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2D HO Matrix operator equations 2D HO “binary” bases and coord. {x0,x1}

More conventional 
coordinate notation 
{x0,x1}→ {x1,x2}

C2 (Bilateral σB reflection) symmetry conditions:
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Symmetry product table gives C2 group representations in group basis{|0〉=1|0〉≡|1〉 , |1〉=σB|0〉≡|σB〉}
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K-matrix is made of its symmetry operators in

group C2 ={1,σB} with product table:

   

C2 1 σ B

1 1 σ B

σ B σ B 1

Minimal equation of σB is: σB 2=1 
or: σB 2−1=0=(σB−1)(σB+1) 
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Symmetry product table gives C2 group representations in group basis{|0〉=1|0〉≡|1〉 , |1〉=σB|0〉≡|σB〉}
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P±-projectors:
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  1 = P++ P−

σ B = P+− P−

Spectral decomposition of C2(σB) into {P+,P−}

with eigenvalues: 
{χ+(σB) = +1, χ−(σB) = −1}
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K-matrix is made of its symmetry operators

in group C2 ={1,σB} with product table:
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C2(σB) spectrally decomposed  into {P+,P−}projectors:

Eigenvalues of σB : 
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Diagonalizing transformation (D-tran) of K-matrix:

C2 Symmetric 2DHO eigensolutions
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C3 g†g-product-table
Pairs each operator g in the 1st row 
with its inverse g†=g-1 in the 1st column 
so all unit 1=g-1g elements lie on diagonal.

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

C3 g†g-product-table and basic group representation theory
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C3 g†g-product-table
Pairs each operator g in the 1st row 
with its inverse g†=g-1 in the 1st column 
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H-matrix coupling constants   {r0, r1, r2} 
relate to particular operators   {r0, r1, r2} 
that transmit a particular force or current.
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C3 g†g-product-table and basic group representation theory

H-matrix coupling constants   {r0, r1, r2} 
relate to particular operators   {r0, r1, r2} 
that transmit a particular force or current.
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C3 g†g-product-table and basic group representation theory

H-matrix coupling constants   {r0, r1, r2} 
relate to particular operators   {r0, r1, r2} 
that transmit a particular force or current.

However, no matter how C3 is broken, 
a Hermitian-symmetric Hamiltonian   
(             ) requires that           and           .r1

∗=r2r0
∗=r0H jk

∗ =Hkj

Conjugation symmetry
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Pairs each operator g in the 1st row 
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C3 operators {r0, r1, r2}
also label unit 
base states:
⏐0〉= r0 ⏐0〉
⏐1〉= r1 ⏐0〉
⏐2〉= r2 ⏐0〉
modulo-3

C3 g†g-product-table and basic group representation theory

H-matrix coupling constants   {r0, r1, r2} 
relate to particular operators   {r0, r1, r2} 
that transmit a particular force or current.

Hermitian Hamiltonian (            )  requires          and           .r1
∗=r2r0

∗=r0H jk
∗ =Hkj

Conjugation symmetry
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since H is a combination of powers rp.

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since H is a combination of powers rp.

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.
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C3 Spectral resolution: 3rd roots of unity

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  

We can spectrally resolve H if we resolve r since H is a combination of powers rp.

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  

We can spectrally resolve H if we resolve r since H is a combination of powers rp.

χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

“Chi”(χ) refers to
characters or

characteristic roots

17Thursday, February 19, 2015



C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since H is a combination of powers rp.

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

We can spectrally resolve H if we resolve r since H is a combination of powers rp.

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity

r·P(m)=χmP(m)     Ortho-Completeness    1  =         P(0)  +         P(1)  +         P(2)

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

We can spectrally resolve H if we resolve r since H is a combination of powers rp.

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity

ρ0 =ei0=1,    ρ1 =ei2π/3,    ρ2 =ei4π/3.       r1-Spectral-Decomp.    r1 =   χ0    P(0)  +   χ1    P(1)  +   χ2    P(2)

r·P(m)=χmP(m)     Ortho-Completeness    1  =         P(0)  +         P(1)  +         P(2)

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

We can spectrally resolve H if we resolve r since H is a combination of powers rp.

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity

(ρ0)2 = 1,    (ρ1)2 = ρ2,    (ρ2)2 = ρ1.       r2-Spectral-Decomp.     r2 = (χ0)2 P(0)  + (χ1)2 P(1)  + (χ2)2 P(2)

ρ0 =ei0=1,    ρ1 =ei2π/3,    ρ2 =ei4π/3.       r1-Spectral-Decomp.    r1 =   χ0    P(0)  +   χ1    P(1)  +   χ2    P(2)

r·P(m)=χmP(m)     Ortho-Completeness    1  =         P(0)  +         P(1)  +         P(2)

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

We can spectrally resolve H if we resolve r since H is a combination of powers rp.

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity

χ0 =ei0=1,   χ1 =e-i2π/3,  χ2 =e-i4π/3.       r1-Spectral-Decomp.    r1 =   χ0    P(0)  +   χ1    P(1)  +   χ2    P(2)

(χ0)2 = 1,   (χ1)2 = χ2,   (χ2)2 = χ1.       r2-Spectral-Decomp.     r2 = (χ0)2 P(0)  + (χ1)2 P(1)  + (χ2)2 P(2)

We can spectrally resolve H if we resolve r since H is a combination of powers rp.

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

r·P(m)=χmP(m)     Ortho-Completeness    1  =         P(0)  +         P(1)  +         P(2)

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since H is a combination of powers rp.

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

χ0 =ei0=1,   χ1 =e-i2π/3,  χ2 =e-i4π/3.       r1-Spectral-Decomp.    r1 =   χ0    P(0)  +   χ1    P(1)  +   χ2    P(2)

(χ0)2 = 1,   (χ1)2 = χ2,   (χ2)2 = χ1.       r2-Spectral-Decomp.     r2 = (χ0)2 P(0)  + (χ1)2 P(1)  + (χ2)2 P(2)

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

r·P(m)=χmP(m)     Ortho-Completeness    1  =         P(0)  +         P(1)  +         P(2)

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

p=0 p=1 p=2

m=0
3
χ00=1 χ01= 1 χ02= 1

m=1
3
χ10=1 χ11=e

-i2π/3
χ12=e

i2π/3

m=2
3
χ20=1 χ21=e

i2π/3
χ22=e

-i2π/3

wave-number
m=

“momentum”

C3 mode phase character table

“Chi”(χ) refers to
characters or

characteristic roots
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C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since H is a combination of powers rp.

χ0 =ei0=1,   χ1 =e-i2π/3,  χ2 =e-i4π/3.       r1-Spectral-Decomp.    r1 =   χ0    P(0)  +   χ1    P(1)  +   χ2    P(2)

(χ0)2 = 1,   (χ1)2 = χ2,   (χ2)2 = χ1.       r2-Spectral-Decomp.     r2 = (χ0)2 P(0)  + (χ1)2 P(1)  + (χ2)2 P(2)

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

r·P(m)=χmP(m)     Ortho-Completeness    1  =         P(0)  +         P(1)  +         P(2)

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

p=0 p=1 p=2

m=0
3
χ00=1 χ01= 1 χ02= 1

m=1
3
χ10=1 χ11=e

-i2π/3
χ12=e

i2π/3

m=2
3
χ20=1 χ21=e

i2π/3
χ22=e

-i2π/3

wave-number
m=

“momentum”

C3 mode phase character table

“Chi”(χ) refers to
characters or

characteristic roots

 3

C3 character conjugate 

χ mp=eimp2π/3

is wave function

ψm(rp)=eikm·rp

*

WaveIt App

MolVibes
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 3

C3 character conjugate 

χ mp=eimp2π/3

is wave function

ψm(rp)=eikm·rp

C3 Spectral resolution: 3rd roots of unity
We can spectrally resolve H if we resolve r since H is a combination of powers rp.

p is position

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

*

χ0 =ei0=1,   χ1 =e-i2π/3,  χ2 =e-i4π/3.       r1-Spectral-Decomp.    r1 =   χ0    P(0)  +   χ1    P(1)  +   χ2    P(2)

(χ0)2 = 1,   (χ1)2 = χ2,   (χ2)2 = χ1.       r2-Spectral-Decomp.     r2 = (χ0)2 P(0)  + (χ1)2 P(1)  + (χ2)2 P(2)

They must be orthonormal (                          ) and sum to unit 1 by a completeness relation:   P
(m)P(n)=δmnP(m)

r·P(m)=χmP(m)     Ortho-Completeness    1  =         P(0)  +         P(1)  +         P(2)

We know there is an idempotent projector P(m) such that r·P(m)=χmP(m) for each eigenvalue χm of r,

Complex numbers z make it easy to find cube roots of z =1=e2πim. (Answer: z1/3 =e2πim/3)  χ0=e
−i0 3

2π

= 1 

χ1=e
−i1 3

2π

=ψ ∗
1

χ2=e
−i2 3

2π

=ψ ∗
2

1 = r3  implies :  0 = r3 −1 = (r − χ01)(r − χ11)(r − χ21) where :  χm = e−im 3
2π

 r- symmetry implies cubic r3=1, or r3-1=0 resolved by three 3rd roots of unity χ*m=eim2π/3=ψm.

=ψ*m

p=0 p=1 p=2

m=0
3
χ00=1 χ01= 1 χ02= 1

m=1
3
χ10=1 χ11=e

-i2π/3
χ12=e

i2π/3

m=2
3
χ20=1 χ21=e

i2π/3
χ22=e

-i2π/3

wave-number
m=

“momentum”

C3 mode phase character table

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

“Chi”(χ) refers to
characters or

characteristic roots

WaveIt App

MolVibes
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Given unitary Ortho-Completeness operator relations:                           
           P(0) +       P(1)   +             P(1)

   = 1  =      P(0)  +          P(1)  +          P(2)         
    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)     

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     
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Given unitary Ortho-Completeness operator relations:                           or ket relations:
           P(0) +       P(1)   +             P(1)

   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         
    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

(to ⏐1〉= ⏐r0〉)
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Given unitary Ortho-Completeness operator relations:                           or ket relations:

Inverting O-C is easy: just †-conjugate! 

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

(to ⏐1〉= ⏐r0〉)
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Given unitary Ortho-Completeness operator relations:                           or ket relations:

Inverting O-C is easy: just †-conjugate! (and norm by   )                          3
1

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

(to ⏐1〉= ⏐r0〉)

32Thursday, February 19, 2015



Given unitary Ortho-Completeness operator relations:                           or ket relations:

3
1

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + χ1

*r1+ χ2
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

P(2)=3
1 (r0  + χ2

*r1+ χ1
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

Inverting O-C is easy: just †-conjugate! (and norm by   )                           3
1

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

(to ⏐1〉= ⏐r0〉)
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P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + χ1

*r1+ χ2
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

P(2)=3
1 (r0  + χ2

*r1+ χ1
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

   

03 = P(0) 1 3 =
r0 +          r1 +          r2

3
  

13 = P(1) 1 3 =
r0 +e+i2π /3 r1 +e−i2π /3 r2

3

23 = P(2) 1 3 =
r0 +e−i2π /3 r1 +e+i2π /3 r2

3
 

Given unitary Ortho-Completeness operator relations:                           or ket relations:

Inverting O-C is easy: just †-conjugate! (and norm by   )                            (or norm by   )3
1

 3
1

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

(to ⏐1〉= ⏐r0〉)
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Given unitary Ortho-Completeness operator relations:                           or ket relations:

 3

C3 character conjugate 

χ mp=eimp2π/3

is wave function

ψm(rp)=eikm·rp

p is position

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

*

p=0 p=1 p=2

m=0
3
χ00=1 χ01= 1 χ02= 1

m=1
3
χ10=1 χ11=e

-i2π/3
χ12=e

i2π/3

m=2
3
χ20=1 χ21=e

i2π/3
χ22=e

-i2π/3

wave-number
m=

“momentum”

C3 mode phase character table

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + χ1

*r1+ χ2
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

P(2)=3
1 (r0  + χ2

*r1+ χ1
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

Inverting O-C is easy: just †-conjugate! (and norm by   )                            (or norm by   )3
1

 3
1

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

   

03 = P(0) 1 3 =
r0 +          r1 +          r2

3
  

13 = P(1) 1 3 =
r0 +e+i2π /3 r1 +e−i2π /3 r2

3

23 = P(2) 1 3 =
r0 +e−i2π /3 r1 +e+i2π /3 r2

3
 

(to ⏐1〉= ⏐r0〉)

WaveIt App

MolVibes
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C3 character conjugate 

χ mp=eimp2π/3

is wave function

ψm(rp)=eikm·rp

Given unitary Ortho-Completeness operator relations:                           or ket relations:

Two distinct types of modular“quantum” numbers: 
          p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + χ1

*r1+ χ2
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

P(2)=3
1 (r0  + χ2

*r1+ χ1
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

Inverting O-C is easy: just †-conjugate! (and norm by   )                            (or norm by   )3
1

 3
1

p is position

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

*

p=0 p=1 p=2

m=0
3
χ00=1 χ01= 1 χ02= 1

m=1
3
χ10=1 χ11=e

-i2π/3
χ12=e

i2π/3

m=2
3
χ20=1 χ21=e

i2π/3
χ22=e

-i2π/3

wave-number
m=

“momentum”

C3 mode phase character table

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

   

03 = P(0) 0 3 =
r0 +          r1 +          r2

3
  

13 = P(1) 0 3 =
r0 +e+i2π /3 r1 +e−i2π /3 r2

3

23 = P(2) 0 3 =
r0 +e−i2π /3 r1 +e+i2π /3 r2

3
 

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

 3

(to ⏐1〉= ⏐r0〉)

WaveIt App
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C3 character conjugate 

χ mp=eimp2π/3

is wave function

ψm(rp)=eikm·rp

Given unitary Ortho-Completeness operator relations:                           or ket relations:

                     m=0,1,or 2 that is the mode momentum m of waves

p is position

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

*

p=0 p=1 p=2

m=0
3
χ00=1 χ01= 1 χ02= 1

m=1
3
χ10=1 χ11=e

-i2π/3
χ12=e

i2π/3

m=2
3
χ20=1 χ21=e

i2π/3
χ22=e

-i2π/3

wave-number
m=

“momentum”

C3 mode phase character table

Two distinct types of modular“quantum” numbers: 
          p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + χ1

*r1+ χ2
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

P(2)=3
1 (r0  + χ2

*r1+ χ1
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

Inverting O-C is easy: just †-conjugate! (and norm by   )                            (or norm by   )3
1

 3
1

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

   

03 = P(0) 0 3 =
r0 +          r1 +          r2

3
  

13 = P(1) 0 3 =
r0 +e+i2π /3 r1 +e−i2π /3 r2

3

23 = P(2) 0 3 =
r0 +e−i2π /3 r1 +e+i2π /3 r2

3
 

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

 3

(to ⏐1〉= ⏐r0〉)

WaveIt App

MolVibes
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C3 character conjugate 

χ mp=eimp2π/3

is wave function

ψm(rp)=eikm·rp

Given unitary Ortho-Completeness operator relations:                           or ket relations:

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3) 

p is position

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

*

p=0 p=1 p=2

m=0
3
χ00=1 χ01= 1 χ02= 1

m=1
3
χ10=1 χ11=e

-i2π/3
χ12=e

i2π/3

m=2
3
χ20=1 χ21=e

i2π/3
χ22=e

-i2π/3

wave-number
m=

“momentum”

C3 mode phase character table

   

P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + χ1

*r1+ χ2
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

P(2)=3
1 (r0  + χ2

*r1+ χ1
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

Inverting O-C is easy: just †-conjugate! (and norm by   )                            (or norm by   )3
1

 3
1

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

                     m=0,1,or 2 that is the mode momentum m of waves

Two distinct types of modular“quantum” numbers: 
          p=0,1,or 2 is power p of operator rp labeling oscillator position point p    

03 = P(0) 0 3 =
r0 +          r1 +          r2

3
  

13 = P(1) 0 3 =
r0 +e+i2π /3 r1 +e−i2π /3 r2

3

23 = P(2) 0 3 =
r0 +e−i2π /3 r1 +e+i2π /3 r2

3
 

           P(0) +       P(1)   +             P(1)
   = 1  =      P(0)  +          P(1)  +          P(2)      ⏐1〉=  ⏐03〉+        ⏐13〉 +         ⏐23〉         

    χ0  P(0)  +  χ1 P(1)     +   χ2    P(2) = r1 =   1  P(0) + e-i2π/3 P(1) + ei2π/3 P(2)      ⏐ r1〉=⏐03〉+e-i2π/3 ⏐13〉+ei2π/3 ⏐23〉

(χ0)2P(0)  +(χ1)2P(1)  + (χ2)2 P(2) = r2 =    1  P(0) + e i2π/3 P(1) + e-i2π/3 P(2)     ⏐ r2〉=⏐03〉+ei2π/3 ⏐13〉+e-i2π/3 ⏐23〉

 3

 3

 3

 3

(to ⏐1〉= ⏐r0〉)
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Comparing wave function operator algebra to bra-ket algebra

ψm(xp)=eikm·xp 

=eimp2π/3
 3  

 3  

C3 Lattice position vector
xp=L·p

Wavevector
km=2πm/3L=2π/λm

Wavelength
λm=2π/km=3L/m

C3 Plane wave function
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r p |q〉 = |q+ p〉   implies:   〈q | r p( )†
= 〈q | r− p= 〈q+ p |  implies:  〈q | r p= 〈q− p |

                         

 

Comparing wave function operator algebra to bra-ket algebra

ψm(xp)=eikm·xp 

=eimp2π/3
 3  

 3  

C3 Lattice position vector
xp=L·p

Wavevector
km=2πm/3L=2π/λm

Wavelength
λm=2π/km=3L/m

C3 Plane wave function
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r p |q〉 = |q+ p〉   implies:   〈q | r p( )†
= 〈q | r− p= 〈q+ p |  implies:  〈q | r p= 〈q− p |

Action of r p  on m-ket |(m)〉 =|km 〉  is inverse to action on coordinate bra 〈xq |= 〈q | .

                         

 

Comparing wave function operator algebra to bra-ket algebra

ψm(xp)=eikm·xp 

=eimp2π/3
 3  

 3  

C3 Lattice position vector
xp=L·p

Wavevector
km=2πm/3L=2π/λm

Wavelength
λm=2π/km=3L/m

C3 Plane wave function
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r p |q〉 = |q+ p〉   implies:   〈q | r p( )†
= 〈q | r− p= 〈q+ p |  implies:  〈q | r p= 〈q− p |

Action of r p  on m-ket |(m)〉 =|km 〉  is inverse to action on coordinate bra 〈xq |= 〈q | .

                         ψ km
(xq− p ⋅L) = 〈xq | r p | km 〉 = e

ikm (xq−p⋅L ) = eikm (xq−xp )

 

Comparing wave function operator algebra to bra-ket algebra

ψm(xp)=eikm·xp 

=eimp2π/3
 3  

 3  

C3 Lattice position vector
xp=L·p

Wavevector
km=2πm/3L=2π/λm

Wavelength
λm=2π/km=3L/m

C3 Plane wave function

(Norm factors left out)
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r p |q〉 = |q+ p〉   implies:   〈q | r p( )†
= 〈q | r− p= 〈q+ p |  implies:  〈q | r p= 〈q− p |

Action of r p  on m-ket |(m)〉 =|km 〉  is inverse to action on coordinate bra 〈xq |= 〈q | .

                         
ψ km

(xq− p ⋅L) = 〈xq | r p | km 〉 = e
ikm (xq−p⋅L ) = eikm (xq−xp )

〈q − p | (m)〉 = 〈q | r p | (m)〉 = e− ikmxp 〈q | (m)〉

 

Comparing wave function operator algebra to bra-ket algebra

ψm(xp)=eikm·xp 

=eimp2π/3
 3  

 3  

C3 Lattice position vector
xp=L·p

Wavevector
km=2πm/3L=2π/λm

Wavelength
λm=2π/km=3L/m

C3 Plane wave function

(Norm factors left out)
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r p |q〉 = |q+ p〉   implies:   〈q | r p( )†
= 〈q | r− p= 〈q+ p |  implies:  〈q | r p= 〈q− p |

Action of r p  on m-ket |(m)〉 =|km 〉  is inverse to action on coordinate bra 〈xq |= 〈q | .

                         
ψ km

(xq− p ⋅L) = 〈xq | r p | km 〉 = e
ikm (xq−p⋅L ) = eikm (xq−xp )

〈q − p | (m)〉 = 〈q | r p | (m)〉 = e− ikmxp 〈q | (m)〉

 This implies:                                         r p | (m)〉 = e− ikmxp | (m)〉

Comparing wave function operator algebra to bra-ket algebra

ψm(xp)=eikm·xp 

=eimp2π/3
 3  

 3  

C3 Lattice position vector
xp=L·p

Wavevector
km=2πm/3L=2π/λm

Wavelength
λm=2π/km=3L/m

C3 Plane wave function

(Norm factors left out)
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C3 g†g-product-table and basic group representation theory
          C3 H-and-rp-matrix representations and conjugation symmetry
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           C3-group jargon and structure of various tables
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For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= ei4·2π/3= ei1·2π/3 ei3·2π/3= ei2π/3=ρ1.

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3) 
                     m=0,1,or 2 that is the mode momentum m of waves

Two distinct types of modular“quantum” numbers: 
   p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

Modular quantum number arithmetic
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That is, (2-times-2)mod 3 is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= ei4·2π/3= ei1·2π/3 ei3·2π/3= ei2π/3=ρ1.

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3) 
                     m=0,1,or 2 that is the mode momentum m of waves

Two distinct types of modular“quantum” numbers: 
   p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

Modular quantum number arithmetic
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That is, (2-times-2) mod 3 is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, (ρ2)2=ρ1. Also, 5 mod 3=2 so (ρ1)5=ρ2, and 6 mod 3=0 so (ρ1)6=ρ0.

For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= ei4·2π/3= ei1·2π/3 ei3·2π/3= ei2π/3=ρ1.

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3) 
                     m=0,1,or 2 that is the mode momentum m of waves

Two distinct types of modular“quantum” numbers: 
   p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

Modular quantum number arithmetic
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That is, (2-times-2) mod 3 is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, (ρ2)2=ρ1. Also, 5 mod 3=2 so (ρ1)5=ρ2, and 6 mod 3=0 so (ρ1)6=ρ0.

Other examples: -1 mod 3=2 [(ρ1)-1=(ρ-1)1=ρ2] and -2 mod 3=1.

For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= ei4·2π/3= ei1·2π/3 ei3·2π/3= ei2π/3=ρ1.

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3) 
                     m=0,1,or 2 that is the mode momentum m of waves

Two distinct types of modular“quantum” numbers: 
   p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

Modular quantum number arithmetic

50Thursday, February 19, 2015



That is, (2-times-2) mod 3 is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, (ρ2)2=ρ1. Also, 5 mod 3=2 so (ρ1)5=ρ2, and 6 mod 3=0 so (ρ1)6=ρ0.

Other examples: -1 mod 3=2 [(ρ1)-1=(ρ-1)1=ρ2] and -2 mod 3=1.

Imagine going around ring reading off address points p=…  0, 1,  2,  0,  1,  2,  0,  1,  2,  0,  1,  2,….

…-3,-2,-1,  0,  1,  2,  3,  4,  5,  6,  7, 8,…. 

For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= ei4·2π/3= ei1·2π/3 ei3·2π/3= ei2π/3=ρ1.

..for regular integer points

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3) 
                     m=0,1,or 2 that is the mode momentum m of waves

Two distinct types of modular“quantum” numbers: 
   p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

Modular quantum number arithmetic
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That is, (2-times-2) mod 3 is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, (ρ2)2=ρ1. Also, 5 mod 3=2 so (ρ1)5=ρ2, and 6 mod 3=0 so (ρ1)6=ρ0.

Other examples: -1 mod 3=2 [(ρ1)-1=(ρ-1)1=ρ2] and -2 mod 3=1.

Imagine going around ring reading off address points p=… 0,  1,  2,  0,  1,  2,  0,  1,  2,  0,  1,  2,….

…-3,-2,-1,  0,  1,  2,  3,  4,  5,  6,  7, 8,…. 

eimp2π/3 must always equal ei(mp mod 3)2π/3.

(ρm)p=(eim2π/3)p = eimp·2π/3=ρmp = ei(mp mod 3)2π/3=ρmp mod 3 

For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= ei4·2π/3= ei1·2π/3 ei3·2π/3= ei2π/3=ρ1.

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

m or p obey modular arithmetic so sums or products =0,1,or 2 (integers-modulo-3) 
                     m=0,1,or 2 that is the mode momentum m of waves

Two distinct types of modular“quantum” numbers: 
   p=0,1,or 2 is power p of operator rp labeling oscillator position point p 

Modular quantum number arithmetic

..for regular integer points
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          C3 H-and-rp-matrix representations and conjugation symmetry
          
C3 Spectral resolution: 3rd roots of unity and ortho-completeness relations
          C3 character table and modular labeling

Ortho-completeness inversion for operators and states
          Comparing wave function operator algebra to bra-ket algebra
           Modular quantum number arithmetic
           C3-group jargon and structure of various tables

C3 Eigenvalues and wave dispersion functions
        Standing waves vs Moving waves

C6 Spectral resolution: 6th roots of unity and higher
        Complete sets of coupling parameters and Fourier dispersion
         Gauge shifts due to complex coupling
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C3-group {r0, r1, r2}-table
obeyed by{χ0 =1, χ1= e-i2π/3, χ2= e+i2π/3} 

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

  

C3 χ0=1 χ1=χ2
−2 χ2=χ1

−1

χ0=1= χ3 χ0 χ1 χ2

χ2=χ1
−1 χ2 χ0 χ1

χ1=χ2
−2 χ1 χ2 χ0

C3-group jargon and structure of various tables

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*
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C3-group {r0, r1, r2}-table
obeyed by{χ0 =1, χ1= e-i2π/3, χ2= e+i2π/3} 

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

  

C3 χ0=1 χ1=χ2
−2 χ2=χ1

−1

χ0=1= χ3 χ0 χ1 χ2

χ2=χ1
−1 χ2 χ0 χ1

χ1=χ2
−2 χ1 χ2 χ0

C3-group jargon and structure of various tables

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

Set {χ0, χ1, χ2} is an 
irreducible representation

(irrep) of C3

{D(r0)=χ0, D(r1)=χ1, D(r2)=χ2}
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C3-group {r0, r1, r2}-table
obeyed by{χ0 =1, χ1= e-i2π/3, χ2= e+i2π/3} 

g = r0 r1 r2

D(0)(g) χ (0)
0 χ (0)

1 χ (0)
2

D(1)(g) χ (1)
0 χ (1)

1 χ (1)
2

D(2)(g) χ (2)
0 χ (2)

1 χ (2)
2

=

g = r0 r1 r2

D(0)(g) 1 1 1

D(1)(g) 1 e
−2π i
3 e

+2π i
3

D(2)(g) 1 e
+2π i
3 e

−2π i
3

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

  

C3 χ0=1 χ1=χ2
−2 χ2=χ1

−1

χ0=1= χ3 χ0 χ1 χ2

χ2=χ1
−1 χ2 χ0 χ1

χ1=χ2
−2 χ1 χ2 χ0

C3-group jargon and structure of various tables

In fact, all three irreps {D(0), D(1), D(2)} listed in character table obey C3-group table 

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

Set {χ0, χ1, χ2} is an 
irreducible representation

(irrep) of C3

{D(r0)=χ0, D(r1)=χ1, D(r2)=χ2}
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C3-group {r0, r1, r2}-table
obeyed by{χ0 =1, χ1= e-i2π/3, χ2= e+i2π/3} 

g = r0 r1 r2

D(0)(g) χ (0)
0 χ (0)

1 χ (0)
2

D(1)(g) χ (1)
0 χ (1)

1 χ (1)
2

D(2)(g) χ (2)
0 χ (2)

1 χ (2)
2

=

g = r0 r1 r2

D(0)(g) 1 1 1

D(1)(g) 1 e
−2π i
3 e

+2π i
3

D(2)(g) 1 e
+2π i
3 e

−2π i
3

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

  

C3 χ0=1 χ1=χ2
−2 χ2=χ1

−1

χ0=1= χ3 χ0 χ1 χ2

χ2=χ1
−1 χ2 χ0 χ1

χ1=χ2
−2 χ1 χ2 χ0

C3-group jargon and structure of various tables

In fact, all three irreps {D(0), D(1), D(2)} listed in character table obey C3-group table 

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

Set {χ0, χ1, χ2} is an 
irreducible representation

(irrep) of C3

{D(r0)=χ0, D(r1)=χ1, D(r2)=χ2}

The identity irrep
D(0)={1,1,1}  

obeys any group table.

57Thursday, February 19, 2015



C3-group {r0, r1, r2}-table
obeyed by{χ0 =1, χ1= e-i2π/3, χ2= e+i2π/3} 

g = r0 r1 r2

D(0)(g) χ (0)
0 χ (0)

1 χ (0)
2

D(1)(g) χ (1)
0 χ (1)

1 χ (1)
2

D(2)(g) χ (2)
0 χ (2)

1 χ (2)
2

=

g = r0 r1 r2

D(0)(g) 1 1 1

D(1)(g) 1 e
−2π i
3 e

+2π i
3

D(2)(g) 1 e
+2π i
3 e

−2π i
3

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

  

C3 χ0=1 χ1=χ2
−2 χ2=χ1

−1

χ0=1= χ3 χ0 χ1 χ2

χ2=χ1
−1 χ2 χ0 χ1

χ1=χ2
−2 χ1 χ2 χ0

C3-group jargon and structure of various tables

In fact, all three irreps {D(0), D(1), D(2)} listed in character table obey C3-group table 

χ2=e
-i2π/3

χ1=e
+i2π/3

χ0=1=e
+i0

Real axis

Imaginary
axis *

*

*

Set {χ0, χ1, χ2} is an 
irreducible representation

(irrep) of C3

{D(r0)=χ0, D(r1)=χ1, D(r2)=χ2}

The identity irrep
D(0)={1,1,1}  

obeys any group table.

Irrep D(2)={1, e+i2π/3 , e-i2π/3} is a conjugate irrep to D(1)={1, e-i2π/3 , e+i2π/3} 

D(2)= D(1)*
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Eigenvalues and wave dispersion functions

   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e

i2(m)3
2π
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Eigenvalues and wave dispersion functions

   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e

i2(m)3
2π

                                                       = r0e
i0(m)3

2π
+r(e

i   3
2mπ

+e
−i   3

2mπ
)(Here we assume r1 = r2 = r )

(all-real)
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Eigenvalues and wave dispersion functions

   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e

i2(m)3
2π

                                                       = r0e
i0(m)3

2π
+r(e

i   3
2mπ

+e
−i   3

2mπ
) = r0 + 2r cos(   3

2mπ ) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪
(Here we assume r1 = r2 = r )
(all-real)
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e

i2(m)3
2π

                                                       = r0e
i0(m)3

2π
+r(e

i   3
2mπ

+e
−i   3

2mπ
) = r0 + 2r cos(   3

2mπ ) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)

⎧
⎨
⎪

⎩⎪

K -k -k
-k K -k
-k -k K
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Classical K-values:

r0 r r
r r0 r
r r r0
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e
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2mπ

e
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⎝
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⎜
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1

e
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e
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2mπ

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
⎟
⎟

Quantum H-values:   

(Here we assume r1 = r2 = r )

Eigenvalues and wave dispersion functions

(all-real)
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e

i2(m)3
2π

                                                       = r0e
i0(m)3

2π
+r(e

i   3
2mπ

+e
−i   3

2mπ
) = r0 + 2r cos(   3

2mπ ) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)
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Quantum H-values:   

(Here we assume r1 = r2 = r )

p=0 p=1 p=2

+13 1 e+2πi/3 e−2πi/3

−13 1 e−2πi/3 e+2πi/3

C3 moving waves Quantum H-dispersion geometry Classical K-dispersion

m=−1 m=+1m=0

ωΚ=√K-2kcos2mπ3

03

c3 s3

m=−1 m=+1m=0
03

c3 s3

03 1 1 1

lleefftt--hhaanndd mmoovviinngg wwaavvee

rriigghhtt--hhaanndd mmoovviinngg wwaavvee

scalar standing wave
p is position

norm:
1/√3p=0 p=1 p=2

ωΗ= r0+2rcos2mπ3

Eigenvalues and wave dispersion functions - Moving waves

(all-real)

WaveIt App

MolVibes
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m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e

i2(m)3
2π

                                                       = r0e
i0(m)3

2π
+r(e

i   3
2mπ

+e
−i   3

2mπ
) = r0 + 2r cos(   3

2mπ ) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)
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Quantum H-values:   

(Here we assume r1 = r2 = r )

p=0 p=1 p=2

+13 1 e+2πi/3 e−2πi/3

−13 1 e−2πi/3 e+2πi/3

C3 moving waves Quantum H-dispersion geometry Classical K-dispersion

m=−1 m=+1m=0

ωΚ=√K-2kcos2mπ3

03

c3 s3

m=−1 m=+1m=0
03

c3 s3

03 1 1 1

lleefftt--hhaanndd mmoovviinngg wwaavvee

rriigghhtt--hhaanndd mmoovviinngg wwaavvee

scalar standing wave
p is position

norm:
1/√3p=0 p=1 p=2

ωΗ= r0+2rcos2mπ3

with:r0=-2r
and: r<0

This is an 
 exciton-like

dispersion function
ωH(m) = r0(1-cos      )2mπ

3

ωH(m) ~2r0(     )2mπ
3

Eigenvalues and wave dispersion functions - Moving waves

(all-real)

WaveIt App

MolVibes
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Quantum H-values:   

(Here we assume r1 = r2 = r )

p=0 p=1 p=2

+13 1 e+2πi/3 e−2πi/3

−13 1 e−2πi/3 e+2πi/3

C3 moving waves Quantum H-dispersion geometry Classical K-dispersion

m=−1 m=+1m=0

ωΚ=√K-2kcos2mπ3

03

c3 s3

m=−1 m=+1m=0
03

c3 s3

03 1 1 1

lleefftt--hhaanndd mmoovviinngg wwaavvee

rriigghhtt--hhaanndd mmoovviinngg wwaavvee

scalar standing wave
p is position

norm:
1/√3p=0 p=1 p=2

ωΗ= r0+2rcos2mπ3

with:r0=-2r
and: r<0

This is an 
 exciton-like

dispersion function
ωH(m) = r0(1-cos      )2mπ

3

ωH(m) ~2r0(     )2mπ
3

Eigenvalues and wave dispersion functions - Moving waves

(all-real)

WaveIt App

MolVibes
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Quantum H-values:   

(Here we assume r1 = r2 = r )

p=0 p=1 p=2

+13 1 e+2πi/3 e−2πi/3

−13 1 e−2πi/3 e+2πi/3

C3 moving waves Quantum H-dispersion geometry Classical K-dispersion

m=−1 m=+1m=0

ωΚ=√K-2kcos2mπ3

03

c3 s3

m=−1 m=+1m=0
03

c3 s3

03 1 1 1

lleefftt--hhaanndd mmoovviinngg wwaavvee

rriigghhtt--hhaanndd mmoovviinngg wwaavvee

scalar standing wave
p is position

norm:
1/√3p=0 p=1 p=2

ωΗ= r0+2rcos2mπ3

needs Square-Root
to be a frequency

K-eigenvalue...

with:r0=-2r
and: r<0

This is an 
 exciton-like

dispersion function
ωH(m) = r0(1-cos      )2mπ

3

ωH(m) ~2r0(     )2mπ
3

Eigenvalues and wave dispersion functions - Moving waves

(all-real)

WaveIt App
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Eigenvalues and wave dispersion functions - Moving waves

   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e
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                                                       = r0e
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i   3
2mπ

+e
−i   3

2mπ
) = r0 + 2r cos(   3

2mπ ) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)
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Classical K-values:
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⎟

Quantum H-values:   

(Here we assume r1 = r2 = r )

p=0 p=1 p=2

+13 1 e+2πi/3 e−2πi/3

−13 1 e−2πi/3 e+2πi/3

C3 moving waves Quantum H-dispersion geometry Classical K-dispersion

m=−1 m=+1m=0

ωΚ=√K-2kcos2mπ3

03

c3 s3

m=−1 m=+1m=0
03

c3 s3

03 1 1 1

lleefftt--hhaanndd mmoovviinngg wwaavvee

rriigghhtt--hhaanndd mmoovviinngg wwaavvee

scalar standing wave
p is position

norm:
1/√3p=0 p=1 p=2

ωΗ= r0+2rcos2mπ3

needs Square-Root
to be a frequency

K-eigenvalue...

This is a 
 phonon-like

dispersion function
ωK(m)=√2k-2kcos   

      =2√k sin

This is an 
 exciton-like

dispersion function
ωH(m) = r0(1-cos      )

with:K=2k

with:r0=-2r
and: r<0

2mπ
3

2mπ
3

mπ
3

ωH(m) ~2r0(     )2mπ
3 ωK(m) ~2√k(     )1mπ

3
ωH(m) is quadratic for low m 

(long wavelength λ)

ωK(m) is linear for low m 

(long wavelength λ)

(all-real)
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Eigenvalues and wave dispersion functions - Standing waves
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Classical K-values:
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Quantum H-values:   

(Here we assume r1 = r2 = r )
(all-real)

Standing waves possible if H is all-real (No curly C-stuff allowed!)
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Moving  eigenwave Standing  eigenwaves H − eigenfrequencies K − eigenfrequencies

(+1)3 =
3
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e−i2π /3
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⎜
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⎛
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ω (0)3 = r0+2r k0 − 2k

Eigenvalues and wave dispersion functions - Standing waves

   

m H m = m r0r0+r1r
1+r2r2 m = r0e

i0(m)3
2π

+r1e
i1(m)3

2π
+r2e

i2(m)3
2π

                                                       = r0e
i0(m)3

2π
+r(e

i   3
2mπ

+e
−i   3

2mπ
) = r0 + 2r cos(   3

2mπ ) =
r0+2r  (for m= 0)

r0− r   (for m= ±1)
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Classical K-values:
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r r0 r
r r r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= r0 + 2r cos(   3

2mπ )( )
1

e
i   3
2mπ

e
−i   3

2mπ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Quantum H-values:   

(Here we assume r1 = r2 = r )

States ⏐(+)〉 and ⏐(−)〉 in any mixtures are still stationary due to (±)-degeneracy (cos(+x)=cos(-x)) 

(all-real)

Standing waves possible if H is all-real (No curly C-stuff allowed!)
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M
M

MMMM

M
M
M

M

M MM

MM M
M03 c3
s3

( 1/√3, 1/√3, 1/√3 )
( 2/√6, -1/√6, -1/√6 ) ( 0 ,+1/√2, -1/√2 )

p=0 p=1 p=2

c3 2/√6 -1/√6 -1/√6

s3 0 1/√2 -1/√2

C3 standing waves Quantum H-dispersion geometry Classical K-dispersion

03 1/√3 1/√3 1/√3

sine standing wave

cosine standing wave

scalar standing wave
m=−1 m=+1m=0

ωΚ=√K-2kcos2mπ3

03

c3 s3

m=−1 m=+1m=0
03

c3 s3

ωΗ= r0+2rcos2mπ3

Eigenvalues and wave dispersion functions - Standing waves

Radial standing waves (all-real)

(Possible if H is all-real)
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M
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MMMM

M
M
M

M

M MM

MM M
M03 c3
s3

( 1/√3, 1/√3, 1/√3 )
( 2/√6, -1/√6, -1/√6 ) ( 0 ,+1/√2, -1/√2 )

M

M

M

M

M

M

M

M

M

03 c3 s3

( 1/√3, 1/√3, 1/√3 ) ( 2/√6, -1/√6, -1/√6 ) ( 0 ,+1/√2, -1/√2 )

p=0 p=1 p=2

c3 2/√6 -1/√6 -1/√6

s3 0 1/√2 -1/√2

C3 standing waves Quantum H-dispersion geometry Classical K-dispersion

03 1/√3 1/√3 1/√3

sine standing wave

cosine standing wave

scalar standing wave
m=−1 m=+1m=0

ωΚ=√K-2kcos2mπ3

03

c3 s3

m=−1 m=+1m=0
03

c3 s3

ωΗ= r0+2rcos2mπ3

Eigenvalues and wave dispersion functions - Standing waves

Radial standing waves (all-real)

(Possible if H is all-real)

Angular standing waves (all-real)

WaveIt App
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Expand C6 symmetric H matrix using C6 group table( )

C6 group table gives r-matrices,...

1st Step in Abelian symmetry analysis

H= r0r
0+r1r

1+r2r
2+...+rn-1r

n-1=Σ r
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r
k
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r
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5
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r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r

0 5 4 3 2 1

1 0 5 4 3 2

2 1 0 5 4 3

3 2 1 0 5 4

4 3 2 1 0 5

5 4 3 2 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H = r r r r r rr r r r r r0 1 2 3 4 5
0 1 2 3 4 5

+ + + + +

= r r r r r r0 1 2 3 4 5

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅ 1
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⋅ ⋅ ⋅ ⋅ ⋅ 1
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gg†
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g†

g

(known as a regular representation of the group )
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EExxppaanndd CC66 ssyymmmmeettrriicc HH mmaattrriixx uussiinngg CC66 ggrroouupp ttaabbllee(( ))

CC66 ggrroouupp ttaabbllee ggiivveess rr--mmaattrriicceess,,......

1st Step in Abelian symmetry analysis

HH== rr00rr
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(known as a regular representation of the group )
Put “1” wherever r3 appears in product-table
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|r1)=r1|r0)
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r1r5 Nearest neighbor coupling
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CC66 ggrroouupp ttaabbllee ggiivveess rr--mmaattrriicceess,,......,, aanndd aallll CC66--aalllloowweedd HH--mmaattrriicceess......|1)=1|r0)

|r1)=r1|r0)
|r5)=r5|r0)

r1r5 Nearest neighbor coupling
|1)=1|r0)

|r1)=r1|r0)
|r5)=r5|r0)

r1r5

|r2)=r2|r0)|r4)=r4|r0)

|r3)=r3|r0)

r2
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ALL neighbor coupling
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Hermitian Hamiltonian (            )  requires          and           .r1=r5
∗r0

∗=r0H jk
∗ =Hkj

Conjugation symmetry

   

Elementary - Bloch - Model : Nearest neighbor coupling:

HB1(6)=r01+ r1r
1 + r5r

5        = 2r1− rr1 + −rr−1

r0 r5 ⋅ ⋅ ⋅ r1
r1 r0 r5 ⋅ ⋅ ⋅

⋅ r1 r0 r5 ⋅ ⋅

⋅ ⋅ r1 r0 r5 ⋅

⋅ ⋅ ⋅ r1 r0 r5
r5 ⋅ ⋅ ⋅ r1 r0

⎛
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0 1 2 3 4 5 p
2r −r ⋅ ⋅ ⋅ −r 0
−r 2r −r ⋅ ⋅ ⋅ 1
⋅ −r 2r −r ⋅ ⋅ 2
⋅ ⋅ −r 2r −r ⋅ 3
⋅ ⋅ ⋅ −r 2r −r 4
−r ⋅ ⋅ ⋅ −r 2r 5

=r
   H

B1(6)=2r1− rr1 − rr−1

  

0 1 2 3 4 5 p
2r −r ⋅ ⋅ ⋅ −r 0
−r 2r −r ⋅ ⋅ ⋅ 1
⋅ −r 2r −r ⋅ ⋅ 2
⋅ ⋅ −r 2r −r ⋅ 3
⋅ ⋅ ⋅ −r 2r −r 4
−r ⋅ ⋅ ⋅ −r 2r 5

r1  equals conjugate of r5: ( r1=r5
∗)

Elementary Bloch model
assumes both are real

( r1=-r=r5
∗)
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r1r5 Nearest neighbor coupling
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(            )  
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Conjugation symmetry

(r2=r4
∗ = -s)

   H
B1(6)=2r1− rr1 − rr−1

=r

   

2nd Nearest neighbor coupling:

HB1(6)=r01+ r2r2 + r4r4         

r0 ⋅ r4 ⋅ r2 ⋅

⋅ r0 ⋅ r4 ⋅ r2
r2 ⋅ r0 ⋅ r4 ⋅
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All − neighbor coupling:

H A(6)=r01+ r1r
1+ r2r2+ r3r

3+ r4r4+ r5r
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r0 r5 r4 r3 r2 r1
r1 r0 r5 r4 r3 r2
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r3 r2 r1 r0 r5 r4
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⎛
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B2(6)=H21− sr2 − sr−2
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−s ⋅ −s ⋅ H2 ⋅ 4
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0 1 2 3 4 5 p
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r1  equals conjugate of r5: ( r1=r5
∗ = -r) We assume both are real
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6
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nd
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(c) 3
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CC66 ggrroouupp ttaabbllee ggiivveess rr--mmaattrriicceess,,......,, aanndd aallll CC66--aalllloowweedd HH--mmaattrriicceess......|1)=1|r0)

|r1)=r1|r0)
|r5)=r5|r0)

r1r5 Nearest neighbor coupling
|1)=1|r0)

|r1)=r1|r0)
|r5)=r5|r0)

r1r5

|r2)=r2|r0)|r4)=r4|r0)

|r3)=r3|r0)

r2
r3

r4

ALL neighbor coupling
r r r
r r r
r r r
r r r
r r r

r r r

0 5 1

1 0 5

1 0 5

1 0 5

1 0 5

5 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r

0 5 4 3 2 1

1 0 5 4 3 2

2 1 0 5 4 3

3 2 1 0 5 4

4 3 2 1 0 5

5 4 3 2 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

r1  equals conjugate of r5: ( r1=r5
∗ = -r)

                    
(r3=r3

∗ = t)  must  be real

   H
B1(6)=2r1− rr1 − rr−1

   H
B2(6)=H21− sr2 − sr−2

  

0 1 2 3 4 5 p
H2 ⋅ −s ⋅ −s ⋅ 0

⋅ H2 ⋅ −s ⋅ −s 1

−s ⋅ H2 ⋅ −s ⋅ 2

⋅ −s ⋅ H2 ⋅ −s 3

−s ⋅ −s ⋅ H2 ⋅ 4

⋅ −s ⋅ −s ⋅ H2 5  

0 1 2 3 4 5 p
2r −r ⋅ ⋅ ⋅ −r 0
−r 2r −r ⋅ ⋅ ⋅ 1
⋅ −r 2r −r ⋅ ⋅ 2
⋅ ⋅ −r 2r −r ⋅ 3
⋅ ⋅ ⋅ −r 2r −r 4
−r ⋅ ⋅ ⋅ −r 2r 5

=r =s
   H

B3(6)=H31− tr3 − tr−3

  

0 1 2 3 4 5 p
H3 ⋅ ⋅ −t ⋅ ⋅ 0

⋅ H3 ⋅ ⋅ −t ⋅ 1

⋅ ⋅ H3 ⋅ ⋅ −t 2

−t ⋅ ⋅ H3 ⋅ ⋅ 3

⋅ −t ⋅ ⋅ H3 ⋅ 4

⋅ ⋅ −t ⋅ ⋅ H3 5

(r2=r4
∗ = -s)
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ψm(rp)=eikm·rp 

=eimp2π/6
 6  

 6  

C6 character 

χ mp=e-imp2π/6

is wave function conjugate

ψm(rp)=e-imp2π/6

 6

*

(with norm √6)

C6 Lattice position vector
rp=L·p

Wavevector
km=2πm/6L=2π/λm

Wavelength
λm=2π/km=6L/m

L L L L L L
λ5=2π/k5=6L/5

C6 Plane wave function

WaveIt App
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=

ε=ei2π/6

ε

Real axis

Imaginary
axis

Backwards phasors
for

conjugate waves
(turn counter-clockwise)

WaveIt App
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=

ε=ei2π/6

ε

Real axis

Imaginary
axis

Backwards phasors
for

conjugate waves
(turn counter-clockwise)

What you’ll get  
if you look up 

C6 characters in library

α

β

γ

δ

γ∗

β∗

Wave phasor stuff? FUGggedd-aboudit! 

0°    60°   120° 180° -120° -60°

WaveIt App
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ψm(xp)
=eikm·xp 

=eimp2π/N
  N   

  N   

CN Plane wave
 function

CN Lattice 
position 
vector
rp=L·p

Wavevector
km=2π/λm

=2πm/NL

Wavelength
λm=2π/km

=NL/m
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ψm(xp)
=eikm·xp 

=eimp2π/N
  N   

  N   

CN Plane wave
 function

CN Lattice 
position 
vector
rp=L·p

Wavevector
km=2π/λm

=2πm/NL

Wavelength
λm=2π/km

=NL/m

N=72
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|0〉
|1〉=r |0〉
|2〉=r2 |0〉

|4〉=r4 |0〉
|5〉=r5 |0〉

|0〉=1 |0〉

|3〉=r3 |0〉

|2〉

|3〉

|4〉

|5〉|1〉

rr
|1〉=r |0〉

|0〉

|ΨIN〉
|ΨOUT〉=ΤΤ|ΨIN〉

ΨIN - STATE
PREPARATION
Particle ΨIN-State
Analyzer-Filter

ANALYZER
CHANNELS

ΨOUT - STATE
MEASUREMENT

Particle
Analyzer-Counter

C6 Beam analyzer used in Unit 3 Ch. 8 thru Ch. 9

Fig. 8.1.1
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C3 g†g-product-table and basic group representation theory
          C3 H-and-rp-matrix representations and conjugation symmetry
          
C3 Spectral resolution: 3rd roots of unity and ortho-completeness relations
          C3 character table and modular labeling

Ortho-completeness inversion for operators and states
           Modular quantum number arithmetic
           C3-group jargon and structure of various tables

C3 Eigenvalues and wave dispersion functions
        Standing waves vs Moving waves

C6 Spectral resolution: 6th roots of unity and higher
        Complete sets of coupling parameters and Fourier dispersion
         Gauge shifts due to complex coupling
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66
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r1  equals conjugate of r5: ( r1=r5
∗ = -r)
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3rd Step
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Real C6 Bloch H GB(N) eigenvalues are Fourier series with 4 (for N=6) Fourier parameters 
{ r0 =H,    r1 =r =r-1  , r2 =s =r-2,   r3 =t =r-3 }

ωm (Hreal
GB(6)) = r0 + r1(e

iπ m⋅1
3 + e

−iπ m⋅1
3 )    + r2(e

iπ m⋅2
3 + e

−iπ m⋅2
3 )   + r3(e

iπ m⋅3
3 )      (for real: rp = r− p = rp

*)

                    = H  +   2r cosπ m ⋅1
3

        +      2scosπ m ⋅2
3

        +   t(−1)m

General Bloch H GB(N) eigenvalues are Fourier series with six (for N=6) Fourier parameters 
{ r0 =H,     r1=reiφ1,    r-1 =re-iφ1,   r2 =seiφ2,    r-2=se-iφ2,   r3=t =r-3 }

ωm (Hcomplex
GZB(6)) = H + 2r cos π m ⋅1

3
−φ1

⎛
⎝⎜

⎞
⎠⎟  + 2scos π m ⋅2

3
−φ2

⎛
⎝⎜

⎞
⎠⎟  +   t(−1)m      (for complex: r− p = rp

*)

ωm =

ω0   = H +  2r +  2s + t
ω±1 = H +   r −   s − t
ω±2  = H −   r −   s + t
ω3    = H − 2r + 2s − t

⎧

⎨

⎪
⎪

⎩

⎪
⎪

rp =

H =4
1 (ω0 +  ω1 +  ω2  +  ω3)

r  =6
1 (ω0 +  ω1 −  ω2  −  ω3) 

s =6
1 (ω0 −  ω1 −  ω2  +  ω3)

t  =6
1 (ω0 − 2ω1 + 2ω2 −  ω3)  

 

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

ωm (H
GB(N ) ) = m rpr

p

p=0
∑ m = rp m r p m

p=0
∑ = rpe

−i2π m⋅p
N

p=0
∑ = rp e

−i(2π m⋅p
N

−φp )

p=0
∑

giving 4 ωm-levels: ...in terms of 4 solvable rp-parameters:

Complete sets of C6 coupling parameters and Fourier dispersion
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C3 g†g-product-table and basic group representation theory
          C3 H-and-rp-matrix representations and conjugation symmetry
          
C3 Spectral resolution: 3rd roots of unity and ortho-completeness relations
          C3 character table and modular labeling

Ortho-completeness inversion for operators and states
           Modular quantum number arithmetic
           C3-group jargon and structure of various tables

C3 Eigenvalues and wave dispersion functions
        Standing waves vs Moving waves

C6 Spectral resolution: 6th roots of unity and higher
        Complete sets of coupling parameters and Fourier dispersion
         Gauge shifts due to complex coupling
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Complex Bloch matrix H GB(N) eigenvalues are Fourier series with 6 (for N=6) Fourier parameters 
{ r0 =H,     r1=reiφ1,    r-1 =re-iφ1,   r2 =seiφ2,    r-2=se-iφ2,   r3=t =r-3 }

ωm (Hcomplex
GZB(6)) = H + 2r cos π m ⋅1

3
−φ1

⎛
⎝⎜

⎞
⎠⎟  + 2scos π m ⋅2

3
−φ2

⎛
⎝⎜

⎞
⎠⎟  +   t(−1)m      (for complex: r− p = rp

*)

ωm =

ω0  =   r0   +   r1  +   r−1  +   r2 +   r−2   +   r3  

ω+1 = r0+ r1e
iπ
3 +r−1e

-iπ
3 +r2e

i2π
3 +r−2e

-i2π
3 −r3

ω−1 = r0+ r1e
-iπ
3 +r−1e

iπ
3 +r2e

-i2π
3 +r−2e

i2π
3 −r3

ω+2 = r0+ r1e
i2π

3 +r−1e
-i2π

3 −r2e
iπ
3 −r−2e

-iπ
3 +r3

ω−2 = r0+ r1e
-i2π

3 +r−1e
i2π

3 −r2e
-iπ
3 −r−2e

iπ
3 +r3

ω3  =   r0 −  r1  − r−1  +   r2   +   r−2   − r3

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

rp =

r0 = ?
r1 = ?
r−1 = ?
r2 = ?
r−2 = ?
r3 = ?

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

ωm (H
GB(N ) ) = m rpr

p

p=0
∑ m = rp m r p m

p=0
∑ = rpe

−i2π m⋅p
N

p=0
∑ = rp e

−i(2π m⋅p
N

−φp )

p=0
∑

giving 6 ωm-levels: ...in terms of 6 solvable rp-parameters:

Complex sets of C6 coupling parameters and gauge shifts 

ωm (Hcomplex
GZB(6)) = r0 + r1e

iπ m⋅1
3 + r−1e

−iπ m⋅1
3 + r2e

iπ m⋅2
3 + r−2e

−iπ m⋅2
3 + r3e

iπ m⋅3
3       (for complex: r− p = rp

*)

Left as an
exercise...

Geometric solution shown next...
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⎜
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⎜
⎜
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⎟
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3rd Step (contd.)
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⎜
⎜
⎜
⎜
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⎟
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H
B1(6)=

For Hermitian HB1(6)=(HB1(6))†

complex components

r
1
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In this C-Type situation m-eigenstates 
are required to be moving waves eikm·xp
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