Group Theory in Quantum Mechanics Lecture 11 (2.21.17)

Representations of cyclic groups $C_3 \subset C_6 \supset C_2$

(Quantum Theory for Computer Age - Ch. 6-9 of Unit 3) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 3-7 of Ch. 2)

Review of C₂ spectral resolution for 2D oscillator (Lecture 6 : p. 11, p. 17, and p. 11)
 C₃ g[†]g-product-table and basic group representation theory
 C₃ H-and-r^p-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

> WebApps used <u>WaveIt App</u> <u>MolVibes</u>

*Review of C*₂ spectral resolution for 2D oscillator Lecture 6

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

 C_2 (Bilateral σ_B reflection) symmetry conditions: $K_{11} = K = K_{22}$ and: $K_{12} = k = K_{12} = -k_{12}$ (Let: M = 1) $\begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} = \begin{pmatrix} K & k \\ k & K \end{pmatrix} = K \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\mathbf{K} = K\mathbf{d} + k\mathbf{\tilde{o}}_{\mathbf{P}}$

2D HO Matrix operator equations

$$\begin{vmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{vmatrix} = - \begin{pmatrix} \frac{k_{1} + k_{12}}{M} & \frac{-k_{12}}{M} \\ \frac{-k_{12}}{M} & \frac{k_{1} + k_{12}}{M} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$= - \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$More \ conventional \ coordinate \ notation \ |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \quad |\mathbf{x}\rangle \quad \{x_{0}, x_{1}\} \rightarrow \{x_{1}, x_{2}\}$$

K-matrix is made of its symmetry operators in

group $C_2 = \{1, \sigma_B\}$ with product table	C_2	1	σ_{B}
	1	1	σ_{B}
	σ_{B}	σ_{B}	1

Symmetry *product table* gives C₂ group representations in *group basis* $\{|0\rangle = \mathbf{1}|0\rangle \equiv |\mathbf{1}\rangle, |1\rangle = \sigma_B |0\rangle \equiv |\sigma_B\rangle$ $\begin{pmatrix} \langle \mathbf{1} | \mathbf{1} | \mathbf{1} \rangle & \langle \mathbf{1} | \mathbf{1} | \boldsymbol{\sigma}_{B} \rangle \\ \langle \boldsymbol{\sigma}_{B} | \mathbf{1} | \mathbf{1} \rangle & \langle \boldsymbol{\sigma}_{B} | \mathbf{1} | \boldsymbol{\sigma}_{B} \rangle \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}, \qquad \begin{pmatrix} \langle \mathbf{1} | \boldsymbol{\sigma}_{B} | \mathbf{1} \rangle & \langle \mathbf{1} | \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} \rangle \\ \langle \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} | \mathbf{1} \rangle & \langle \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} \rangle \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$

Review of C₂ spectral resolution for 2D oscillator Lecture 6 p.11

C₂ Symmetric two-dimensional harmonic oscillators (2DHO)

$$\begin{aligned} \ddot{x}_{1} \\ \ddot{x}_{2} \end{aligned} \right) &= - \begin{pmatrix} \frac{k_{1} + k_{12}}{M} & \frac{-k_{12}}{M} \\ \frac{-k_{12}}{M} & \frac{k_{1} + k_{12}}{M} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \\ &= - \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} & More \ conventional \ coordinate \ notation \\ &| \ddot{\mathbf{x}} \rangle &= -\mathbf{K} \quad | \mathbf{x} \rangle \quad \{x_{0}, x_{1}\} \rightarrow \{x_{1}, x_{2}\} \end{aligned}$$

*Review of C*² spectral resolution for 2D oscillator Lecture 6 p.17

2D HO Matrix operator equations

 $C_{2} (Bilateral \sigma_{B} reflection) symmetry conditions:$ $K_{11} = K = K_{22} \text{ and}: K_{12} = k = K_{12} = -k_{12} (Let: M = 1)$ $\begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} = \begin{pmatrix} K & k \\ k & K \end{pmatrix} = K \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\mathbf{K} = K\mathbf{C} + k\mathbf{\widetilde{o}}_{B}$

K-matrix is made of its symmetry operators in

group $C_2 = \{1, \sigma_B\}$ with product table	C_2	1	σ_{B}
	1	1	σ_{B}
	σ_{B}	σ_{B}	1

Symmetry *product table* gives C₂ group representations in *group basis* $\{|0\rangle = \mathbf{1}|0\rangle \equiv |\mathbf{1}\rangle, |1\rangle = \sigma_B |0\rangle \equiv |\sigma_B\rangle$

$$\begin{pmatrix} \langle \mathbf{1} | \mathbf{1} | \mathbf{1} \rangle & \langle \mathbf{1} | \mathbf{1} | \sigma_B \rangle \\ \langle \sigma_B | \mathbf{1} | \mathbf{1} \rangle & \langle \sigma_B | \mathbf{1} | \sigma_B \rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} \langle \mathbf{1} | \sigma_B | \mathbf{1} \rangle & \langle \mathbf{1} | \sigma_B | \sigma_B \rangle \\ \langle \sigma_B | \sigma_B | \mathbf{1} \rangle & \langle \sigma_B | \sigma_B \rangle \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{P}^{\pm}\text{-projectors:}$$

$$Minimal \text{ equation of } \sigma_B \text{ is: } \sigma_B^{2} = 1$$

$$\text{or: } \sigma_B^{2} - 1 = \mathbf{0} = (\sigma_B - 1)(\sigma_B + 1) \qquad \text{Spectral decomposition of } \mathbf{C}_2(\sigma_B) \text{ into } \{\mathbf{P}^+, \mathbf{P}^-\} \qquad \mathbf{P}^+ = \frac{\mathbf{1} + \sigma_B}{2} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\mathbf{W}^+ \text{ eigenvalues:} \qquad \mathbf{1} = \mathbf{P}^+ + \mathbf{P}^-$$

$$\{\chi^+(\sigma_B) = +1, \ \chi^-(\sigma_B) = -1\} \qquad \sigma_B = \mathbf{P}^+ - \mathbf{P}^- \qquad \mathbf{P}^+ = \frac{\mathbf{1} - \sigma_B}{2} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

*Review of C*₂ spectral resolution for 2D oscillator Lecture 6 p.33

C₃ **g[†]g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

$C_3 g^{\dagger}g$ -product-table and basic group representation theory

C_3	$r^0 = 1$	$r^{1}=r^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all unit $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

$C_3 g^{\dagger}g$ -product-table and basic group representation theory

<i>C</i> ₃	$r^0 = 1$	$r^{1}=r^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$r^{0} = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

A C₃ H-matrix is then constructed directly from the $g^{\dagger}g$ -table and so is each r^{p} -matrix representation.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad + r_1 \cdot \mathbf{r}^1 \qquad + r_2 \cdot \mathbf{r}^2$$

$C_3 \mathbf{g}^{\dagger} \mathbf{g}$ -product-table and basic group representation theory

<i>C</i> ₃	$r^0 = 1$	$r^{1}=r^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$r^{0} = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

A C₃ H-matrix is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -table and so is each \mathbf{r}^{p} -matrix representation.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad + r_1 \cdot \mathbf{r}^1 \qquad + r_2 \cdot \mathbf{r}^2$$

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

$C_3 \mathbf{g}^{\dagger} \mathbf{g}$ -product-table and basic group representation theory

<i>C</i> ₃	$r^0 = 1$	$r^{1}=r^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$r^{0} = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

A C₃ H-matrix is then constructed directly from the $g^{\dagger}g$ -table and so is each r^{p} -matrix representation.

(r_0	r_1	r_2		1	0	0) (0	1	0		0	0	1	Constants r_k that are grayed-out
H =	r_2	r_0	r_1	$= r_0$	0	1	0	$+ r_{1}$	0	0	1	+ <i>r</i> ₂	1	0	0	may change values
	r_1	r_2	r_0)	0	0	1 ,) (1	0	0)	0	1	0)	if C ₃ symmetry
	`		,	$= r_0$	·1			$+r_1$.	\mathbf{r}^1			$+ r_{2}$	$\cdot \mathbf{r}^2$			is broken

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

$C_3 g^{\dagger}g$ -product-table and basic group representation theory

<i>C</i> ₃	$r^0 = 1$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$r^{0} = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

A C₃ **H**-*matrix* is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -*table* and so is each \mathbf{r}^{p} -*matrix representation*.

H =	$\begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix}$	$ = r_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} $ $= r_0 \cdot 1 $	$ \begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) + r_1 \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{array} \right) + r_1 \cdot \mathbf{r}^1 $	$ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ + r_2 \cdot \mathbf{r}^2 $	$ \begin{array}{ccc} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{array} \right) $	Constants r_k that may chang if C ₃ sym is broi	are grayed-out ge values nmetry ken
H-marelate that the How a He (H_{jk}^{*})	trix coupline to particular ansmit a particular conjugative vever, no martical vever, no martical vever, no martical ermitian-syntar $x = H_{kj}$) requi	g constants a operators atticular for <i>tion symme</i> atter how C nmetric Ha res that r_0^* =	$\begin{cases} \{r_0, r_1, r_2\} \\ \{r^0, r^1, r^2\} \end{cases}$ ce or current. try r_3 is broken, miltonian r_0 and $r_1^* = r_2$.	$Point p=2 \mod$		$ \begin{array}{c} $	Point $p=1 \mod 3$ equilibrium zero-state $x_0 = x_1 = x_2 = 0$ $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

$C_3 \mathbf{g}^{\dagger} \mathbf{g}$ -product-table and basic group representation theory

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

A C₃ **H**-*matrix* is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -*table* and so is each \mathbf{r}^{p} -*matrix representation*.

C₃ **g**[†]**g**-*product-table and basic group representation theory* C₃ **H**-and-**r**^{*p*}-*matrix representations and conjugation symmetry*

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C₃ Spectral resolution: 3rd roots of unity

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three *3rd roots of unity* $\chi^*_m = e^{im2\pi/3} = \psi_m$.

C₃ Spectral resolution: 3rd roots of unity

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three *3rd roots of unity* $\chi^*_m = e^{im2\pi/3} = \psi_m$.

Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$)

C₃ Spectral resolution: 3^{rd} roots of unity We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^p. "Chi"(χ) refers to <u>characters</u> or <u>characteristic roots</u> **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi im}$. (Answer: $z^{1/3} = e^{2\pi im/3}$)

$$\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m}$$

C₃ Spectral resolution: 3^{rd} roots of unity We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^p. "Chi"(χ) refers to <u>characters</u> or <u>characters</u> or <u>characteristic</u> roots **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $(\chi_0 = e^{-i0\frac{2\pi}{3}} = 1)$

C₃ Spectral resolution: 3rd roots of unity We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^p. **"**Chi"(χ) refers to <u>characters</u> or characteristic roots **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3rd roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ $\chi_1 = e^{-i1\frac{2\pi}{3}} = y_1^*$

$$1 = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi_{m}^{*} \qquad \qquad \chi_{1} = e^{-i\frac{2\pi}{3}} = \psi_{1}^{*}$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

C₃ Spectral resolution: 3^{rd} roots of unity We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^p. **"**Chi"(χ) refers to <u>characters</u> or <u>characteristic</u> roots **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$

$$\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m} \qquad \qquad \chi_{1} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{1}$$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $C_{3} Spectral resolution: 3^{rd} roots of unity$ We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^{*p*}. **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3^{rd} roots of unity $\chi^{*}_{m} = e^{im2\pi/3} = \psi_{m}$. Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $1 = \mathbf{r}^{3} \text{ implies}: \mathbf{0} = \mathbf{r}^{3} - 1 = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1})$ where : $\chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m}$ $\chi_{2} = e^{-il\frac{2\pi}{3}} = \psi^{*}_{2}$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$ $C_{3} Spectral resolution: 3^{rd} roots of unity$ We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^p. **"Chi**"(χ) refers to characters or characteristic roots **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3^{rd} roots of unity $\chi^{*}_{m} = e^{im2\pi/3} = \psi_{m}$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $1 = \mathbf{r}^{3}$ implies : $\mathbf{0} = \mathbf{r}^{3} - 1 = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1})$ where : $\chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m}$ $\chi_{2} = e^{-i2\frac{2\pi}{3}} = \psi^{*}_{2}$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$ precedent precedent precedent \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ C₃ Spectral resolution: 3rd roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3^{*rd*} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ $\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m}$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(m)}$ $\mathbf{P}^{(l)}$ + $\mathbf{P}^{(2)}$ \mathbf{r}^{l} -Spectral-Decomp. $\mathbf{r}^{l} = \chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)}$ $\mathbf{r}^2 = \rho_0 (\rho_0)^2 = \rho_0 \mathbf{r}^2 - Spectral-Decomp.$ $\mathbf{r}^2 = (\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$

C₃ **g[†]g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling C₃ Spectral resolution: 3rd roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3rd roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(m)}$ $\mathbf{P}^{(l)}$ + $\mathbf{P}^{(2)}$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ $+i2\pi/3$ Imagin axis Real axis

 C_3 Spectral resolution: 3^{rd} roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ $\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m} \begin{cases} \chi_{1} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{1} \\ \chi_{2} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{2} \end{cases}$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be orthonormal ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a completeness relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(m)}$ $\mathbf{P}(l)$ + $\mathbf{P}(2)$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ $+i2\pi/3$ C_3 mode phase character table Imaginar axis $\chi_{0}^{*} = 1 = e$ Real axis

C₃ Spectral resolution: 3rd roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3rd roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(m)}$ P(l) + $\mathbf{P}(2)$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ Imaginary WaveIt App axis *MolVibes* C₃ character conjugate $\chi^*_{mp} = e^{imp2\pi/3}$ $\frac{wave-number}{m=} m = l_{3} |\chi_{10}| = 1 \chi_{11} = e^{-i2\pi/3} \chi_{12} = e^{i2\pi/3} \\ m = l_{3} |\chi_{20}| = 1 \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{-i2\pi/3}$ is wave function $\psi_m(r_p) = e^{ik_m \cdot r_p}$

C₃ Spectral resolution: 3rd roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3rd roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: ${\bf P}^{(0)}$ + $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} =$ P(l) + $\mathbf{P}(2)$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ +*l2π/3 Real axis* magir $\begin{array}{ccc} & & & & & \\ \chi_0^{*}=1=e & & & \\ \hline \text{Real axis} & & & & \\ \hline \end{array} \begin{array}{c} & & & & \\ P=0 & p=1 & p=2 & \\ \hline \end{array}$ WaveIt App axis Imaginary axis *MolVibes* $m = O_{3} | \chi_{00} = 1 | \chi_{01} = 1 | \chi_{02} = 1$ C₃ character conjugate $\chi^*_{mp} = e^{imp2\pi/3}$ $\frac{wave-number}{m=} m = I_{3} |\chi_{10}| = 1 \chi_{11} = e^{-i2\pi/3} \chi_{12} = e^{i2\pi/3}$ "momentum" is wave function $\psi_m(r_p) = e^{ik_m \cdot r_p}$ $m = 2_{3} |\chi_{20} = 1 \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{-i2\pi/3}$

C₃ **g[†]g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

• Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling Given unitary Ortho-Completeness operator relations:

 $\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$

 $\chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)} = \mathbf{r}^I = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$

 $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)} = \mathbf{r}^2 = 1 \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$

Given unitary Ortho-Completeness operator relations: or ket relations: $(to |1\rangle = |r^{0}\rangle)$ $\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$ $\chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$

Given unitary Ortho-Completeness operator relations:

$$\mathbf{P}^{(0)} + \mathbf{P}^{(l)} + \mathbf{P}^{(l)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(l)} + \mathbf{P}^{(2)}$$
 or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^{0}\rangle)$
 $\chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(l)} + \chi_{2} \mathbf{P}^{(2)} = \mathbf{r}^{l} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$
 $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$
 $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$
Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)
 $\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$
 $\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{1}^{*} \mathbf{r}^{1} + \chi_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$

 $\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$

Given unitary Ortho-Completeness operator relations:

$$P^{(0)} + P^{(1)} + P^{(1)} + P^{(1)} = 1 = P^{(0)} + P^{(1)} + P^{(1)} + P^{(2)} = 0$$
or ket relations: $(to |1\rangle = |r^0\rangle$

$$\chi_0 P^{(0)} + \chi_1 P^{(1)} + \chi_2 P^{(2)} = r^1 = 1 P^{(0)} + e^{-i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)} = 0$$

$$(\chi_0)^2 P^{(0)} + (\chi_1)^2 P^{(1)} + (\chi_2)^2 P^{(2)} = r^2 = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{-i2\pi/3} P^{(2)} = 0$$
Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)

$$P^{(0)} = \frac{1}{3} (r^0 + r^1 + r^2) = \frac{1}{3} (1 + r^1 + r^2)$$

$$P^{(1)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_2^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$$

$$P^{(2)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_1^* r^2)$$

Two distinct types of modular "quantum" numbers:

p=0,1, or 2 is power p of operator \mathbf{r}^p labeling oscillator position point p

p=0,1, or 2 is *power p* of operator \mathbf{r}^p labeling oscillator *position point p* m=0,1, or 2 that is the *mode momentum m* of waves

Given unitary Ortho-Completeness operator relations:

$$p^{(0)} + p^{(l)} + p^{(l)} + p^{(l)} = 1 = p^{(0)} + p^{(l)} + p^{(l)} + p^{(2)}$$

 $\chi_0 P^{(0)} + \chi_1 P^{(l)} + \chi_2 P^{(2)} = r^2 = 1 P^{(0)} + e^{i2\pi/3} P^{(l)} + e^{i2\pi/3} P^{(2)}$
 $\chi_0 P^{(0)} + \chi_1 P^{(l)} + \chi_2 P^{(2)} = r^2 = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$
 $J_3 r^2 = [0_3] + e^{i2\pi/3} [1_3] + e^{i2\pi/3} [2_3]$
Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)
 $P^{(0)} = \frac{1}{3}(r^0 + r^1 + r^2) = \frac{1}{3}(1 + r^1 + r^2)$
 $p^{(1)} = \frac{1}{3}(r^0 + \chi_1^* r^1 + \chi_2^* r^2) = \frac{1}{3}(1 + e^{+i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3}(r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3}(1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $I_{23} = P^{(2)} |1\rangle\sqrt{3} = \frac{|r^0\rangle}{r^0 + e^{-i2\pi/3}|r^1\rangle} + \frac{|r^0\rangle}{\sqrt{3}} + \frac{|r^0\rangle}{\sqrt{3}}$

C₃ **g**[†]**g**-*product-table and basic group representation theory* C₃ **H**-and-**r**^{*p*}-*matrix representations and conjugation symmetry*

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

$$\begin{pmatrix} C_3 \text{ Plane wave function} \\ \psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}} \\ = \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L / m$

$$\begin{pmatrix} C_3 \text{ Plane wave function} \\ \psi_m(x_p) = \underbrace{e^{ik_m \cdot x_p}} \\ \sqrt{3} \\ = \underbrace{e^{imp2\pi/3}} \\ \sqrt{3} \\ \end{bmatrix}$$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m / 3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L / m$

$$\mathbf{r}^{p} |q\rangle = |q+p\rangle$$
 implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m / 3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L / m$

 $\mathbf{r}^{p} |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$ Action of \mathbf{r}^{p} on *m*-ket $|(m)\rangle = |k_{m}\rangle$ is inverse to action on coordinate bra $\langle x_{q}| = \langle q |$.

$$C_{3} Plane wave function
\psi_{m}(x_{p}) = \frac{e^{ik_{m}}x_{p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi/\lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L / m$

 $|\mathbf{r}^{p}|q\rangle = |q+p\rangle$ implies: $\langle q|(\mathbf{r}^{p})^{\dagger} = \langle q|\mathbf{r}^{-p} = \langle q+p|$ implies: $\langle q|\mathbf{r}^{p} = \langle q-p|$ Action of \mathbf{r}^{p} on *m*-ket $|(m)\rangle = |k_{m}\rangle$ is inverse to action on coordinate bra $\langle x_{q}| = \langle q|$. $\psi_{k_m}(x_q - \mathbf{p} \cdot L) = \langle x_q | \mathbf{r}^p | k_m \rangle = e^{ik_m(x_q - \mathbf{p} \cdot L)} = e^{ik_m(x_q - x_p)}$

(Norm factors left out)

$$C_{3} Plane wave function
\psi_{m}(x_{p}) = \frac{e^{ik_{m}}x_{p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m / 3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L / m$

 $\mathbf{r}^{p} |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$ Action of \mathbf{r}^{p} on *m*-ket $|(m)\rangle = |k_{m}\rangle$ is inverse to action on coordinate bra $\langle x_{q}| = \langle q |$.

(Norm factors left out)

$$\psi_{k_m}(x_q - p \cdot L) = \langle x_q | \mathbf{r}^p | k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)}$$
$$\langle q - p | (m) \rangle = \langle q | \mathbf{r}^p | (m) \rangle = e^{-ik_m x_p} \langle q | (m) \rangle$$

C₃ Plane wave function

$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

 $= \frac{e^{imp2\pi/3}}{\sqrt{3}}$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi/\lambda_m$ Wavelength $\lambda_m = 2\pi/k_m = 3L/m$

 $|\mathbf{r}^{p}|q\rangle = |q+p\rangle$ implies: $\langle q|(\mathbf{r}^{p})^{\dagger} = \langle q|\mathbf{r}^{-p} = \langle q+p|$ implies: $\langle q|\mathbf{r}^{p} = \langle q-p|$ Action of \mathbf{r}^{p} on *m*-ket $|(m)\rangle = |k_{m}\rangle$ is inverse to action on coordinate bra $\langle x_{q}| = \langle q|$.

(Norm factors left ou

Norm factors left out)
$$\psi_{k_m}(x_q - p \cdot L) = \langle x_q | \mathbf{r}^p | k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)}$$
$$\langle q - p | (m) \rangle = \langle q | \mathbf{r}^p | (m) \rangle = e^{-ik_m x_p} \langle q | (m) \rangle$$
This implies:
$$\mathbf{r}^p | (m) \rangle = e^{-ik_m x_p} | (m) \rangle$$

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations *C*₃ character table and modular labeling

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i3 \cdot 2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Imagine going around ring reading off address points p = ... 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,for regular integer points ...-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8,....

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Imagine going around ring reading off address points p = ... 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,for regular integer points ...-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8,....

 $e^{imp2\pi/3}$ must always equal $e^{i(mp \mod 3)2\pi/3}$.

$$(\rho_m)^p = (e^{im2\pi/3})^p = e^{imp \cdot 2\pi/3} = \rho_{mp} = e^{i(mp \mod 3)2\pi/3} = \rho_{mp \mod 3}$$

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C3-group jargon and structure of various tables $C_3 | \mathbf{r}^0 = \mathbf{1} | \mathbf{r}^1 = \mathbf{r}^{-2} | \mathbf{r}^2 = \mathbf{r}^{-1} |$

	5				
+ $i2\pi/3$ C ₃ -group { $\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2$ }-table	$r^{0} = 1$	1	\mathbf{r}^1 ,	r ²	
$\chi_{I}^{*=e}$ obeyed by { $\chi_{0}=1, \chi_{I}=e^{-i2\pi/3}, \chi_{2}=e^{+i2\pi/3}$ }	$r^2 = r^{-1}$	r ²	1	r ¹	
$\chi_0^* = 1 = e^{+i\theta}$	$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	r ²	1	
Real axis	<i>C</i> ₃	$\chi_0 = 1$	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi$	ζ_1^{-1}
$\chi_{2}^{*} = e^{-i2\pi/3}$	$\chi_0 = 1 = \chi_3$	χ ₀	χ_1	χ_2	
	$\chi_2 = \chi_1^{-1}$	X ₂	χ_0	χ_1	
	$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	Xo	

C₃-group jargon and structure of various tables

C₃-group { \mathbf{r}^0 , \mathbf{r}^1 , \mathbf{r}^2 }-table obeyed by { $\chi_0 = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{+i2\pi/3}$ }

e	<i>C</i> ₃	r	=1	$r^1 = r^{-2}$	$r^2 = 1$	r ⁻¹	
-	$r^{0} = 1$		1	$\mathbf{r}^{\mathbf{l}}$	r^2	2	
	$r^2 = r^{-1}$]	r^2	1	$\mathbf{r}^{\mathbf{l}}$	l	
_	$\mathbf{r}^1 = \mathbf{r}^{-2}$]	r ¹	r^2	1		
	C_3		χ ₀ =	$-1 \chi_1 =$	χ_{2}^{-2}	$\chi_2 =$	χ_{1}^{-1}
-	$\chi_0 = 1 = \chi_3$		χ_0	2	۲ ₁	χ	2
	$\chi_2 = \chi_1^{-1}$		χ_2	X	0	χ	1
_	$\chi_1 = \chi_2^{-2}$	2	χ_1	X	2	χ	0

Set $\{\chi_0, \chi_1, \chi_2\}$ is an irreducible representation (irrep) of C₃ $\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$

C3-group jargon and structure of various tables C_{1}

		(C_3	r ⁰ =1	$r^1 = r^{-2}$	$r^2 = r^{-1}$	
$+i2\pi/3$	C ₃ -group { \mathbf{r}^0 , \mathbf{r}^1 , \mathbf{r}^2 }-table	\mathbf{r}^{0}	= 1	1	\mathbf{r}^1	\mathbf{r}^2	
$\chi_l^* = e$ $\lim_{lmaginary} 0$	beyed by { $\chi_0 = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{+i2\pi/3}$ }	r ² =	=r ⁻¹	r^2	1	\mathbf{r}^1	
$\chi_0^* = 1 = e^{+i\theta}$		r ¹ =	=r ⁻²	r ¹	r^2	1	
Real axis	Set $\{\chi_0, \chi_1, \chi_2\}$ is an		<i>C</i> ₃	χ_0	$=1 \chi_1 = \chi_1$	$\chi_2^{-2} \chi_2 =$	χ_1^{-1}
$\chi_{2}^{*} = e^{-i2\pi/3}$	irreducible representation	χ_0	=1 =)	$\chi_3 \qquad \chi_1$		1 X	2
	(irrep) of C_3	X	$_{2} = \chi_{1}^{-1}$	χ^1	χ_{0}	χ ο	1
	$\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$	<u></u>	$_{1} = \chi_{2}^{-2}$	χ	χ_{2}	2 X	0

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

9 =	\mathbf{r}^{0}	\mathbf{r}^1	\mathbf{r}^2		g =	r	\mathbf{r}^{1}	\mathbf{r}^2
$\frac{\mathbf{s}}{D^{(0)}(\mathbf{g})}$	$\gamma^{(0)}$	$\gamma^{(0)}$	$\boldsymbol{\gamma}^{(0)}$		$D^{(0)}({f g})$	1	1	1
$D^{(1)}(\mathbf{g})$	$\chi_0^{(1)}$	$\chi_1^{(1)}$	$\chi_2^{(1)}$	=	$D^{(1)}(\mathbf{g})$	1	$e^{-\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$

C₃-group jargon and structure of various tables

$+i2\pi/3$	C ₃ -group { \mathbf{r}^0 , \mathbf{r}^1 , \mathbf{r}^2 }-table obeyed by { $\gamma_0 = 1$ $\gamma_1 = e^{-i2\pi/3}$ $\gamma_2 = e^{+i2\pi/3}$ }
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\frac{1}{20}$
	Set $\{\chi_0, \chi_1, \chi_2\}$ is an
$\chi_2^* = e^{-i2\pi/3}$	irreducible representation
	<i>(irrep)</i> of C ₃
	$\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$

ES	<i>C</i> ₃	r	=1 r	$-1 = r^{-2}$	$r^2 = r$	-1	
r	⁰ = 1		1	$\mathbf{r}^{\mathbf{l}}$	r^2		
r	$2 = r^{-1}$]	r ²	1	$\mathbf{r}^{\mathbf{l}}$		
r	$=r^{-2}$]	r^1	r^2	1		
	<i>C</i> ₃		$\chi_0 = 1$	$\chi_1 = \chi_1$	χ_{2}^{-2}	$\chi_2 =$	χ_1^{-1}
χ	$\chi_0 = 1 = \chi_3$		χ_0	χ	1	χ	2
2	$\chi_2 = \chi_1^{-1}$		χ ₂	X	0	χ	1
	$\chi_1 = \chi_2^{-2}$	2	χ_1	X	2	χ	0

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

9 =	r ⁰	\mathbf{r}^1	\mathbf{r}^2		g =	r	\mathbf{r}^{1}	\mathbf{r}^2
$\frac{\mathbf{s}}{D^{(0)}(\mathbf{g})}$	$\boldsymbol{\gamma}^{(0)}$	$\boldsymbol{\gamma}^{(0)}$	$\boldsymbol{\gamma}^{(0)}$		$D^{(0)}({f g})$	1	1	1
$D^{(1)}(\mathbf{g})$	$\chi_0^{(1)}$	$\chi_1^{(1)}$	$\chi_2^{(1)}$	=	$D^{(1)}(\mathbf{g})$	1	$e^{-\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$

The *identity irrep* $D^{(0)} = \{1,1,1\}$ obeys *any* group table.

C₃-group jargon and structure of various tables

C ₃ -group jargo	n and structure of various tab	C_3	r ⁰ =1	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$r^2 = r^{-1}$	
$+i2\pi/3$	C ₃ -group { \mathbf{r}^0 , \mathbf{r}^1 , \mathbf{r}^2 }-table	$r^{0} = 1$	1	r^1	\mathbf{r}^2	
$\chi_l^* = e$ obe	eyed by $\{\chi_0 = 1, \chi_1 = e^{-i2\pi/3}, \chi_2 = e^{+i2\pi/3}\}$	$r^2 = r^{-1}$	r ²	1	r ¹	
$\chi_0^*=1=e^{+i\theta}$		$r^{1}=r^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1	
Real axis	Set $\{\chi_0, \chi_1, \chi_2\}$ is an	<i>C</i> ₃	$\chi_0 =$	1 $\chi_1 = \chi_2$	$\frac{-2}{2} \chi_2 = \chi_1$	-1
$\chi_2^* = e^{-i2\pi/3}$	irreducible representation	$\chi_0 = 1 = \chi$	χ_0	χ_1	χ_2	
-	<i>(irrep)</i> of C ₃	$\chi_2 = \chi_1^{-1}$	χ ₂	χ_0	χ_1	

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

9 =	\mathbf{r}^{0}	\mathbf{r}^1	\mathbf{r}^2		g =	r	\mathbf{r}^{1}	\mathbf{r}^2	
$\frac{\mathbf{B}}{D^{(0)}(\mathbf{q})}$	$\sim^{(0)}$	$\sim^{(0)}$	$\gamma^{(0)}$		$D^{(0)}({f g})$	1	1	1	
D (g) $D^{(1)}(\mathbf{g})$	λ_0	λ_1	λ_2	=	$D^{(1)}(\mathbf{q})$	1	$-\frac{2\pi i}{3}$	$+\frac{2\pi i}{3}$	C
D (g) $D^{(2)}()$	χ_0 (2)	χ_1 (2)	χ_2		$D^{-1}(\mathbf{g})$	1	е ⁵ 2 <i>л</i> і	е ⁵ 2лі	
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$	

The identity irrep $D^{(0)} = \{1, 1, 1\}$ obeys any group table.

Irrep $D^{(2)}=\{1, e^{+i2\pi/3}, e^{-i2\pi/3}\}$ is a *conjugate irrep* to $D^{(1)}=\{1, e^{-i2\pi/3}, e^{+i2\pi/3}\}$

 $D^{(2)} = D^{(1)}$ *

C₃ **g**[†]**g**-*product-table and basic group representation theory* C₃ **H**-and-**r**^{*p*}-*matrix representations and conjugation symmetry*

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling Eigenvalues and wave dispersion functions $\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}}$ $\begin{aligned} &Eigenvalues \ and \ wave \ dispersion \ functions \\ &\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}} \\ &(Here \ we \ assume \ r_1 = r_2 = r \) \end{aligned} = r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) \\ &(all-real) \end{aligned}$

 $\begin{aligned} & Eigenvalues and wave dispersion functions \\ & \langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}} \\ & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned} = r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r (\text{for } m = 0) \\ r_0 - r (\text{for } m = \pm 1) \end{cases} \end{aligned}$

Eigenvalues and wave dispersion functions $\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}}$ $\int r_0 + 2r \text{ (for } m = 0)$ $i0(m) = \frac{2\pi}{2}$ $i^2 = \frac{2\pi}{2}$ $-i^2 = \frac{2\pi}{2}$ (F (a $r_0 - r$ (for $m = \pm 1$)

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ \frac{i^{2}m\pi}{3} \\ e^{-i^{2}m\pi} \\ e^{-i^{2}m\pi} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ \frac{i^{2}m\pi}{3} \\ e^{-i^{2}m\pi} \\ e^{-i^{2}m\pi} \end{pmatrix}$$

 $\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$

 $\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$

 $\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$

C₃ **g**[†]**g**-*product-table and basic group representation theory* C₃ **H**-and-**r**^{*p*}-*matrix representations and conjugation symmetry*

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling $\begin{aligned} & Eigenvalues and wave dispersion functions - Standing waves \\ & \langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}} \\ & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here$

Standing waves possible if **H** is all-real (No curly C-stuff allowed!)

 $\begin{aligned} & Eigenvalues and wave dispersion functions - Standing waves \\ & \langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}} \\ & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ &$

Standing waves possible if **H** is all-real (No curly C-stuff allowed!)

Moving eigenwave Standing eigenwaves	H – eigenfrequencies	K – eigenfrequencies
$\begin{vmatrix} (+1)_{3} \rangle = \sqrt{3} \begin{pmatrix} 1\\ e^{+i2\pi/3}\\ e^{-i2\pi/3} \end{pmatrix} & \begin{vmatrix} c_{3} \rangle = \frac{\left (+1)_{3} \rangle + \left (-1)_{3} \right\rangle}{\sqrt{2}} = \sqrt{6} \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix} \\ \\ States \mid (+) \rangle & \text{and } \mid (-) \rangle \end{pmatrix} \text{ in any mixtures are still stati} \\ \begin{vmatrix} (-1)_{3} \rangle = \sqrt{3} \begin{pmatrix} 1\\ e^{-i2\pi/3}\\ e^{+i2\pi/3} \end{pmatrix} & \begin{vmatrix} s_{3} \rangle = \frac{\left (+1)_{3} \rangle - \left (-1)_{3} \right\rangle}{i\sqrt{2}} = \sqrt{2} \begin{pmatrix} 0\\ +1\\ -1 \end{pmatrix} \\ \end{vmatrix}$	$\omega^{(+1)_3} = r_0 + 2r \cos(\frac{+2m\pi}{3})$ = $r_0 - r$ onary due to (\pm) -degen $\omega^{(-1)_3} = r_0 + 2r \cos(\frac{-2m\pi}{3})$ = $r_0 - r$	$\sqrt{k_0 - 2k \cos(\frac{+2m\pi}{3})}$ $= \sqrt{k_0 + k}$ $neracy\left(\cos(+x) = \cos(-x)\right)$ $\sqrt{k_0 - 2k \cos(\frac{-2m\pi}{3})}$ $= \sqrt{k_0 + k}$
$ \left \begin{pmatrix} 0 \\ 0 \\ 3 \\ 0 \right = \sqrt{\frac{1}{3}} \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right) $	$\omega^{(0)_3} = r_0 + 2r$	$\sqrt{k_0 - 2k}$

<u>MolVibes</u>