mathbf{P}^{\mu}_{mn} \middle| \mathbf{1} \right\rangle}{norm.} \frac{1}{norm.}$$

$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu'}_{n'n} \middle| \mathbf{1} \right\rangle}{|norm.|^2}$$

$$= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$

$$|norm.|^2 = \left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{nn} \middle| \mathbf{1} \right\rangle$$

Sunday, March 29, 2015 3

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed \mathbf{g} acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\mu} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu}$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$

$$= \sum_{\mu'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Use
$$\mathbf{P}_{mn}^{\mu}$$
-orthonormality
$$\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$$

$$Projector\ conjugation$$

$$(|m\rangle\langle n|)^{\dagger} = |n\rangle\langle m|$$

$$(\mathbf{P}_{mn}^{\mu})^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g} = \mathbf{P}_{mn}^{\mu} \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right)$$

$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{nm'} \mathbf{P}_{mn'}^{\mu}$$

$$= \sum_{n'}^{\ell^{\mu}} D_{nn'}^{\mu}(g) \mathbf{P}_{mn'}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm}$

Right-action transforms irep-bra $\left\langle \mu_{mn} \middle| \mathbf{g}^{\dagger} = \frac{\langle \mathbf{1} \middle| \mathbf{P}_{nm}^{\mu} \mathbf{g}^{\dagger} \middle| \mathbf{g}^{\dagger} \right\rangle}{*}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

$$\left\langle {{\mu}\atop{mn}} \right| \mathbf{g}^{\dagger} = \left\langle {{\mu}\atop{m'n}} \right| \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}^{\dagger} \right)$$

A simple irep expression...

A less-simple irep expression...

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

$$\left\langle \mu \atop mn \right| \mathbf{g}^{\dagger} \right| \mu \atop m'n = D^{\mu}_{m'm} \left(\mathbf{g}^{\dagger} \right)$$

...requires proper normalization: $\left\langle {}_{m'n'}^{\mu'} \middle| {}_{mn}^{\mu} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'}}{norm.} \frac{\mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm*}$ $= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu'} \middle| \mathbf{1} \right\rangle}{|norm.|^{2}}$ $= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$

$$= D_{mm'}^{\mu^*}(g)$$
if D is unitary

 $|norm.|^2 = \langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle$

General formulae for spectral decomposition (D_3 examples).

Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators

 $D^{\mu}_{jk}(g)$ orthogonality relations Class projector character formulae

 \mathbb{P}^{μ} in terms of κ_g and κ_g in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

Sunday, March 29, 2015 35

 $\mathbf{P}^{\mu}_{jk} - expansion \ in \ \mathbf{g} - operators \quad Need \ inverse \ of \ Weyl form: \quad \mathbf{g} = \begin{bmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu} (\mathbf{g}) \, \mathbf{f} \cdot \mathbf{g}$$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator \mathbf{f} in group $G = \{1, ..., \mathbf{f}, \mathbf{g}, \mathbf{h}, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

Regular representation of $D_3 \sim C_{3v}$

$$R^{G}(\mathbf{1}) = R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}^{2}) = R^{G}(\mathbf{i}_{1}) = R^{G}(\mathbf{i}_{2}) = R^{G}(\mathbf{i}_{3}) =$$

1	\mathbf{r}^2	r	i ₁	i 2	(i 3)
r	1	\mathbf{r}^2	i ₃	i ₁	\mathbf{i}_2
\mathbf{r}^2	r	1	i ₂	(i 3)	
i ₁	i ₃	i 2	1	r	\mathbf{r}^2
i 2	i 1	i 3	\mathbf{r}^2	1	r
(i ₃)	i ₂	i ₁	r	\mathbf{r}^2	1

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

Trace
$$R\left(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu^{\vdots}}\right) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu} \left(\mathbf{f}^{-1}\mathbf{h}\right) Trace R\left(\mathbf{h}\right)$$

Regular representation of $D_3 \sim C_{3v}$

$$R^{G}(\mathbf{1}) = R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}^{2}) = R^{G}(\mathbf{i}_{1}) = R^{G}(\mathbf{i}_{2}) = R^{G}(\mathbf{i}_{3}) =$$

1	\mathbf{r}^2	r	i 1	i 2	(i 3)
r	1	\mathbf{r}^2	(i ₃)	i ₁	\mathbf{i}_2
\mathbf{r}^2	r	1	i ₂	(i ₃)	i ₁
i ₁	<u>i</u> 3	i 2	1	r	\mathbf{r}^2
i 2	i ₁	(i 3)	\mathbf{r}^2	1	r
(i ₃)	$ \mathbf{i}_2 $	\mathbf{i}_{1}	r	\mathbf{r}^2	1

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} , \text{ where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

Trace
$$R\left(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu^{\vdots}}\right) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\left(\mathbf{f}^{-1}\mathbf{h}\right) Trace R\left(\mathbf{h}\right) = p_{mn}^{\mu}\left(\mathbf{f}^{-1}\mathbf{1}\right) Trace R\left(\mathbf{1}\right)$$

Regular representation of $D_3 \sim C_{3v}$

$$R^{G}(\mathbf{1}) = R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}^{2}) = R^{G}(\mathbf{i}_{1}) = R^{G}(\mathbf{i}_{2}) = R^{G}(\mathbf{i}_{3}) =$$

1	\mathbf{r}^2	r	i ₁	i 2	(i 3)
r	1	\mathbf{r}^2	i ₃	i ₁	i ₂
\mathbf{r}^2	r	1	i ₂	(i ₃)	i ₁
i ₁	<u>i</u> 3	i 2	1	r	\mathbf{r}^2
i 2	i ₁	(i 3)	\mathbf{r}^2	1	r
(i ₃)	$ \mathbf{i}_2 $	\mathbf{i}_{1}	r	\mathbf{r}^2	1

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} , \text{ where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu^{\vdots}}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation of $D_3 \sim C_{3v}$

$$R^{G}(\mathbf{1}) = R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}^{2}) = R^{G}(\mathbf{i}_{1}) = R^{G}(\mathbf{i}_{2}) = R^{G}(\mathbf{i}_{2}) = R^{G}(\mathbf{i}_{3}) =$$

1	\mathbf{r}^2	r	i 1	i 2	(i 3)
r	1	\mathbf{r}^2	i ₃	i ₁	i ₂
\mathbf{r}^2	r	1	i ₂	(i ₃)	i ₁
i ₁	i 3	i 2	1	r	\mathbf{r}^2
i 2	i ₁	i 3	\mathbf{r}^2	1	r
(i ₃)	\mathbf{i}_2	i ₁	r	\mathbf{r}^2	1

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

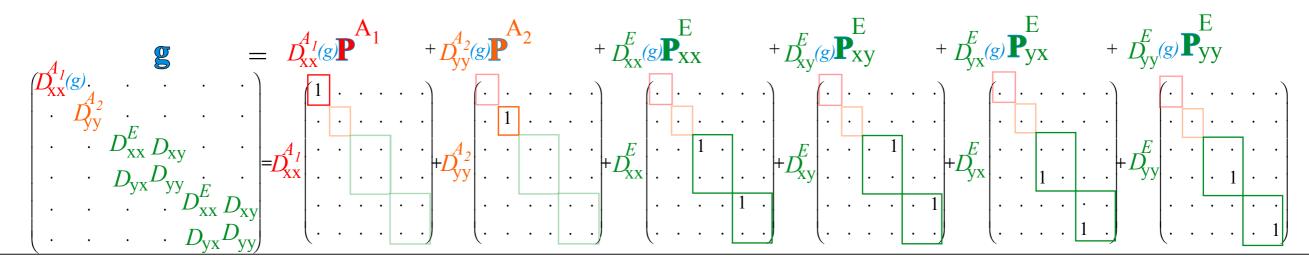
Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:



 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: $\mathbf{g} = \begin{bmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

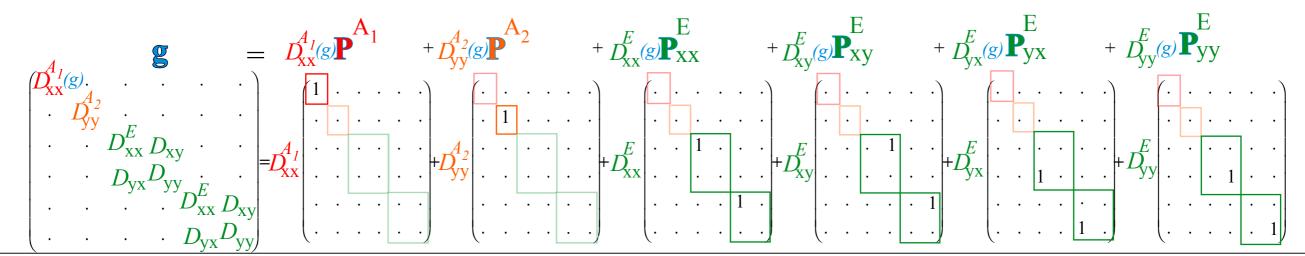
$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} , \text{ where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$



 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: $\mathbf{g} = \begin{bmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g)\mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

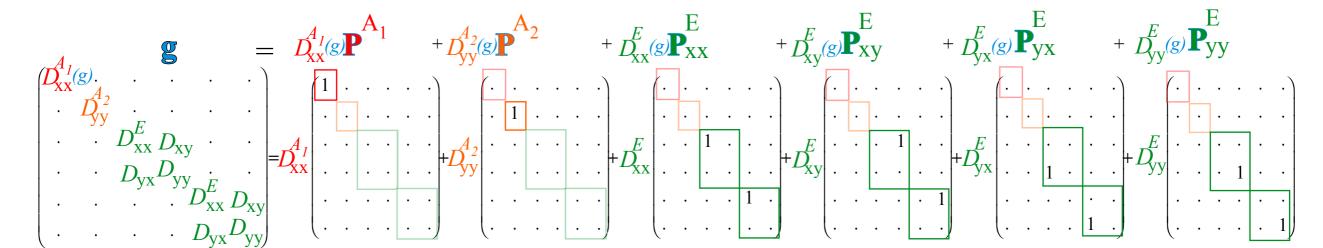
Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

Solving for
$$p_{mn}^{\mu}(\mathbf{g})$$
: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{{}^{\circ}G} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$



 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: $\mathbf{g} = \begin{bmatrix} \sum \sum \sum m' \sum n' \sum n' D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{m}^{G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

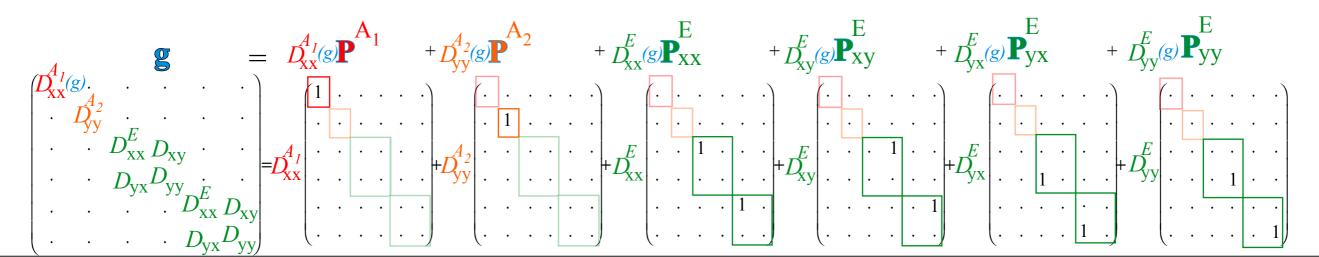
$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

Solving for
$$p_{mn}^{\mu}(\mathbf{g})$$
: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{2} Trace \ R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$

Use left-action:
$$\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) \mathbf{P}_{m'n}^{\mu}$$



$$\mathbf{P}^{\mu}_{jk}$$
 -expansion in **g**-operators Need inverse of Weyl form: $\mathbf{g} = \begin{bmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{m}^{\infty} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

Solving for
$$p_{mn}^{\mu}(\mathbf{g})$$
: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{{}^{\circ}\mathbf{G}} Trace \ R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$

Use left-action:
$$\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) \mathbf{P}_{m'n}^{\mu}$$

$$= \frac{1}{{}^{\circ}G} \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) Trace \ R\left(\mathbf{P}_{m'n}^{\mu}\right)$$

$$\mathbf{g} = D_{\mathbf{xx}}^{A_{1}}(\mathbf{g}) \mathbf{P}_{\mathbf{xx}}^{A_{1}} + D_{\mathbf{yy}}^{A_{2}}(\mathbf{g}) \mathbf{P}_{\mathbf{xx}}^{A_{2}} + D_{\mathbf{xx}}^{E}(\mathbf{g}) \mathbf{P}_{\mathbf{xx}}^{E} + D_{\mathbf{yx}}^{E}(\mathbf{g}) \mathbf{P}_{\mathbf{yx}}^{E} + D_{\mathbf{yx}}^{E}(\mathbf{g}) \mathbf{P}_{\mathbf{yy}}^{E}$$

$$D_{\mathbf{xx}}^{A_{1}}(\mathbf{g}) \cdot \dots \cdot \dots \cdot D_{\mathbf{xx}}^{A_{2}} \cdot \dots \cdot D_{\mathbf{xx}}^{E} \cdot \dots \cdot D_{\mathbf{xx}$$

$$\mathbf{P}^{\mu}_{jk} - expansion \ in \ \mathbf{g} - operators \quad Need \ inverse \ of \ Weyl form: \quad \mathbf{g} = \begin{bmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{m}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)\circ G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

Solving for
$$p_{mn}^{\mu}(\mathbf{g})$$
: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{\mathbf{G}} Trace \ R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$

Use left-action:
$$\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) \mathbf{P}_{m'n}^{\mu}$$

 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: $\mathbf{g} = \begin{bmatrix} \sum \sum \sum m' \sum n' \sum n' D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{s}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

Solving for
$$p_{mn}^{\mu}(\mathbf{g})$$
: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{{}^{\circ}G} Trace \ R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$

Use left-action:
$$\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) \mathbf{P}_{m'n}^{\mu}$$

$$= \frac{1}{{}^{\circ}G} \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) Trace \ R\left(\mathbf{P}_{m'n}^{\mu}\right)$$

$$= \frac{\ell^{(\mu)}}{{}^{\circ}G} D_{nm}^{\mu} \left(\mathbf{f}^{-1}\right)$$
Use: $Trace \ R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$

 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: $\mathbf{g} = \begin{bmatrix} \sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{s}^{G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)^{\circ}G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

Solving for
$$p_{mn}^{\mu}(\mathbf{g})$$
: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{{}^{\circ}G} Trace \ R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$

Use left-action:
$$\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) \mathbf{P}_{m'n}^{\mu}$$

$$= \frac{1}{{}^{\circ}G} \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) Trace \ R\left(\mathbf{P}_{m'n}^{\mu}\right)$$

$$= \frac{\ell^{(\mu)}}{{}^{\circ}G} D_{nm}^{\mu} \left(\mathbf{f}^{-1}\right)$$
Use: $Trace \ R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \overset{\circ}{G}}{\overset{\circ}{G}} \sum_{\mathbf{g}}^{\mathbf{g}} D_{nm}^{\mu} \left(\mathbf{g}^{-1} \right) \mathbf{g}$$

 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: $\mathbf{g} = \begin{bmatrix} \sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{bmatrix}$

Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{m}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

$$Trace\ R\Big(\mathbf{f}\cdot\mathbf{P}_{mn}^{\mu}\Big) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{h}\Big)TraceR\Big(\mathbf{h}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\mathbf{1}\Big)TraceR\Big(\mathbf{1}\Big) = p_{mn}^{\mu}\Big(\mathbf{f}^{-1}\Big)\circ G$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or 0 for off-diagonal \mathbf{P}_{mn}^{μ}

Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

Solving for
$$p_{mn}^{\mu}(\mathbf{g})$$
: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{{}^{\circ}\mathbf{G}} Trace \ R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$

Use left-action:
$$\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) \mathbf{P}_{m'n}^{\mu}$$

$$= \frac{1}{{}^{\circ}G} \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu} \left(\mathbf{f}^{-1}\right) Trace \ R\left(\mathbf{P}_{m'n}^{\mu}\right)$$
 Use: $Trace \ R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$

Use: Trace
$$R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$$

$$= \frac{\ell^{(\mu)}}{{}^{\circ}G} D_{nm}^{\mu} \left(\mathbf{f}^{-1} \right) \qquad \left(= \frac{\ell^{(\mu)}}{{}^{\circ}G} D_{mn}^{\mu*} \left(\mathbf{f} \right) \quad \text{for unitary } D_{nm}^{\mu} \right)$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \overset{\circ}{G}}{\overset{\circ}{G}} \sum_{\mathbf{g}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g}^{-1} \right) \mathbf{g} \qquad \left(\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \overset{\circ}{G}}{\overset{\circ}{G}} \sum_{\mathbf{g}}^{\mu} D_{mn}^{\mu^*} \left(\mathbf{g} \right) \mathbf{g} \quad \text{for unitary } D_{nm}^{\mu}$$

Review: Spectral resolution of D₃ Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_3 examples)

Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators $D^{\mu}_{jk}(g)$ orthogonality relations

Class projector character formulae \mathbb{P}^{μ} in terms of $\kappa_{\mathbf{g}}$ and $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Compare\ Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

$$\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'}$$

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad \left(D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \right) \quad \quad \text{Useful identity for later}$$

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \implies D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$
Then put in **g-**expansion of
$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}} D_{nm}^{\mu} \left(\mathbf{g}^{-1} \right) \mathbf{g}$$

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \implies D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$
Then put in **g**-expansion of
$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}} D_{nm}^{\mu} \left(g^{-1} \right) \mathbf{g} \qquad \qquad \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}} D_{mn}^{\mu} \left(g \right) \mathbf{g} \qquad \qquad \left(\text{for unitary } D_{nm}^{\mu} \right)$$

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \implies D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$

Then put in **g**-expansion of
$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g}^{-1} \right) \mathbf{g}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{g}$$

$$\mathcal{D}_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} = D_{m'n'}^{\mu'} \left(\frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g}^{-1} \right) \mathbf{g} \right)$$
(for unitary D_{nm}^{μ})

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

 $\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{nm}^{\mu} \left(\mathbf{g}^{-1}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right)$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \implies D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}} D_{nm}^{\mu} \left(\mathbf{g}^{-1} \right) \mathbf{g}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{g}$$

$$\mathcal{D}_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} = D_{m'n'}^{\mu'} \left(\frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}} D_{nm}^{\mu} \left(\mathbf{g}^{-1} \right) \mathbf{g} \right)$$

$$\left(\text{for unitary } D_{nm}^{\mu} \right)$$

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \implies \left(D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \right)$$

Then put in **g**-expansion of $\underline{\mathbf{P}_{mn}^{\mu}} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}^{\mathbf{g}}}{\circ_{G}^{\mathbf{g}}} \sum_{\mathbf{g}}^{\mathbf{p}} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{\circ G}D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)D_{m'n'}^{\mu'}\left(\mathbf{g}\right) \quad \text{or:} \quad \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{\circ G}D_{mn}^{\mu'}\left(\mathbf{g}\right)D_{m'n'}^{\mu'}\left(\mathbf{g}\right)$$

Useful identity for later

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mathbf{g}} D_{mn}^{\mu^{*}} (\mathbf{g}) \mathbf{g}$$

(for unitary
$$D_{nm}^{\mu}$$
)

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu^*}(g)D_{m'n'}^{\mu'}(g)$$

Famous D^{μ} orthogonality relation

 $\mathbf{g} = \sum_{n'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \implies \left(D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$

Then put in **g**-expansion of $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}^{\mathbf{g}}}{\circ_{G}^{\mathbf{g}}} \sum_{\mathbf{g}}^{\mathbf{p}} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}_{G}}\sum_{\mathbf{g}}^{\circ}D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)D_{m'n'}^{\mu'}\left(\mathbf{g}\right) \qquad \text{or:} \qquad \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}_{G}}\sum_{\mathbf{g}}^{\circ}D_{mn}^{\mu'}\left(\mathbf{g}\right)D_{m'n'}^{\mu'}\left(\mathbf{g}\right)$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}} \sum_{\mathbf{g}} D_{mn}^{\mu^*} (\mathbf{g}) \mathbf{g}$$

for unitary D_{nm}^{μ}

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu^*}(g)D_{m'n'}^{\mu'}(g)$$

Famous D^{μ} orthogonality relation

Put g'-expansion of P into P-expansion of
$$\mathbf{g} = \sum_{\mu}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (g) \mathbf{P}_{mn}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}^{\mathbf{G}}}{\circ_{\mathbf{G}}^{\mathbf{G}}} \sum_{\mathbf{g'}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

(Begin search for much less famous D^{μ} completeness relation)

 $\mathbf{g} = \sum_{n'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$

Then put in **g**-expansion of $\underline{\mathbf{P}_{mn}^{\mu}} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}^{G}}{\circ_{G}^{G}} \sum_{\mathbf{g}}^{G} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)D_{m'n'}^{\mu'}\left(\mathbf{g}\right) \qquad \text{or:} \qquad \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu'}\left(\mathbf{g}\right)D_{m'n'}^{\mu'}\left(\mathbf{g}\right)$$

 $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{2} \sum_{g} D_{mn}^{\mu*} (g) \mathbf{g}$

for unitary D_{nm}^{μ}

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu^*}(\mathbf{g})D_{m'n'}^{\mu'}(\mathbf{g})$$

Famous D^{μ} orthogonality relation

Put g'-expansion of **P** into **P**-expansion of
$$\mathbf{g} = \sum_{n=0}^{\ell^{\mu}} \sum_{n=0}^{\ell^{\mu}} D_{mn}^{\mu}(g) \mathbf{P}_{mn}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}}{\circ_{\mathbf{G}}} \sum_{\mathbf{g'}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g}\right) \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}'} D_{nm}^{\mu} \left(\mathbf{g}'^{-1}\right) \mathbf{g}'$$

(Begin search for much less famous D^{μ} completeness relation)

 $\mathbf{g} = \sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad \left(D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad \quad Useful identity for later \right)$$

Then put in **g**-expansion of $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}^{G}}{\circ_{G}^{G}} \sum_{\mathbf{g}}^{G} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{nm}^{\mu} \left(\mathbf{g}^{-1}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right) \qquad \text{or:}$$

 $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}^{\bullet} \sum_{\mathbf{g}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{g}$

for unitary D_{nm}^{μ}

or:
$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^*}(\mathbf{g}) D_{m'n'}^{\mu'}(\mathbf{g})$$

Famous D^{μ} orthogonality relation

Put g'-expansion of **P** into **P**-expansion of $\mathbf{g} = \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu}(\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}^{\mathbf{G}}}{\circ_{\mathbf{G}}^{\mathbf{G}}} \sum_{\mathbf{g'}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g}\right) \frac{\ell^{(\mu)} \circ_{\mathbf{G}}}{\circ_{\mathbf{G}}} \sum_{\mathbf{g'}} D_{nm}^{\mu} \left(\mathbf{g'}^{-1}\right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \sum_{m}^{\mu} \sum_{n}^{\mu} D_{mn}^{\mu} \left(\mathbf{g} \right) D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

(Begin search for much less famous D^{μ} completeness relation)

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad \left(D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad \quad Useful identity for later \right)$$

Then put in **g**-expansion of
$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}^{\mathbf{g}}}{\circ_{G}^{\mathbf{g}}} \sum_{\mathbf{g}}^{\mathbf{p}} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g}^{-1}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right) \qquad \text{or:} \qquad \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}}^{\mu} D_{mn}^{\mu'} \left(\mathbf{g}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right)$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{\mathbf{g}}^{\mathfrak{g}} D_{mn}^{\mu^{*}} (g) \mathbf{g}$$

for unitary
$$D_{nm}^{\mu}$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu^*}(\mathbf{g})D_{m'n'}^{\mu'}(\mathbf{g})$$

Famous D^{μ} orthogonality relation

Put g'-expansion of **P** into **P**-expansion of
$$\mathbf{g} = \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu}(\mathbf{g}) \mathbf{P}_{mn}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}}{\circ_{\mathbf{G}}} \sum_{\mathbf{g'}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{n} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{P}_{mn}^{\mu}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g}\right) \frac{\ell^{(\mu)} \circ_{\mathbf{G}}}{\circ_{\mathbf{G}}} \sum_{\mathbf{g'}} D_{nm}^{\mu} \left(\mathbf{g'}^{-1}\right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)} \ell^{\mu} \ell^{\mu}}{\circ G} \sum_{m}^{\infty} \sum_{n}^{\infty} D_{mn}^{\mu} (\mathbf{g}) D_{nm}^{\mu} (\mathbf{g'}^{-1}) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \sum_{m}^{\ell^{\mu}} D_{mm}^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

(Begin search for much less famous D^{μ} completeness relation)

64

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad \quad Useful identity for later$$

Then put in **g**-expansion of $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{g}^{\mu} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\Sigma} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{nm}^{\mu} \left(\mathbf{g}^{-1}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right) \qquad \text{or}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}^{\circ}} \sum_{\mathbf{g}}^{\infty} D_{mn}^{\mu^{*}} (\mathbf{g}) \mathbf{g}$$

for unitary D_{nm}^{μ}

or:
$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu^{*}}(g)D_{m'n'}^{\mu'}(g)$$

Famous D^{μ} orthogonality relation

Put g'-expansion of **P** into **P**-expansion of
$$\mathbf{g} = \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu}(\mathbf{g}) \mathbf{P}_{mn}^{\mu}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}}{\circ_{\mathbf{G}}} \sum_{\mathbf{g'}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g'}} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)} \ell^{\mu} \ell^{\mu}}{{}^{\circ} G} \sum_{m}^{\infty} \sum_{n}^{\infty} D_{mn}^{\mu} (\mathbf{g}) D_{nm}^{\mu} (\mathbf{g'}^{-1}) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{m}^{\ell^{\mu}} D_{mm}^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \chi^{\mu} \left(g g^{\prime - 1} \right) \mathbf{g'}$$

(Begin search for much less famous D^{μ} completeness relation)

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad \left(D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad \quad Useful identity for later \right)$$

Then put in **g**-expansion of
$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{g}^{\mu} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\Sigma} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{nm}^{\mu} \left(\mathbf{g}^{-1}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right) \quad \text{or:}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\mathbf{g}} D_{mn}^{\mu*} (\mathbf{g}) \mathbf{g}$$

(for unitary
$$D_{nm}^{\mu}$$
)

or: $\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu^*}(\mathbf{g})D_{m'n'}^{\mu'}(\mathbf{g})$ Famous D^{μ} orthogonality relation

Put g'-expansion of **P** into **P**-expansion of $\mathbf{g} = \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu}(\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}^{\bullet}}{\circ_{\mathbf{G}}^{\bullet}} \sum_{\mathbf{g'}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} (\mathbf{g}) \mathbf{I}_{mn}^{\mu}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} (\mathbf{g}) \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}'} D_{nm}^{\mu} (\mathbf{g}'^{-1}) \mathbf{g}'$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)} \ell^{\mu} \ell^{\mu}}{\circ G} \sum_{m}^{\infty} \sum_{n}^{\infty} D_{mn}^{\mu} (\mathbf{g}) D_{nm}^{\mu} (\mathbf{g'}^{-1}) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \sum_{m}^{\ell^{\mu}} D_{mm}^{\mu} \left(gg'^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \chi^{\mu} \left(gg'^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \chi^{\mu} \left(gg'^{-1} \right) \mathbf{g'}$$

$$\sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \chi^{\mu} \left(gg'^{-1} \right) = \delta_{g'}^{g^{-1}}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \chi^{\mu} \left(g g'^{-1} \right) \mathbf{g'} \quad \Rightarrow \quad$$

(Begin search for much less famous D^{μ} completeness relation)

$$\sum_{\mu} \frac{\ell^{(\mu)}}{{}^{\circ}G} \chi^{\mu} \left(g g'^{-1} \right) = \delta_{g'}^{g}$$

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$

Then put in **g**-expansion of $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{g}^{\mu} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\Sigma} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{nm}^{\mu} \left(\mathbf{g}^{-1}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right) \quad \text{or:}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}}^{\mathbf{g}} D_{mn}^{\mu*} (g) \mathbf{g}$$

for unitary D_{nm}^{μ}

or:
$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^*}(\mathbf{g}) D_{m'n'}^{\mu'}(\mathbf{g})$$

Famous D^{μ} orthogonality relation

Put g'-expansion of **P** into **P**-expansion of $\mathbf{g} = \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu}(\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{\mathbf{G}}}{\circ_{\mathbf{G}}} \sum_{\mathbf{g'}}^{\mu} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \frac{\ell^{(\mu)} \circ_{\mathbf{G}}}{\circ_{\mathbf{G}}} \sum_{\mathbf{g'}} D_{nm}^{\mu} \left(\mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{\ell^{(\mu)} \ell^{\mu} \ell^{\mu}}{\circ G} \sum_{m}^{\circ} \sum_{n}^{\circ} D_{mn}^{\mu} (g) D_{nm}^{\mu} (g'^{-1}) \mathbf{g'}$$

$$\mu = A_{1} \quad \ell^{A_{1}} = 1 \quad 1 \quad 1$$

$$\mu = A_{2} \quad \ell^{A_{2}} = 1 \quad 1 \quad -1$$

$$\mu = E_{1} \quad \ell^{E_{1}} = 2 \quad -1 \quad 0$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{\ell^{(\mu)}}{\ell^{\mu}} \sum_{m}^{\ell^{\mu}} D_{mm}^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{\ell^{(\mu)}}{\ell^{\mu}} \sum_{m}^{\ell^{\mu}} D_{mm}^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{\ell^{(\mu)}}{\ell^{\mu}} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{\ell^{(\mu)}}{\ell^{\mu}} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\sum_{\mu} \frac{\ell^{(\mu)}}{\ell^{\mu}} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) = \delta_{\mathbf{g'}}^{\mathbf{g'}}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \chi^{\mu} \left(g g'^{-1} \right) \mathbf{g'} \quad \Rightarrow$$

(Begin search for much less famous D^{μ} completeness relation)

$$\begin{array}{c|ccccc} \chi_{k}^{\mu}(D_{3}) & \chi_{1}^{\mu} & \chi_{r}^{\mu} & \chi_{i}^{\mu} \\ \mu = A_{1} & \ell^{A_{1}} = 1 & 1 & 1 \\ \mu = A_{2} & \ell^{A_{2}} = 1 & 1 & -1 \\ \mu = E_{1} & \ell^{E_{1}} = 2 & -1 & 0 \end{array}$$

$$\sum_{\mu} \frac{\ell^{(\mu)}}{{}^{\circ}G} \chi^{\mu} \left(g g'^{-1} \right) = \delta_{g'}^{g}$$

 $\mathbf{g} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \quad \text{is a valid expansion of any combination of } \mathbf{g} \text{ including } \mathbf{P}.$

Simply substitute **P** for **g**:

$$\mathbf{P}_{mn}^{\mu} = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) \mathbf{P}_{m'n'}^{\mu'} \quad \Rightarrow \quad D_{m'n'}^{\mu'} \left(\mathbf{P}_{mn}^{\mu} \right) = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \qquad Useful identity for later$$

Then put in **g**-expansion of $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{G}}{\circ_{G}} \sum_{g}^{\mu} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

$$D_{m'n'}^{\mu'}\left(\mathbf{P}_{mn}^{\mu}\right) = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = D_{m'n'}^{\mu'}\left(\frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\Sigma} D_{nm}^{\mu}\left(\mathbf{g}^{-1}\right)\mathbf{g}\right)$$

$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{nm}^{\mu} \left(\mathbf{g}^{-1}\right) D_{m'n'}^{\mu'} \left(\mathbf{g}\right) \quad \text{or:}$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(\mathbf{g}) \mathbf{g}$$

for unitary D_{nm}^{μ}

or:
$$\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n} = \frac{\ell^{(\mu)}}{{}^{\circ}G}\sum_{\mathbf{g}}^{G}D_{mn}^{\mu^*}(g)D_{m'n'}^{\mu'}(g)$$

Famous D^{μ} orthogonality relation

Put g'-expansion of **P** into **P**-expansion of $\mathbf{g} = \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu}(\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\bullet}}{\circ_{G}^{\bullet}} \sum_{\mathbf{g}'}^{\mu} D_{nm}^{\mu} \left(\mathbf{g}'^{-1}\right) \mathbf{g}'$$

$$\mathbf{g} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}'} D_{nm}^{\mu} \left(\mathbf{g}'^{-1} \right) \mathbf{g}'$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{\ell^{(\mu)} \ell^{\mu} \ell^{\mu}}{\circ G} \sum_{m}^{\circ} \sum_{n}^{\circ} D_{mn}^{\mu} (g) D_{nm}^{\mu} (g'^{-1}) \mathbf{g'}$$

$$\mu = A_{1} \qquad \ell^{A_{1}} = 1 \qquad 1 \qquad 1$$

$$\mu = A_{2} \qquad \ell^{A_{2}} = 1 \qquad 1 \qquad -1$$

$$\mu = E_{1} \qquad \ell^{E_{1}} = 2 \qquad -1 \qquad 0$$

Character sum-rule becomes
Diophantine relation if
$$\mathbf{g'} = \mathbf{g}^{-1}$$

$$\sum_{\mu} \frac{(\ell^{(\mu)})^2}{{}^{\circ}G} = 1$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} \frac{1}{\mathbf{g'}} \int_{\mathbf{g'}}^{\mu} D_{mm}^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} D_{mm}^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ} \frac{1}{\mu} \int_{\mathbf{g'}}^{\mu} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'}$$

$$\mathbf{g} = \sum_{\mathbf{g'}}^{\circ G} \sum_{\mu} \frac{\ell^{(\mu)}}{\circ G} \chi^{\mu} \left(\mathbf{g} \mathbf{g'}^{-1} \right) \mathbf{g'} \quad \Rightarrow$$

(Begin search for much less famous D^{μ} completeness relation)

$$\begin{array}{c|cccc} \chi_{k}^{\mu}(D_{3}) & \chi_{1}^{\mu} & \chi_{r}^{\mu} & \chi_{i}^{\mu} \\ \mu = A_{1} & \ell^{A_{1}} = 1 & 1 & 1 \\ \mu = A_{2} & \ell^{A_{2}} = 1 & 1 & -1 \\ \mu = E_{1} & \ell^{E_{1}} = 2 & -1 & 0 \end{array}$$

$$\sum_{\mu} \frac{\ell^{(\mu)}}{{}^{\circ}G} \chi^{\mu} \left(gg'^{-1} \right) = \delta_{g'}^{g}$$

Review: Spectral resolution of D₃ Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_3 examples)

Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators $D^{\mu}_{jk}(g)$ orthogonality relations

Class projector character formulae

And review of all-commuting class sums \mathbb{P}^{μ} in terms of κ_g and κ_g in terms of \mathbb{P}^{μ}

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

Total-G-transformation $\Sigma_{\mathbf{h}\in G}\mathbf{hgh}^{-1}$ of \mathbf{g} repeats its class-sum κ_g an integer number ${}^{\circ}n_g = {}^{\circ}G/_{{}^{\circ}\kappa_g}$ of times.

$$\sum_{h=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1} = {}^{\circ} n_g \mathbf{\kappa}_g , \quad \text{where: } {}^{\circ} n_g = \frac{{}^{\circ} G}{{}^{\circ} \kappa_g} = \text{order of } \mathbf{g} - self - symmetry \ group \ \{\mathbf{n} \text{ such that } \mathbf{n} \mathbf{g} \mathbf{n}^{-1} = \mathbf{g}\}$$

Suppose all-commuting operator $\mathbb{C} = \sum_{g=1}^{\circ_G} C_g \mathbf{g}$ commutes with all \mathbf{h} in group G so $\mathbf{h}\mathbb{C} = \mathbb{C}\mathbf{h}$ or $\mathbf{h}\mathbb{C}\mathbf{h}^{-l} = \mathbb{C}$.

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

Total-G-transformation $\Sigma_{\mathbf{h}\in G}\mathbf{hgh}^{-1}$ of \mathbf{g} repeats its class-sum κ_g an integer number ${}^{\circ}n_g = {}^{\circ}G/_{{}^{\circ}\kappa_g}$ of times.

$$\sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1} = {}^{\circ} n_g \mathbf{\kappa}_g , \quad \text{where: } {}^{\circ} n_g = \frac{{}^{\circ} G}{{}^{\circ} \kappa_g} = \text{order of } \mathbf{g} - \mathbf{self} - \mathbf{symmetry } \mathbf{group} \ \{\mathbf{n} \text{ such that } \mathbf{n} \mathbf{g} \mathbf{n}^{-1} = \mathbf{g} \}$$

Suppose all-commuting operator $\mathbb{C} = \sum_{g=1}^{\circ_G} C_g \mathbf{g}$ commutes with all \mathbf{h} in group G so $\mathbf{h}\mathbb{C} = \mathbb{C}\mathbf{h}$ or $\mathbf{h}\mathbb{C}\mathbf{h}^{-l} = \mathbb{C}$.

Then \mathbb{C} must be the following linear combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \qquad \qquad \mathbb{C} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbb{C} \qquad (Trivial \ assumption \)$$

Class projector and character formulae

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

Total-G-transformation $\Sigma_{\mathbf{h}\in G}\mathbf{hgh}^{-1}$ of \mathbf{g} repeats its class-sum κ_g an integer number ${}^{\circ}n_g = {}^{\circ}G/_{{}^{\circ}\kappa_g}$ of times.

$$\sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1} = {}^{\circ} n_{g} \mathbf{\kappa}_{g} , \quad \text{where: } {}^{\circ} n_{g} = \frac{{}^{\circ} G}{{}^{\circ} \kappa_{g}} = \text{order of } \mathbf{g} - \mathbf{self} - \mathbf{symmetry } \mathbf{group} \ \{\mathbf{n} \text{ such that } \mathbf{ngn}^{-1} = \mathbf{g}\}$$

Suppose all-commuting operator $\mathbb{C} = \sum_{g=1}^{\circ G} C_g \mathbf{g}$ commutes with all \mathbf{h} in group G so $\mathbf{h}\mathbb{C} = \mathbb{C}\mathbf{h}$ or $\mathbf{h}\mathbb{C}\mathbf{h}^{-l} = \mathbb{C}$.

Then \mathbb{C} must be the following linear combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{g} \mathbf{g} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \qquad \mathbb{C} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbb{C} \qquad (Trivial \ assumption)$$

$$= \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \left(\sum_{\mathbf{g}=1}^{\circ G} C_{g} \mathbf{g} \right) \mathbf{h}^{-1}$$

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

Total-G-transformation $\Sigma_{\mathbf{h}\in G}\mathbf{hgh}^{-1}$ of \mathbf{g} repeats its class-sum κ_g an integer number ${}^{\circ}n_g = {}^{\circ}G/_{{}^{\circ}\kappa_g}$ of times.

$$\sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1} = {}^{\circ} n_g \kappa_g , \quad \text{where: } {}^{\circ} n_g = \frac{{}^{\circ} G}{{}^{\circ} \kappa_g} = \text{order of } \mathbf{g} - self - symmetry \ group \ \{\mathbf{n} \text{ such that } \mathbf{n} \mathbf{g} \mathbf{n}^{-1} = \mathbf{g}\}$$

Suppose all-commuting operator $\mathbb{C} = \sum_{g=1}^{\circ G} C_g \mathbf{g}$ commutes with all \mathbf{h} in group G so $\mathbf{h}\mathbb{C} = \mathbb{C}\mathbf{h}$ or $\mathbf{h}\mathbb{C}\mathbf{h}^{-l} = \mathbb{C}$.

Then \mathbb{C} must be the following linear combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \qquad \mathbb{C} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbb{C} \qquad (Trivial assumption)$$

$$= \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \left(\sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} \right) \mathbf{h}^{-1}$$

$$= \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1}$$

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

Total-G-transformation $\Sigma_{\mathbf{h}\in G}\mathbf{hgh}^{-1}$ of \mathbf{g} repeats its class-sum κ_g an integer number ${}^{\circ}n_g = {}^{\circ}G/_{{}^{\circ}\kappa_g}$ of times.

$$\sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1} = {}^{\circ} n_g \kappa_g , \quad \text{where: } {}^{\circ} n_g = \frac{{}^{\circ} G}{{}^{\circ} \kappa_g} = \text{order of } \mathbf{g} - \mathbf{self} - \mathbf{symmetry } \mathbf{group} \ \{ \mathbf{n} \text{ such that } \mathbf{ngn}^{-1} = \mathbf{g} \}$$

Suppose all-commuting operator $\mathbb{C} = \sum_{g=1}^{\circ G} C_g \mathbf{g}$ commutes with all \mathbf{h} in group G so $\mathbf{h}\mathbb{C} = \mathbb{C}\mathbf{h}$ or $\mathbf{h}\mathbb{C}\mathbf{h}^{-l} = \mathbb{C}$.

Then \mathbb{C} must be the following linear combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \qquad \mathbb{C} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbb{C} \qquad (Trivial \ assumption)$$

$$= \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \left(\sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} \right) \mathbf{h}^{-1}$$

$$= \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1}$$

$$= \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{n_{\mathbf{g}}}{\circ G} \mathbf{\kappa}_{\mathbf{g}}$$

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

Total-G-transformation $\Sigma_{\mathbf{h}\in G}\mathbf{h}\mathbf{g}\mathbf{h}^{-1}$ of \mathbf{g} repeats its class-sum κ_g an integer number ${}^{\circ}n_g = {}^{\circ}G/_{{}^{\circ}\kappa_g}$ of times.

$$\sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1} = {}^{\circ} n_{g} \kappa_{g} , \quad \text{where: } {}^{\circ} n_{g} = \frac{{}^{\circ} G}{{}^{\circ} \kappa_{g}} = \text{order of } \mathbf{g} - \mathbf{self} - \mathbf{symmetry } \mathbf{group} \ \{\mathbf{n} \text{ such that } \mathbf{n} \mathbf{g} \mathbf{n}^{-1} = \mathbf{g} \}$$

Suppose all-commuting operator $\mathbb{C} = \sum_{g=1}^{\circ G} C_g \mathbf{g}$ commutes with all \mathbf{h} in group G so $\mathbf{h}\mathbb{C} = \mathbb{C}\mathbf{h}$ or $\mathbf{h}\mathbb{C}\mathbf{h}^{-l} = \mathbb{C}$.

Then \mathbb{C} must be the following linear combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \qquad \mathbb{C} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbb{C} \qquad (Trivial assumption)$$

$$= \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \left(\sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} \right) \mathbf{h}^{-1}$$

$$= \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1}$$

$$= \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{n_{\mathbf{g}}}{\circ G} \kappa_{\mathbf{g}}$$

Precise combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{g} \mathbf{g} = \sum_{\mathbf{g}=1}^{\circ G} C_{g} \frac{\mathbf{k}_{g}}{\circ \mathbf{k}_{g}}$$

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

Total-G-transformation $\Sigma_{\mathbf{h}\in G}\mathbf{hgh}^{-1}$ of \mathbf{g} repeats its class-sum κ_g an integer number ${}^{\circ}n_g = {}^{\circ}G/_{{}^{\circ}\kappa_g}$ of times.

$$\sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1} = {}^{\circ} n_{g} \mathbf{\kappa}_{g} , \quad \text{where: } {}^{\circ} n_{g} = \frac{{}^{\circ} G}{{}^{\circ} \kappa_{g}} = \text{order of } \mathbf{g} - \mathbf{self} - \mathbf{symmetry} \ \mathbf{group} \ \{\mathbf{n} \ \text{such that } \mathbf{ngn}^{-1} = \mathbf{g}\}$$

Suppose all-commuting operator $\mathbb{C} = \sum_{g=1}^{\circ G} C_g \mathbf{g}$ commutes with all \mathbf{h} in group G so $\mathbf{h}\mathbb{C} = \mathbb{C}\mathbf{h}$ or $\mathbf{h}\mathbb{C}\mathbf{h}^{-l} = \mathbb{C}$.

Then \mathbb{C} must be the following linear combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbb{C} \mathbf{h}^{-1} \qquad \mathbb{C} = \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbb{C} \qquad (Trivial \ assumption)$$

$$= \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \left(\sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} \right) \mathbf{h}^{-1}$$

$$= \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{1}{\circ G} \sum_{\mathbf{h}=1}^{\circ G} \mathbf{h} \mathbf{g} \mathbf{h}^{-1}$$

$$= \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{n_{\mathbf{g}}}{\circ G} \mathbf{\kappa}_{\mathbf{g}}$$

Precise combination of *class-sums* κ_g .

$$\mathbb{C} = \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \mathbf{g} = \sum_{\mathbf{g}=1}^{\circ G} C_{\mathbf{g}} \frac{\mathbf{k}_{\mathbf{g}}}{\circ \mathbf{k}_{\mathbf{g}}}$$

(Simple D_3 example) $\mathbb{C}=8\mathbf{r}^1+8\mathbf{r}^2$ $=8(\mathbf{r}^1+\mathbf{r}^2)/2+8(\mathbf{r}^1+\mathbf{r}^2)/2$ $=8(\kappa_{\mathbf{r}})/2+8(\kappa_{\mathbf{r}})/2$ $=8\kappa_{\mathbf{r}}$

Review: Spectral resolution of D_3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_3 examples)

Weyl **g**-expansion in irep $D^{\mu}{}_{jk}(g)$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $\mathbf{P}^{\mu}{}_{jk}$ transforms right-and-left $\mathbf{P}^{\mu}{}_{jk}$ -expansion in **g**-operators $D^{\mu}{}_{jk}(g)$ orthogonality relations

Class projector character formulae $\mathbf{P}^{\mu}{}_{in}$ in terms of $\kappa_{\mathbf{g}}$ and $\kappa_{\mathbf{g}}$ in terms of \mathbf{P}^{μ}

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Compare\ Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

 \mathbb{P}^{μ} in terms of κ_g

 κ_g in terms of \mathbb{P}^{μ}

 \mathbb{P}^{μ} in terms of κ_{g}

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace \ D^{\mu}(\mathbf{g}) = \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu}(\mathbf{g})$

 κ_g in terms of \mathbb{P}^{μ}

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) = Trace D^{\mu}(\mathbf{g}) = \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell}^{\mu} \text{ of } \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{\circ_G} \sum_{\mathbf{g}}^{\circ_G} D_{mn}^{\mu}(\mathbf{g}) \mathbf{g}$ $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell}^{\mu} \text{ of } \mathbf{P}_{nm}^{\mu} = \frac{\ell^{(\mu)}}{\circ_G} \sum_{\mathbf{g}}^{\circ_G} D_{mn}^{\mu}(\mathbf{g}) \mathbf{g}$ $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell}^{\mu} \text{ of } \mathbf{P}_{nm}^{\mu} = \frac{\ell^{(\mu)}}{\circ_G} \sum_{\mathbf{g}}^{\circ_G} D_{mn}^{\mu}(\mathbf{g}) \mathbf{g}$ $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} = \mathbf{P}_{nm}^{\mu} = \frac{\ell^{(\mu)}}{\circ_G} \sum_{\mathbf{g}}^{\circ_G} D_{mn}^{\mu}(\mathbf{g}) \mathbf{g}$ $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} = \mathbf{P}_{22}^{\mu} = \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{22}^{\mu} = \mathbf{P}_{$

irep projectors VS. **g**

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}^{\circ}} \sum_{\mathbf{g}}^{\mu} D_{mn}^{\mu} (\mathbf{g}) \mathbf{g}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

 $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ}

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{\mathbf{g}} D^{\mu}_{mm}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + \dots + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of }$ $\mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} = \frac{\ell^{\mu} \circ_{G}^{\alpha} \ell^{\mu}}{\circ_{G}^{\alpha} \sum_{g}^{\alpha} \sum_{m=1}^{m} D_{mm}^{\mu}(g) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}^{\alpha}}{\circ_{G}^{\alpha} \sum_{g}^{\alpha} \chi^{\mu^{*}}(g) \mathbf{g}$ $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{\mu} \circ_{G}^{\alpha} \ell^{\mu}}{\circ_{G}^{\alpha} \sum_{g}^{\alpha} \sum_{m=1}^{m} D_{mm}^{\mu}(g) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}^{\alpha}}{\circ_{G}^{\alpha} \sum_{g}^{\alpha} \chi^{\mu^{*}}(g) \mathbf{g}$ $\mathbf{for unitary } D_{nm}^{\mu}$ $D_{mn}^{\mu}(g) = D_{nm}^{\mu}(g^{-1})$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu*}(g) \mathbf{g} = \frac{\ell^{\mu}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} \chi^{\mu*}(g) \mathbf{g}$$

irep projectors VS. **g**

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{mn}^{\mu^{*}}(\mathbf{g}) \mathbf{g}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

 $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ}

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{\mathbf{g}} D^{\mu}_{mm}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of } \begin{cases} \text{irep projectors vs. } \mathbf{g} \\ \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}} \sum_{\mathbf{g}}^{\bullet} D_{mn}^{\mu} (g) \mathbf{g} \end{cases}$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ_{G} \sum_{\mathbf{g}}^{\ell^{\mu}} \sum_{m=1}^{m} D_{mm}^{\mu*}(\mathbf{g}) \mathbf{g}}{\sum_{\mathbf{g}}^{\mu} \sum_{m=1}^{m} D_{mm}^{\mu*}(\mathbf{g}) \mathbf{g}} = \frac{\ell^{\mu} \circ_{G}}{\sum_{\mathbf{g}}^{\mu}} \chi^{\mu*}(\mathbf{g}) \mathbf{g}$$

$$\mathbb{P}^{\mu} = \sum_{classes \, \mathbf{\kappa_g}} \frac{\ell^{\mu}}{{}^{\circ} G} \chi_g^{\mu^*} \mathbf{\kappa_g} \quad , \text{ where: } \chi_g^{\mu} = \chi^{\mu} (\mathbf{g}) = \chi^{\mu} (\mathbf{hgh}^{-1})$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

 $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ}

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{\mathbf{g}} D^{\mu}_{mm}(\mathbf{g})$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu}}{{}^{\circ}\mathbf{G}} \sum_{\mathbf{g}}^{\ell^{\mu}} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu*}(\mathbf{g}) \mathbf{g} = \frac{\ell^{\mu}}{{}^{\circ}\mathbf{G}} \sum_{\mathbf{g}}^{\ell^{\mu}} \chi^{\mu*}(\mathbf{g}) \mathbf{g}$$

$$(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + \dots + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of }$$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ G}{\circ G} \sum_{\mathbf{g}}^{\ell^{\mu}} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu^{*}}(g) \mathbf{g} = \frac{\ell^{\mu} \circ G}{\circ G} \sum_{\mathbf{g}}^{\ell^{\mu}} \chi^{\mu^{*}}(g) \mathbf{g}$$

$$\mathbb{P}^{\mu} = \sum_{\text{classes } \mathbf{\kappa}_{\mathbf{g}}} \frac{\ell^{\mu}}{\circ G} \chi^{\mu^{*}}(g) \mathbf{g} = \chi^{\mu}(g) = \chi^{\mu}($$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

$\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ}

Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors \mathbf{P}_{mn}^{μ} : $\mathbf{g} = \sum_{u}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

$$\mathbf{g} = \sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$$

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{\mathbf{g}} D^{\mu}_{mm}(\mathbf{g})$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ_{G} \ell^{\mu}}{\circ_{G}} \sum_{\mathbf{g}}^{\ell^{\mu}} \sum_{m=1}^{m} D_{mm}^{\mu*}(\mathbf{g}) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{m*} \chi^{\mu*}(\mathbf{g}) \mathbf{g}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

κ_{g} in terms of \mathbb{P}^{μ}

Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors \mathbf{P}_{mn}^{μ} : $\mathbf{g} = \sum_{\mu}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

 $D_{mn}^{\mu}(\mathbf{K}_{\mathbf{g}})$ commutes with $D_{mn}^{\mu}(\mathbf{P}_{pr}^{\mu}) = \delta_{mp}\delta_{nr}$ for all p and r:

$$\mathbf{g} = \sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$$

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{\mathbf{g}} D^{\mu}_{mm}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of } \begin{cases} \text{irep projectors vs. } \mathbf{g} \\ \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\kappa}}{\circ_{G}} \sum_{\mathbf{g}}^{\kappa} D_{mn}^{\mu^{*}}(\mathbf{g}) \mathbf{g} \end{cases}$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ_{G} \ell^{\mu}}{\circ_{G} g} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu*}(g) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu*} \chi^{\mu*}(g) \mathbf{g}$$

$$\mathbb{P}^{\mu} = \sum_{classes \, \mathbf{\kappa_g}} \frac{\ell^{\mu}}{{}^{\circ} G} \chi_g^{\mu*} \mathbf{\kappa_g} \quad , \text{ where: } \chi_g^{\mu} = \chi^{\mu} (\mathbf{g}) = \chi^{\mu} (\mathbf{hgh}^{-1})$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\mathbf{g}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{g}$$

for unitary
$$D_{nm}^{\mu}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

κ_{g} in terms of \mathbb{P}^{μ}

Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors \mathbf{P}_{mn}^{μ} : $\mathbf{g} = \sum_{\mu}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

$$\mathbf{g} = \sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$$

 $D_{mn}^{\mu}(\mathbf{K}_{\mathbf{g}})$ commutes with $D_{mn}^{\mu}(\mathbf{P}_{pr}^{\mu}) = \delta_{mp}\delta_{nr}$ for all p and r:

$$\sum_{b=1}^{\ell^{\mu}} D_{ab}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}} \right) D_{bc}^{\mu} \left(\mathbf{P}_{pr}^{\mu} \right) = \sum_{d=1}^{\ell^{\mu}} D_{ad}^{\mu} \left(\mathbf{P}_{pr}^{\mu} \right) D_{dc}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}} \right)$$

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{k=0}^{\ell} D_{mm}^{\mu}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of } \begin{cases} \text{irep projectors vs. } \mathbf{g} \\ \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\omega}}{\circ_{G}} \sum_{\mathbf{g}}^{\omega} D_{mn}^{\mu}(\mathbf{g}) \mathbf{g} \end{cases}$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ_{G} \ell^{\mu}}{\circ_{G} g} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu*}(g) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu*} \chi^{\mu*}(g) \mathbf{g}$$

$$\mathbb{P}^{\mu} = \sum_{classes \, \kappa_{\mathbf{g}}} \frac{\ell^{\mu}}{{}^{\circ} G} \chi_{g}^{\mu*} \kappa_{\mathbf{g}} \quad , \text{ where: } \chi_{g}^{\mu} = \chi^{\mu} (\mathbf{g}) = \chi^{\mu} (\mathbf{hgh}^{-1})$$

$$G_{mn}^{-} \circ G_{\mathbf{g}}^{-} = \mathcal{G}_{mn}(\mathcal{S})$$

for unitary
$$D_{nm}^{\mu}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

κ_{g} in terms of \mathbb{P}^{μ}

Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors \mathbf{P}_{mn}^{μ} : $\mathbf{g} = \sum_{\mu} \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

 $D_{mn}^{\mu}(\mathbf{K}_{\mathbf{g}})$ commutes with $D_{mn}^{\mu}(\mathbf{P}_{pr}^{\mu}) = \delta_{mp}\delta_{nr}$ for all p and r:

$$\sum_{\substack{b=1\\\ell^{\mu}}}^{\ell^{\mu}} D_{ab}^{\mu} \left(\mathbf{k}_{\mathbf{g}}\right) D_{bc}^{\mu} \left(\mathbf{P}_{pr}^{\mu}\right) = \sum_{\substack{d=1\\\ell^{\mu}}}^{\ell^{\mu}} D_{ad}^{\mu} \left(\mathbf{P}_{pr}^{\mu}\right) D_{dc}^{\mu} \left(\mathbf{k}_{\mathbf{g}}\right)$$

$$\sum_{\substack{b=1\\b=1}}^{\ell^{\mu}} D_{ab}^{\mu} \left(\mathbf{k}_{\mathbf{g}}\right) \delta_{bp} \delta_{cr} = \sum_{\substack{d=1\\d=1}}^{\ell^{\mu}} \delta_{ap} \delta_{dr} D_{dc}^{\mu} \left(\mathbf{k}_{\mathbf{g}}\right)$$

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{m} D_{mm}^{\mu}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of } \begin{cases} \text{irep projectors vs. } \mathbf{g} \\ \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\kappa}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu} D_{mn}^{\mu}(\mathbf{g}) \mathbf{g} \end{cases}$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ_{G} \ell^{\mu}}{\circ_{G} g} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu*}(g) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu*} \chi^{\mu*}(g) \mathbf{g}$$

$$\mathbb{P}^{\mu} = \sum_{classes \, \kappa_{\mathbf{g}}} \frac{\ell^{\mu}}{{}^{\circ} G} \chi_{g}^{\mu*} \kappa_{\mathbf{g}} \quad , \text{ where: } \chi_{g}^{\mu} = \chi^{\mu} (\mathbf{g}) = \chi^{\mu} (\mathbf{hgh}^{-1})$$

for unitary
$$D^{\mu}$$

for unitary
$$D_{nm}^{\mu}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

κ_{g} in terms of \mathbb{P}^{μ}

Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors \mathbf{P}_{mn}^{μ} : $\mathbf{g} = \sum_{u}^{\ell^{\mu}} \sum_{n}^{\ell^{\nu}} \sum_{n}^{\ell^{\nu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

 $D_{mn}^{\mu}(\mathbf{K}_{\mathbf{g}})$ commutes with $D_{mn}^{\mu}(\mathbf{P}_{pr}^{\mu}) = \delta_{mp}\delta_{nr}$ for all p and r:

$$\sum_{b=1}^{\ell^{\mu}} D_{ab}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}}\right) D_{bc}^{\mu} \left(\mathbf{P}_{pr}^{\mu}\right) = \sum_{d=1}^{\ell^{\mu}} D_{ad}^{\mu} \left(\mathbf{P}_{pr}^{\mu}\right) D_{dc}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}}\right)$$

$$\sum_{b=1}^{\ell^{\mu}} D_{ab}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}}\right) \delta_{bp} \delta_{cr} = \sum_{d=1}^{\ell^{\mu}} \delta_{ap} \delta_{dr} D_{dc}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}}\right)$$

$$D_{ap}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}}\right) \delta_{cr} = \delta_{ap} D_{rc}^{\mu} \left(\mathbf{\kappa}_{\mathbf{g}}\right)$$

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{k=0}^{\mu} D_{mm}^{\mu}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of } \begin{cases} \text{irep projectors vs. } \mathbf{g} \\ \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}}^{m} D_{mn}^{\mu} (g) \mathbf{g} \end{cases}$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ_{G} \ell^{\mu}}{\circ_{G} g} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu*}(g) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu*} \chi^{\mu*}(g) \mathbf{g}$$

$$\mathbb{P}^{\mu} = \sum_{classes \, \mathbf{\kappa_g}} \frac{\ell^{\mu}}{{}^{\circ} G} \chi_g^{\mu^*} \mathbf{\kappa_g} \quad , \text{ where: } \chi_g^{\mu} = \chi^{\mu} (\mathbf{g}) = \chi^{\mu} (\mathbf{hgh}^{-1})$$

$$\mathbf{P}_{mn}^{\mu} = \frac{c}{{}^{\circ}\mathbf{G}} \sum_{\mathbf{g}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{g}$$

for unitary
$$D_{nm}^{\mu}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

κ_{g} in terms of \mathbb{P}^{μ}

Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors \mathbf{P}_{mn}^{μ} : $\mathbf{g} = \sum_{n}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

$$\mathbf{P}_{mn}^{\mu}: \left[\mathbf{g} = \sum_{\mu} \sum_{m}^{\ell^{\mu}} \sum_{n}^{\ell^{\mu}} D_{mn}^{\mu}(\mathbf{g}) \mathbf{P}_{mn}^{\mu}\right]$$

 $D_{mn}^{\mu}\left(\mathbf{K_g}\right)$ commutes with $D_{mn}^{\mu}\left(\mathbf{P}_{pr}^{\mu}\right) = \delta_{mp}\delta_{nr}$ for all p and r:

$$\begin{split} &\sum_{b=1}^{\ell^{\mu}} D^{\mu}_{ab} \left(\mathbf{\kappa_{g}}\right) D^{\mu}_{bc} \left(\mathbf{P}^{\mu}_{pr}\right) = \sum_{d=1}^{\ell^{\mu}} D^{\mu}_{ad} \left(\mathbf{P}^{\mu}_{pr}\right) D^{\mu}_{dc} \left(\mathbf{\kappa_{g}}\right) \\ &\sum_{b=1}^{\ell^{\mu}} D^{\mu}_{ab} \left(\mathbf{\kappa_{g}}\right) \ \delta_{bp} \delta_{cr} \ = \sum_{d=1}^{L} \ \delta_{ap} \delta_{dr} \ D^{\mu}_{dc} \left(\mathbf{\kappa_{g}}\right) \\ &D^{\mu}_{ap} \left(\mathbf{\kappa_{g}}\right) \ \delta_{cr} \ = \ \delta_{ap} \ D^{\mu}_{rc} \left(\mathbf{\kappa_{g}}\right) \quad \text{So: } D^{\mu}_{mn} \left(\mathbf{\kappa_{g}}\right) \text{ is multiple of } \ell^{\mu}\text{-by-}\ell^{\mu} \text{ unit matrix:} \end{split}$$

$$\sum_{b=1}^{\ell^{\mu}} D_{ab}^{\mu} \left(\mathbf{\kappa_{g}} \right) \ \delta_{bp} \delta_{cr} = \sum_{d=1}^{\ell^{\mu}} \ \delta_{ap} \delta_{dr} \ D_{dc}^{\mu} \left(\mathbf{\kappa_{g}} \right)$$

$$D_{ap}^{\mu}\left(\mathbf{\kappa_{g}}\right) \qquad \delta_{cr} = \delta_{ap} \qquad D_{rc}^{\mu}\left(\mathbf{\kappa_{g}}\right)$$

$$D_{mn}^{\mu}\left(\mathbf{\kappa_{g}}\right) = \delta_{mn} \frac{\chi^{\mu}\left(\mathbf{\kappa_{g}}\right)}{\ell^{\mu}} = \delta_{mn} \frac{{}^{\circ}\kappa_{g}\chi_{g}^{\mu}}{\ell^{\mu}}$$

 $(\mu)^{\text{th}}$ irep characters $\chi^{(\mu)}(\mathbf{g})$ given by trace definition: $\chi^{\mu}(\mathbf{g}) \equiv Trace D^{\mu}(\mathbf{g}) = \sum_{m}^{\ell} D_{mm}^{\mu}(\mathbf{g})$

 $(\mu)^{\text{th}} \text{ all-commuting class projector given by sum } \mathbb{P}^{\mu} = \mathbf{P}_{11}^{\mu} + \mathbf{P}_{22}^{\mu} + ... + \mathbf{P}_{\ell^{\mu}\ell^{\mu}}^{\mu} \text{ of } \begin{cases} \text{ irep projectors vs. } \mathbf{g} \\ \mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{\mathbf{g}}^{\infty} D_{mn}^{\mu} (g) \mathbf{g} \end{cases}$

$$\mathbb{P}^{\mu} = \sum_{m=1}^{\ell^{\mu}} \mathbf{P}_{mm}^{\mu} = \frac{\ell^{\mu} \circ_{G} \ell^{\mu}}{\circ_{G} g} \sum_{m=1}^{\ell^{\mu}} D_{mm}^{\mu*}(g) \mathbf{g} = \frac{\ell^{\mu} \circ_{G}}{\circ_{G}} \sum_{\mathbf{g}}^{\mu*} \chi^{\mu*}(g) \mathbf{g}$$

$$\mathbb{P}^{\mu} = \sum_{classes \, \kappa_{\mathbf{g}}} \frac{\ell^{\mu}}{{}^{\circ} G} \chi_{g}^{\mu*} \kappa_{\mathbf{g}} \quad , \text{ where: } \chi_{g}^{\mu} = \chi^{\mu} (\mathbf{g}) = \chi^{\mu} (\mathbf{hgh}^{-1})$$

$$\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}^{\circ}}{\circ_{G}^{\circ}} \sum_{\mathbf{g}}^{\infty} D_{mn}^{\mu^{*}}(\mathbf{g}) \mathbf{g}$$

for unitary
$$D_{nm}^{\mu}$$

$$D_{mn}^{\mu^*}(g) = D_{nm}^{\mu}(g^{-1})$$

κ_{g} in terms of \mathbb{P}^{μ}

Find all-commuting class $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ} given \mathbf{g} vs. irep projectors \mathbf{P}_{mn}^{μ} : $\mathbf{g} = \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} \sum_{n=1}^{\ell^{\mu}} D_{mn}^{\mu} (\mathbf{g}) \mathbf{P}_{mn}^{\mu}$

 $D_{mn}^{\mu}(\mathbf{K}_{\mathbf{g}})$ commutes with $D_{mn}^{\mu}(\mathbf{P}_{pr}^{\mu}) = \delta_{mp}\delta_{nr}$ for all p and r:

$$\begin{split} &\sum_{b=1}^{\ell^{\mu}} D^{\mu}_{ab} \left(\mathbf{\kappa_{g}}\right) D^{\mu}_{bc} \left(\mathbf{P}^{\mu}_{pr}\right) = \sum_{d=1}^{\ell^{\mu}} D^{\mu}_{ad} \left(\mathbf{P}^{\mu}_{pr}\right) D^{\mu}_{dc} \left(\mathbf{\kappa_{g}}\right) \\ &\sum_{b=1}^{\ell^{\mu}} D^{\mu}_{ab} \left(\mathbf{\kappa_{g}}\right) \ \delta_{bp} \delta_{cr} \ = \sum_{d=1}^{\Sigma} \ \delta_{ap} \delta_{dr} \ D^{\mu}_{dc} \left(\mathbf{\kappa_{g}}\right) \\ &D^{\mu}_{ap} \left(\mathbf{\kappa_{g}}\right) \quad \delta_{cr} \ = \quad \delta_{ap} \quad D^{\mu}_{rc} \left(\mathbf{\kappa_{g}}\right) \quad \text{So: } D^{\mu}_{mn} \left(\mathbf{\kappa_{g}}\right) \text{ is multiple of } \ell^{\mu}\text{-by-}\ell^{\mu} \text{ unit matrix:} \end{split}$$

$$\sum_{b=1}^{\ell'} D_{ab}^{\mu} \left(\mathbf{\kappa_g} \right) \ \delta_{bp} \delta_{cr} = \sum_{d=1}^{\ell'} \ \delta_{ap} \delta_{dr} \ D_{dc}^{\mu} \left(\mathbf{\kappa_g} \right)$$

$$D_{ap}^{\mu}\left(\mathbf{\kappa_{g}}\right) \qquad \delta_{cr} = \delta_{ap} \qquad D_{rc}^{\mu}\left(\mathbf{\kappa_{g}}\right)$$

$$D_{mn}^{\mu} \left(\mathbf{\kappa_{g}} \right) = \delta_{mn} \frac{\chi^{\mu} \left(\mathbf{\kappa_{g}} \right)}{\ell^{\mu}} = \delta_{mn} \frac{{}^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}$$

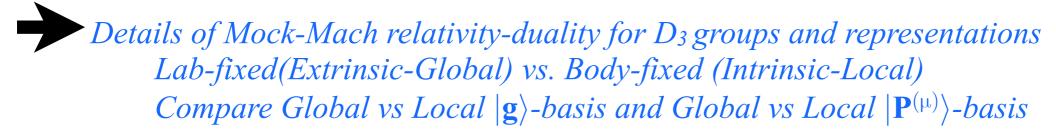
$$\kappa_{g} = \sum_{\mu} \frac{{}^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}$$

Review: Spectral resolution of D_3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_3 examples)

Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators $D^{\mu}_{jk}(g)$ orthogonality relations

Class projector character formulae \mathbb{P}^{μ} in terms of $\kappa_{\mathbf{g}}$ and $\kappa_{\mathbf{g}}$ in terms of \mathbb{P}^{μ}

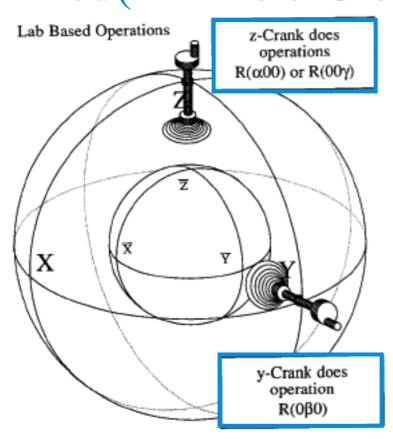


Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

"Give me a place to stand...
and I will move the Earth"
Archimedes 287-212 B.C.E

Ideas of duality/relativity go way back (... Van Vleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed(Extrinsic-Global)R,S,..vs. Body-fixed (Intrinsic-Local)R,S,..

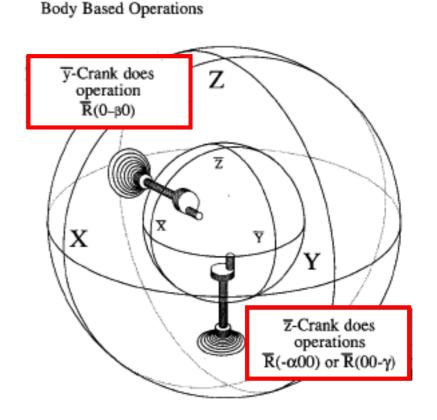


all R, S, ...commute with all $\bar{R}, \bar{S}, ...$

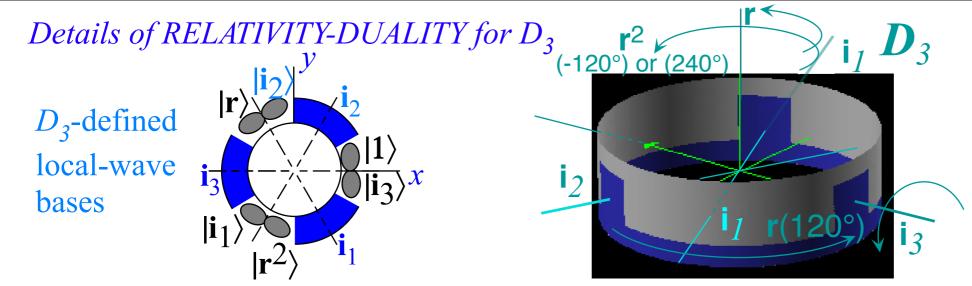
"Mock-Mach" relativity principles

$$\begin{array}{c} \mathbf{R}|1\rangle = \mathbf{\bar{R}}^{-1}|1\rangle \\ \mathbf{S}|1\rangle = \mathbf{\bar{S}}^{-1}|1\rangle \\ \vdots \end{array}$$

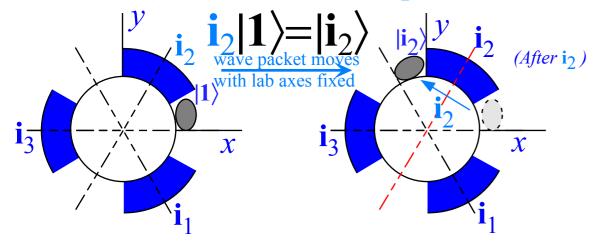
...for one state |1) only!

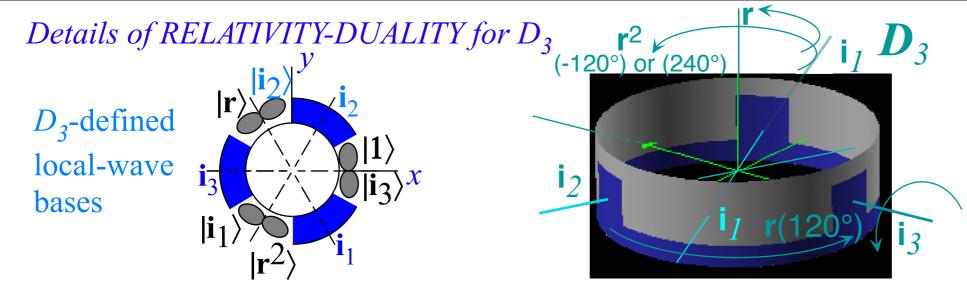


...But how do you actually make the R and R operations?

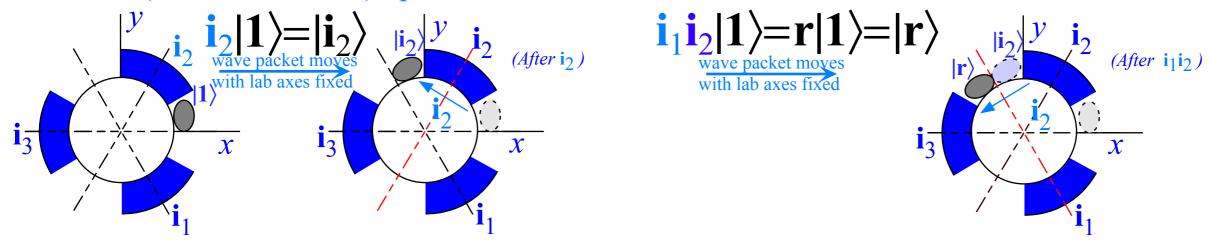


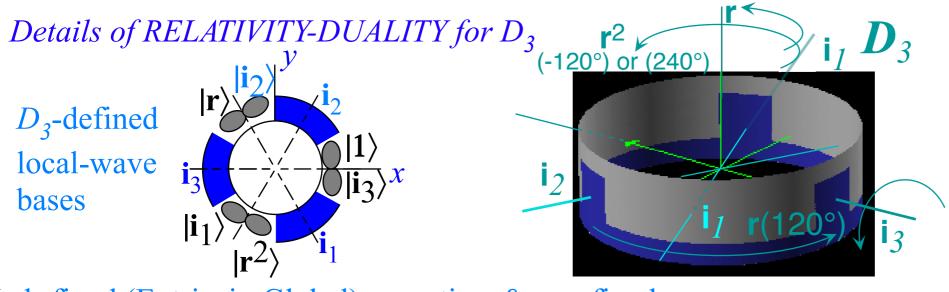
Lab-fixed (Extrinsic-Global) operations&axes fixed





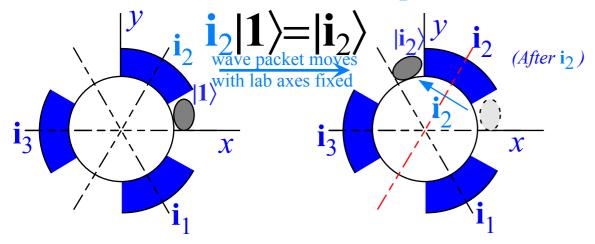
Lab-fixed (Extrinsic-Global) operations&axes fixed

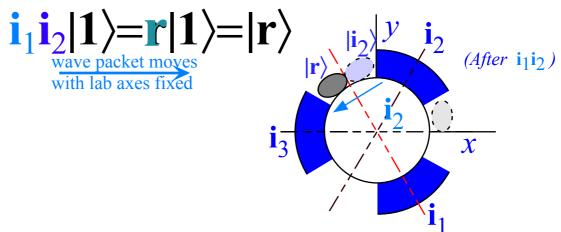


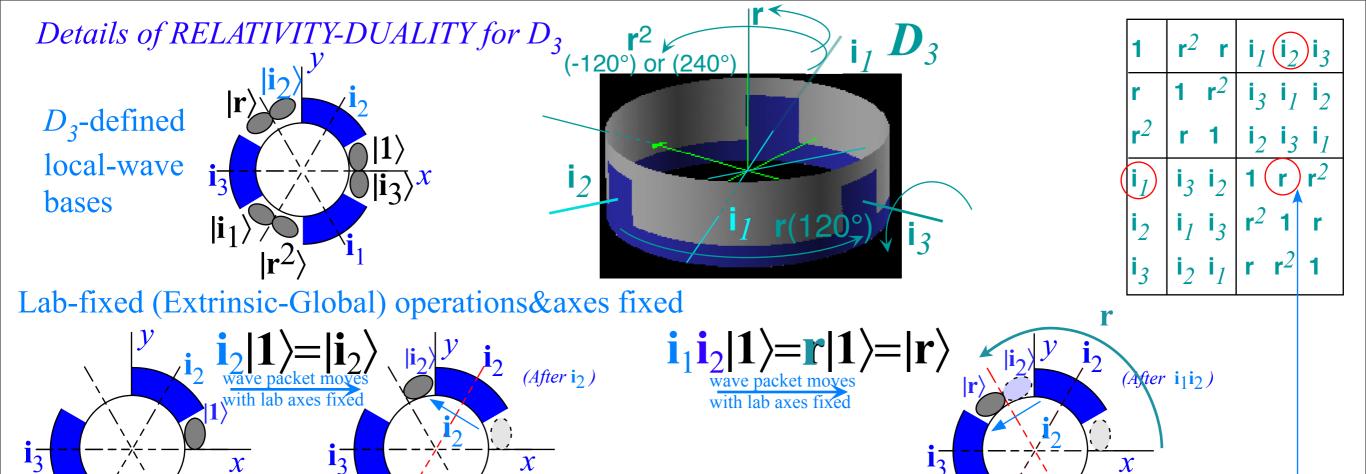


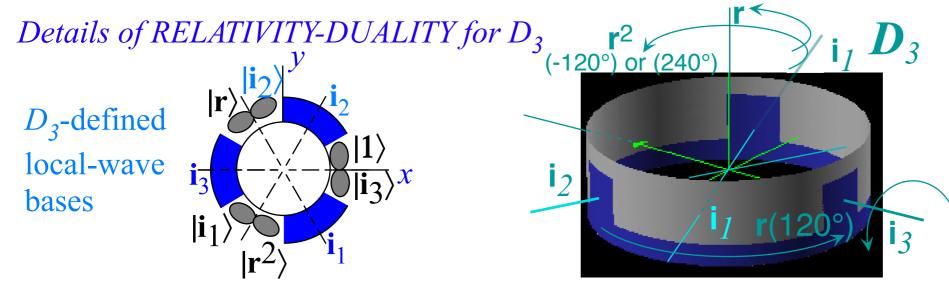


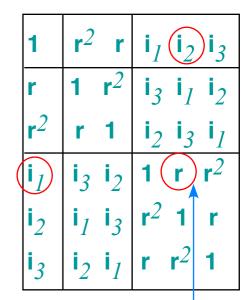
Lab-fixed (Extrinsic-Global) operations&axes fixed



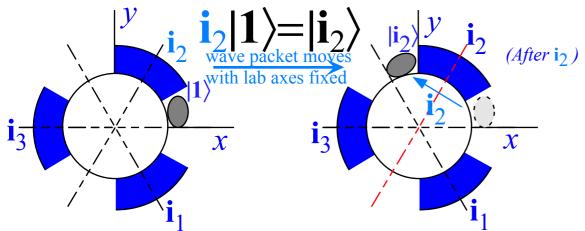




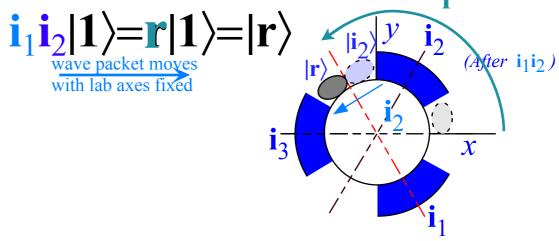


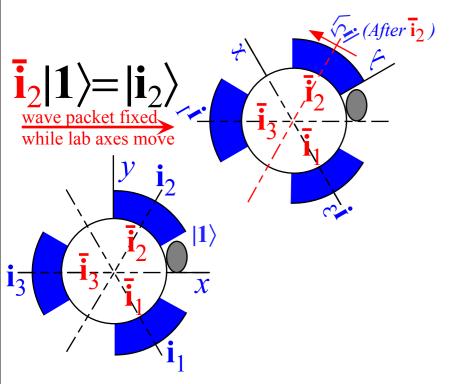


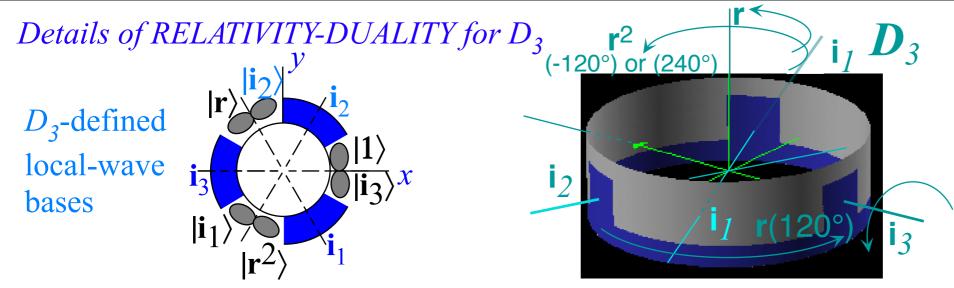
Lab-fixed (Extrinsic-Global) operations&axes fixed

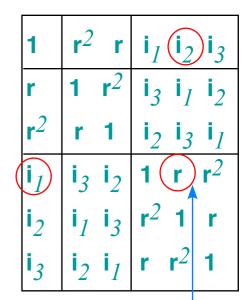


Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

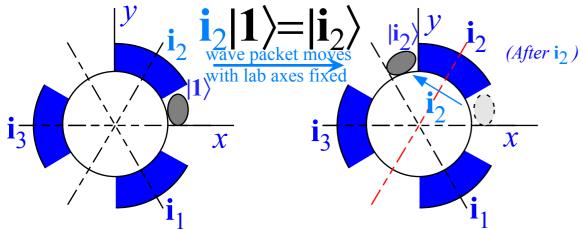




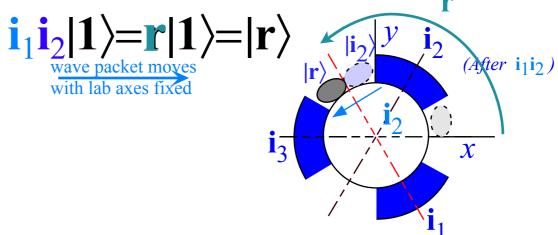


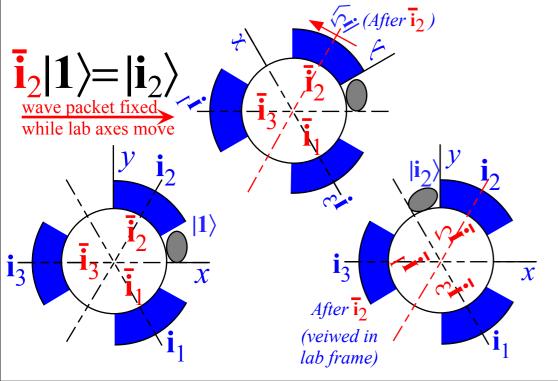


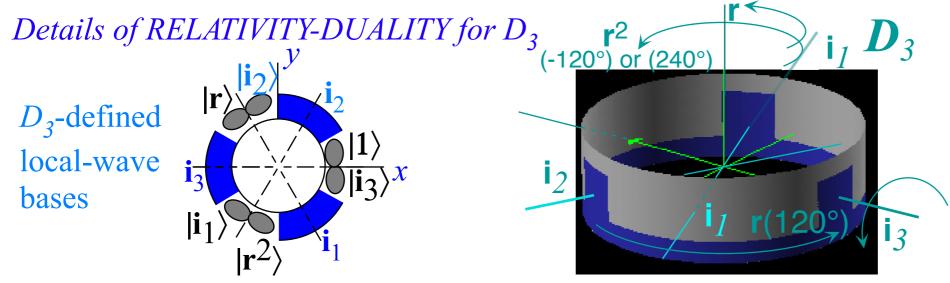
Lab-fixed (Extrinsic-Global) operations&axes fixed

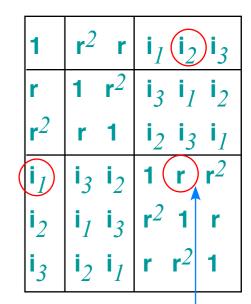


Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

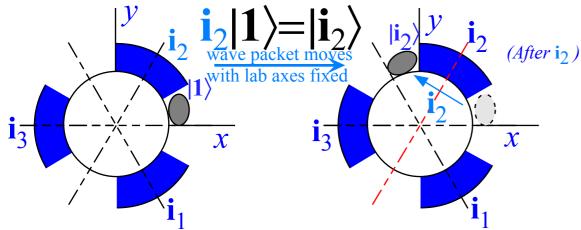




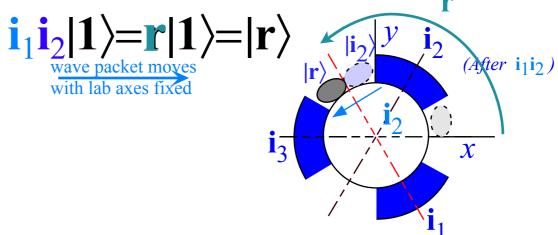


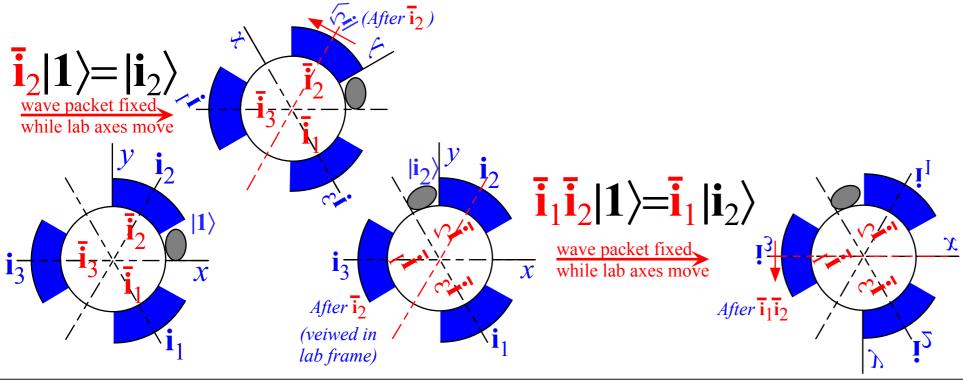


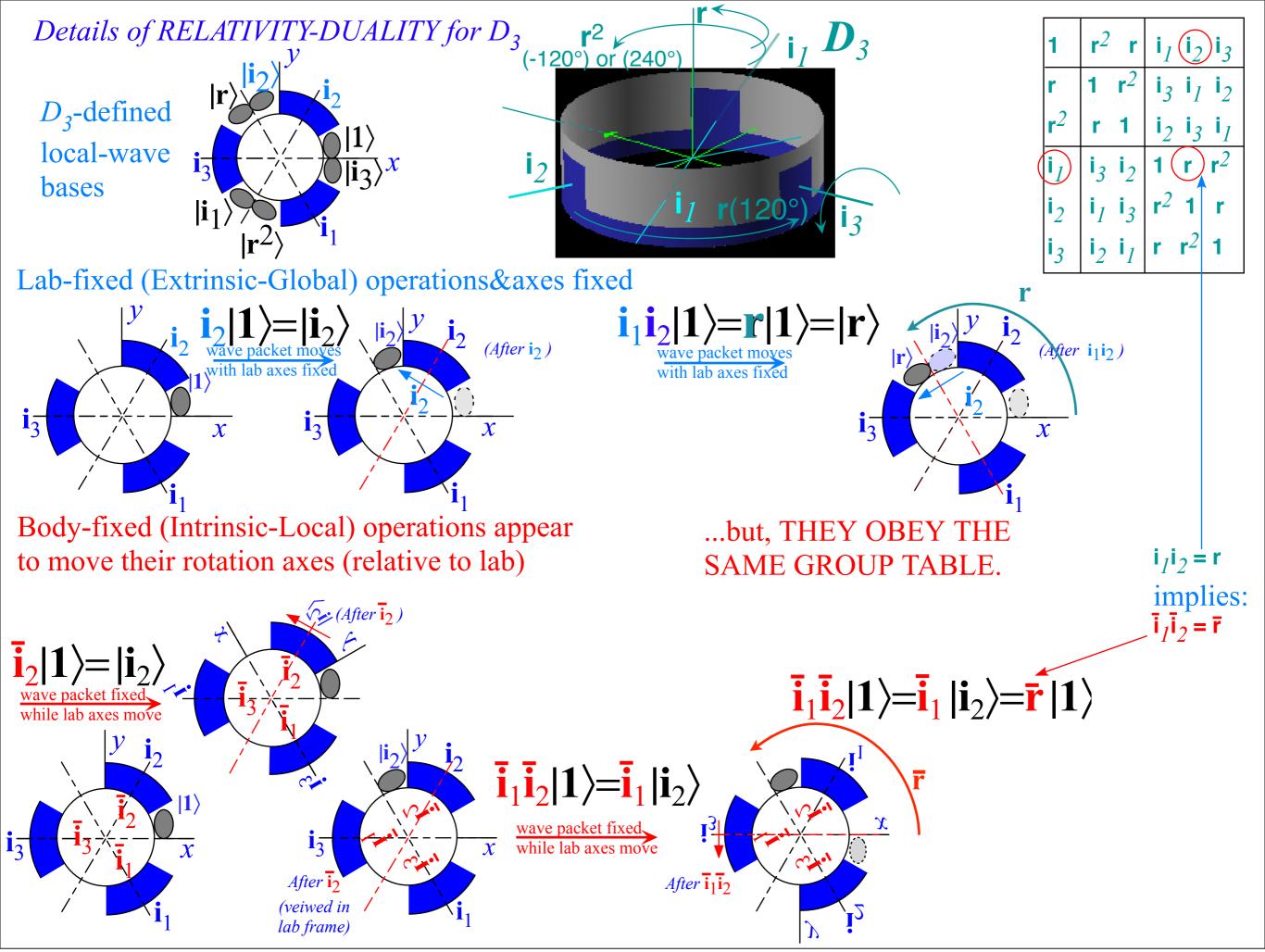
Lab-fixed (Extrinsic-Global) operations&axes fixed

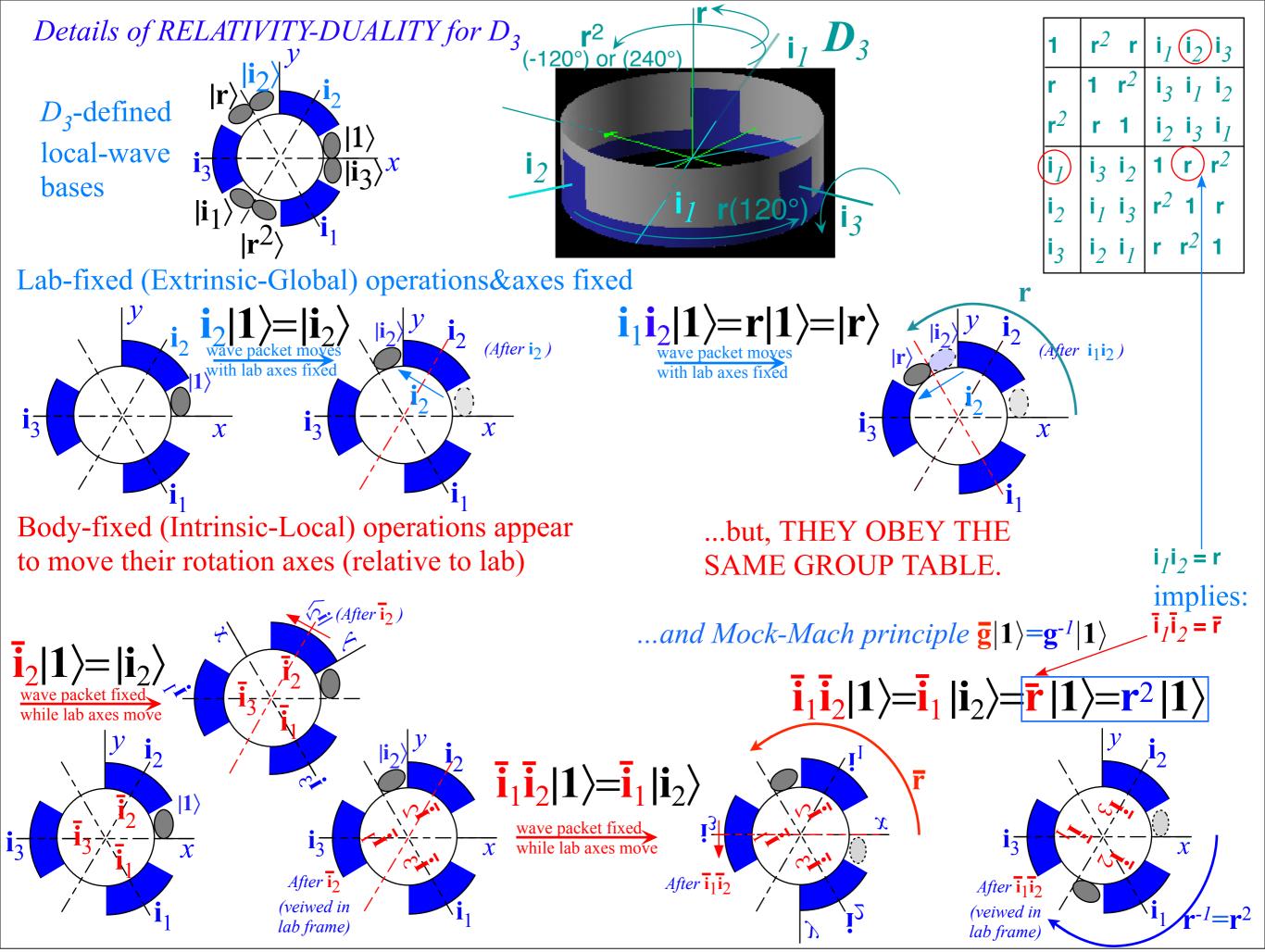


Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)









Review: Spectral resolution of D₃ Center (Class algebra) and its subgroup splitting

```
General formulae for spectral decomposition (D_3 examples)

Weyl g-expansion in irep D^{\mu}_{jk}(g) and projectors \mathbf{P}^{\mu}_{jk}

\mathbf{P}^{\mu}_{jk} transforms right-and-left

\mathbf{P}^{\mu}_{jk} -expansion in g-operators

D^{\mu}_{jk}(g) orthogonality relations

Class projector character formulae

\mathbb{P}^{\mu} in terms of \kappa_{\mathbf{g}} and \kappa_{\mathbf{g}} in terms of \mathbb{P}^{\mu}
```

Details of Mock-Mach relativity-duality for D_3 groups and representations $Lab\text{-}fixed(Extrinsic\text{-}Global) vs. Body\text{-}fixed (Intrinsic\text{-}Local)}$ $Compare Global vs Local |\mathbf{g}\rangle\text{-}basis and Global vs Local |\mathbf{P}^{(\mu)}\rangle\text{-}basis$

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Hamiltonian local-symmetry eigensolution

Compare Global vs Local $|\mathbf{g}\rangle$ -basis vs. Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

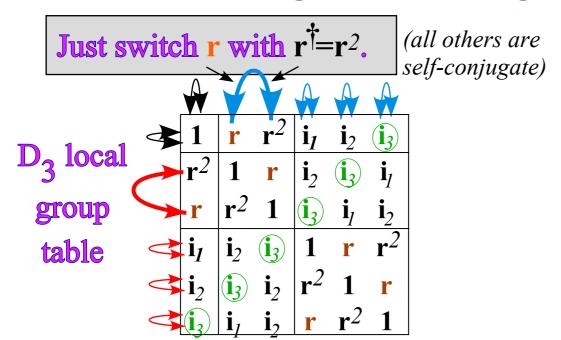
D₃ global group product table

1	\mathbf{r}^2	r	i 1	i 2	(i 3)
r	1	\mathbf{r}^2	(i ₃)	i ₁	\mathbf{i}_2
\mathbf{r}^2	r	1	i ₂	(i ₃)	i ₁
i ₁	i 3	i 2	1	r	\mathbf{r}^2
i 2	i ₁	(i 3)	$ \mathbf{r}^2 $	1	r
<u>i</u> 3	$ \mathbf{i}_2 $	\mathbf{i}_{1}	r	\mathbf{r}^2	1

Change Global to Local by switching

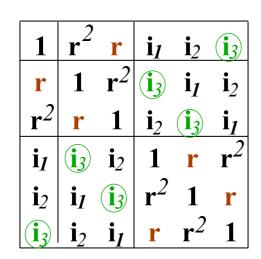
...column-g with column-g

....and row-g with row-g



Compare Global vs Local $|\mathbf{g}\rangle$ -basis vs. Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

D₃ global group product table



D₃ global projector product table

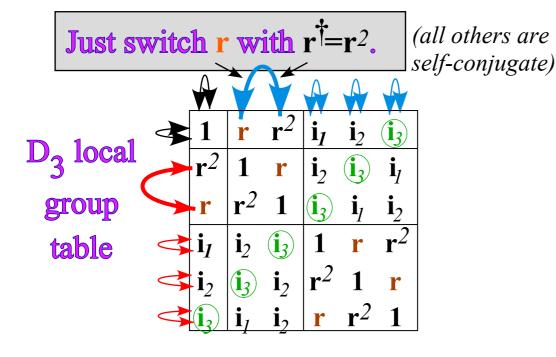
D_3	$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{yy}^{A_2}$	\mathbf{P}_{xx}^{E}	\mathbf{P}_{xy}^{E}	\mathbf{P}_{yx}^{E}	\mathbf{P}_{yy}^{E}
$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{xx}^{A_1}$	•	•	•	•	•
$\mathbf{P}_{yy}^{A_2}$		$\mathbf{P}_{yy}^{A_2}$			•	
\mathbf{P}_{xx}^{E}	•	•	\mathbf{P}_{xx}^{E}	\mathbf{P}_{xy}^{E}	•	•
\mathbf{P}_{yx}^{E}		•		\mathbf{P}_{yy}^{E}	•	•
\mathbf{P}_{xy}^{E}	•	•	•	•	\mathbf{P}_{xx}^{E}	\mathbf{P}_{xy}^{E}
\mathbf{P}_{y}^{E}					\mathbf{P}_{y}^{E}	\mathbf{P}_{y}^{E}

Change Global to Local by switching

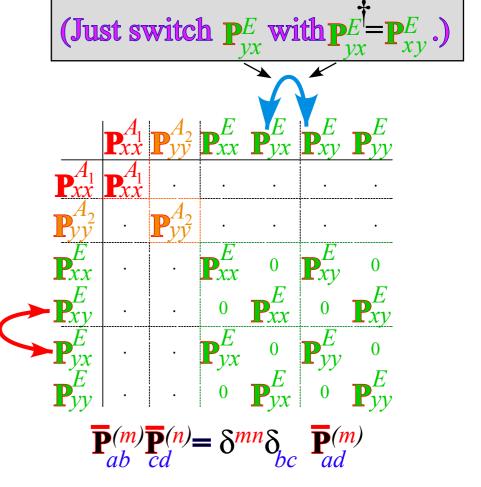
 $\mathbf{P}_{ab}^{(m)}\mathbf{P}_{cd}^{(n)} = \delta^{mn}\delta_{bc} \ \mathbf{P}_{ad}^{(m)}$

...column-P with column-P

....and row-P with row-P



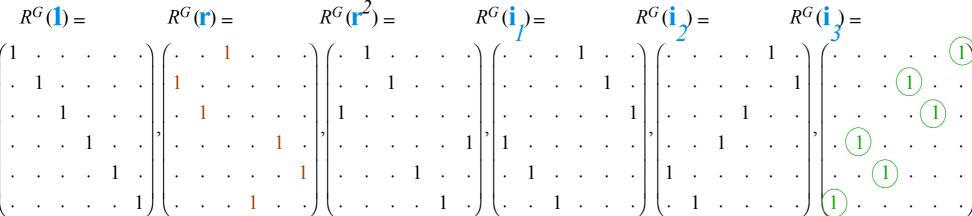
D₃ local projector product table

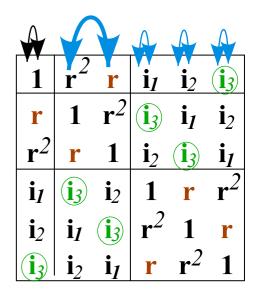


Compare Global vs Local $|\mathbf{g}\rangle$ -basis

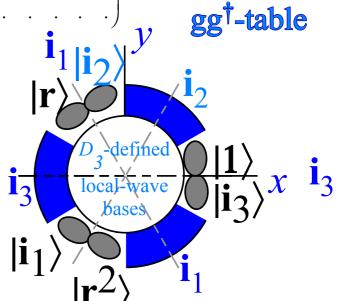
Example of RELATIVITY-DUALITY for $D_3 \sim C_{3v}$

To represent *external* {..T,U,V,...} switch **g** g on top of group table





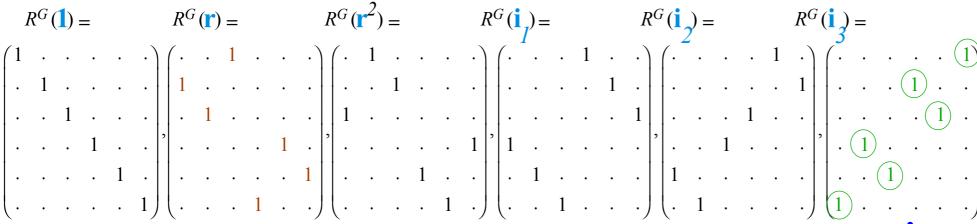
 D_3 global

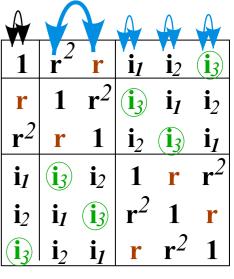


Compare Global vs Local $|\mathbf{g}\rangle$ -basis

Example of RELATIVITY-DUALITY for $D_3 \sim C_{3v}$

To represent *external* $\{..T,U,V,...\}$ switch $g \neq g^{\dagger}$ on <u>top</u> of group table





 D_3 global gg^{\dagger} -table

 $\frac{RESULT:}{Any R(T)}$

commute (Even if T and U do not...)

with any $R(\overline{\mathbf{U}})$...

...and $\mathbf{T} \cdot \mathbf{U} = \mathbf{V}$ if \mathbf{v} only if $\mathbf{\overline{T}} \cdot \mathbf{\overline{U}} = \mathbf{\overline{V}}$.

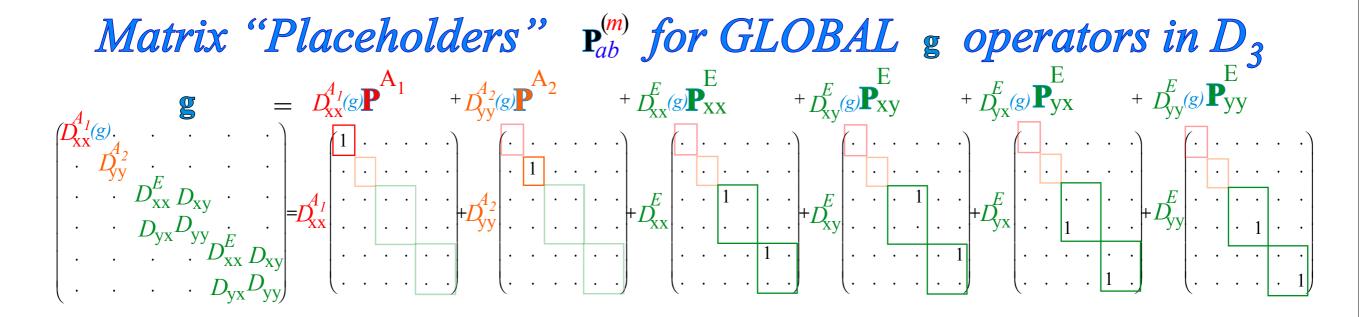
 $|\mathbf{r}|$ $|\mathbf{r}|$

To represent *internal* $\{..\overline{T},\overline{U},\overline{V},...\}$ switch $g \not = g^{\dagger}$ on <u>side</u> of group table

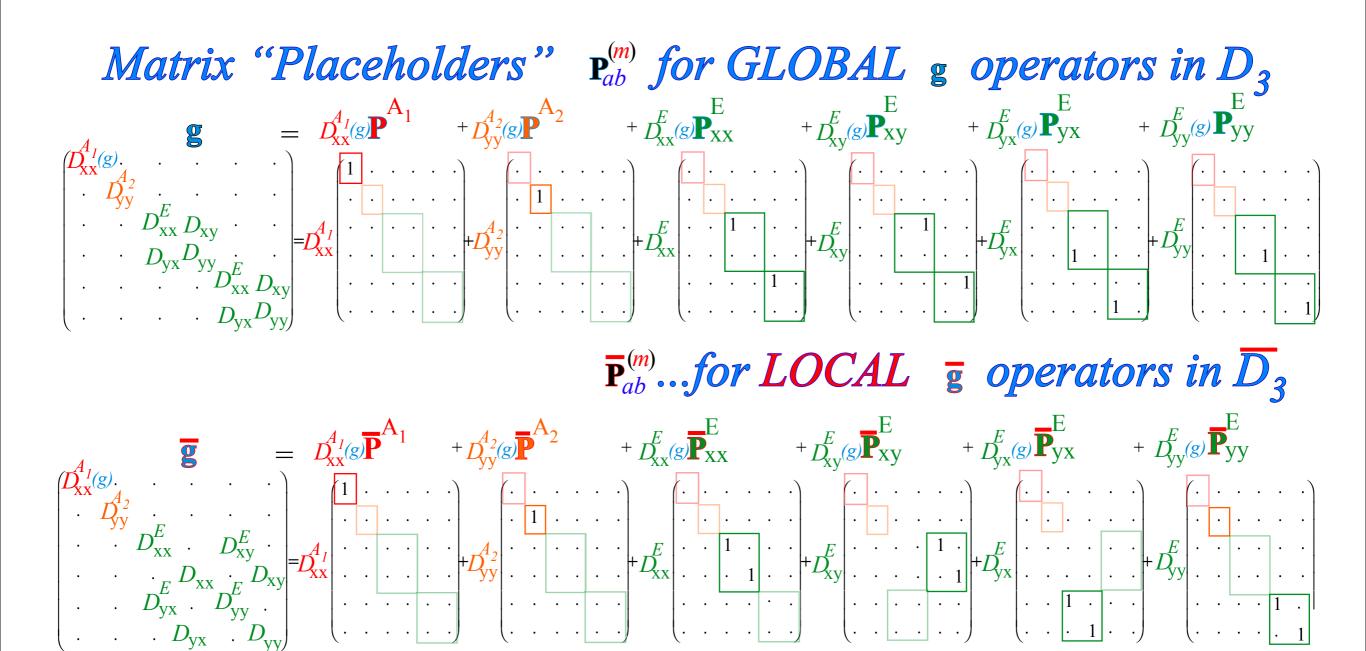
g†g-table

$R^{G}(\overline{1}) = R^{G}(\overline{r}) = R^{G}(\overline{r}^{2}) = R^{G}(\overline{i}) = R^{G}(\overline{i}$	$R^G(\overline{1})$ –	$R^G(\overline{\mathbf{r}})$ –	$R^{G}(\overline{\mathbf{r}}^{2})$	$R^{G}(\overline{1})$ –	$R^G(\overline{\mathbf{i}})$	$R^{G}(\overline{\mathbf{i}})$	
$\begin{vmatrix} \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & \cdot & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} \cdot & 1 & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \end{vmatrix} \end{vmatrix}$	(1)	1	1) (1	1	(3)=	$\mathbf{r}^2 \mid 1 \mathbf{r} \mid \mathbf{i}_2 \mathbf{i}_3 \mathbf{i}_4 \mid$
$ \cdot \cdot \cdot \cdot \cdot $ $ \cdot \cdot$	$ \begin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \end{bmatrix} $	$\begin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} \cdot \\ 1 \end{bmatrix}$	1		1	$\begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot & 1 \end{bmatrix}$	\mathbf{r} \mathbf{r}^2 1 \mathbf{i}_3 \mathbf{i}_1 \mathbf{i}_2
$\begin{vmatrix} \cdot \cdot \cdot \cdot \cdot 1 \cdot \cdot \cdot \begin{vmatrix} \cdot \cdot \cdot \cdot \cdot \cdot 1 \cdot \cdot \begin{vmatrix} \cdot \cdot \cdot \cdot$	$ \cdot \cdot \cdot \cdot \cdot $	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot$. 1	1 .	$\cdot \cdot \cdot \cdot \cdot 1$	$ \cdot \cdot \cdot $	$\langle \mathbf{i}_1 \mathbf{i}_2 \langle \mathbf{i}_3 \rangle 1 \mathbf{r} \mathbf{r}^2 $
$ \cdot \cdot$		1 . .	1	1	. 1		$\mathbf{i}_2 \mathbf{i}_3 \mathbf{i}_2 \mathbf{r}^2 1 \mathbf{r}$
		1		1	1	$\begin{bmatrix} \cdot & 1 \\ 1 \end{bmatrix} \cdot \cdot \cdot \cdot \cdot \cdot $	$ \mathbf{i}_3 \mathbf{i}_1 \mathbf{i}_2 \mathbf{r} \mathbf{r}^2 1 $

Compare Global $|\mathbf{P}^{(\mu)}\rangle$ -basis vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

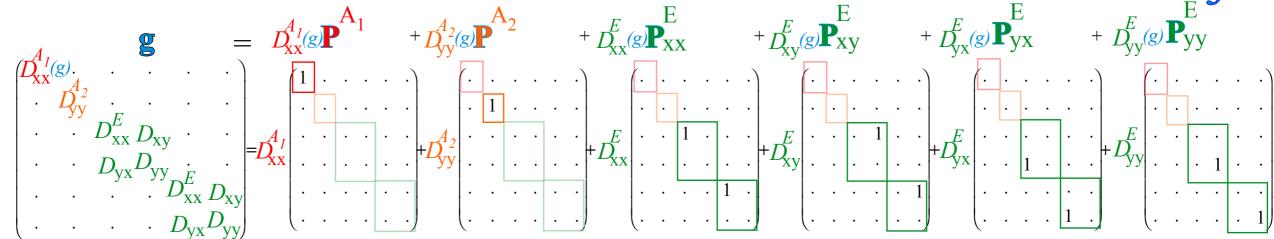


Compare Global $|\mathbf{P}^{(\mu)}\rangle$ -basis vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

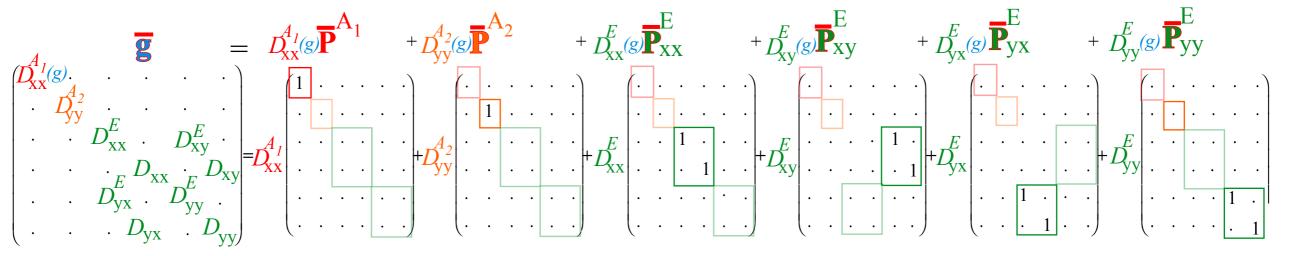


Compare Global $|\mathbf{P}^{(\mu)}\rangle$ -basis vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Matrix "Placeholders" $\mathbf{P}_{ab}^{(m)}$ for GLOBAL g operators in D_3



$\mathbf{\bar{P}}_{ab}^{(m)}...$ for LOCAL $\mathbf{\bar{g}}$ operators in $\mathbf{\bar{D}}_3$



Note how any global g-matrix commutes with any local g-matrix

Review: Spectral resolution of D₃ Center (Class algebra) and its subgroup splitting

```
General formulae for spectral decomposition (D_3 examples)

Weyl g-expansion in irep D^{\mu}_{jk}(g) and projectors \mathbf{P}^{\mu}_{jk}

\mathbf{P}^{\mu}_{jk} transforms right-and-left

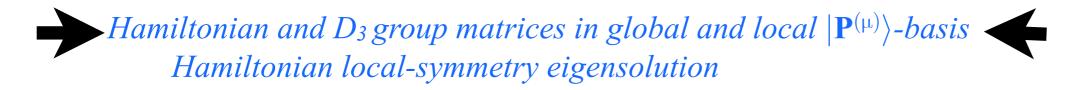
\mathbf{P}^{\mu}_{jk} -expansion in g-operators

D^{\mu}_{jk}(g) orthogonality relations

Class projector character formulae

\mathbb{P}^{\mu} in terms of \kappa_{\mathbf{g}} and \kappa_{\mathbf{g}} in terms of \mathbb{P}^{\mu}
```

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis



For unitary
$$D^{(\mu)}$$
: $(p.33)$ $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}^{\mu}_{mn} = \frac{\ell^{(\mu)} \circ_G}{\circ_G} \sum_{\mathbf{g}}^{\mu} D^{\mu^*}_{mn} (g) \mathbf{g} = \mathbf{P}^{\mu\dagger}_{nm}$ acting on original ket $|\mathbf{1}\rangle$

For unitary
$$D^{(\mu)}$$
: $(p.33)$

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm}$$

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$

For unitary
$$D^{(\mu)}$$
: $(p.33)$

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^2}$$

For unitary
$$D^{(\mu)}$$
: $(p.33)$

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}\mathbf{G}} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}}$$

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$
 subject to normalization:

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Sunday, March 29, 2015 115

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}\mathbf{G}} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu'}_{n'm'} \mathbf{P}^{\mu}_{mn} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{n'n} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{nn} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global **g** *on irep-ket* $\begin{pmatrix} \mu \\ mn \end{pmatrix}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Sunday, March 29, 2015 116

For unitary $D^{(\mu)}$: (p.33)

 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}} (g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}\mathbf{G}} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu'}_{n'm'} \mathbf{P}^{\mu}_{mn} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{n'n} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{nn} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global **g** *on irep-ket* $\begin{pmatrix} \mu \\ mn \end{pmatrix}$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \right| \mathbf{g} \right| \mu\atop mn = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

For unitary $D^{(\mu)}$: (p.33)

 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}_{G}} \sum_{g}^{g} D_{mn}^{\mu^{*}} (g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}\mathbf{G}} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject to normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad where: \quad norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \right| \mathbf{g} \right| \mu\atop mn = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\overline{\mathbf{g}} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad Use$$

$$= \mathbf{P}_{mn}^{\mu} \overline{\mathbf{g}} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad \underbrace{\begin{array}{c} Mock-Mach \\ commutation \\ and \end{array}}_{and}$$

For unitary $D^{(\mu)}$: (p.33)

 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}_{G}} \sum_{\mathbf{g}}^{\mathbf{g}} D_{mn}^{\mu^{*}} (g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}\mathbf{G}} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$
 subject to normalization:

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad where: \quad norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \middle| \mathbf{g} \middle| \mu\atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\overline{\mathbf{g}} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad Use \\
= \mathbf{P}_{mn}^{\mu} \overline{\mathbf{g}} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \quad dock-Mach \\
=$$

Hamiltonian and D_3 global-**g** and local-**g** group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}} (g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject to normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad where: \quad norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \middle| \mathbf{g} \middle| \mu\atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{m'n'}^{\mu} D_{m'n'}^{\mu} (\mathbf{g}^{-1})$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g} \mathbf{g} \mathbf{1} \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} \mathbf{1} \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} \mathbf{1} \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$$

$$\frac{\mathbf{g}}{mn} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad Use$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g} |\mathbf{1}\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad \frac{Mock-Mach}{commutation}$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} |\mathbf{1}\rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad \frac{inverse}{inverse}$$

Hamiltonian and D_3 global-**g** and local-**g** group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject to normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu'}_{n'm'} \mathbf{P}^{\mu}_{mn} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{n'n} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}^{\mu}_{nn} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \middle| \mathbf{g} \middle| \mu\atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{mn'}^{\mu} D_{nn'}^{\mu} (g^{-1})$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g} \mathbf{1} \sqrt{\frac{G}{\ell^{(\mu)}}}$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} \mathbf{1} \sqrt{\frac{G}{\ell^{(\mu)}}}$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} \mathbf{1} \sqrt{\frac{G}{\ell^{(\mu)}}}$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} \mathbf{1} \sqrt{\frac{G}{\ell^{(\mu)}}}$$

$$= \mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} \mathbf{1} \sqrt{\frac{G}{\ell^{(\mu)}}}$$

$$\overline{\mathbf{g}} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad Use$$

$$= \mathbf{P}_{mn}^{\mu} \overline{\mathbf{g}} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad commutation and inverse$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad inverse$$

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}\mathbf{G}} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject to normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global **g** on irep-ket
$$\begin{pmatrix} \mu \\ mn \end{pmatrix}$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \right| \mathbf{g} \right| \mu\atop mn = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{m'n'}^{\mu} D_{m'n'}^{\mu} (g^{-1})$$

$$= \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn'}^{\mu} D_{nn'}^{\mu} (g^{-1})$$

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}\mathbf{G}} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject to normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \right| \mathbf{g} \right| \mu\atop mn = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

$$|\mathbf{P}^{\mu}|_{mn}^{23-28} = \mathbf{P}^{\mu}_{mn}^{\mu} \mathbf{g} |\mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \xrightarrow{\mathbf{Mock-Mach}} \mathbf{P}^{\mu}_{mn} \mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}^{\mu}_{mn'} D^{\mu}_{m'n'} (g^{-1}) = \sum_{n'=1}^{\ell^{\mu}} D^{\mu}_{nn'} (g^{-1}) \mathbf{P}^{\mu}_{mn'} \mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} = \sum_{n'=1}^{\ell^{\mu}} D^{\mu}_{nn'} (g^{-1}) \mathbf{P}^{\mu}_{mn'} \mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$$

$$\frac{\mathbf{g}}{mn} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \qquad Use$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g} | \mathbf{1} \rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \qquad \frac{Mock-Mach}{commutation}$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} | \mathbf{1} \rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \qquad \frac{inverse}{inverse}$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) \mathbf{P}_{mn'}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) | \mu_{mn'} \rangle$$

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject to normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad where: norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \middle| \mathbf{g} \middle| \mu\atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

$$\frac{\mathbf{g}}{mn} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad Use$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad \frac{Mock-Mach}{commutation}$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad \frac{inverse}{inverse}$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) \mathbf{P}_{mn'}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}}$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) | \mu_{mn'} \rangle$$

Local \overline{g}-matrix component

$$\left\langle \mu_{mn'} \middle| \mathbf{\overline{g}} \middle| \mu_{mn} \right\rangle = D_{nn'}^{\mu}(\mathbf{g}^{-1}) = D_{n'n}^{\mu*}(\mathbf{g})$$

For unitary $D^{(\mu)}$: (p.33)

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}} (g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle \quad subject to normalization:$$

$$\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad where: \quad norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$$

Left-action of global \mathbf{g} on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ is quite different

$$\mathbf{g} \Big| \begin{array}{c} \mu \\ mn \end{array} \rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu \\ m'n \end{array} \rangle$$

Matrix is same as given on p.23-28

$$\left\langle \mu\atop m'n \right| \mathbf{g} \right| \mu\atop mn = D^{\mu}_{m'm} \left(\mathbf{g}\right)$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{mn'}^{\mu} D_{nn'}^{\mu} (g^{-1})$$

$$= \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn'}^{\mu} D_{nn'}^{\mu} (g^{-1})$$

$$= \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn'}^{\mu} D_{nn'}^{\mu} (g^{-1})$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) \mathbf{P}_{mn'}^{\mu} |\mathbf{1}\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) \mathbf{P}_{mn'}^{\mu} |\mathbf{1}\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$$

$$\frac{\mathbf{g}}{mn} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad Use$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad \frac{Mock-Mach}{commutation}$$

$$= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}} \qquad \frac{inverse}{inverse}$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) \mathbf{P}_{mn'}^{\mu} | \mathbf{1} \rangle \sqrt{\frac{{}^{\circ} G}{\ell^{(\mu)}}}$$

$$= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) | \mu_{mn'} \rangle$$

Global g-matrix component

$$\left\langle \mu \atop m'n \middle| \mathbf{g} \middle| \mu \atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

Local \overline{g}-matrix component

$$\left\langle \mu \atop mn' \right| \overline{\mathbf{g}} \right| \mu \atop mn \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu*}(g)$$

 D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$R^{P}(\mathbf{g}) = TR^{G}(\mathbf{g})T^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{2}} \\ \mathbf{P}_{xx}^{A_{2}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xy}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xy}^{E_{1}} \\ \mathbf{P}_{xy}^{E_{1}} \end{vmatrix}$$

$\int D^{A_{l}}$	(\mathbf{g})			•		
	•	$D^{A_2}(\mathbf{g})$	•	•		
	•		$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$		•
	•		$D_{yx}^{E_1}\left(\mathbf{g}\right)$	$D_{yy}^{E_1}$		
	•			•	$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$
	•			•	$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$

|P^(μ)⟩-base ordering to concentrate global-**g** D-matrices

Global g-matrix component

$$\left\langle \mu \atop m'n \middle| \mathbf{g} \middle| \mu \atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

Local \overline{g}-matrix component

$$\left\langle \mu \atop mn' \right| \mathbf{\overline{g}} \left| \mu \atop mn \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu*}(g)$$

$$R^{P}(\mathbf{g}) = TR^{G}(\mathbf{g})T^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{2}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{2}} \\ \mathbf{P}_{xx}^{A_{2}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xy}^{E_{1}} \\ \mathbf{P}_{xy}^{E_{1}} \end{vmatrix}$$

$D^{A_{ m l}}ig({f g}ig)$					
•	$D^{A_2}(\mathbf{g})$	•	•	•	
		$D_{xx}^{E_1}\left(\mathbf{g}\right)$	$D_{xy}^{E_1}$		
	•	$D_{yx}^{E_1}\left(\mathbf{g}\right)$	$D_{yy}^{E_1}$	٠	•
•			•	$D_{xx}^{E_1}\left(\mathbf{g}\right)$	$D_{xy}^{E_1}$
			•	$D_{yx}^{E_1}\left(\mathbf{g}\right)$	$D_{yy}^{E_1}$

|**P**^(μ)⟩-base ordering to concentrate global-**g** D-matrices

D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$R^{P}(\mathbf{\overline{g}}) = TR^{G}(\mathbf{\overline{g}})T^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{1}} \end{vmatrix} \qquad \begin{vmatrix} \mathbf{P}_{yx}^{A_{2}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix} \qquad \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xy}^{E_{1}} \end{vmatrix} \qquad \begin{vmatrix} \mathbf{P}_{yy}^{E_{1}} \\ \mathbf{P}_{yy}^{E_{1}} \end{vmatrix}$$

	$D^{A_{\mathbf{l}}^*}(\mathbf{g})$	•	•	•	•	
		$D^{A_2}^*(\mathbf{g})$	•	•	•	
			$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$	
-				$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$
			$D_{yx}^{E_1^*}(\mathbf{g})$	•	$D_{yy}^{E_1^*}(\mathbf{g})$	
				${D_{yx}^{E_1}}^*(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$

here

Local \overline{g}-matrix

is not concentrated

Global g-matrix component

$$\left\langle \mu \atop m'n \middle| \mathbf{g} \middle| \mu \atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

Local **\overline{g}**-matrix component

$$\left\langle \mu \atop mn' \right| \mathbf{\overline{g}} \left| \mu \atop mn \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu*}(g)$$

$$R^{P}(\mathbf{g}) = TR^{G}(\mathbf{g})T^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{2}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xy}^{E_{1}} \\ \mathbf{P}_{xy}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xy}^{E_{1}} \\ \mathbf{P}_{xy}^{E_{1}} \end{vmatrix}$$

$D^{A_{ m l}}ig({f g}ig)$					
•	$D^{A_2}(\mathbf{g})$		•		
		$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$		
		$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$		
				$D_{xx}^{E_1}(\mathbf{g})$	
•		•		$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$

$$\overline{R}^{P}(\mathbf{g}) = \overline{T}R^{G}(\mathbf{g})\overline{T}^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{2}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}}$$

$D^{A_{ m l}}ig({f g}ig)$					
•	$D^{A_2}(\mathbf{g})$		•		
		$D_{xx}^{E_1}\left(\mathbf{g}\right)$	•	$D_{xy}^{E_1}\left(\mathbf{g}\right)$	
			$D_{xx}^{E_1}$		$D_{xy}^{E_1}$
		$D_{yx}^{E_1}(\mathbf{g})$	•	$D_{yy}^{E_1}(\mathbf{g})$	
			$D_{yx}^{E_1}$		$D_{yy}^{E_1}$

D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$R^{P}(\mathbf{\bar{g}}) = TR^{G}(\mathbf{\bar{g}})T^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{1}} \end{vmatrix} \qquad \begin{vmatrix} \mathbf{P}_{yy}^{A_{2}} \\ \mathbf{P}_{xx}^{E_{1}} \end{pmatrix} \qquad \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{yy}^{E_{1}} \end{pmatrix} \qquad \begin{vmatrix} \mathbf{P}_{yy}^{E_{1}} \\ \mathbf{P}_{yy}^{E_{1}} \end{vmatrix}$$

	$D^{A_{\mathbf{l}}^*}(\mathbf{g})$		•	•	•	
	•	$D^{A_2}^*(\mathbf{g})$	•	•	•	
	•		$D_{xx}^{E_1}^*(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$	
_	· .			${D_{xx}^{E_1}}^*(\mathbf{g})$	•	${D_{xy}^{E_1}}^*(\mathbf{g})$
	•		$D_{yx}^{E_1^*}(\mathbf{g})$	•	$D_{yy}^{E_1^*}(\mathbf{g})$	
				${D_{yx}^{E_1}}^*(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$

†
here

Local g-matrix

is not concentrated

here global **g-**matrix is not concentrated

 $|\mathbf{P}^{(\mu)}
angle$ -base

ordering to

concentrate

global-g

D-matrices

Global g-matrix component

$$\left\langle \mu \atop m'n \middle| \mathbf{g} \middle| \mu \atop mn \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

Local \(\overline{\bf g}\)-matrix component

$$\left\langle \mu \atop mn' \right| \mathbf{\overline{g}} \left| \mu \atop mn \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu*}(g)$$

$$R^{P}(\mathbf{g}) = TR^{G}(\mathbf{g})T^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{2}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{2}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{xx}^{E_{1}} \end{vmatrix}$$

$D^{A_{ m l}}ig({f g}ig)$	•	•	•	•	
	$D^{A_2}(\mathbf{g})$	•	•	•	•
		$D_{xx}^{E_1}\left(\mathbf{g}\right)$	$D_{xy}^{E_1}$		
		$D_{yx}^{E_1}\left(\mathbf{g}\right)$	$D_{yy}^{E_1}$	•	
		•	•	$D_{xx}^{E_1}\left(\mathbf{g}\right)$	$D_{xy}^{E_1}$
•				$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$

D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$R^{P}(\mathbf{\overline{g}}) = TR^{G}(\mathbf{\overline{g}})T^{\dagger} = \begin{vmatrix} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{xx}^{A_{1}} \end{vmatrix} \qquad \begin{vmatrix} \mathbf{P}_{yy}^{A_{2}} \\ \mathbf{P}_{xx}^{E_{1}} \end{pmatrix} \qquad \begin{vmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{yy}^{E_{1}} \end{pmatrix} \qquad \begin{vmatrix} \mathbf{P}_{yy}^{E_{1}} \\ \mathbf{P}_{yy}^{E_{1}} \end{vmatrix}$$

	$D^{A_{\mathbf{l}}^*}(\mathbf{g})$			•	•	•
	•	$D^{A_2}^*(\mathbf{g})$		•		•
	•		$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$	•
_	•		•	${D_{xx}^{E_1}}^*(\mathbf{g})$		${D_{xy}^{E_1}}^*(\mathbf{g})$
	•		$D_{yx}^{E_1^*}(\mathbf{g})$		${D_{yy}^{E_1}}^*(\mathbf{g})$	
				$D_{vx}^{E_1^*}(\mathbf{g})$		${D_{vv}^{E_1}}^*(\mathbf{g})$

$$\overline{R}^{P}(\overline{\mathbf{g}}) = \overline{T}R^{G}(\overline{\mathbf{g}})\overline{T}^{\dagger} =$$

$$\left|\mathbf{P}_{xx}^{A_1}\right\rangle \qquad \left|\mathbf{P}_{yy}^{A_2}\right\rangle \qquad \left|\mathbf{P}_{xx}^{E_1}\right\rangle \qquad \left|\mathbf{P}_{yy}^{E_1}\right\rangle \qquad \left|\mathbf{P}_{yy}^{E_1}\right\rangle$$

$D^{A_{\mathbf{l}}^*}(\mathbf{g})$	•	•	٠	•	•
•	$D^{A_2}^*(\mathbf{g})$		•	•	•
		$D_{xx}^{E_1}^*(\mathbf{g})$	$D_{xy}^{E_1^*}(\mathbf{g})$		
•		${D_{yx}^{E_1}}^*(\mathbf{g})$	${D_{yy}^{E_{\mathrm{l}}}}^{*}(\mathbf{g})$	٠	٠
				${D_{xx}^{E_1}}^*\left(\mathbf{g}\right)$	${D_{xy}^{E_1}}^*(\mathbf{g})$
•		•	•	$D_{xx}^{E_1^*}(\mathbf{g})$ $D_{yx}^{E_1^*}(\mathbf{g})$	${D_{yy}^{E_1}}^*\left(\mathbf{g}\right)$

$\begin{bmatrix} & \cdot & & & \\ & \cdot & & \\ & \cdot & & \end{bmatrix} D_{yx}^{E_1}(\mathbf{g}) \quad \cdot \quad D_{yx}^{E_1} D_{yy}^{E_1}(\mathbf{g})$

 $D_{xx}^{E_1}\left(\mathbf{g}\right)$

Global g-matrix component

 $D^{A_2}(\mathbf{g})$

 $\overline{R}^{P}\!\left(\mathbf{g}\right)\!=\!\overline{T}R^{G}\!\left(\mathbf{g}\right)\!\overline{T}^{\dagger}=$

 $D^{A_{
m l}}ig({f g}ig)$

$$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D_{m'm}^{\mu} \left(\mathbf{g} \right)$$

local-\overline{\overline{\overline{g}}} D-matrices and H-matrices

 $|\mathbf{P}^{(\mu)}\rangle$ -base

ordering to

concentrate

Local \overline{g}-matrix component

$$\left\langle \mu \atop mn' \right| \mathbf{\overline{g}} \left| \mu \atop mn \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu*}(g)$$

Review: Spectral resolution of D₃ Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D_3 examples)

Weyl **g**-expansion in irep $D^{\mu}{}_{jk}(g)$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $\mathbf{P}^{\mu}{}_{jk}$ transforms right-and-left $\mathbf{P}^{\mu}{}_{jk}$ -expansion in **g**-operators $D^{\mu}{}_{jk}(g)$ orthogonality relations

Class projector character formulae $\mathbb{P}^{\mu}{}_{in}$ terms of $\kappa_{\mathbf{g}}$ and $\kappa_{\mathbf{g}}$ in terms of $\mathbb{P}^{\mu}{}_{in}$

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) $Compare\ Global\ vs\ Local\ |\mathbf{g}\rangle$ -basis and $Global\ vs\ Local\ |\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis.

Hamiltonian local-symmetry eigensolution

H matrix in $|\mathbf{P}^{(\mu)}\rangle$ -basis:

$$\begin{array}{l} \mathbf{H} \ \textit{matrix in} \\ |\mathbf{g}\rangle \textit{-basis:} \\ \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \mathbf{\overline{g}} = \begin{bmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & r_{n} & r_{n} \end{bmatrix}$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle$$

$$\begin{array}{l} \mathbf{H} \ \textit{matrix in} \\ |\mathbf{g}\rangle \textit{-basis:} \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \mathbf{\overline{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{i} & i_{i} & i_{i} & i_{i} & r_{i} & r_{i} \\ \end{array}$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle$$

Let:
$$\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \left| \begin{array}{c} \mathbf{P}_{mn}^{\mu} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \begin{array}{c} 1 \end{array} \right\rangle \frac{1}{norm}$$

$$\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \begin{array}{c} 1 \end{array} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\begin{array}{c} \mathbf{g} \end{array} \right) \left| \begin{array}{c} \mathbf{g} \end{array} \right\rangle$$

subject to normalization (from p. 116-122):

$$norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}} \quad (which \ will \ cancel \ out)$$
So, fuggettabout it!

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle$$

$$\frac{Projector\ conjugation\ \ p.31}{\left(\middle| m \middle\rangle \middle\langle n \middle| \right)^{\dagger} = \middle| n \middle\rangle \middle\langle m \middle|}$$

$$\left(\mathbf{P}_{mn}^{\mu} \right)^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$

subject to normalization (from p. 116-122):

$$norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}} \quad (which \ will \ cancel \ out)$$
So, fuggettabout it!

$$\begin{array}{l} \mathbf{H} \ \textit{matrix in} \\ |\mathbf{g}\rangle \textit{-basis:} \\ \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \mathbf{\overline{g}} = \begin{bmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{bmatrix}$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle$$

$$Mock-Mach$$

$$commutation$$

$$\mathbf{r} \mathbf{\bar{r}} = \mathbf{\bar{r}} \mathbf{r}$$

$$(p.89)$$

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$

subject to normalization (from p. 116-122):

$$norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}} \quad (which will cancel out)$$
So, fuggettabout it!

$$\begin{vmatrix} \mathbf{P}_{xx}^{A_1} \rangle & |\mathbf{P}_{yy}^{A_2} \rangle & |\mathbf{P}_{xx}^{E_1} \rangle |\mathbf{P}_{yx}^{E_1} \rangle & |\mathbf{P}_{yy}^{E_1} \rangle \\ \mathbf{H} \ \textit{matrix in} \\ |\mathbf{P}^{(\mu)}\rangle - \textit{basis:} \end{vmatrix} = \begin{bmatrix} H^{A_1} & \cdot & \cdot & \cdot & \cdot \\ \cdot & H^{A_2} & \cdot & \cdot & \cdot \\ \cdot & \cdot & H^{E_1}_{xx} & H^{E_1}_{xy} & \cdot & \cdot \\ \cdot & \cdot & H^{E_1}_{yx} & H^{E_1}_{yy} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & H^{E_1}_{xx} & H^{E_1}_{xy} \\ \cdot & \cdot & \cdot & \cdot & \cdot & H^{E_1}_{xx} & H^{E_1}_{xy} \end{bmatrix}$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle = \sum_{g=1}^{6} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}} \left(g \right)$$

$$\text{Use } \mathbf{P}_{mn}^{\mu} - \text{orthonormality}$$

$$\mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$

$$(p.18)$$

$$(\mathbf{H})_{G} = \sum_{g=1}^{o} r_{g} \mathbf{\overline{g}} = \begin{vmatrix} 1 & 0 & 1 & 3 & 1 & 2 \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{vmatrix}$$

H matrix in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{P}=\overline{T}\left(\mathbf{H}\right)_{G}\overline{T}^{\dagger}=% \mathbf{H}^{\dagger}\mathbf{H}$$

 $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle \left|\mathbf{P}_{yy}^{A_{2}}\right\rangle \left|\mathbf{P}_{xx}^{E_{1}}\right\rangle \left|\mathbf{P}_{xy}^{E_{1}}\right\rangle \left|\mathbf{P}_{yx}^{E_{1}}\right\rangle \left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle = \sum_{g=1}^{\circ G} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle D_{ab}^{\mu^{*}} \left(g\right)$$

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{\mathbf{G}} D_{mn}^{\mu^*} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$

subject to normalization (from p. 116-122):

$$norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}} \quad (which will cancel out)$$
So, fuggettabout it!

Coeff	icients D	$_{mn}^{\mu}(g)$ are i	rreducible r	epresentation	ns (ireps) o	$f\mathbf{g}$
g =	1	mn (° r	r ²	i ₁	\mathbf{i}_2	\mathbf{i}_3
$D^{\frac{A_1}{1}}(\mathbf{g}) =$	1	1 1	1	1 -1	1 -1	1
$D^{\frac{A_2}{2}}(\mathbf{g}) =$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right)$	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{array}\right)$	$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$	$\begin{pmatrix} -1 \\ 1 & 0 \end{pmatrix}$
$D_{x,y}^{E_1}(\mathbf{g}) =$	$\left[\begin{array}{cc} \cdot & 1 \end{array}\right]$	$\left(\begin{array}{cc} \sqrt{3} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc} \sqrt{3} & \frac{1}{2} \\ \overline{2} & \overline{2} \end{array}\right)$	$\left(\begin{array}{cc}0&-1\end{array}\right)$

$$\begin{vmatrix} \mathbf{P}_{xx}^{A_1} \rangle & \begin{vmatrix} \mathbf{P}_{yy}^{A_2} \rangle & \begin{vmatrix} \mathbf{P}_{xx}^{E_1} \rangle \end{vmatrix} \mathbf{P}_{xy}^{E_1} \rangle & \begin{vmatrix} \mathbf{P}_{yx}^{E_1} \rangle \end{vmatrix} \mathbf{P}_{yy}^{E_1} \rangle$$

H matrix in
$$|\mathbf{g}\rangle$$
-basis:
$$\begin{vmatrix} r_0 & r_2 & r_1 & i_1 \\ r_1 & r_0 & r_1 & i_3 \end{vmatrix}$$

H matrix in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$(\mathbf{H})_P = \overline{T} (\mathbf{H})_G \overline{T}^\dagger =$$

$$|\mathbf{P}^{(\mu)}\rangle - basis:$$

$$(\mathbf{H})_{P} = \overline{T}(\mathbf{H})_{G} \overline{T}^{\dagger} = \begin{bmatrix} H^{A_{1}} & \cdots & \cdots & \cdots & \cdots & \cdots \\ & \cdot & H^{A_{2}} & \cdots & \cdots & \cdots & \cdots \\ & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} & \cdots & \cdots & \cdots \\ & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdots & \cdots & \cdots \\ & \cdot & \cdot & \cdots & \cdots & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} \\ & \cdot & \cdot & \cdots & \cdots & \cdots & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} \end{bmatrix}$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle = \sum_{g=1}^{\circ G} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle D_{ab}^{\mu} \left(g \right) = \sum_{g=1}^{\circ G} r_{g} D_{ab}^{\mu} \left(g \right)$$

$$\left| \frac{\mu}{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{\mathbf{G}} D_{mn}^{\mu^*} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$

subject to normalization (from p. 116-122):

$$norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}} \quad (which \ will \ cancel \ out)$$
So, fuggettabout it!

Coefficients $D_{mn}^{\mu}(g)_{\mathbf{r}_1}$ are irreducible representations (ireps) of \mathbf{g}

$$\begin{vmatrix} \mathbf{P}_{xx}^{A_1} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{yy}^{A_2} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{xx}^{E_1} \end{vmatrix} \begin{vmatrix} \mathbf{P}_{xy}^{E_1} \end{vmatrix} = \begin{vmatrix} \mathbf{P}_{yx}^{E_1} \end{vmatrix} \begin{vmatrix} \mathbf{P}_{yy}^{E_1} \end{vmatrix}$$

H matrix in
$$|\mathbf{g}\rangle$$
-hasis:

$$|\mathbf{g}\rangle$$
-basis:

$$\begin{array}{c} \mathbf{H} \ \textit{matrix in} \\ |\mathbf{g}\rangle \textit{-basis:} \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{pmatrix}$$

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$$

$$|\mathbf{P}^{(\mu)}\rangle - basis:$$

$$(\mathbf{H})_{P} = \overline{T}(\mathbf{H})_{G} \overline{T}^{\dagger} = \begin{bmatrix} H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} & \cdot & \cdot \\ \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} \\ \cdot & \cdot & \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} \end{bmatrix}$$

139

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{\underline{ab}}^{\mu} \middle| \mathbf{1} \right\rangle = \sum_{g=1}^{\circ G} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}} (g) = \sum_{g=1}^{\circ G} r_{g} D_{ab}^{\alpha^{*}} (g)$$

$$H^{\mathbf{A_{l}}} = r_{0}D^{\mathbf{A_{l}}^{*}}(1) + r_{1}D^{\mathbf{A_{l}}^{*}}(r^{1}) + r_{1}^{*}D^{\mathbf{A_{l}}^{*}}(r^{2}) + i_{1}D^{\mathbf{A_{l}}^{*}}(i_{1}) + i_{2}D^{\mathbf{A_{l}}^{*}}(i_{2}) + i_{3}D^{\mathbf{A_{l}}^{*}}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$$

Coefficients
$$D_{mn}^{\mu}(g)$$
 are irreducible representations (ireps) of \mathbf{g}

$$D^{A_{1}}(\mathbf{g}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$D^{A_{2}}(\mathbf{g}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$D^{E_{1}}_{x,y}(\mathbf{g}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{2} \\ \sqrt{3} \\ \frac{1}{2} \end{bmatrix}$$

$$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{2} & \sqrt{3} \\
\sqrt{3} & \frac{1}{2}
\end{pmatrix}$$

$$\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle \left|\mathbf{P}_{yy}^{A_{2}}\right\rangle \left|\mathbf{P}_{xx}^{E_{1}}\right\rangle \left|\mathbf{P}_{xy}^{E_{1}}\right\rangle \left|\mathbf{P}_{yx}^{E_{1}}\right\rangle \left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$$

$$|\mathbf{g}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \left|$$

$$\begin{array}{c} \mathbf{H} \ \textit{matrix in} \\ |\mathbf{g}\rangle \textit{-basis:} \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{pmatrix}$$

H matrix in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} = \left|$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{ab} \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H}$$

$$H^{\mathbf{A_l}} = r_0 D^{\mathbf{A_l}^*}(1) + r_1 D^{\mathbf{A_l}^*}(r^1) + r_1^* D^{\mathbf{A_l}^*}(r^2) + i_1 D^{\mathbf{A_l}^*}(i_1) + i_2 D^{\mathbf{A_l}^*}(i_2) + i_3 D^{\mathbf{A_l}^*}(i_3) = r_0 + r_1 + r_1^* + i_1 + i_2 + i_3$$

$$H^{\frac{A_2}{2}} = r_0 D^{\frac{A_2}{2}}(1) + r_1 D^{\frac{A_2}{2}}(r^1) + r_1^* D^{\frac{A_2}{2}}(r^2) + i_1 D^{\frac{A_2}{2}}(i_1) + i_2 D^{\frac{A_2}{2}}(i_2) + i_3 D^{\frac{A_2}{2}}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$$

Coefficients
$$D_{mn}^{\mu}(g)_{\mathbf{r}_{1}}$$
 are irreducible representations (ireps) of \mathbf{g}

$$D^{A_1}(\mathbf{g}) =$$

$$D^{A_2}(\mathbf{g}) =$$

$$D^{E_1}(\mathbf{g}) =$$

$$\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}$$

$$\begin{array}{c}
-\frac{1}{2} \\
\sqrt{3} \\
-
\end{array}$$

$$\begin{array}{c}
1 \\
-\frac{\sqrt{3}}{2} \\
-\frac{1}{2}
\end{array}
\qquad
\left(\begin{array}{c}
-\frac{1}{2} \\
-\frac{\sqrt{2}}{2}
\end{array}\right)$$

$$\begin{array}{c|c}
\hline
1 \\
\hline
\frac{\sqrt{3}}{2} \\
-\frac{1}{2}
\end{array}
\qquad
\begin{pmatrix}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}$$

$$\begin{pmatrix} -1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \sqrt{3} & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{vmatrix} \mathbf{P}_{xx}^{A_1} \rangle & \begin{vmatrix} \mathbf{P}_{yy}^{A_2} \rangle & \begin{vmatrix} \mathbf{P}_{xx}^{E_1} \rangle \end{vmatrix} \begin{vmatrix} \mathbf{P}_{xy}^{E_1} \rangle & \begin{vmatrix} \mathbf{P}_{yx}^{E_1} \rangle \end{vmatrix} \end{vmatrix} \begin{vmatrix} \mathbf{P}_{yy}^{E_1} \rangle$$

$$|\mathbf{g}\rangle$$
-basis:

$$(\mathbf{H})_{G} = \sum_{g=1}^{o} r_{g} \mathbf{\overline{g}} = \begin{bmatrix} r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{bmatrix}$$

H matrix in

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{\underline{ab}}^{\mu} \middle| \mathbf{1} \right\rangle = \underbrace{\sum_{g=1}^{\circ G} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} = \underbrace{\sum_{g=1}^{\circ G} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{ab} \underbrace{D_{ab}^{\alpha^{*}} \left(g\right)}_{ab} = \underbrace{\sum_{g=1}^{\circ G} r_{g} D_{ab}^{\alpha^{*}} \left(g\right)}_{ab}$$

$$H^{\mathbf{A_{l}}} = r_{0}D^{\mathbf{A_{l}}^{*}}(1) + r_{1}D^{\mathbf{A_{l}}^{*}}(r^{1}) + r_{1}^{*}D^{\mathbf{A_{l}}^{*}}(r^{2}) + i_{1}D^{\mathbf{A_{l}}^{*}}(i_{1}) + i_{2}D^{\mathbf{A_{l}}^{*}}(i_{2}) + i_{3}D^{\mathbf{A_{l}}^{*}}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$$

$$H^{\frac{A_2}{2}} = r_0 D^{\frac{A_2}{2}}(1) + r_1 D^{\frac{A_2}{2}}(r^1) + r_1^* D^{\frac{A_2}{2}}(r^2) + i_1 D^{\frac{A_2}{2}}(i_1) + i_2 D^{\frac{A_2}{2}}(i_2) + i_3 D^{\frac{A_2}{2}}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$$

$$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$$

Coefficients $D_{mn}^{\mu}(g)_{\mathbf{r}_1}$ are irreducible representations (ireps) of \mathbf{g}

$$\left|\mathbf{P}_{xx}^{A_1}\right\rangle \left|\mathbf{P}_{yy}^{A_2}\right\rangle \left|\mathbf{P}_{xx}^{E_1}\right\rangle \left|\mathbf{P}_{xy}^{E_1}\right\rangle \left|\mathbf{P}_{yx}^{E_1}\right\rangle \left|\mathbf{P}_{yy}^{E_1}\right\rangle$$

$$|\mathbf{g}\rangle$$
-basis:

$$(\mathbf{H})_{G} = \sum_{g=1}^{o} r_{g} \mathbf{\overline{g}} = \begin{vmatrix} r_{1} & r_{0} & r_{1} & l_{3} & l_{1} & l_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{vmatrix}$$

H matrix in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{\underline{ab}}^{\mu} \middle| \mathbf{1} \right\rangle = \underbrace{\sum_{g=1}^{\circ G} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} = \underbrace{\sum_{g=1}^{\circ G} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{ab} \underbrace{D_{ab}^{\alpha^{*}} \left(g\right)}_{ab} = \underbrace{\sum_{g=1}^{\circ G} r_{g} D_{ab}^{\alpha^{*}} \left(g\right)}_{ab}$$

$$H^{\mathbf{A_l}} = r_0 D^{\mathbf{A_l}^*}(1) + r_1 D^{\mathbf{A_l}^*}(r^1) + r_1^* D^{\mathbf{A_l}^*}(r^2) + i_1 D^{\mathbf{A_l}^*}(i_1) + i_2 D^{\mathbf{A_l}^*}(i_2) + i_3 D^{\mathbf{A_l}^*}(i_3) = r_0 + r_1 + r_1^* + i_1 + i_2 + i_3$$

$$H^{\frac{A_2}{2}} = r_0 D^{\frac{A_2}{2}}(1) + r_1 D^{\frac{A_2}{2}}(r^1) + r_1^* D^{\frac{A_2}{2}}(r^2) + i_1 D^{\frac{A_2}{2}}(i_1) + i_2 D^{\frac{A_2}{2}}(i_2) + i_3 D^{\frac{A_2}{2}}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$$

$$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$$

$$H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}$$

Coefficients $D_{mn}^{\mu}(g)_{\mathbf{r}^1}$ are irreducible representations (ireps) of \mathbf{g}

$$\left|\mathbf{P}_{xx}^{\mathbf{A_1}}\right\rangle \left|\mathbf{P}_{yy}^{\mathbf{A_2}}\right\rangle \left|\mathbf{P}_{xx}^{E_1}\right\rangle \left|\mathbf{P}_{xy}^{E_1}\right\rangle \left|\mathbf{P}_{yy}^{E_1}\right\rangle$$

H matrix in
$$|\mathbf{g}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o} r_{g} \mathbf{\overline{g}} = \begin{bmatrix} r_{1} \\ r_{2} \\ i \end{bmatrix}$$

$$|\mathbf{g}\rangle \text{-basis:}$$

$$(\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \mathbf{g} = \begin{bmatrix} r_{0} & r_{2} & r_{1} & r_{1} & r_{2} & r_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{bmatrix}$$

H matrix in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$(\mathbf{H})_P = \overline{T}(\mathbf{H})_G \overline{T}^\dagger =$$

	H^{A_1}	•	•	•	•	•	
_	•	H^{A_2}	•	•	•	•	-
_	•	•	$H_{xx}^{E_1}$	$H_{xy}^{E_1}$	•	•	•
	•	•	$H_{yx}^{E_1}$	$H_{yy}^{^{E_1}}$	•	•	
_	•	•	•	•	$H_{xx}^{E_1}$	$H_{xy}^{E_1}$	•
	•	•	•	•	$H_{yx}^{^{E_1}}$	$H_{ \mathrm{yy}}^{^{E_{1}}}$,
`		• • • • • • • • •	• • • • • • • • •	•:			

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} \underbrace{\left\langle \mathbf{1} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} \underbrace{$$

$$H^{\mathbf{A_l}} = r_0 D^{\mathbf{A_l}^*}(1) + r_1 D^{\mathbf{A_l}^*}(r^1) + r_1^* D^{\mathbf{A_l}^*}(r^2) + i_1 D^{\mathbf{A_l}^*}(i_1) + i_2 D^{\mathbf{A_l}^*}(i_2) + i_3 D^{\mathbf{A_l}^*}(i_3) = r_0 + r_1 + r_1^* + i_1 + i_2 + i_3$$

$$H^{\frac{A_2}{2}} = r_0 D^{\frac{A_2}{2}}(1) + r_1 D^{\frac{A_2}{2}}(r^1) + r_1^* D^{\frac{A_2}{2}}(r^2) + i_1 D^{\frac{A_2}{2}}(i_1) + i_2 D^{\frac{A_2}{2}}(i_2) + i_3 D^{\frac{A_2}{2}}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$$

$$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$$

$$H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}$$

$$H_{yy}^{E_1} = r_0 D_{yy}^{E^*}(1) + r_1 D_{yy}^{E^*}(r^1) + r_1^* D_{yy}^{E^*}(r^2) + i_1 D_{yy}^{E^*}(i_1) + i_2 D_{yy}^{E^*}(i_2) + i_3 D_{yy}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* + i_1 + i_2 - 2i_3)/2$$

Coefficients $D_{mn}^{\mu}(g)_{\mathbf{r}^1}$ are irreducible representations (ireps) of \mathbf{g}

$$D^{A_{\mathbf{l}}}(\mathbf{g}) =$$

$$D^{A_{\mathbf{2}}}(\mathbf{g}) =$$

$$D_{x,y}^{E_{\mathbf{l}}}(\mathbf{g}) =$$

$$\begin{pmatrix}
1 & & \\
1 & & \\
& & \begin{pmatrix}
1 & \cdot & \\
& & & \\
\end{pmatrix}$$

$$\begin{array}{c|c}
1 \\
\hline
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\hline
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}$$

$$\begin{array}{ccc}
-1 \\
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\sqrt{3} & 1
\end{array}$$

$$\begin{array}{ccc}
 & -1 \\
 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
 & \frac{\sqrt{3}}{3} & \frac{1}{1}
\end{array}$$

$$\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}$$

$\left \mathbf{P}_{xx}^{\mathbf{A_{l}}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_1}\right\rangle\left \mathbf{P}_{xy}^{E_1}\right\rangle$	$\left \mathbf{P}_{yx}^{E_1} ight angle\left \mathbf{P}_{yy}^{E_1} ight angle$
---	--	--	--

H matrix in
$$|\mathbf{g}\rangle$$
-basis:
$$\begin{vmatrix} r_0 & r_2 & r_1 \\ r_1 & r_0 & r_1 \end{vmatrix}$$

$$\begin{array}{l} \mathbf{H} \ \textit{matrix in} \\ |\mathbf{g}\rangle \textit{-basis:} \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{pmatrix}$$

H matrix in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$(\mathbf{H})_P = \overline{T} (\mathbf{H})_G \overline{T}^\dagger =$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{ab} \underbrace{\left\langle \mathbf{1}$$

$$H^{\mathbf{A_l}} = r_0 D^{\mathbf{A_l}^*}(1) + r_1 D^{\mathbf{A_l}^*}(r^1) + r_1^* D^{\mathbf{A_l}^*}(r^2) + i_1 D^{\mathbf{A_l}^*}(i_1) + i_2 D^{\mathbf{A_l}^*}(i_2) + i_3 D^{\mathbf{A_l}^*}(i_3) = r_0 + r_1 + r_1^* + i_1 + i_2 + i_3$$

$$H^{\frac{A_2}{2}} = r_0 D^{\frac{A_2}{2}}(1) + r_1 D^{\frac{A_2}{2}}(r^1) + r_1^* D^{\frac{A_2}{2}}(r^2) + i_1 D^{\frac{A_2}{2}}(i_1) + i_2 D^{\frac{A_2}{2}}(i_2) + i_3 D^{\frac{A_2}{2}}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$$

$$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$$

$$H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}$$

$$H_{yy}^{E_1} = r_0 D_{yy}^{E^*}(1) + r_1 D_{yy}^{E^*}(r^1) + r_1^* D_{yy}^{E^*}(r^2) + i_1 D_{yy}^{E^*}(i_1) + i_2 D_{yy}^{E^*}(i_2) + i_3 D_{yy}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* + i_1 + i_2 - 2i_3)/2$$

$$\begin{pmatrix} H_{xx}^{E_1} & H_{xy}^{E_1} \\ H_{yx}^{E_1} & H_{yy}^{E_1} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3 & \sqrt{3}(-r_1 + r_1^* - i_1 + i_2) \\ \sqrt{3}(-r_1^* + r_1 - i_1 + i_2) & 2r_0 - r_1 - r_1^* + i_1 + i_2 - 2i_3 \end{pmatrix}$$

$$(\mathbf{H})_{G} = \sum_{g=1}^{o} r_{g} \mathbf{\overline{g}} = \begin{vmatrix} r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{vmatrix}$$

H matrix in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{P}=\overline{T}\left(\mathbf{H}\right)_{G}\overline{T}^{\dagger}=$$

$$\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle \left|\mathbf{P}_{yy}^{A_{2}}\right\rangle \left|\mathbf{P}_{xx}^{E_{1}}\right\rangle \left|\mathbf{P}_{xy}^{E_{1}}\right\rangle \left|\mathbf{P}_{yx}^{E_{1}}\right\rangle \left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$$

 $=r_0+2r_1+2i_{12}+i_3$

 $=r_0+2r_1-2i_{12}-i_3$

 $=r_0 -r_1 -i_{12} +i_3$

 $=r_0 -r_1 + i_{12} -i_3$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} \underbrace{\left\langle \mathbf{1} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} \underbrace{$$

$$H^{\mathbf{A_{l}}} = r_{0}D^{\mathbf{A_{l}}^{*}}(1) + r_{1}D^{\mathbf{A_{l}}^{*}}(r^{1}) + r_{1}^{*}D^{\mathbf{A_{l}}^{*}}(r^{2}) + i_{1}D^{\mathbf{A_{l}}^{*}}(i_{1}) + i_{2}D^{\mathbf{A_{l}}^{*}}(i_{2}) + i_{3}D^{\mathbf{A_{l}}^{*}}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$$

$$H^{\frac{A_2}{2}} = r_0 D^{\frac{A_2}{2}}(1) + r_1 D^{\frac{A_2}{2}}(r^1) + r_1^* D^{\frac{A_2}{2}}(r^2) + i_1 D^{\frac{A_2}{2}}(i_1) + i_2 D^{\frac{A_2}{2}}(i_2) + i_3 D^{\frac{A_2}{2}}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$$

$$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$$

$$H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}$$

$$H_{yy}^{E_1} = r_0 D_{yy}^{E^*}(1) + r_1 D_{yy}^{E^*}(r^1) + r_1^* D_{yy}^{E^*}(r^2) + i_1 D_{yy}^{E^*}(i_1) + i_2 D_{yy}^{E^*}(i_2) + i_3 D_{yy}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* + i_1 + i_2 - 2i_3)/2$$

$$\begin{pmatrix} H_{xx}^{E_1} & H_{xy}^{E_1} \\ H_{yx}^{E_1} & H_{yy}^{E_1} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3 & \sqrt{3}(-r_1 + r_1^* - i_1 + i_2) \\ \sqrt{3}(-r_1^* + r_1 - i_1 + i_2) & 2r_0 - r_1 - r_1^* + i_1 + i_2 - 2i_3 \end{pmatrix}$$

$$= \begin{pmatrix} r_0 - r_1 - i_{12} + i_3 & 0 \\ 0 & r_0 - r_1 - i_{12} - i_3 \end{pmatrix}$$

 $= \begin{pmatrix} r_0 - r_1 - i_{12} + i_3 & 0 \\ 0 & r_0 - r_1 - i_{12} - i_3 \end{pmatrix}$ $\begin{array}{c} Choosing \ local \ C_2 = \{\mathbf{1}, \mathbf{i}_3\} \ symmetry \ with \\ local \ constraints \ r_1 = r_1 * = r_2 \ and \ i_1 = i_2 \end{pmatrix}$ $For: r_1 = r_1^* \ and \ i_1 = i_2$

H matrix in
$$|\mathbf{g}\rangle$$
-basis:
$$\begin{vmatrix} r_0 & r_2 & r_1 & i_1 & i_2 & i_3 \\ r_1 & r_0 & r_1 & i_3 & i_1 & i_2 \end{vmatrix}$$

$$(\mathbf{H})_{G} = \sum_{g=1}^{o} r_{g} \mathbf{g} = \begin{vmatrix} r_{1} & r_{0} & r_{1} & t_{3} & t_{1} & t_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{vmatrix}$$

$$|\mathbf{P}^{(\mu)}\rangle$$
-basis:

$$\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$$

$$\left|\mathbf{P}_{xx}^{\mathbf{A_1}}\right\rangle \left|\mathbf{P}_{yy}^{\mathbf{A_2}}\right\rangle \left|\mathbf{P}_{xx}^{E_1}\right\rangle \left|\mathbf{P}_{xy}^{E_1}\right\rangle \left|\mathbf{P}_{yx}^{E_1}\right\rangle \left|\mathbf{P}_{yy}^{E_1}\right\rangle$$

	H^{A_1}		•	•	•	•
	•	H^{A_2}	•	•	•	•
	•	•	$H_{xx}^{E_1}$	$H_{xy}^{E_1}$	•	•
=	•	•	$H_{yx}^{^{E_1}}$	$H_{yy}^{^{E_1}}$	•	•
	•	•	•	•	$H_{xx}^{^{E_1}}$	$H_{xy}^{E_1}$
	•	•	•	•	$H_{yx}^{E_1}$	$H_{yy}^{^{E_1}}$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle}_{(norm)^{2}} = \underbrace{\left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle}_{(norm)^{2}} \underbrace{\left\langle \mathbf{1} \middle|$$

$$H^{\frac{\mathbf{A_l}}{\mathbf{I}}} = r_0 D^{\frac{\mathbf{A_l}^*}{\mathbf{I}}}(1) + r_1 D^{\frac{\mathbf{A_l}^*}{\mathbf{I}}}(r^1) + r_1^* D^{\frac{\mathbf{A_l}^*}{\mathbf{I}}}(r^2) + i_1 D^{\frac{\mathbf{A_l}^*}{\mathbf{I}}}(i_1) + i_2 D^{\frac{\mathbf{A_l}^*}{\mathbf{I}}}(i_2) + i_3 D^{\frac{\mathbf{A_l}^*}{\mathbf{I}}}(i_3) \\ = r_0 + r_1 + r_1^* + i_1 + i_2 + i_3$$

$$H^{\frac{A_2}{2}} = r_0 D^{\frac{A_2}{2}}(1) + r_1 D^{\frac{A_2}{2}}(r^1) + r_1^* D^{\frac{A_2}{2}}(r^2) + i_1 D^{\frac{A_2}{2}}(i_1) + i_2 D^{\frac{A_2}{2}}(i_2) + i_3 D^{\frac{A_2}{2}}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$$

$$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$$

$$H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}$$

$$H_{yy}^{E_1} = r_0 D_{yy}^{E^*}(1) + r_1 D_{yy}^{E^*}(r^1) + r_1^* D_{yy}^{E^*}(r^2) + i_1 D_{yy}^{E^*}(i_1) + i_2 D_{yy}^{E^*}(i_2) + i_3 D_{yy}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* + i_1 + i_2 - 2i_3)/2$$

$$=r_0+2r_1+2i_{12}+i_3$$

$$=r_0+2r_1-2i_{12}-i_3$$

$$=r_0 -r_1 -i_{12} +i_3$$

$$=r_0 -r_1 +i_{12} -i_3$$

$$C_2 = \{1, i_3\}$$

determines all levels and eigenvectors with just 4 real parameters

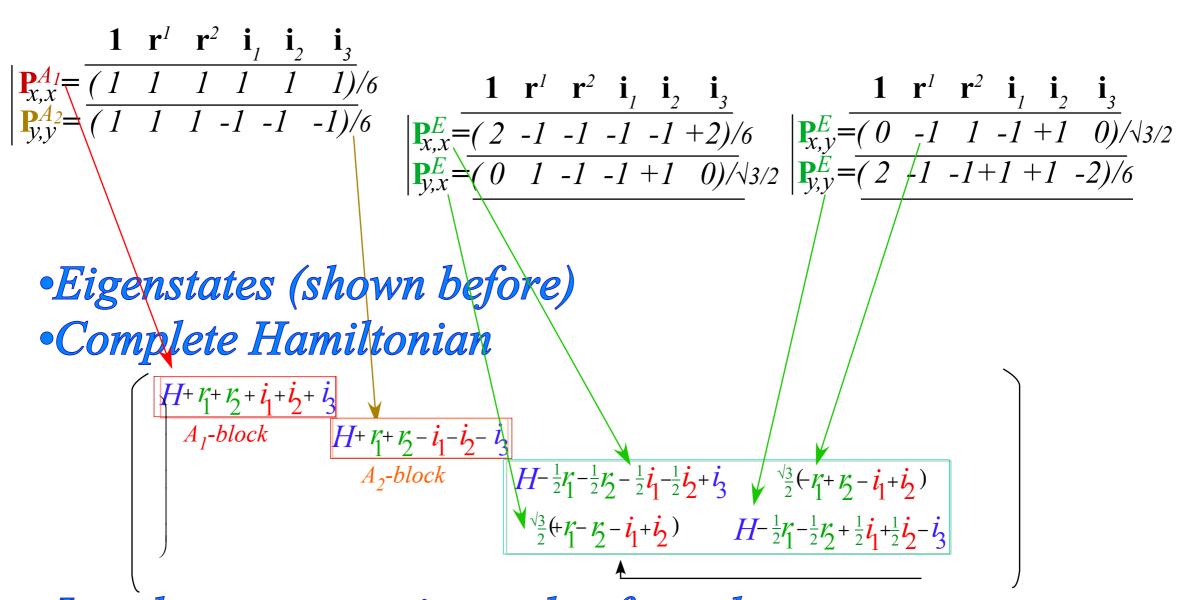
$$\begin{pmatrix}
C_{2} = \{\mathbf{1}, \mathbf{i}_{3}\} \\
Local \ symmetry \\
determines all levels
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
2r_{0} - r_{1} - r_{1}^{*} - i_{1} - i_{2} + 2i_{3} & \sqrt{3}(-r_{1} + r_{1}^{*} - i_{1} + i_{2}) \\
\sqrt{3}(-r_{1}^{*} + r_{1} - i_{1} + i_{2}) & 2r_{0} - r_{1} - r_{1}^{*} + i_{1} + i_{2} - 2i_{3}
\end{pmatrix}$$

$$= \begin{pmatrix} r_0 - r_1 - i_{12} + i_3 & 0 \\ 0 & r_0 - r_1 - i_{12} - i_3 \end{pmatrix}$$

 $= \begin{pmatrix} r_0 - r_1 - i_{12} + i_3 & 0 \\ 0 & r_0 - r_1 - i_{12} - i_3 \end{pmatrix}$ Choosing local $C_2 = \{\mathbf{1}, \mathbf{i}_3\}$ symmetry with local constraints $r_1 = r_1 * = r_2$ and $i_1 = i_2$

$$\mathbf{P}_{mn}^{(\mu)} = \frac{\ell^{(\mu)}}{G} \sum_{\mathbf{g}} D_{mn}^{(\mu)} (\mathbf{g}) \mathbf{g}$$

Spectral Efficiency: Same $D(a)_{mn}$ projectors give a lot!



•Local symmetery eigenvalue formulae (L.S.=> off-diagonal zero.)

$$r_1 = r_2 = r_1^* = r$$
, $i_1 = i_2 = i_1^* = i$
 A_1 -level: $H + 2r + 2i + i_3$
 $gives: A_1$ -level: $H + 2r - 2i - i_3$
 E_x -level: $H - r - i + i_3$
 E_y -level: $H - r + i - i_3$

Global (LAB) symmetry

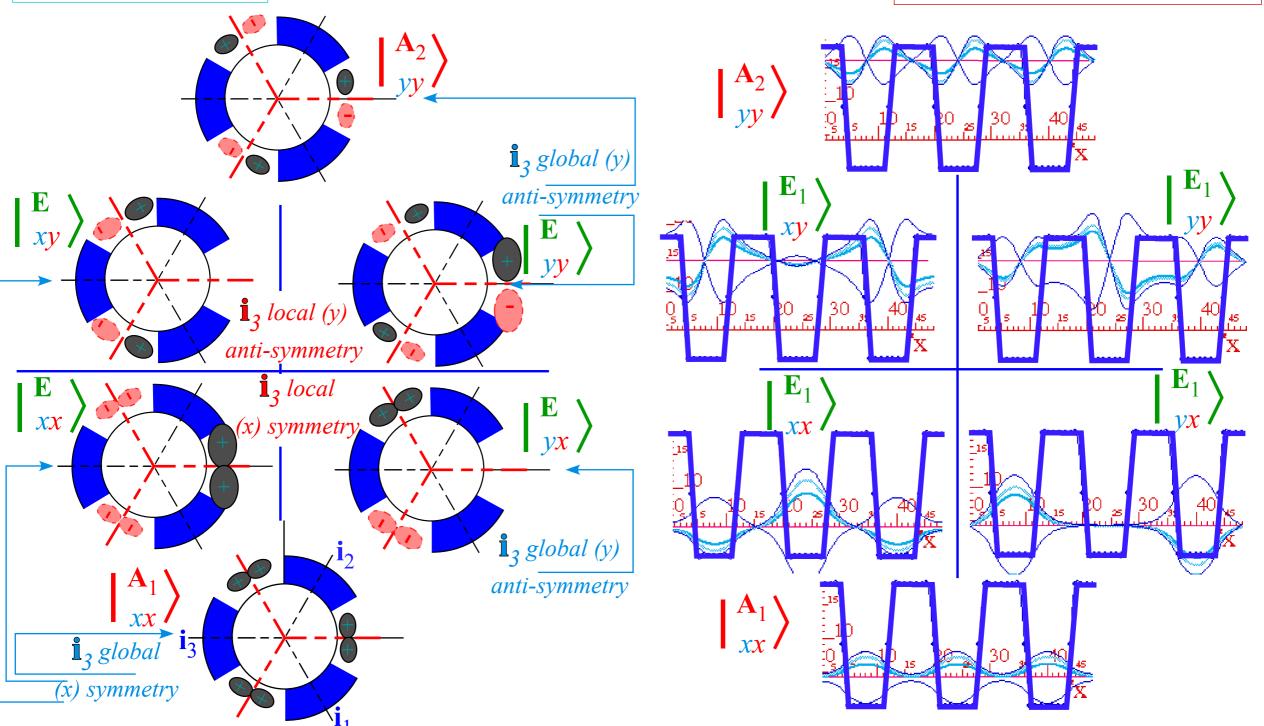
$$\mathbf{i}_{3}|_{eb}^{(m)}\rangle = \mathbf{i}_{3}\mathbf{P}_{eb}^{(m)}|1\rangle$$
$$= (-1)^{e}|^{(m)}\rangle$$

$D_3 > C_2 \mathbf{i}_3 \text{ projector states}$ $|\binom{m}{eh}\rangle = \mathbf{P}_{eb}^{(m)}|1\rangle$

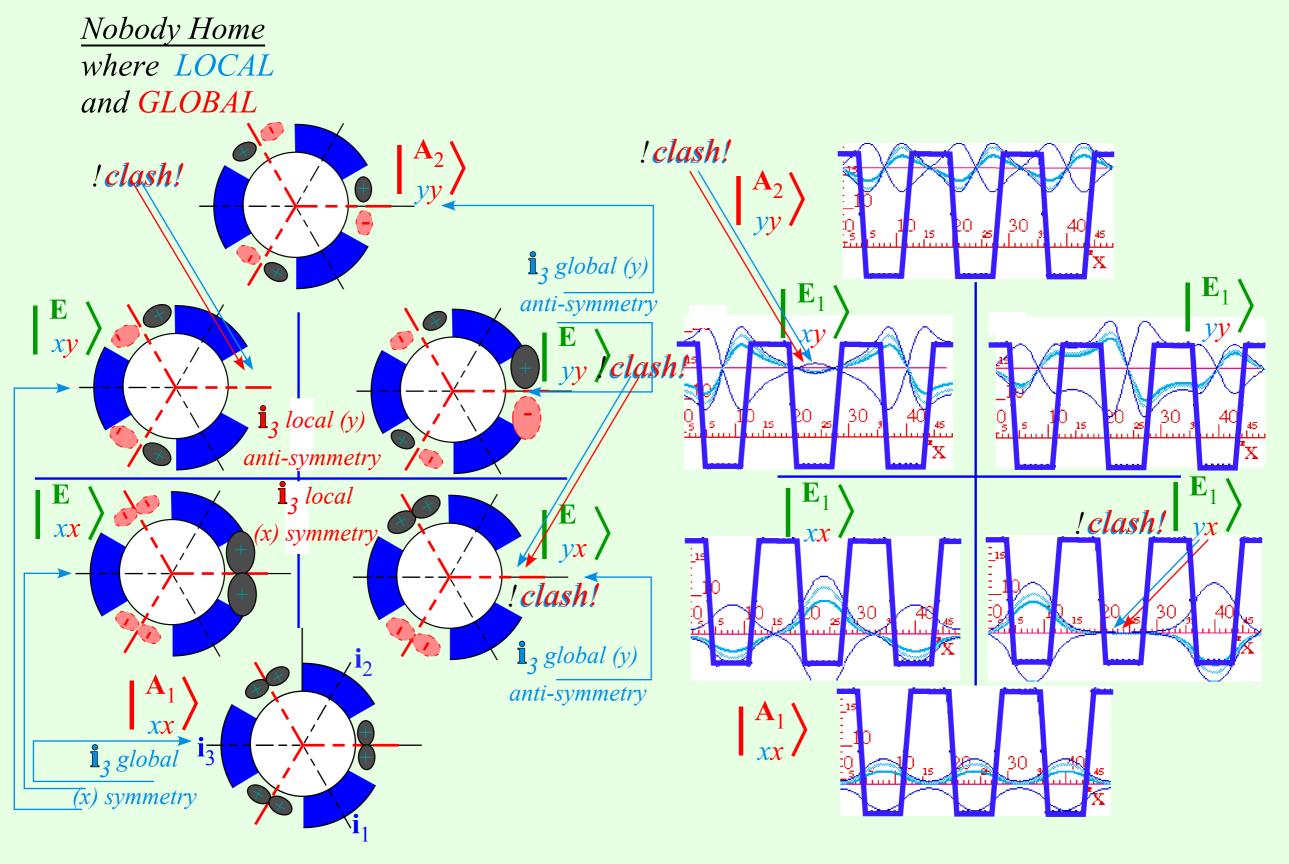
Local (BOD) symmetry

$$\overline{\mathbf{i}}_{3}|_{eb}^{(m)}\rangle = \overline{\mathbf{i}}_{3}\mathbf{P}_{eb}^{(m)}|1\rangle = \mathbf{P}_{eb}^{(m)}\overline{\mathbf{i}}_{3}|1\rangle$$

$$= \mathbf{P}_{eb}^{(m)}\overline{\mathbf{i}}_{3}^{\dagger}|1\rangle = (-1)^{b}|^{(m)}\rangle$$



When there is no there, there...



(a) Local $D_3 \supset C_2(i_3)$ model

(b) Mixed local symmetry D_3 model

