Group Theory in Quantum Mechanics
 Lecture $15_{(3.09 .17)}$

Smallest non-Abelian group D_{3} (and isomorphic $C_{3 v} \sim D_{3}$)

(Int.J.Mol.Sci,14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)

$$
\text { (PSDS - Ch. } 3 \text {) }
$$

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$
D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$
By nomograms based on $U(2)$ Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution Global vs Local symmetry and Mock-Mach principle Global vs Local matrix duality for D_{3}

Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D3 Hamiltonian Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra (center) All-commuting projectors and D_{3}-invariant characters Group invariant numbers: Centrum, Rank, and Order
D_{3} Algebra

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$
By nomograms based on U(2) Hamilton-turns Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

```
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D}\mp@subsup{D}{3}{}\mathrm{ Hamiltonian
1st-Stage spectral decomposition of global/local D3 Hamiltonian
    Group theory of equivalence transformations and classes
        Lagrange theorems
    All-commuting operators and D}\mp@subsup{D}{3}{}\mathrm{ -invariant class algebra
    All-commuting projectors and D3-invariant characters
    Group invariant numbers: Centrum, Rank, and Order
```


Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 16 non-Abelian groups. (See also Figure 2.11.1.)

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

```
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D}\mp@subsup{D}{3}{
            Global vs Local symmetry expansion of D3 Hamiltonian
1st-Stage spectral decomposition of global/local D3 Hamiltonian
    Group theory of equivalence transformations and classes
        Lagrange theorems
    All-commuting operators and D3-invariant class algebra
    All-commuting projectors and D3-invariant characters
    Group invariant numbers: Centrum, Rank, and Order
```

3-Dihedral-axes group D_{3}

3-Vertical-mirror-plane group $C_{3 v}$
$\mathrm{c}_{3 \mathrm{v}}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)

*isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_{3} and $C_{3 v}$ are isomorphic* $\left(D_{3} \sim C_{3 v}\right.$ share product table)

3-Dihedral-axes group D_{3}

vs. 3-Vertical-mirror-plane group $C_{3 v}$
$c_{3 v}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$ maps to: XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group D_{3}

vs. 3-Vertical-mirror-plane group $C_{3 v}$
$\mathrm{c}_{3 \mathrm{v}}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$ maps to: XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group D_{3}

vs. 3-Vertical-mirror-plane group $C_{3 v}$
$\mathrm{c}_{3 \mathrm{v}}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$ maps to : XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)\left(\begin{array}{c}\text { Inversion } \\ \mathbf{I}=-\mathbf{1} \\ \text { commutes } \\ \text { with } \\ \text { all } \mathbf{R}\end{array}\right.$
*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group D_{3}

vs.
3-Vertical-mirror-plane group $C_{3 v}$
$\mathrm{c}_{3 \mathrm{v}}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$180^{\circ} D_{3}-\rho_{2}$-axis-rotation: ρ_{2}
maps to : XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$

*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group D_{3}

vs.
3-Vertical-mirror-plane group $C_{3 v}$
$\mathrm{c}_{3 \mathrm{v}}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$180^{\circ} D_{3}-\rho_{2}$-axis-rotation: ρ_{2}
$180^{\circ} D_{3}-\rho_{1}$-axis-rotation: ρ_{1}
maps to : XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)\left(\begin{array}{c}\text { Inversion } \\ \mathbf{I}=-\mathbf{1} \\ \text { commutes } \\ \text { with } \\ \text { all } \mathbf{R}\end{array}\right.$
maps to : $\perp \rho_{2}$-mirror-plane reflection: $\sigma_{2}=\rho_{2} \cdot \mathbf{I}=\mathbf{I} \rho_{2}$ maps to: $\perp \rho_{1}$-mirror-plane reflection: $\sigma_{1}=\rho_{1} \mathrm{I}=\mathrm{I} \rho_{1}$
*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group D_{3}

vs.
3-Vertical-mirror-plane group $C_{3 v}$
$\mathrm{c}_{3 \mathrm{v}}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$180^{\circ} D_{3}-\rho_{2}$-axis-rotation: ρ_{2} $180^{\circ} D_{3}-\rho_{1}$-axis-rotation: ρ_{1}

$$
D_{3} \text {-product: } \rho_{1} \rho_{2}
$$

maps to : XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
maps to : $\perp \rho_{2}$-mirror-plane reflection: $\sigma_{2}=\rho_{2} \cdot \mathbf{I}=\mathrm{I} \rho_{2}$ maps to $: \perp \rho_{1}$-mirror-plane reflection: $\sigma_{1}=\rho_{1} \cdot \mathbf{I}=\mathrm{I} \rho_{1}$ maps to: $\quad C_{3 \nu}$-product: $\sigma_{1} \sigma_{2}=\rho_{1} \mathrm{II} \rho_{2}=\rho_{1} \rho_{2}$
*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group D_{3}

vs.
3-Vertical-mirror-plane group $C_{3 v}$
$\mathrm{c}_{3 \mathrm{v}}$

Figure 3.1.3 Pictorial comparison of D_{3} and $C_{3 v}$ symmetry. A propeller having D_{3} symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_{3} is a 180° rotation around the y axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$180^{\circ} D_{3}-\rho_{2}$-axis-rotation: ρ_{2}
$180^{\circ} D_{3}-\rho_{1}$-axis-rotation: ρ_{1}

$$
\begin{array}{ll}
D_{3} \text {-product: } & \rho_{1} \rho_{2} \\
D_{3} \text {-product: } & \rho_{1} \mathbf{r}^{p}
\end{array}
$$

(+1 . .) Inversion maps to : XZ-mirror-plane reflection: $\sigma_{3}=\begin{array}{ccc}+1 & -1 & \cdot \\ \cdot & \mathbf{I}=-\mathbf{1}\end{array}$ commutes with all \mathbf{R} maps to $: \perp \rho_{2}$-mirror-plane reflection: $\sigma_{2}=\rho_{2} \cdot \mathbf{I}=\mathbf{I} \rho_{2}$ maps to $: \perp \rho_{1}$-mirror-plane reflection: $\sigma_{1}=\rho_{1} \mathrm{I}=\mathrm{I} \rho_{1}$ maps to: $\quad C_{3 v}$-product: $\sigma_{1} \sigma_{2}=\rho_{1} \mathrm{II} \rho_{2}=\rho_{1} \rho_{2}$ maps to: $\quad C_{3 v}$-product: $\sigma_{1} \mathbf{r}^{p}=\rho_{1} \mathbf{I r}^{p}=\rho_{1} \mathbf{r}^{p} \mathrm{I}=\mathrm{I} \rho_{1} \mathbf{r}^{p}$
*isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_{3} and $C_{3 v}$ are isomorphic* ($D_{3} \sim C_{3 v}$ share product table)

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) $\longrightarrow \begin{aligned} & D_{3} \text { and } C_{3 v} \text { are isomorphic (D } \\ & \text { Deriving } D_{3} \sim C_{3 v} \text { products: }\end{aligned}$

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$
By nomograms based on $U(2)$ Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

```
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D}\mp@subsup{D}{3}{}\mathrm{ Hamiltonian
1st-Stage spectral decomposition of global/local D3 Hamiltonian
    Group theory of equivalence transformations and classes
        Lagrange theorems
    All-commuting operators and D}\mp@subsup{D}{3}{}\mathrm{ -invariant class algebra
    All-commuting projectors and D-invariant characters
    Group invariant numbers: Centrum, Rank, and Order
```

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Building
$C_{3 v}$ Group
"slide-rule"

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:
\longrightarrow By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_{3}
Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D_{3} Hamiltonian
Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra
All-commuting projectors and D_{3}-invariant characters

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$

$$
\sigma_{3}|1\rangle=\mid a_{z}
$$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$

left is last
(like Hebrew)

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$

Other $\boldsymbol{\sigma}_{1}$ results from graph:

$$
\begin{aligned}
& \boldsymbol{\sigma}_{1}\left\{\mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}\right\} \\
& =\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}, \mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}
\end{aligned}
$$

$$
\sigma_{3}|1\rangle=\mid{ }_{z} z^{2}
$$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$

Other $\boldsymbol{\sigma}_{1}$ results from graph: $\boldsymbol{\sigma}_{1}\left\{\mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}\right\}$
$=\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}, \mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$
....whole $C_{3 v}$ group table:

$\begin{aligned} & c_{30} \mathrm{gg}^{\dagger}{ }_{\text {form }} \end{aligned}$	1			r	σ_{1}	$\mathrm{\sigma}_{2}$	σ_{3}
1	1			${ }^{1}$	σ_{1}	$\mathrm{\sigma}_{2}$	σ_{3}
r^{1}	r			r^{2}	σ_{3}		$\mathrm{\sigma}_{2}$
r^{2}	r			1	O_{2}		O_{1}
$\mathrm{\sigma}_{1}$	σ			σ_{2}	1	r^{1}	r^{2}
$\mathrm{\sigma}_{2}$	σ			σ_{3}	r^{2}	1	r^{1}
σ_{3}				σ_{1}	r^{1}	r^{2}	r^{2}

$\left.\sigma_{3}|1\rangle=\mid \sigma_{3}\right)$

 16 non-Abelian groups. (See also Figure 2.11.1.)
 16 non-Abelian groups. (See also Figure 2.11.1.)

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:
By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_{3}
Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D_{3} Hamiltonian Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra
All-commuting projectors and D_{3}-invariant characters
Group invariant numbers: Centrum, Rank, and Order

Deriving $D_{3} \sim C_{3 v}$ products by nomograms based on $U(2)$ Hamilton-turns

$\mathbf{R}\left[\omega^{\prime}\right] \mathbf{R}[\omega]=\mathbf{R}\left[\omega^{\prime \prime}\right]$
(Fig. 3.1.6 PSDS)

(Fig. 10.A. 8 QTCA)

Figure 3.1.7 Geometrical definition of symmetry group D_{3}. (a) Hamilton arc vectors are drawn for rotations r, i_{1}, and i_{3}. (b) Group nomogram is obtained by projecting (a) onto the $x y$ plane.

Note $\boldsymbol{h}^{2}=\mathbf{r}^{1}$ and $\boldsymbol{h}^{4}=\mathbf{r}^{2}$ for D D_{6} notation

1	h^{2}	h^{4}	ρ_{1}	ρ_{2}	ρ_{3}
h^{4}	-1	$-h^{2}$	$-\rho_{2}$	$-\rho_{3}$	ρ_{1}
h^{2}	h^{4}	-1	$-\rho_{3}$	ρ_{1}	ρ_{2}
ρ_{1}	ρ_{2}	ρ_{3}	-1	$-h^{2}$	$-h^{4}$
ρ_{2}	ρ_{3}	$-\rho_{1}$	h^{4}	-1	$-h^{2}$
ρ_{3}	$-\rho_{1}$	$-\rho_{2}$	h^{2}	h^{4}	-1

$$
\begin{aligned}
& \left.\begin{array}{|rrrr}
1 & R_{x} & R_{y} & R_{z} \\
R_{x} & -1 & R_{z} & -R_{y} \\
R_{y} & -R_{z} & -1 & R_{x} \\
R_{z} & R_{y} & -R_{x} & -1
\end{array} \right\rvert\, \\
& -i \sigma_{\mathrm{B}} \\
& \mathscr{D}^{E}\left(R_{x}\right)=\left(\begin{array}{rr}
0 & -i \sigma_{\mathrm{C}} \\
-i & 0
\end{array}\right), \quad \mathscr{D}^{E}\left(R_{y}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad \mathscr{D}^{E}\left(R_{z}\right)=\left(\begin{array}{rr}
-i & 0 \\
0 & i
\end{array}\right) .
\end{aligned}
$$

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$
By nomograms based on U(2) Hamilton-turns Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_{3}
Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D_{3} Hamiltonian
Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra
All-commuting projectors and D_{3}-invariant characters
Group invariant numbers: Centrum, Rank, and Order

Seems to imply: $\mathbf{r}^{1} \rho_{3}\left(\mathbf{r}^{1}\right)^{-1}=\mathbf{r}^{1} \rho_{3} \mathbf{r}^{2}=\rho_{1}$

Seems to imply: $\mathbf{r}^{1} \rho_{3}\left(\mathbf{r}^{1}\right)^{-1}=\mathbf{r}^{1} \rho_{3} \mathbf{r}^{2}=\rho_{1}$

Need to check that with table:
$\mathbf{r}^{1} \rho_{3} \mathbf{r}^{2}=\rho_{2} \mathbf{r}^{2}$

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution Global vs Local symmetry and Mock-Mach principle Global vs Local matrix duality for D_{3}

Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D_{3} Hamiltonian Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra All-commuting projectors and D_{3}-invariant characters Group invariant numbers: Centrum, Rank, and Order

What has been done so far:
Abelian (Commutative) $C_{2}, C_{3}, \ldots, C_{6} \ldots$
H diagonalized by r^{p} symmetry operators that COMMUTE with $H \quad\left(r^{p} H=H r^{p}\right)$,
and with each other $\left(r^{p} r^{q}=r^{p+q}=r^{q} r^{p}\right)$.

What has been done so far:
Abelian (Commutative) $C_{2}, C_{3}, \ldots, C_{6} \ldots$
H diagonalized by r^{p} symmetry operators that COMMUTE with $H \quad\left(r^{p} H=H r^{p}\right)$,
and with each other $\left(r^{p} r^{q}=r^{p+q}=r^{q} r^{p}\right)$.

What we need to learn now:

Non-Abelian (do not commute) D_{3}, O_{h}, \ldots
While all H symmetry operations COMMUTE

with H
 ($\mathbf{U} H=H \mathbf{U}$)

most do not with each other ($\mathbf{U} \mathbf{V} \neq \mathbf{V} \mathbf{~)}$.

What has been done so far:
Abelian (Commutative) $C_{2}, C_{2}, \ldots, C_{6} \ldots$
H diagonalized by r^{p} symmetry operators that COMMUTE with $H \quad\left(r^{p} H=H r^{p}\right)$,
and with each other $\left(r^{p} r^{q}=r^{p+q}=r^{q} p^{p}\right)$.

What we need to learn now:

Non-Abelian (do not commute) D_{3}, O_{h}, \ldots
While all H symmetry operations COMMUTE
with $H \quad(\mathbf{U} H=H \mathbf{U})$
most do not with each other ($\mathbf{U} \mathbf{V} \neq \mathbf{V} \mathbf{~})$.

Q: So how do we write \boldsymbol{H} in terms of non-commutative \mathbf{U} ?

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution Global vs Local symmetry and Mock-Mach principle Global vs Local matrix duality for D_{3}

Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D_{3} Hamiltonian Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra All-commuting projectors and D_{3}-invariant characters Group invariant numbers: Centrum, Rank, and Order
"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...Vanvleck, Casimir..., Mach, Newton, Archimedes..) Lab-fixed (Extrinsic-Global)R

"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$

Body Based Operations

"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$

\mathbf{R} commutes
with all $\overline{\mathbf{R}}$
(because they're independent or "unentangled")

Body Based Operations

"Give me a place to stand... and I will move the Earth"

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$

"Give me a place to stand... and I will move the Earth"

Ideas of duality/relativity go way back (..vanvecck, Casimiri.., Mach, Newton, Archinedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$

...But how do you actually make the \mathbf{R} and $\overline{\mathbf{R}}$ operations?

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products.

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_{3}
Global vs Local symmetry expansion of D_{3} Hamiltonian

```
1st-Stage spectral decomposition of global/local D3 Hamiltonian
    Group theory of equivalence transformations and classes
        Lagrange theorems
    All-commuting operators and D3-invariant class algebra
    All-commuting projectors and D3-invariant characters
    Group invariant numbers: Centrum, Rank, and Order
```

Example of GLOBAL vs LOCAL symmetry algebra for $D 3 \sim C 3 v$

Example of GLOBAL vs LOCAL symmetry algebra for $D 3 \sim C 3 v$

Example of RELATIVITY-DUALITY for $D_{3} \mathcal{C}_{3 v}$
To represent external $\{. . T, \mathbf{U}, \mathbf{V}, \ldots\}$ switch $\underline{\underline{\rightarrow}} \mathbf{g}^{\dagger}$ on top of group table

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\underset{\rightarrow}{\boldsymbol{\rightarrow}} \mathbf{g}^{\dagger}$ on top of group table

$A F A \rightarrow A$	
1	$\begin{array}{lllllll}\mathbf{r}^{2} & \mathbf{r} & \mathbf{i}_{1} & \mathbf{i}_{2} & \left(i_{3}\right.\end{array}$
r	
\mathbf{r}^{2}	
i_{1}	(13) $\mathbf{i}_{2} 11 \begin{array}{llll}1 & \mathrm{r} & \mathrm{r}^{2}\end{array}$
i_{2}	$\mathrm{i}_{1}\left(\mathrm{i}_{3}\right) \mathrm{r}^{2} 11 \mathrm{r}$
D_{3} globall	
	gg ${ }^{\dagger}$-table

D_{3} local
To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\boldsymbol{T}}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table

(1)

+1	r \mathbf{r}^{2}	$\mathbf{i}_{1} \mathbf{i}_{2}\left(i_{3}\right)$
	$\begin{array}{ll} \mathbf{1} & \mathbf{r} \\ \mathbf{r}^{2} & \mathbf{1} \end{array}$	$\begin{array}{lll} \mathbf{i}_{2} & \left(\mathbf{i}_{3}\right. & \mathbf{i}_{1} \\ \hdashline \mathbf{i}_{3} & \mathbf{i}_{1} & \mathbf{i}_{2} \end{array}$
	i_{2} (13)	$1 \begin{array}{lll}1 & r^{2}\end{array}$
	(i3) \mathbf{i}_{2}	$\mathrm{r}^{2} 11 \begin{array}{lll} \\ & 1 & \end{array}$
	$\mathbf{i}_{1} \quad \mathbf{i}_{2}$	$\begin{array}{lll}\mathbf{r} & \mathbf{r}^{2} & \mathbf{1}\end{array}$

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$ \} switch $\mathbf{g} \underset{\rightarrow}{ } \mathbf{g}^{\dagger}$ on top of group table

$\overbrace{2} A \rightarrow A$	
1	$\mathbf{r}^{2} \mathbf{r}$
r	
r^{2}	
i_{1}	(13) \mathbf{i}_{2}
i_{2}	i_{1} (13) $\mathrm{r}^{2} 1 \mathrm{l}$
	$\mathbf{i}_{2} \mathbf{i}_{1} \mathrm{r} \mathbf{r}^{2}$
D_{3} global	
ggt-table	

RESULT:

Any $R(\mathrm{~T})$
commute (Even if T and U do not...)
with any $R(\overline{\mathrm{U}})$..

$$
\ldots \text { and } \mathrm{T} \cdot \mathrm{U}=\mathrm{V} \text { if \& only if } \overline{\mathrm{T}} \cdot \overline{\mathbf{U}}=\overline{\mathbf{V}} .
$$

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\boldsymbol{\sim}}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products: By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution Global vs Local symmetry and Mock-Mach principle Global vs Local matrix duality for D_{3}

Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D3 Hamiltonian
Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra
All-commuting projectors and D_{3}-invariant characters
Group invariant numbers: Centrum, Rank, and Order

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\underset{\rightarrow}{\boldsymbol{\rightarrow}} \mathbf{g}^{\dagger}$ on top of group table

$A F A \rightarrow$	
1	
r	
r^{2}	
i_{1}	(13) \mathbf{i}_{2}
i_{2}	i_{1} (13) $\mathrm{r}^{2} 11 \mathrm{r}$
	$\mathrm{i}_{2} \mathbf{i}_{1}$
D_{3} global	
	gg ${ }^{\dagger}$-table

So an $\mathbb{B I}$-matrix
having Global symmetry D_{3}
commute (Even if T and U do not...) with any $R(\overline{\mathrm{U}})$..

$$
\mathbb{H}=H \mathbf{1}_{+1}^{0} \zeta_{1} \overline{\mathbf{r}}^{1}+r_{2} \overline{\mathbf{r}}^{2}+i_{1} \overline{\mathbf{i}}_{1}+i_{i} \overline{\mathbf{i}}_{2}+i_{3} \overline{\mathbf{I}}_{3}
$$

is made from
Local symmetry matrices

D_{3} local $\mathrm{g}^{\dagger} \mathrm{g}$-table

$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	$\left(\mathbf{i}_{3}\right.$	\mathbf{i}_{2}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
$\mathbf{i n}_{3}$	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\underset{\rightarrow}{\rightarrow} \mathbf{g}^{\dagger}$ on top of group table

RESULT:
Any $R(\mathbb{T})$
commute (Even if T and U do not...) with any $R(\overline{\mathrm{U}})$..
...and $T \cdot \mathbf{U}=\mathbf{V}$ if \& only if $\overline{\mathbf{T}} \cdot \overline{\mathbf{U}}=\overline{\mathbf{V}}$.

So an 18-matrix having Global symmetry D_{3}

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\boldsymbol{T}}{\leftrightarrows} \mathbf{g}^{\dagger}$ on side of group table

locall $^{D_{3}}$ defined Hamiltonian matrix

Example of RELATIVITY-DUALITY for $\underline{D}_{\underline{3}} \underline{\sim}_{3 v}$

So an IB-matrix having Global symmetryD 3 with any $R(\overline{\mathrm{U}})$.

$\mathbb{B}=H \overline{\mathbf{l}}^{0}+r_{1} \overline{\mathbf{r}}^{1}+r_{2} \overline{\mathbf{r}}^{2}+i_{1} \overline{\mathbf{I}}_{1}+i_{2} \overline{\mathbf{i}}_{2}+i_{3} \overline{\mathbf{i}}_{3}$ is made from Local symmetry matrices

All the global g commute with general local $[$ matrix.

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\rightarrow}{\leftrightarrows} \mathbf{g}^{\dagger}$ on side of group table

locall D_{3} defined
Hamilltonian matrix
且 $\left.\left.\left.\left.=\mid \mathbf{1}) \mid \mathrm{r}) \mid \mathbf{r}^{2}\right) \mid \mathbf{i}_{1}\right) \mid \mathbf{i}_{2}\right) \mid \mathbf{i}_{3}\right)$

$(\mathbf{1} \mid$	H	r_{1}	r_{2}	i_{1}	i_{2}	i_{3}
$(\mathrm{r}\|\mid$	r_{2}	H	r_{1}	i_{2}	i_{3}	i_{1}
$\left(\mathrm{r}^{2} \mid\right.$	r_{1}	r_{2}	H	i_{3}	i_{1}	i_{2}
$\left(\mathrm{i}_{1}\| \| \begin{array}{l}i_{1}\end{array}\right.$	i_{2}	i_{3}	H	r_{1}	r_{2}	
$\left(\mathrm{i}_{2} \mid\right.$	i_{2}	i_{3}	i_{2}	r_{2}	H	r_{1}
$\left(\mathrm{i}_{3}\| \|\right.$	i_{3}	i_{1}	i_{2}	r_{1}	r_{2}	H

To represent external \{..T,U,V,...\}...
$R^{G}(\mathbb{1})=$ $R^{G}\left(\mathbf{r}^{\prime}\right)=$ $R^{G}\left(r^{2}\right)=$
$R^{G}(i)=$

$$
\begin{aligned}
H & =\langle 1| \mathbb{E}|1\rangle=H^{*} \\
r_{1} & =\langle\mathrm{r}| \mathbb{H}|1\rangle=r_{2}^{*} \\
r_{2} & =\left\langle\mathrm{r}^{2}\right| \mathbb{B}|1\rangle=r_{1}^{*} \\
i_{1} & =\left\langle\mathrm{i}_{1}\right| \mathbb{R}|1\rangle=i_{1}{ }^{*} \mathbf{i}_{3}- \\
i_{2} & =\left\langle i_{2}\right| \mathbb{R}|1\rangle=i_{2}{ }^{*} \\
i_{3} & =\left\langle\mathrm{i}_{3}\right| \mathbb{H}|1\rangle=i_{3}^{*}
\end{aligned}
$$

RESULT:
Any $R(T)$
commute (Even if T and U do not...) with any $R(\overline{\mathrm{U}}) \ldots$

To represent internal $\{. . \overline{\mathbb{T}}, \overline{\mathbb{U}}, \overline{\mathbb{V}}, \ldots\} \ldots$

is made from
Local symmetry matrices

B						
	r_{2}					
(r ${ }^{2}$	r_{1}		H			
	i_{1}					
	i_{2}					

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle Global vs Local matrix duality for D_{3}

Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Stage spectral decomposition of global/local D_{3} Hamiltonian
5
Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra All-commuting projectors and D_{3}-invariant characters Group invariant numbers: Centrum, Rank, and Order

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S}={ }^{\circ} G /{ }^{\circ} K_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_{3}
Global vs Local symmetry expansion of D_{3} Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra All-commuting projectors and D_{3}-invariant characters Group invariant numbers: Centrum, Rank, and Order

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ}{ }_{S_{k}}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ}{ }_{S_{k}}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ}{ }_{S_{k}}=$ order of g_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }^{\circ}=3,{ }^{\circ}{ }_{S_{i}}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{t} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$. that is: $\mathbf{g}_{d} \mathbf{g}_{s} \mathbf{g}_{k}\left(\mathbf{g}_{t} \mathrm{~g}_{s}\right)^{-1}=\mathbf{g}_{t} g_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1} \mathbf{g}_{t}^{-1}=\mathbf{g}_{t} g_{k} \mathbf{g}_{t}^{-1}=\mathbf{g}^{\prime}{ }_{k}$,

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} g_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\mathbf{I}=\left({ }^{\circ}{ }_{\kappa_{k}}-1\right)$ Left Cosets (one coset for each member of class $\boldsymbol{\kappa}_{k}$). $\mathbf{g}_{l} S_{k}=\mathbf{g}_{l}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$,

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} g_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\boldsymbol{I}=\left({ }^{\circ} \boldsymbol{\kappa}_{k}-1\right)$ Left Cosets (one coset for each member of class κ_{k}).
$\mathbf{g}_{l} s_{k}=\mathbf{g}_{l}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$,
$\mathbf{g}_{2} S_{k}=\mathbf{g}_{2}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}, \ldots$
$\mathbf{g}_{\mathbf{l}} s_{k} \doteq \mathbf{g}_{\mathbf{l}}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} g_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\boldsymbol{I}=\left({ }^{\circ} \boldsymbol{\kappa}_{k}-1\right)$ Left Cosets (one coset for each member of class κ_{k}).
$\mathbf{g}_{l} s_{k}=\mathbf{g}_{l}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$,
$\mathbf{g}_{2} S_{k}=\mathbf{g}_{2}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}, \ldots$
They will divide the group of order ${ }^{\circ} D_{3}={ }^{\circ} \kappa_{k} \cdot{ }^{\circ}{ }_{S k}$ evenly into ${ }^{\circ}{ }_{K} k$ subsets each of order ${ }^{\circ} S_{k}$.

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{0} s_{k}=$ order of g_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} s_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with $\mathbf{g}_{k .}$
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-Self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\boldsymbol{I}=\left({ }^{\circ}{ }_{\kappa_{k}}-1\right)$ Left Cosets (one coset for each member of class $\boldsymbol{\kappa}_{k}$).
$\mathbf{g}_{l} s_{k}=\mathbf{g}_{l}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$,
$\mathbf{g}_{2} S_{k}=\mathbf{g}_{2}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}, \ldots$
These results are known as Lagrange's Coset Theorem(s)
They will divide the group of order ${ }^{\circ} D_{3}={ }^{\circ} \mathcal{K}_{k} \cdot{ }^{\circ} S_{k}$ evenly into ${ }^{\circ} \kappa_{k}$ subsets each of order ${ }^{\circ}{ }_{S k}$.

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle Global vs Local matrix duality for D_{3}

Global vs Local symmetry expansion of D_{3} Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian Group theory of equivalence transformations and classes Lagrange theorems
1 All-commuting operators and D_{3}-invariant class algebra All-commuting projectors and D3-invariant characters Group invariant numbers: Centrum, Rank, and Order

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

| 1 | \mathbf{r}^{1} | \mathbf{r}^{2} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad Each class-sum \underline{K}_{k} commutes with all of D_{3}

\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}^{1}	r^{2}	1	i_{3}	i_{1}	i_{2}
i_{1}	i_{2}	i_{3}	1	r^{1}	r^{2}
i_{2}	i_{3}	i_{1}	r^{2}	1	r^{1}
i_{3}	i_{1}	i_{2}	r^{1}	r^{2}	1

$\kappa_{1}=\mathbf{1}$	$\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$	$\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$
κ_{2}	$2 \kappa_{1}+\kappa_{2}$	$2 \kappa_{3}$
κ_{3}	$2 \kappa_{3}$	$3 \kappa_{1}+3 \kappa_{2}$

κ_{g} 's are mutually commuting with respect to themselves and all-commuting with respect to the whole group.

$$
\begin{aligned}
& \mathbf{r} \boldsymbol{\kappa}_{i} \mathbf{r}^{-1}=\mathbf{i}_{2}+\mathbf{i}_{3}+\mathbf{i}_{l}=\boldsymbol{\kappa}_{i} \quad \text { or: } \quad \mathbf{r} \boldsymbol{\kappa}_{i}=\boldsymbol{\kappa}_{i} \mathbf{r} \\
& \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbf{h g}^{-1}=v_{g} \boldsymbol{\kappa}_{g}, \quad \text { where: } v_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { integer }
\end{aligned}
$$

${ }^{\circ} \kappa g$ is order of class κg and must evenly divide group order ${ }^{\circ} G$.

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	
\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	
\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$	

$$
\begin{aligned}
& \text { Note also: } \\
& \mathbf{\kappa}_{2}^{2}-\boldsymbol{\kappa}_{2}-2 \cdot \mathbf{1}=0
\end{aligned}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

1	$\mathrm{r}^{1} \mathrm{r}^{2}$	$\begin{array}{llll}\mathrm{i}_{1} & \mathrm{i}_{2} & \mathrm{i}_{3}\end{array}$	Each class-sum \underline{K}_{k} commutes with all of D_{3}.		
r^{2} r^{1}	$\begin{array}{cc}1 & \mathrm{r}^{1} \\ \mathrm{r}^{2} & 1\end{array}$	i_{2} i_{3} i_{1} i_{3} i_{1} i_{2} 1	$\kappa_{1}=1$	$\kappa_{2}=\mathrm{r}^{1}+\mathrm{r}^{2}$	$\kappa_{3}=\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}$
r^{1}		i_{3} i_{1} i_{2} 1 r^{1} r^{2}	κ_{2}	$2 \kappa_{1}+\kappa_{2}$	$2 \kappa_{3}$
i_{1} i_{2}	$\begin{array}{ll}\mathrm{i}_{2} & \mathrm{l}_{3} \\ \mathrm{i}_{3} & \mathrm{i}_{1} \\ \mathrm{l}_{1}\end{array}$	$\begin{array}{ccc}1 & \mathrm{r} & \mathrm{r}^{2} \\ \mathrm{r}^{2} & 1 & \mathrm{r}^{1}\end{array}$	κ_{3}	$2 \kappa_{3}$	$3 \kappa_{1}+3 \kappa_{2}$
i_{3}	$\mathrm{i}_{1} \mathrm{i}_{2}$	$\begin{array}{lll}\mathrm{r}^{1} & \mathrm{r}^{2} & 1\end{array}$	Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}$		

$$
\begin{aligned}
& \text { Note also: } \\
& \boldsymbol{\kappa}_{2}^{2}-\boldsymbol{\kappa}_{2}-2 \cdot \mathbf{1}=0 \\
& 0=\left(\boldsymbol{\kappa}_{2}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{2}+\mathbf{1}\right)
\end{aligned}
$$

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table) Deriving $D_{3} \sim C_{3 v}$ products:

By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$ By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle Global vs Local matrix duality for D_{3}

Global vs Local symmetry expansion of D_{3} Hamiltonian

1st-Stage spectral decomposition of global/local D3 Hamiltonian Group theory of equivalence transformations and classes Lagrange theorems
All-commuting operators and D_{3}-invariant class algebra
\rightarrow All-commuting projectors and D_{3}-invariant characters Group invariant numbers: Centrum, Rank, and Order

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of D_{3}.

$\kappa_{1}=\mathbf{1}$	$\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$	$\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$
κ_{2}	$2 \kappa_{1}+\kappa_{2}$	$2 \kappa_{3}$
	κ_{3}	$2 \kappa_{3}$

Class products give spectral polynomial and
all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and \mathbf{P}^{E}

$$
0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
r^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}^{1}	r^{2}	$\mathbf{1}$	i_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
i_{1}	i_{2}	i_{3}	$\mathbf{1}$	r^{1}	r^{2}
i_{2}	i_{3}	i_{1}	r^{2}	$\mathbf{1}$	r^{1}
i_{3}	i_{1}	i_{2}	r^{1}	r^{2}	$\mathbf{1}$

Each class-sum \underline{K}_{k} commutes with all of D_{3}.

$\kappa_{1}=\mathbf{1}$	$\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$	$\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$
κ_{2}	$2 \kappa_{1}+\kappa_{2}$	$2 \kappa_{3}$
	κ_{3}	$2 \kappa_{3}$

Class products give spectral polynomial and
all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{4_{1}}, \mathbb{P}^{4_{2}}$, and \mathbf{P}^{E}
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$
$0=\left(\kappa_{2}-2 \cdot \mathbf{1}\right)\left(\kappa_{2}+\mathbb{1}\right)$
$0=\left(\kappa_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}}$
$\boldsymbol{K}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}$

$$
\mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

Each class-sum \underline{K}_{k} commutes with all of D_{3}.

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| κ_{2} | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{4_{1}}, \mathbb{P}^{4_{2}}$, and \mathbb{P}^{E}
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$
$0=\left(\kappa_{2}-2 \cdot 1\right)\left(\kappa_{2}+\mathbb{1}\right)\left(\kappa_{3}-3 \cdot 1\right) \mathbf{P}^{A_{1}}$
$\boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}^{A_{2}} \\
& \boldsymbol{\kappa}_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathbb{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)}
\end{aligned}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

1			$\begin{array}{lll}\mathrm{i}_{1} & \mathrm{i}_{2} & \mathrm{i}_{3}\end{array}$		
r^{2}				i_{3}	i_{1}
r^{1}	r^{2}	1		i_{1}	i_{2}
i_{1}		i_{3}		r^{1}	r^{2}
i_{2}		i_{1}		1	r^{1}
i_{3}		i_{2}	r^{1}	r^{2}	1

Each class-sum κ_{k} commutes with all of D_{3}.

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| | κ_{2} | $2 \kappa_{1}+\kappa_{2}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{4_{1}}, \mathbb{P}^{4_{2}}$, and \mathbf{P}^{E}
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\boldsymbol{3}}=\left(\kappa_{\boldsymbol{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\boldsymbol{3}}-0 \cdot \mathbf{1}\right)$

$$
\begin{aligned}
& 2^{+1}=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\kappa_{3}+3 \cdot 1\right) \mathbb{P}^{A_{2}} \\
& \kappa_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathbb{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(+3+3)(+3-0)}
$$

$$
\mathbf{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{\mathbf{3}}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)}
$$

$$
\mathbf{P}^{E}=\frac{\left(\mathbf{k}_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\mathbf{k}_{\mathbf{3}}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

Each class-sum κ_{k} commutes with all of D_{3}.

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| | κ_{2} | $2 \kappa_{1}+\kappa_{2}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{4_{1}}, \mathbb{P}^{4_{2}}$, and \mathbf{P}^{E}
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\boldsymbol{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$

$$
\begin{aligned}
& 2+1) \\
& 0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{aligned}
$$

Class resolution into sum of eigenvalue \cdot Projector

$$
\begin{aligned}
& \mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \mathbf{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \\
& \mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

Note also:
$\mathbf{\kappa}^{2}{ }_{2}-\mathbf{K}_{2}-2 \cdot \mathbf{1}=0$
$0=\left(\boldsymbol{\kappa}_{2}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{2}+\mathbf{1}\right)$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of D_{3}.

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| κ_{2} | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and \mathbf{P}^{E} $\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$

$$
\begin{aligned}
& 0=\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue • Projector

$$
\begin{aligned}
& \boldsymbol{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbb{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \longleftarrow \quad \boldsymbol{\kappa}_{r}^{2}=\boldsymbol{\kappa}_{r}+2 \cdot \mathbf{1} \Rightarrow\left(\boldsymbol{\kappa}_{r}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{r}+\mathbf{1}\right)=\mathbf{0} \\
& \boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbb{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Inverse resolution gives D_{3} Character Table

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}+\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}+\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{2}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
\end{aligned}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of D_{3}.

	$\kappa_{1}=\mathbf{1}$	$\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$
κ_{2}	$2 \kappa_{1}+\kappa_{2}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$	
	κ_{3}	$2 \kappa_{3}$
$2 \kappa_{3}$		

Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and \mathbf{P}^{E}

$$
0=\kappa_{3}^{3}-9 \kappa_{3}=\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot \mathbf{1}\right)\left(\kappa_{3}-0 \cdot \mathbf{1}\right)
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue \cdot Projector

$$
\begin{aligned}
& \mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \mathbf{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbb{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \longleftarrow \boldsymbol{\kappa}_{r}^{2}=\boldsymbol{\kappa}_{r}+2 \cdot \mathbf{1} \Rightarrow\left(\boldsymbol{\kappa}_{r}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{r}+\mathbf{1}\right)=\mathbf{0} \\
& \boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\mathbf{P}^{A_{1}}=\frac{\left(\mathbf{\kappa}_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)}
$$

$$
\mathbf{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)}
$$

Inverse resolution gives D_{3} Character Table

$$
\mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}+\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}-\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{2}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
\end{aligned}
$$

χ_{k}^{α}	χ_{1}^{α}	χ_{2}^{α}	χ_{3}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of D_{3}-Center (Class algebra of D_{3})

$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of D_{3}.

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| κ_{2} | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and \mathbf{P}^{E}

$$
0=\kappa_{3}^{3}-9 \kappa_{3}=\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot \mathbf{1}\right)\left(\kappa_{3}-0 \cdot \mathbf{1}\right)
$$

$$
\begin{array}{l|l|}
0=\left(\mathbf{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
\mathbf{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{array}\left|\begin{array}{l}
0=\left(\mathbf{\kappa}_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}^{A_{2}} \\
\mathbf{\kappa}_{3} \mathbf{P}^{A_{2}}=-3 \cdot \mathbf{P}^{A_{2}}
\end{array}\right| \begin{aligned}
& 0=\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue • Projector

$$
\begin{aligned}
& \mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Inverse resolution gives D_{3} Character Table

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}+\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{A_{2}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}-\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{2}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
\end{aligned}
$$

Irreducible characters are traces	$\mathrm{P}^{A_{2}}=\frac{\left(\kappa_{3}-\mathbf{3} \cdot \mathbf{1}\right)\left(\kappa_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)}$			
$\chi_{\kappa}(\alpha)=\operatorname{Tr} D^{(\alpha)}\left(\mathbf{r}_{\kappa}\right)$	$\mathbf{P}^{E}=\frac{\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\mathbf{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}$			
of	χ_{k}^{α}	χ_{1}^{α}	χ_{2}^{α}	χ_{3}^{α}
irreducible representations $D^{(\alpha)}\left(\mathbf{r}_{\kappa}\right)$	$\alpha=A_{1}$	1	1	1
	$\alpha=A_{2}$	1	1	-1

3-Dihedral-axes group D_{3} vs. 3-Vertical-mirror-plane group $C_{3 v}$ D_{3} and $C_{3 v}$ are isomorphic ($D_{3} \sim C_{3 v}$ share product table)
Deriving $D_{3} \sim C_{3 v}$ products:
By group definition $|g\rangle=\mathrm{g}|1\rangle$ of position ket $|g\rangle$
By nomograms based on U(2) Hamilton-turns
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_{3}
Global vs Local symmetry expansion of D_{3} Hamiltonian
1st-Step in spectral analysis of D_{3} "group-table"Hamiltonian: Algebra of D_{3} Center(Classes) All-commuting operators and D_{3}-invariant class algebra All-commuting projectors and D_{3}-invariant characters Group invariant numbers: Centrum, Rank, and Order

(Fig. 15.2.1 QTCA)

Important invariant numbers or "characters"

$D_{3} \mathrm{k}=1$	$\mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}^{1}$		
$\mathbf{P}^{4 l}=1$	1	1	/6
$\mathbb{P}^{42}=1$	1	-1	
$\mathbf{P}^{E}=2$			

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\boldsymbol{\alpha}}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

Important invariant numbers or "characters"

$D_{3} \mathrm{k}=1$	$\mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}^{1}$		
$\mathbf{P}^{4 l}=1$	1	1	/6
$\mathbb{P}^{42}=1$	1	-1	
$\mathbf{P}^{E}=2$			

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\boldsymbol{\alpha}}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

$$
\begin{gathered}
\boldsymbol{\kappa}\left(D_{3}\right)=(1)^{0}+(1)^{0}+(2)^{0}=3 \\
\boldsymbol{\rho}\left(D_{3}\right)=(1)^{1}+(1)^{1}+(2)^{1}=4 \\
\circ\left(D_{3}\right)=(1)^{2}+(1)^{2}+(2)^{2}=6
\end{gathered}
$$

