Group Theory in Quantum Mechanics Lecture 11 (2.19.15)

Representations of cyclic groups $C_3 \subset C_6 \supset C_2$

(Quantum Theory for Computer Age - Ch. 6-9 of Unit 3) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 3-7 of Ch. 2)

Review of C₂ spectral resolution for 2D oscillator (Lecture 6 : p. 11, p. 17, and p. 11)
 C₃ g[†]g-product-table and basic group representation theory
 C₃ H-and-r^p-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Introduction to C_N beat dynamics and "Revivals" in Lecture 12

WebApps used <u>WaveIt App</u> <u>MolVibes</u> Review of C₂ spectral resolution for 2D oscillator Lecture 6

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

 C_2 (Bilateral σ_B reflection) symmetry conditions: $K_{11} \equiv K \equiv K_{22}$ and: $K_{12} \equiv k \equiv K_{12} = -k_{12}$ (Let: M = 1) $\begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} = \begin{pmatrix} K & k \\ k & K \end{pmatrix} = K \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\mathbf{K} = K \cdot \mathbf{I} + k \cdot \boldsymbol{\sigma}_{R}$

2D HO Matrix operator equations

$$\begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{pmatrix} = - \begin{pmatrix} \frac{k_{1} + k_{12}}{M} & \frac{-k_{12}}{M} \\ \frac{-k_{12}}{M} & \frac{k_{1} + k_{12}}{M} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$= - \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$More \ conventional \ coordinate \ notation \ |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \quad |\mathbf{x}\rangle \quad \{x_{0}, x_{1}\} \rightarrow \{x_{1}, x_{2}\}$$

K-matrix is made of its symmetry operators in group $C_2 = \{\mathbf{1}, \sigma_B\}$ with product table: $C_2 \mid \mathbf{1} \quad \sigma_B$ $\sigma_{\scriptscriptstyle R}$ σ_{B} σ_{R}

Symmetry *product table* gives C₂ group representations in *group basis* $\{|0\rangle = \mathbf{1}|0\rangle \equiv |\mathbf{1}\rangle, |1\rangle = \sigma_B |0\rangle \equiv |\sigma_B\rangle$ $\begin{pmatrix} \langle \mathbf{1} | \mathbf{1} | \mathbf{1} \rangle & \langle \mathbf{1} | \mathbf{1} | \boldsymbol{\sigma}_{B} \rangle \\ \langle \boldsymbol{\sigma}_{B} | \mathbf{1} | \mathbf{1} \rangle & \langle \boldsymbol{\sigma}_{B} | \mathbf{1} | \boldsymbol{\sigma}_{B} \rangle \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}, \qquad \begin{pmatrix} \langle \mathbf{1} | \boldsymbol{\sigma}_{B} | \mathbf{1} \rangle & \langle \mathbf{1} | \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} \rangle \\ \langle \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} | \mathbf{1} \rangle & \langle \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} \rangle \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$

*Review of C*² *spectral resolution for 2D oscillator Lecture 6 p.11*

C_2 Symmetric two-dimensional harmonic oscillators (2DHO) 2D HO "binary" bases and coord. $\{x_0, x_1\}$ 2D HO Matrix operator equations (a) unit base state (b) unit base state $\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = - \begin{vmatrix} \frac{\kappa_1 + \kappa_{12}}{M} & \frac{-\kappa_{12}}{M} \\ \frac{-k_{12}}{M} & \frac{k_1 + k_{12}}{M} \end{vmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $|0\rangle = |x\rangle = |2\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|1\rangle = |y\rangle = |-1\rangle = \begin{pmatrix} u \\ I \end{pmatrix}$ $\begin{array}{c} \hline m \\ 1 \\ \hline m \\ \hline$ $= - \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ More conventional coordinate notation (c) equilibrium zero-state $|_0$ $\begin{array}{c} \left\| \ddot{\mathbf{x}} \right\|_{k_{12}} & \left\| \ddot{\mathbf{x}} \right\|_{k_{12}} \\ \mathbf{x}_{0} = \mathbf{0} \\ \mathbf{x}_{1} = \mathbf{0} \end{array} \right\| \mathbf{x} \\ Review of C_{2} spectral resolution for 2D oscillator Lecture 6 p.17 \\ \end{array}$ C_2 (Bilateral σ_B reflection) symmetry conditions: *K*-matrix is made of its symmetry operators in $K_{11} \equiv K \equiv K_{22}$ and: $K_{12} \equiv k \equiv K_{12} = -k_{12}$ (Let: M = 1) group $C_2 = \{\mathbf{1}, \sigma_B\}$ with product table: $C_2 \mid \mathbf{1} \quad \sigma_B$ $\begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} = \begin{pmatrix} K & k \\ k & K \end{pmatrix} = K \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\mathbf{K} = K \cdot \mathbf{1} + k \cdot \boldsymbol{\sigma}_{R}$ Symmetry *product table* gives C₂ group representations in *group basis* $\{|0\rangle = \mathbf{1}|0\rangle \equiv |\mathbf{1}\rangle, |1\rangle = \sigma_B |0\rangle \equiv |\sigma_B\rangle$ $\begin{pmatrix} \langle \mathbf{1} | \mathbf{1} | \mathbf{1} \rangle & \langle \mathbf{1} | \mathbf{1} | \boldsymbol{\sigma}_{B} \rangle \\ \langle \boldsymbol{\sigma}_{B} | \mathbf{1} | \mathbf{1} \rangle & \langle \boldsymbol{\sigma}_{B} | \mathbf{1} | \boldsymbol{\sigma}_{B} \rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} \langle \mathbf{1} | \boldsymbol{\sigma}_{B} | \mathbf{1} \rangle & \langle \mathbf{1} | \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} \rangle \\ \langle \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} | \mathbf{1} \rangle & \langle \boldsymbol{\sigma}_{B} | \boldsymbol{\sigma}_{B} \rangle \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\mathbf{P}^{\pm} - \text{projectors:}$ $\mathbf{P}^{+} = \frac{\mathbf{1} + \boldsymbol{\sigma}_{B}}{2} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ Minimal equation of σ_B is: $\sigma_B^2 = 1$ Spectral decomposition of $C_2(\sigma_B)$ into $\{\mathbf{P}^+, \mathbf{P}^-\}$ or: $\sigma_B^2 - 1 = 0 = (\sigma_B - 1)(\sigma_B + 1)$ $1 = P^+ + P^ \mathbf{P}^{+} = \frac{\mathbf{1} - \boldsymbol{\sigma}_{B}}{2} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$ with eigenvalues: $\sigma_{R} = \mathbf{P}^{+} - \mathbf{P}^{-}$ $\{\chi^+(\sigma_B) = +1, \chi^-(\sigma_B) = -1\}$

Thursday, February 19, 2015

C₂ Symmetric 2DHO eigensolutions *K*·**1** $-k_{12}\cdot\sigma_B$ *K*-matrix is made of its symmetry operators $K\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - k_{12}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_1 + k_{12} \end{pmatrix}$ in group $C_2 = \{\mathbf{1}, \sigma_B\}$ with product table: $K\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -k_{12} & k_1 + k_{12} \end{bmatrix} \xrightarrow{\mathbf{n} \cdot \mathbf{s} \cdot \mathbf{r}} F^+ = \frac{\mathbf{1} + \sigma_B}{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = |+\rangle\langle+|$ factored projectors $\mathbf{P}^{-} = \frac{\mathbf{1} - \boldsymbol{\sigma}_{B}}{2} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt$ $\sigma_B = \mathbf{P}^+ - \mathbf{P}^-$ Eigenvalues of σ_B : $\{\chi^+(\sigma_B) = +1, \chi^-(\sigma_B) = -1\}$ Diagonalizing transformation (D-tran) of K-matrix: $\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{vmatrix} \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_1 + k_{12} \end{pmatrix} \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{vmatrix} = \begin{pmatrix} k_1 & 0 \\ 0 & k_1 + 2k_{12} \end{pmatrix}$ Eigenvalues of $\mathbf{K} = K \cdot \mathbf{1} - k_{12} \cdot \boldsymbol{\sigma}_B$: $\varepsilon^+(\mathbf{K}) = K - k_{12}, \quad \varepsilon^-(\mathbf{K}) = K + k_{12}$ $=k_1$ $= k_1 + 2k_{12}$ Even mode $|+\rangle = |0_2\rangle = {1 \choose 1} / 12$ C_2 mode phase character tables $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} =$ **IS DOSITION** Μ Μ $\langle x_1 | + \rangle$ $\langle x_1 | - \rangle$ m=0 $x_1 = 1/\sqrt{2}$ $x_0 = 1/\sqrt{2}$ norm: $\langle x_2 | + \rangle$ $1/\sqrt{2}$ $\tilde{O}dd \ mode \ |-\rangle = |1_2\rangle = |1_2|^2$ *m*=1 own inverse in this case!) Μ Μ *m is wave-number* or "momentum" *Review of C*² *spectral resolution for 2D oscillator Lecture 6 p.33*

C₃ **g[†]g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

<i>C</i> ₃	r ⁰ =1	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

C_3	r ⁰ =1	$\mathbf{r}^1 = \mathbf{r}^{-2}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$
$r^0 = 1$	1	\mathbf{r}^1	\mathbf{r}^2
$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	\mathbf{r}^1
$\mathbf{r}^1 = \mathbf{r}^{-2}$	\mathbf{r}^1	\mathbf{r}^2	1

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

A C₃ **H**-*matrix* is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -*table* and so is each \mathbf{r}^{p} -*matrix representation*.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad \qquad + r_1 \cdot \mathbf{r}^1 \qquad \qquad + r_2 \cdot \mathbf{r}^2$$

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

A C₃ **H**-*matrix* is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -*table* and so is each \mathbf{r}^{p} -*matrix representation*.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= r_0 \cdot \mathbf{1} \qquad \qquad + r_1 \cdot \mathbf{r}^1 \qquad \qquad + r_2 \cdot \mathbf{r}^2$$

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ *elements* lie on diagonal.

A C₃ **H**-*matrix* is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -*table* and so is each \mathbf{r}^{p} -*matrix representation*.

$$\mathbf{H} = \begin{pmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{pmatrix} = r_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + r_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
Constants r_k that are grayed-out may change values if C₃ symmetry is broken

H-matrix coupling constants $\{r_0, r_1, r_2\}$ relate to particular operators $\{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$ that transmit a particular force or current.

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

A C₃ **H**-*matrix* is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -*table* and so is each \mathbf{r}^{p} -*matrix representation*.

$C_3 g^{\dagger}g$ -product-table and basic group representation theory

C₃ $\mathbf{g}^{\dagger}\mathbf{g}$ -product-table Pairs each operator \mathbf{g} in the 1st row with its inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ in the 1st column so all *unit* $\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ elements lie on diagonal.

A C₃ **H**-*matrix* is then constructed directly from the $\mathbf{g}^{\dagger}\mathbf{g}$ -*table* and so is each \mathbf{r}^{p} -*matrix representation*.

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

C₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C₃ Spectral resolution: 3rd roots of unity

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3^{*rd*} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$.

C₃ Spectral resolution: 3rd roots of unity

We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p .

r-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3rd roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$.

Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$)

 $C_{3} Spectral resolution: 3^{rd} roots of unity$ We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**⁹. $\begin{bmatrix} "Chi"(\chi) \text{ refers to} \\ characters or \\ characteristic roots \end{bmatrix}$ **r**- symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3^{rd} roots of unity $\chi^{*}_{m} = e^{im2\pi/3} = \psi_{m}$. Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $1 = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m}$ $\chi_{1} = e^{-il\frac{2\pi}{3}} = \psi^{*}_{1}$ C₃ Spectral resolution: 3^{rd} roots of unity We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^p. **"Chi"(\chi)** refers to <u>characters</u> or <u>characters</u> or <u>characters</u> or <u>characteristic</u> roots **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers *z* make it easy to find cube roots of *z* =1= $e^{2\pi im}$. (Answer: $z^{1/3} = e^{2\pi im/3}$) $1 = \mathbf{r}^3$ implies : $\mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1})$ where : $\chi_m = e^{-im\frac{2\pi}{3}} = \psi^*_m$ $\chi_2 = e^{-i2\frac{2\pi}{3}} = \psi^*_2$

We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} ,

C₃ Spectral resolution: 3rd roots of unity We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^{*p*}. **u** Chi"(χ) refers to characters or characteristic roots **r**- symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3rd roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers *z* make it easy to find cube roots of *z* =1= $e^{2\pi im}$. (Answer: $z^{1/3} = e^{2\pi im/3}$) $1 = \mathbf{r}^3$ implies : $\mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \chi_0 \mathbf{1})(\mathbf{r} - \chi_1 \mathbf{1})(\mathbf{r} - \chi_2 \mathbf{1})$ where : $\chi_m = e^{-im\frac{2\pi}{3}} = \psi^*_m$ We know there is an idempotent projector **P**^(m) such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of **r**,

They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit **1** by a *completeness* relation:

 $C_{3} Spectral resolution: 3^{rd} roots of unity$ We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers **r**^p. $\begin{bmatrix} "Chi"(\chi) \text{ refers to} \\ characters \text{ or} \\ characteristic roots \end{bmatrix}$ **r**- symmetry implies cubic **r**³=1, or **r**³-1=0 resolved by three 3^{rd} roots of unity $\chi^{*}_{m} = e^{im2\pi/3} = \psi_{m}$.
Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $1 = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where } : \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m}$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_{m} \mathbf{P}^{(m)}$ for each eigenvalue χ_{m} of **r**,
They must be orthonormal $(\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)})$ and sum to unit 1 by a completeness relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_{m}\mathbf{P}^{(m)} \text{ Ortho-Completeness } \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(l)} + \mathbf{P}^{(2)}$

C₃ Spectral resolution: 3rd roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ $\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m} \qquad \qquad \chi_{1} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{1}$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)}$ $\mathbf{P}^{(2)}$ \mathbf{r}^{1} -Spectral-Decomp. $\mathbf{r}^{1} = \chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)}$

C₃ Spectral resolution: 3rd roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic **r**³=**1**, or **r**³-**1**=**0** resolved by three 3rd roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ $\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m} \begin{cases} \chi_{1} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{1} \\ \chi_{2} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{2} \end{cases}$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)}$ $\mathbf{P}^{(2)}$ \mathbf{r}^{l} -Spectral-Decomp. $\mathbf{r}^{l} = \chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)}$ $= \rho_{2} (\rho_{2})^{2} = \rho_{1} \mathbf{r}^{2} - Spectral - Decomp. \quad \mathbf{r}^{2} = (\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)}$

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling C_3 Spectral resolution: 3^{rd} roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)}$ $\mathbf{P}^{(2)}$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ $+i2\pi/3$ Imagin axis Real axis

C₃ Spectral resolution: 3rd roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic $r^3=1$, or $r^3-1=0$ resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. Complex numbers z make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ $\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m} \qquad \qquad \chi_{1} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{1}$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)}$ $\mathbf{P}^{(2)}$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ $+i2\pi/3$ C_3 mode phase character table Imagina axis $\chi_{0}^{*} = 1 = e$ Real axis

 C_3 Spectral resolution: 3^{rd} roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. $(\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) $\mathbf{1} = \mathbf{r}^{3} \text{ implies : } \mathbf{0} = \mathbf{r}^{3} - \mathbf{1} = (\mathbf{r} - \chi_{0}\mathbf{1})(\mathbf{r} - \chi_{1}\mathbf{1})(\mathbf{r} - \chi_{2}\mathbf{1}) \text{ where : } \chi_{m} = e^{-im\frac{2\pi}{3}} = \psi^{*}_{m} \qquad \qquad \chi_{1} = e^{-i\frac{2\pi}{3}} = \psi^{*}_{1}$ We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)}$ $\mathbf{P}^{(2)}$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ $+i2\pi/3$ C_3 mode phase character table p=0 p=1 p=2Imaginary +i0axis $\chi_{0}^{*} = 1 = e$ WaveIt App *MolVibes* Real axis $m = 0_{3} \qquad m = 0_{3} \qquad \chi_{00} = 1 \qquad \chi_{01} = 1 \qquad \chi_{02} = 1$ $\frac{wave-number}{m} = m = 1_{3} \qquad \chi_{10} = 1 \qquad \chi_{11} = e^{-i2\pi/3} \qquad \chi_{12} = e^{i2\pi/3} \qquad \chi_{12} = e^{i2\pi/3} \qquad \chi_{20} = 1 \qquad \chi_{21} = e^{i2\pi/3} \qquad \chi_{22} = e^{-i2\pi/3} \qquad \chi_{22} = e^{-i2\pi/3} \qquad \chi_{22} = e^{-i2\pi/3} \qquad \chi_{23} = e^{-i2\pi/3} \qquad \chi_{3} = e^{-i2\pi$ C₃ character conjugate $\chi^*_{mp} = e^{imp2\pi/3}$ is wave function $\psi_m(r_p) = e^{\iota k_m \cdot r_p}$

 C_3 Spectral resolution: 3^{rd} roots of unity "*Chi*"(χ) refers to characters or We can spectrally resolve **H** if we resolve **r** since **H** is a combination of powers \mathbf{r}^p . *characteristic* roots **r**-symmetry implies cubic $\mathbf{r}^3=\mathbf{1}$, or $\mathbf{r}^3-\mathbf{1}=\mathbf{0}$ resolved by three 3^{rd} roots of unity $\chi^*_m = e^{im2\pi/3} = \psi_m$. $\chi_0 = e^{-i0\frac{2\pi}{3}} = 1$ Complex numbers *z* make it easy to find cube roots of $z = 1 = e^{2\pi i m}$. (Answer: $z^{1/3} = e^{2\pi i m/3}$) We know there is an idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ for each eigenvalue χ_m of \mathbf{r} , They must be *orthonormal* ($\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta_{mn}\mathbf{P}^{(m)}$) and sum to unit 1 by a *completeness* relation: $\mathbf{r} \cdot \mathbf{P}^{(m)} = \chi_m \mathbf{P}^{(m)}$ Ortho-Completeness $\mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)}$ $\mathbf{P}(2)$ $\chi_0 = e^{i\theta} = 1$, $\chi_1 = e^{-i2\pi/3}$, $\chi_2 = e^{-i4\pi/3}$. \mathbf{r}^1 -Spectral-Decomp. $\mathbf{r}^1 = \chi_0 \mathbf{P}^{(0)} + \chi_1 \mathbf{P}^{(1)} + \chi_2 \mathbf{P}^{(2)}$ $(\chi_0)^2 = 1$, $(\chi_1)^2 = \chi_2$, $(\chi_2)^2 = \chi_1$. **r**²-Spectral-Decomp. **r**² = $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \mathbf{P}^{(2)}$ $+i2\pi/3$ $\chi_1 = e$ *Real axis* $\chi_{0}^{*}=1=e^{+i\theta}$ C₃ mode phase character table p is position axis WaveIt App p=0 p=1 $p=2^{--axis}$ MolVibes Real axis C₃ character conjugate $m = O_{3} | \chi_{00} = 1 | \chi_{01} = 1 | \chi_{02} = 1$ $\chi^*_{mp} = e^{imp2\pi/3}$ $\frac{wave-number}{m=} m = l_{3} |\chi_{10}| = 1 \chi_{11} = e^{-i2\pi/3} \chi_{12} = e^{i2\pi/3}$ is wave function "momentum" $m = 2_{3} \chi_{20} = 1 \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{-i2\pi/3}$ $\psi_m(r_p) = e^{ik_m \cdot r_p}$

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling Given unitary Ortho-Completeness operator relations:

 $\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$ $\chi_0 \ \mathbf{P}^{(0)} + \chi_1 \ \mathbf{P}^{(1)} + \chi_2 \ \mathbf{P}^{(2)} = \mathbf{r}^1 = \mathbf{1} \ \mathbf{P}^{(0)} + e^{-i2\pi/3} \ \mathbf{P}^{(1)} + e^{i2\pi/3} \ \mathbf{P}^{(2)}$ $(\chi_0)^2 \mathbf{P}^{(0)} + (\chi_1)^2 \mathbf{P}^{(1)} + (\chi_2)^2 \ \mathbf{P}^{(2)} = \mathbf{r}^2 = \mathbf{1} \ \mathbf{P}^{(0)} + e^{i2\pi/3} \ \mathbf{P}^{(1)} + e^{-i2\pi/3} \ \mathbf{P}^{(2)}$ Given unitary Ortho-Completeness operator relations: or ket relations: $(to |1\rangle = |r^{0}\rangle)$ $\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$ $\chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ Given unitary Ortho-Completeness operator relations: or ket relations: $(to |1\rangle = |r^{0}\rangle)$ $\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$ $\chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ Inverting O-C is easy: just †-conjugate! Given unitary Ortho-Completeness operator relations: $\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$ or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^{0}\rangle)$ $\chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$ $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} \mathbf{P}^{(2)} = \mathbf{P}^{(2)} \mathbf{P}^{(2)} = \mathbf{P}^{(2)} \mathbf{P}^{(2)} \mathbf{P}^{(2)} \mathbf{P}^{(2)} = \mathbf{P}^{(2)} \mathbf{P}^{(2)}$

Given unitary Ortho-Completeness operator relations:

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$
 or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^{0}\rangle)$
 $\chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$
 $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$
 $(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$
Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)
 $\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$
 $\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{1}^{*} \mathbf{r}^{1} + \chi_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$
 $\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$

Given unitary Ortho-Completeness operator relations:

$$\mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} = \mathbf{1} = \mathbf{P}^{(0)} + \mathbf{P}^{(1)} + \mathbf{P}^{(1)} + \mathbf{P}^{(2)}$$
or ket relations: $(to |\mathbf{1}\rangle = |\mathbf{r}^{0}\rangle$

$$\chi_{0} \mathbf{P}^{(0)} + \chi_{1} \mathbf{P}^{(1)} + \chi_{2} \mathbf{P}^{(2)} = \mathbf{r}^{1} = \mathbf{1} \mathbf{P}^{(0)} + e^{-i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

$$(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{i2\pi/3} \mathbf{P}^{(2)}$$

$$(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$$

$$(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$$

$$(\chi_{0})^{2} \mathbf{P}^{(0)} + (\chi_{1})^{2} \mathbf{P}^{(1)} + (\chi_{2})^{2} \mathbf{P}^{(2)} = \mathbf{r}^{2} = \mathbf{1} \mathbf{P}^{(0)} + e^{i2\pi/3} \mathbf{P}^{(1)} + e^{-i2\pi/3} \mathbf{P}^{(2)}$$

$$(\chi_{0})^{2} \mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{1}^{*} \mathbf{r}^{1} + \chi_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \chi_{2}^{*} \mathbf{r}^{1} + \chi_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{r}^{0} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0$$

Given unitary Ortho-Completeness operator relations:

$$P^{(0)} + P^{(1)} + P^{(1)} = 1 = P^{(0)} + P^{(1)} + P^{(2)}$$

 $\chi_0 P^{(0)} + \chi_1 P^{(1)} + \chi_2 P^{(2)} = r^{l} = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$
 $\chi_0^{[3]} |r^{[2]} = |0_3\rangle + e^{i2\pi/3} |1_3\rangle + e^{i2\pi/3} |2_3\rangle$
 $\chi_0^{[3]} P^{(0)} + \chi_1 P^{(1)} + \chi_2 P^{(2)} = r^{2} = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$
 $f_3^{[3]} |r^{[2]} = |0_3\rangle + e^{i2\pi/3} |1_3\rangle + e^{i2\pi/3} |2_3\rangle$
Inverting O-C is easy: just \dagger -conjugate! (and norm by $\frac{1}{3}$)
 $P^{(0)} = \frac{1}{3} (r^0 + r^1 + r^2) = \frac{1}{3} (1 + r^1 + r^2)$
 $P^{(1)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_2^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{9} \sqrt{3} = \frac{1}{9} e^{-i2\pi/3} |r^1 + e^{-i2\pi/3} r^2)$
 $Two distinct types of modular "quantum " numbers:
 $p=0, 1, \text{ or } 2$ is power p of operator r^9 labeling oscillator position point p
 $\chi_1^{(0)} = 1 \chi_{01} = 1 \chi_{02} = 1$
 $\chi_{10} = 1 \chi_{11} = e^{-i2\pi/3} \chi_{12} = e^{i2\pi/3}$
 $\chi_{10} = 1 \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{i2\pi/3}$
 $\chi_{20} = 1 \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{-i2\pi/3}$
 $\chi_{20} = 1 \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{i2\pi/3}$
 $\chi_{20} = 1 \chi_{21} = e^{i2\pi/3} \chi_{22} = e^{i2\pi/3}$$
Given unitary Ortho-Completeness operator relations: or ket relations: (to |1) = |r⁰/)
P⁽⁰⁾ + P⁽¹⁾ + P⁽¹⁾ + P⁽¹⁾ = 1 = P⁽⁰⁾ + P⁽¹⁾ + P⁽²⁾

$$\chi_0 P^{(0)} + \chi_1 P^{(1)} + \chi_2 P^{(2)} = r^{l} = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$$

 $(\chi_0)^2 P^{(0)} + (\chi_1)^2 P^{(1)} + (\chi_2)^2 P^{(2)} = r^{2} = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$
 $(\chi_0)^2 P^{(0)} + (\chi_1)^2 P^{(1)} + (\chi_2)^2 P^{(2)} = r^{2} = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$
 $(\chi_0)^2 P^{(0)} + (\chi_1)^2 P^{(1)} + (\chi_2)^2 P^{(2)} = r^{2} = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$
 $(\chi_0)^2 P^{(0)} + (\chi_1)^2 P^{(1)} + (\chi_2)^2 P^{(2)} = r^{2} = 1 P^{(0)} + e^{i2\pi/3} P^{(1)} + e^{i2\pi/3} P^{(2)}$
 $P^{(0)} = \frac{1}{3} (r^0 + r^1 + r^2) = \frac{1}{3} (1 + r^1 + r^2)$
 $P^{(1)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_2^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_1^* r^1 + \chi_2^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{+i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{3} (r^0 + \chi_2^* r^1 + \chi_1^* r^2) = \frac{1}{3} (1 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{9} (r^0 + e^{-i2\pi/3} r^1 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac{1}{9} (r^0 + e^{-i2\pi/3} r^2)$
 $P^{(2)} = \frac$

Given unitary Ortho-Completeness operator relations:

$$\mathbf{p}^{(0)} + \mathbf{p}^{(1)} + \mathbf{p}^{(1)} = \mathbf{1} = \mathbf{p}^{(0)} + \mathbf{p}^{(1)} + \mathbf{p}^{(2)}$$

 $\mathbf{y}^{(0)} + \mathbf{y}^{(1)} + \mathbf{y}^{(2)} = \mathbf{r}^{(2)} = \mathbf{r}^{(2)} = \mathbf{1} + \mathbf{p}^{(0)} + \mathbf{e}^{i2\pi/3} \mathbf{p}^{(1)} + \mathbf{e}^{i2\pi/3} \mathbf{p}^{(2)}$
 $\mathbf{y}^{(3)} = \mathbf{p}^{(2)} = \mathbf{y}^{(2)} + \mathbf{y}^{(2)} = \mathbf{r}^{(2)} = \mathbf{r}^{(2)} = \mathbf{1} + \mathbf{p}^{(0)} + \mathbf{e}^{i2\pi/3} \mathbf{p}^{(1)} + \mathbf{e}^{i2\pi/3} \mathbf{p}^{(2)}$
 $\mathbf{y}^{(3)} = \mathbf{p}^{(2)} = \mathbf{p}^{(2)} + (\mathbf{y}^{(2)})^{2} \mathbf{p}^{(1)} + (\mathbf{y}^{(2)})^{2} \mathbf{p}^{(2)} = \mathbf{r}^{2} = \mathbf{1} + \mathbf{p}^{(0)} + \mathbf{e}^{i2\pi/3} \mathbf{p}^{(1)} + \mathbf{e}^{i2\pi/3} \mathbf{p}^{(2)}$
 $\mathbf{y}^{(3)} = \mathbf{p}^{(2)} = \mathbf{p}^{(3)} + \mathbf{e}^{i2\pi/3} |\mathbf{1}_{3}\rangle + \mathbf{e}^{i2\pi/3} |\mathbf$

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C₃ Plane wave function

$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

 $= \frac{e^{imp2\pi/3}}{\sqrt{3}}$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L/m$

$$C_{3} Plane wave function
\psi_{m}(x_{p}) = \frac{e^{ik_{m} \cdot x_{p}}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L/m$

$$|\mathbf{r}^{p}|q\rangle = |q+p\rangle$$
 implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L/m$

 $\mathbf{r}^{p} |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$ Action of \mathbf{r}^{p} on *m*-ket $|(m)\rangle = |k_{m}\rangle$ is inverse to action on coordinate bra $\langle x_{q}| = \langle q |$.

C₃ Plane wave function

$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L/m$

 $\mathbf{r}^{p} |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$ Action of \mathbf{r}^{p} on *m*-ket $|(m)\rangle = |k_{m}\rangle$ is inverse to action on coordinate bra $\langle x_{q}| = \langle q |$.

(Norm factors left out) $\Psi_{k_m}(x_q - p \cdot L) = \langle x_q | \mathbf{r}^p | k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)}$

$$C_{3} Plane wave function
\psi_{m}(x_{p}) = \frac{e^{ik_{m} \cdot x_{p}}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

C₃ Lattice position vector $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi / \lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L/m$

 $\mathbf{r}^{p} |q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$ Action of \mathbf{r}^{p} on *m*-ket $|(m)\rangle = |k_{m}\rangle$ is inverse to action on coordinate bra $\langle x_{q} | = \langle q |$.

(Norm factors left out)

(ut)
$$\Psi_{k_m}(x_q - p \cdot L) = \langle x_q | \mathbf{r}^p | k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)}$$

 $\langle q - p | (m) \rangle = \langle q | \mathbf{r}^p | (m) \rangle = e^{-ik_m x_p} \langle q | (m) \rangle$

C₃ Plane wave function

$$\psi_m(x_p) = \frac{e^{ik_m \cdot x_p}}{\sqrt{3}}$$

$$= \frac{e^{imp2\pi/3}}{\sqrt{3}}$$

*C*₃*Lattice position vector* $x_p = L \cdot p$ Wavevector $k_m = 2\pi m/3L = 2\pi/\lambda_m$ Wavelength $\lambda_m = 2\pi / k_m = 3L / m$

 $|\mathbf{r}^{p}|q\rangle = |q+p\rangle$ implies: $\langle q | (\mathbf{r}^{p})^{\dagger} = \langle q | \mathbf{r}^{-p} = \langle q+p |$ implies: $\langle q | \mathbf{r}^{p} = \langle q-p |$ Action of \mathbf{r}^p on *m*-ket $|(m)\rangle = |k_m\rangle$ is inverse to action on coordinate bra $\langle x_q | = \langle q |$.

(Norm factors left

Norm factors left out)
$$\begin{aligned} \Psi_{k_m}(x_q - p \cdot L) &= \langle x_q \mid \mathbf{r}^p \mid k_m \rangle = e^{ik_m(x_q - p \cdot L)} = e^{ik_m(x_q - x_p)} \\ \langle q - p \mid (m) \rangle &= \langle q \mid \mathbf{r}^p \mid (m) \rangle = e^{-ik_m x_p} \langle q \mid (m) \rangle \end{aligned}$$
This implies:
$$\mathbf{r}^p \mid (m) \rangle = e^{-ik_m x_p} \mid (m) \rangle$$

C₃ **g**[†]**g**-*product-table and basic group representation theory* C₃ **H**-and-**r**^{*p*}-*matrix representations and conjugation symmetry*

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{ or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Imagine going around ring reading off address points p = ... 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,for regular integer points ...-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8,....

Two distinct types of modular "quantum" numbers: $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ labeling oscillator position point } p$ m=0,1, or 2 that is the mode momentum m of wavesm or p obey modular arithmetic so sums or products =0,1, or 2 (integers-modulo-3)

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i1 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$.

That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 3.

Thus, $(\rho_2)^2 = \rho_1$. Also, 5 mod 3 = 2 so $(\rho_1)^5 = \rho_2$, and 6 mod 3 = 0 so $(\rho_1)^6 = \rho_0$.

Other examples: $-1 \mod 3 = 2 [(\rho_1)^{-1} = (\rho_{-1})^1 = \rho_2]$ and $-2 \mod 3 = 1$.

Imagine going around ring reading off address points p = ... 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,for regular integer points ...-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8,....

 $e^{imp2\pi/3}$ must always equal $e^{i(mp \mod 3)2\pi/3}$.

$$(\rho_m)^p = (e^{im2\pi/3})^p = e^{imp \cdot 2\pi/3} = \rho_{mp} = e^{i(mp \mod 3)2\pi/3} = \rho_{mp \mod 3}$$

C₃ **g**[†]**g**-*product-table and basic group representation theory* C₃ **H**-and-**r**^{*p*}-*matrix representations and conjugation symmetry*

*C*₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C₃-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

C_3 -group jargon and structure of various table	es_{C_3} r	$\cdot^{0} = 1 r^{1}$	$=r^{-2}r^{2}$	$=\mathbf{r}^{-1}$
+ $i2\pi/3$ C ₃ -group { \mathbf{r}^0 , \mathbf{r}^1 , \mathbf{r}^2 }-table	$r^{0} = 1$	1	r ¹	\mathbf{r}^2
$\chi_{1}^{*} = e^{-i2\pi/3}, \chi_{2} = e^{+i2\pi/3}$	$r^2 = r^{-1}$	r ²	1	r ¹
$\chi_0^* = 1 = e^{+i\theta}$	$r^1 = r^{-2}$	\mathbf{r}^{1}	r^2	1
Real axis	<i>C</i> ₃	$\chi_0 = 1$	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_2^* = e^{-i2\pi/3}$	$\chi_0 = 1 = \chi_3$	χ ₀	χ_1	χ_2
	$\chi_2 = \chi_1^{-1}$	χ_2	χ_0	χ_1
	$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ_0

C_3 -group jargon and structure of various table	2S	.0_1	122	21
	C ₃	r = 1 r	=r r	=r
$+i2\pi/3$ C ₃ -group { r ⁰ , r ¹ , r ² }-table	$r^{0} = 1$	1	\mathbf{r}^{1}	r ²
$\chi_{1}^{*} = 0$ obeyed by $\{\chi_{0} = 1, \chi_{1} = e^{-i2\pi/3}, \chi_{2} = e^{+i2\pi/3}\}$	$r^2 = r^{-1}$	r ²	1	r ¹
$\chi_0^* = 1 = e^{+i\theta}$	$r^{1}=r^{-2}$	$\mathbf{r}^{\mathbf{l}}$	r ²	1
Real axis Set $\{\chi_0, \chi_1, \chi_2\}$ is an	C_3	$\chi_0 = 1$	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_{2}^{*}=e^{-i2\pi/3}$ irreducible representation	$\chi_0 = 1 = \chi_3$	X 0	χ_1	X ₂
<i>(irrep)</i> of C ₃	$\chi_2 = \chi_1^{-1}$	χ_2	χ ₀	χ_1
$\{D(\mathbf{r}^0) = \boldsymbol{\chi}_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$	$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ ₀

C_3 -group jargon and structure of various table	$C_3 \mid \mathbf{I}$	r ⁰ =1 r	$^{1}=r^{-2}$ r	$^{2}=\mathbf{r}^{-1}$
+ $i2\pi/3$ C ₃ -group { $\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2$ }-table	$r^{0} = 1$	1	r ¹	r ²
$\chi_{1}^{*} = e^{-i2\pi/3}, \chi_{2} = e^{+i2\pi/3}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$	\mathbf{r}^2	1	r ¹
$\frac{1}{2} \frac{axis}{\chi_0^*} = 1 = e^{+i\theta}$	$r^{1}=r^{-2}$	r ¹	\mathbf{r}^2	1
Real axis Set $\{\chi_0, \chi_1, \chi_2\}$ is an	<i>C</i> ₃	χ ₀ =1	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
irreducible representation	$\chi_0 = 1 = \chi_3$	χ_0	χ_1	χ_2
$\chi_2 = e$	J	U	-	
$\chi_2 = e$ <i>(irrep)</i> of C ₃	$\chi_2 = \chi_1^{-1}$	χ_2	χ_0	χ_1

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

9 =	r ⁰	\mathbf{r}^1	\mathbf{r}^2		g =	r	\mathbf{r}^{1}	\mathbf{r}^2
$\frac{\mathbf{s}}{D^{(0)}(\mathbf{g})}$	$\gamma^{(0)}$	$\boldsymbol{\gamma}^{(0)}$	$\boldsymbol{\gamma}^{(0)}$		$D^{(0)}({f g})$	1	1	1
$D^{(1)}(\mathbf{g})$	$\chi_0^{(1)}$	$\chi_1^{(1)}$	$\chi_2^{(1)}$	=	$D^{(1)}(\mathbf{g})$	1	$e^{\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{\frac{2\pi i}{3}}$

C ₃ -group jarg	on ana structure of various tab	$C_3 \mathbf{r}$	$^{0} = 1 r^{1}$	$=\mathbf{r}^{-2}\mathbf{r}^{2}$	$=r^{-1}$
$+i2\pi/3$	C ₃ -group { \mathbf{r}^0 , \mathbf{r}^1 , \mathbf{r}^2 }-table	$r^{0} = 1$	1	r ¹	r ²
$\chi_1^* = e$ Imaginary	obeyed by $\{\chi_0 = 1, \chi_1 = e^{-i2\pi/3}, \chi_2 = e^{+i2\pi/3}\}$	$\mathbf{r}^2 = \mathbf{r}^{-1}$	r ²	1	r ¹
$\chi_0^* = 1 = e^{+i\theta}$		$r^{1}=r^{-2}$	r ¹	r^2	1
Real axis	Cat (aver aver) is an	C	1	2	·· ··-1
	Set $\{\chi_0, \chi_1, \chi_2\}$ is an		$\chi_0 = 1$	$\chi_1 = \chi_2$	$\chi_2 = \chi_1$
$\chi_{2}^{*} = e^{-i2\pi/3}$	<i>Set</i> { χ_0 , χ_1 , χ_2 } <i>is an irreducible representation</i>	$\frac{c_3}{\chi_0 = 1 = \chi_3}$	$\frac{\chi_0=1}{\chi_0}$	$\frac{\chi_1 = \chi_2}{\chi_1}$	$\frac{\chi_2 = \chi_1}{\chi_2}$
$\chi_2^* = e^{-i2\pi/3}$	set { χ_0 , χ_1 , χ_2 } is an irreducible representation (irrep) of C ₃	$\frac{\chi_0 = 1 = \chi_3}{\chi_2 = \chi_1^{-1}}$	$\begin{array}{c} \chi_0 = 1 \\ \chi_0 \\ \chi_2 \end{array}$	$\begin{array}{c} \chi_1 = \chi_2 \\ \chi_1 \\ \chi_0 \end{array}$	$\begin{array}{c} \chi_2 = \chi_1 \\ \chi_2 \\ \chi_1 \end{array}$

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

9 =	r ⁰	\mathbf{r}^{1}	\mathbf{r}^2		g =	r	\mathbf{r}^{1}	r ²
$\frac{\mathbf{s}}{D^{(0)}(\mathbf{g})}$	$\boldsymbol{\gamma}^{(0)}$	$\boldsymbol{\gamma}^{(0)}$	$\gamma^{(0)}$		$D^{(0)}({f g})$	1	1	1
$D^{(1)}(\mathbf{g})$	$\chi_0^{(1)}$	$\boldsymbol{\chi}_{1}^{(1)}$	$\chi_2^{(1)}$	=	$D^{(1)}(\mathbf{g})$	1	$e^{\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$

The *identity irrep* $D^{(0)} = \{1,1,1\}$ obeys *any* group table.

C_3 -group jargon and structure of var	ious tables	r ⁰ =1 r	$^{1}=\mathbf{r}^{-2}\mathbf{r}^{2}$	$=r^{-1}$
+ $i2\pi/3$ C ₃ -group { $\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2$ }-table	$r^{0} = 1$	1	r ¹	r ²
$\chi_{l}^{*} = e^{-i2\pi/3}, \chi_{l} = e^{-i2\pi/3}, \chi_{l} = e^{-i2\pi/3}, \chi_{l} = e^{-i2\pi/3}$	$+i2\pi/3$ } $r^2=r^{-1}$	\mathbf{r}^2	1	r ¹
$\chi_0^* = 1 = e^{+10}$	$r^{1}=r^{-2}$	r ¹	r ²	1
<i>Real axis</i> Set $\{\chi_0, \chi_1, \chi_2\}$ is an	<i>C</i> ₃	$\chi_0 = 1$	$\chi_1 = \chi_2^{-2}$	$\chi_2 = \chi_1^{-1}$
$\chi_{2}^{*}=e^{-i2\pi/3}$ irreducible representation	$\chi_0 = 1 = \zeta$	$\chi_3 \qquad \chi_0$	χ_1	χ_2
$(irrep) \text{ of } C_3$	$\chi_2 = \chi_1^-$	χ_2	χ_0	$oldsymbol{\chi}_1$
$\{D(\mathbf{r}^0) = \chi_0, D(\mathbf{r}^1) = \chi_1, D(\mathbf{r}^2) = \chi_2\}$	$\chi_1 = \chi_2^{-2}$	χ_1	χ_2	χ_0

In fact, all <u>three</u> irreps $\{D^{(0)}, D^{(1)}, D^{(2)}\}$ listed in character table obey C₃-group table

9 =	\mathbf{r}^{0}	\mathbf{r}^1	\mathbf{r}^2		g =	r	\mathbf{r}^{1}	\mathbf{r}^2
$\frac{s}{D^{(0)}(g)}$	$\boldsymbol{\gamma}^{(0)}$	$\boldsymbol{\gamma}^{(0)}$	$\boldsymbol{\gamma}^{(0)}$		$D^{(0)}({f g})$	1	1	1
$D^{(1)}(\mathbf{g})$	$\chi_0^{(1)}$	$\boldsymbol{\chi}_{1}^{(1)}$	$\begin{array}{c} \chi_{2} \\ \chi_{2}^{(1)} \end{array}$	=	$D^{(1)}(\mathbf{g})$	1	$e^{\frac{2\pi i}{3}}$	$e^{+\frac{2\pi i}{3}}$
$D^{(2)}(\mathbf{g})$	$\chi_0^{(2)}$	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$D^{(2)}(\mathbf{g})$	1	$e^{+\frac{2\pi i}{3}}$	$e^{-\frac{2\pi i}{3}}$

The *identity irrep* $D^{(0)} = \{1,1,1\}$ obeys *any* group table.

Irrep $D^{(2)}=\{1, e^{+i2\pi/3}, e^{-i2\pi/3}\}$ is a *conjugate irrep* to $D^{(1)}=\{1, e^{-i2\pi/3}, e^{+i2\pi/3}\}$

 $D^{(2)} = D^{(1)*}$

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Comparing wave function operator algebra to bra-ket algebra Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling Eigenvalues and wave dispersion functions $\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}}$ *Eigenvalues and wave dispersion functions* $\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m) \frac{2\pi}{3}} + r_1 e^{i1(m) \frac{2\pi}{3}} + r_2 e^{i2(m) \frac{2\pi}{3}}$ *(Here we assume* $r_1 = r_2 = r$) $= r_0 e^{i0(m) \frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}})$ *(all-real)*

$$\begin{aligned} & Eigenvalues and wave dispersion functions \\ & \langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}} \\ & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned} = r_0 e^{i0(m)\frac{2\pi}{3}} + r(e^{i\frac{2m\pi}{3}} + e^{-i\frac{2m\pi}{3}}) = r_0 + 2r\cos(\frac{2m\pi}{3}) = \begin{cases} r_0 + 2r (\text{for } m = 0) \\ r_0 - r (\text{for } m = \pm 1) \end{cases} \end{aligned}$$

 $\begin{aligned} & Eigenvalues and wave dispersion functions \\ & \langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)\frac{2\pi}{3}} + r_1 e^{i1(m)\frac{2\pi}{3}} + r_2 e^{i2(m)\frac{2\pi}{3}} \\ & (Here we assume r_1 = r_2 = r) \\ & (all-real) \\ & Quantum \mathbf{H}\text{-values:} \\ & \left(\begin{pmatrix} r_0 & r & r \\ r & r_0 & r \\ r & r & r_0 \end{pmatrix} \left| \begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix} \right| = \left(r_0 + 2r\cos(\frac{2m\pi}{3}) \right) \left(\begin{pmatrix} 1 \\ e^{i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \\ e^{-i\frac{2m\pi}{3}} \end{pmatrix} \right) \end{aligned}$

WaveIt App

<u>MolVibes</u>

$$\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$$

<u>WaveIt App</u>

<u>MolVibes</u>

 $\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$

<u>WaveIt App</u>

<u>MolVibes</u>

 $\omega_{\rm H}(m) \sim 2r_0(\frac{m\pi}{3})^2$

<u>WaveIt App</u>

<u>MolVibes</u>

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ *Spectral resolution:* 3^{*rd*} *roots of unity and ortho-completeness relations C*₃ *character table and modular labeling*

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

$$\begin{aligned} & Eigenvalues and wave dispersion functions - Standing waves \\ & \langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)_3^{2\pi}} + r_1 e^{i1(m)_3^{2\pi}} + r_2 e^{i2(m)_3^{2\pi}} \\ & Here we assume r_1 = r_2 = r) \\ & all-real) \end{aligned}$$

$$\begin{aligned} & Here we assume r_1 = r_2 = r) \\ & all-real) \end{aligned}$$

$$\begin{aligned} & = r_0 e^{i0(m)_3^{2\pi}} + r(e^{i2m\pi} + e^{-i2m\pi}) = r_0 + 2r\cos(2m\pi) = \begin{cases} r_0 + 2r(\text{for } m = 0) \\ r_0 - r(\text{for } m = \pm 1) \end{cases} \\ & r_0 - r(\text{for } m = \pm 1) \end{cases} \end{aligned}$$

$$\begin{aligned} & \text{Classical K-values:} \\ & \left(\begin{pmatrix} r_0 & r & r \\ r & r_0 & r \\ r & r & r_0 \end{pmatrix} \left(\begin{pmatrix} 1 \\ e^{i2m\pi} \\ e^{-i2m\pi} \\ e^{-i2m\pi} \\ e^{-i2m\pi} \end{pmatrix} \right) = (r_0 + 2r\cos(2m\pi)) \left(\begin{pmatrix} 1 \\ e^{i2m\pi} \\ e^{i2m\pi} \\ e^{-i2m\pi} \\ e^{-i2m\pi} \end{pmatrix} = (K - 2k\cos(2m\pi)) \left(\begin{pmatrix} 1 \\ e^{i2m\pi} \\ e^{-i2m\pi} \\ e^{-i2m\pi} \\ e^{-i2m\pi} \end{pmatrix} \end{aligned}$$

Standing waves possible if **H** is all-real (No curly C-stuff allowed!)

 $\begin{aligned} & Eigenvalues and wave dispersion functions - Standing waves \\ & \langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i0(m)_3^{2\pi}} + r_1 e^{i1(m)_3^{2\pi}} + r_2 e^{i2(m)_3^{2\pi}} \\ & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (all-real) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \\ & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we assume r_1 = r_2 = r) \end{aligned}$ $\begin{aligned} & (Here we$

Standing waves possible if **H** is all-real (No curly C-stuff allowed!)

Moving eigenwave Standing eigenwaves	$\mathbf{H}-eigenfrequencies$	K – eigenfrequencies
$ (+1)_{3}\rangle = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ e^{+i2\pi/3}\\ e^{-i2\pi/3} \end{pmatrix} c_{3}\rangle = \frac{ (+1)_{3}\rangle + (-1)_{3}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix}$ States $ (+)\rangle$ and $ (-)\rangle$ in any mixtures are still stati $1 = \frac{1}{\sqrt{2}} (-1)_{2}\rangle = 1 \begin{pmatrix} 0\\ 0 \end{pmatrix}$	$\omega^{(+1)_3} = r_0 + 2r\cos(\frac{+2m\pi}{3})$ = $r_0 - r$ onary due to (\pm) -deger $\omega^{(-1)_3} = r_0 + 2r\cos(\frac{-2m\pi}{3})$	$\sqrt{k_0 - 2k\cos(\frac{+2m\pi}{3})}$ $= \sqrt{k_0 + k}$ $neracy\left(\cos(+x) = \cos(-x)\right)$ $\sqrt{k_0 - 2k\cos(\frac{-2m\pi}{3})}$
$ \begin{vmatrix} (-1)_3 \\ = \sqrt{3} \\ e^{+i2\pi/3} \\ e^{+i2\pi/3} \end{vmatrix} \begin{vmatrix} s_3 \\ = \frac{1}{\sqrt{2}} \\ i\sqrt{2} \\ i\sqrt{2} \\ = \sqrt{2} \\ -1 \end{vmatrix} $	$= r_0 - r$	$=\sqrt{k_0 + k}$
$ \left (0)_3 \right\rangle = \sqrt{\frac{1}{3}} \left(\begin{array}{c} 1\\1\\1 \end{array} \right) $	$\omega^{(0)_3} = r_0 + 2r$	$\sqrt{k_0 - 2k}$

WaveIt App

<u>MolVibes</u>

C₃ **g[†]g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

*C*₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Thursday, February 19, 2015

Projectors $P^{(m)}$ are eigenvalue "placeholders "having orthogonal-idempotent products, eigen equations, $P^{(m)}P^{(n)} = \delta^{mn}P^{(m)}$ $r^{p}P^{(n)} = \chi_{p}^{n}P^{(n)}$ and one completeness rule: $P^{(0)} + P^{(1)} + P^{(2)} + ... + P^{(5)} = 1$

2 nd Step (contd.)			
H diagonalized by spectral resolution of r, $r^2,, r^6 = 1$ top-row flip not needed			
All $x=r^p$ satisfy $x^6=1$ and use	6 th -roots-of-1	for eigenvalues	$\mathbf{P}^{(m)} = \mathbf{P}^{(m)}$
	$D^m(\mathbf{r}) = e^{-2\pi i \mathbf{m}/6}$	$=\chi_1^m = \psi_1^m $	$6 \frac{ring}{(0)} \stackrel{(0)}{\mathbf{P}} \stackrel{(1)}{\mathbf{P}} \stackrel{(2)}{\mathbf{P}} \stackrel{(3)}{\mathbf{P}} \stackrel{(4)}{\mathbf{P}} \stackrel{(5)}{\mathbf{P}} \stackrel{(5)}{\mathbf{P}}$
	$D^m(\mathbf{r}^p) = e^{-2\pi i \mathbf{m} \cdot p/6}$	$=\chi_p^m = \psi_p^m * \dots + \psi_n^{l} $	$\mathbf{P}^{(1)} = \mathbf{P}^{(1)} \cdot \cdot$
$\psi_1^2 = \psi_2^1 = e^{4\pi i/6}$	o=power (expone	(nt) $(\psi_1^2 \setminus \psi_1^2)$	$[1 \ P^{(2)}]$, $P^{(2)}$, $P^{(2)}$, $P^{(2)}$, $P^{(2)}$, $P^{(2)}$
$\psi_1^{J} = \psi_3^{I} = -1$ $\psi_1^{J} = \psi_1^{I} = \psi_1^{-2} = e^{-4\pi i/6}$	or position po n = momentum	ψ_1^{*}	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} $
$\psi_1^{5} = \psi_5^{1} = \psi_1^{-1} = e^{-2\pi i/6}$	or wave-numb	ber $\psi_1^4 \psi_1^5$	
$\mathbf{r}^{p} = \boldsymbol{\chi}_{p}^{0} \mathbf{P}^{(0)}$	+ $\chi_p^{1} \mathbf{P}^{(1)}$ +	$\chi_p^2 \mathbf{P}^{(2)} + \chi_p^3 \mathbf{P}^{(3)}$	+ $\chi_p^4 \mathbf{P}^{(4)}$ + $\chi_p^5 \mathbf{P}^{(5)}$
$\begin{pmatrix} \boldsymbol{\chi}_p^{0} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ \cdot \cdot \boldsymbol{\chi}_p^{1} \cdot \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \boldsymbol{\chi}_p^{2} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \boldsymbol{\chi}_p^{3} \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \\ \cdot \cdot \\ \\ \\ \cdot \\ \\ \cdot \\ \\ \cdot \\ \\ \cdot \\ \\ \\ \cdot \\ \\ \\ \cdot \\ \\ \\ \\ \cdot \\ \\ \\ \cdot \\$	$ \left. \begin{array}{c} \cdot \\ \cdot $	$\chi_p^{2} \begin{pmatrix} \cdots \cdots \cdots \\ \cdots \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\$	$+\chi_{p} \begin{pmatrix} \cdots \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots$
Inverse C_6 spectral resolution <i>m</i> -wave $\psi_p^m = D^{m^*}(r^p) = e^{+2\pi i m \cdot p/6}$:			
$6 \cdot \mathbf{P}^{(m)} = \mathbf{\nabla} \mathbf{\nabla} \mathbf{\nabla}^{m} \mathbf{r}^{0}$	$+\psi_l^m \mathbf{r}^l$ $+$	$+\psi_2^m \mathbf{r}^2 + \psi_3^m \mathbf{r}^3$	$+\psi_4^m \mathbf{r}^4 +\psi_5^m \mathbf{r}^5 $
$\begin{array}{c c} position \ p \ (or \ power \ of \ \mathbf{x} \\ p=0 \ 1 \ 2 \ 3 \ 4 \ 5 \\ m=0 \\ \hline m=0 \\ \hline w_0^{\ 0} \ \psi_1^{\ 0} \ \psi_2^{\ 0} \ \psi_3^{\ 0} \ \psi_4^{\ 0} \ \psi_5 \\ \hline m=1 \\ \hline w_0^{\ 1} \ \psi_1^{\ 1} \ \psi_2^{\ 1} \ \psi_3^{\ 1} \ \psi_4^{\ 1} \ \psi_5 \\ \hline m=2 \\ \hline w_0^{\ 2} \ \psi_1^{\ 2} \ \psi_2^{\ 2} \ \psi_3^{\ 2} \ \psi_4^{\ 2} \ \psi_5 \\ \hline m=3 \\ \hline w_0^{\ 3} \ \psi_1^{\ 3} \ \psi_2^{\ 3} \ \psi_3^{\ 3} \ \psi_4^{\ 3} \ \psi_5 \\ \hline m=5 \\ \hline \psi_0^{\ 5} \ \psi_1^{\ 5} \ \psi_2^{\ 5} \ \psi_3^{\ 5} \ \psi_3^{\ 5} \ \psi_4^{\ 5} \ \psi_5 \end{array}$	$ \begin{array}{c} \mu \\ \mu $	$ \begin{array}{c} \mathbf{r}^{0} \mathbf{r}^{1} \mathbf{r}^{2} \mathbf{r}^{3} \mathbf{r}^{4} \mathbf{r}^{5} \mathbf{C}_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} 0_{6} \\ 0_{6} 0$	$ \begin{array}{c} $

 $C_{6} character$ $\chi_{mp} = e^{-imp2\pi/6}$ is wave function <u>conjugate</u> $\psi_{m}^{*}(r_{p}) = e^{-imp2\pi/6}$ $\sqrt{6} \quad (with norm \sqrt{6})$

C6 Plane wave function

$$\psi_m(r_p) = \frac{e^{ik_m} r_p}{\sqrt{6}}$$

$$= \frac{e^{imp2\pi/6}}{\sqrt{6}}$$

 C_6 Lattice position vector $r_p = L \cdot p$

Wavevector $k_m = 2\pi m/6L = 2\pi/\lambda_m$

Wavelength $\lambda_m = 2\pi/k_m = 6L/m$

WaveIt App

WaveIt App

WaveIt App

<u>WaveIt App</u>

<u>WaveIt App</u>

 $C_N Lattice$ positionvector $<math>r_p = L \cdot p$

Wavevector $k_m = 2\pi / \lambda_m$ $= 2\pi m / NL$

Wavelength $\lambda_m = 2\pi / k_m$ = NL/m

Thursday, February 19, 2015

C₆ Beam analyzer used in Unit 3 Ch. 8 thru Ch. 9

C₃ **g[†]g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

 C₆ Spectral resolution: 6th roots of unity and higher
 Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling 3rd Step *Display all eigensolutions of all possible C₆ symmetric real H*

$$\mathbf{H} = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad where: \ \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m) \quad \textbf{(Dispersion functions)}$$

3rd Step *Display all eigensolutions of all possible C₆ symmetric real H*

Thursday, February 19, 2015

96

$$\begin{split} & \mathcal{C}omplete \ sets \ of \ C_6 \ coupling \ parameters \ and \ Fourier \ dispersion \\ & \omega_m(\mathbf{H}^{GB(N)}) = \langle m | \sum_{p=0} r_p \mathbf{r}^p | m \rangle = \sum_{p=0} r_p \langle m | \mathbf{r}^p | m \rangle = \sum_{p=0} r_p e^{-i2\pi \frac{m \cdot p}{N}} = \sum_{p=0} |r_p| e^{-i(2\pi \frac{m \cdot p}{N} - \phi_p)} \\ & \text{Real } C_6 \ \text{Bloch } \mathbf{H}^{\text{GB(N)}} \ \text{eigenvalues are Fourier series with 4 (for $N=6$) Fourier parameters} \\ & \{r_0 = H, \ r_1 = r = r_{-1} \ , r_2 = s = r_{-2}, \ r_3 = t = r_{-3} \ \} \\ & \omega_m(\mathbf{H}^{GB(6)}_{real}) = r_0 + r_1(e^{i\pi \frac{m \cdot 1}{3}} + e^{-i\pi \frac{m \cdot 1}{3}}) + r_2(e^{i\pi \frac{m \cdot 2}{3}} + e^{-i\pi \frac{m \cdot 2}{3}}) + r_3(e^{i\pi \frac{m \cdot 3}{3}}) \quad (\text{for real: } r_p = r_{-p} = r_p^*) \\ & = H + 2r\cos\pi \frac{m \cdot 1}{3} + 2s\cos\pi \frac{m \cdot 2}{3} + t(-1)^m \\ \text{giving } 4 \ \omega_m \text{-levels:} \\ & \omega_m = \begin{cases} \omega_0 = H + 2r + 2s + t \\ \omega_{\pm 1} = H + r - s - t \\ \omega_{\pm 2} = H - r - s + t \\ \omega_3 = H - 2r + 2s - t \end{cases} \quad r_p = \begin{cases} H = \frac{1}{6} (\omega_0 + \omega_1 - \omega_2 - \omega_3) \\ s = \frac{1}{6} (\omega_0 - \omega_1 - \omega_2 + \omega_3) \\ t = \frac{1}{6} (\omega_0 - 2\omega_1 + 2\omega_2 - \omega_3) \end{cases} \end{cases}$$

General Bloch H^{GB(N)} eigenvalues are Fourier series with six (for N=6) Fourier parameters { $r_0 = H$, $r_1 = re^{i\phi_1}$, $r_{-1} = re^{-i\phi_1}$, $r_2 = se^{i\phi_2}$, $r_{-2} = se^{-i\phi_2}$, $r_3 = t = r_{-3}$ }

$$\omega_m(\mathbf{H}_{complex}^{GZB(6)}) = H + 2r\cos\left(\pi\frac{m\cdot 1}{3} - \phi_1\right) + 2s\cos\left(\pi\frac{m\cdot 2}{3} - \phi_2\right) + t(-1)^m \quad \text{(for complex: } r_{-p} = r_p^*\text{)}$$

C₃ **g**[†]**g**-product-table and basic group representation theory C₃ **H**-and-**r**^{*p*}-matrix representations and conjugation symmetry

*C*₃ Spectral resolution: 3rd roots of unity and ortho-completeness relations C₃ character table and modular labeling

Ortho-completeness inversion for operators and states Modular quantum number arithmetic C3-group jargon and structure of various tables

C₃ Eigenvalues and wave dispersion functions Standing waves vs Moving waves

C₆ Spectral resolution: 6th roots of unity and higher Complete sets of coupling parameters and Fourier dispersion Gauge shifts due to complex coupling

Complex sets of C₆ coupling parameters and gauge shifts

$$\omega_m(\mathbf{H}^{GB(N)}) = \langle m | \sum_{p=0} r_p \mathbf{r}^p | m \rangle = \sum_{p=0} r_p \langle m | \mathbf{r}^p | m \rangle = \sum_{p=0} r_p e^{-i2\pi \frac{m \cdot p}{N}} = \sum_{p=0} |r_p| e^{-i(2\pi \frac{m \cdot p}{N} - \phi_p)}$$

Complex Bloch matrix $\mathbf{H}^{\text{GB}(N)}$ eigenvalues are Fourier series with 6 (for *N*=6) Fourier parameters { $r_0 = H$, $r_1 = re^{i\phi_1}$, $r_{-1} = re^{-i\phi_1}$, $r_2 = se^{i\phi_2}$, $r_{-2} = se^{-i\phi_2}$, $r_3 = t = r_{-3}$ }

$$\omega_{m}(\mathbf{H}_{complex}^{GZB(6)}) = r_{0} + r_{1}e^{i\pi\frac{m\cdot 1}{3}} + r_{-1}e^{-i\pi\frac{m\cdot 1}{3}} + r_{2}e^{i\pi\frac{m\cdot 2}{3}} + r_{-2}e^{-i\pi\frac{m\cdot 2}{3}} + r_{3}e^{i\pi\frac{m\cdot 3}{3}}$$
(for complex: $r_{-p} = r_{p}^{*}$)

giving 6 $\omega_{\rm m}$ -levels:

ſ

...in terms of 6 solvable r_p -parameters:

$$\omega_{m} = \begin{cases} \omega_{0} = r_{0} + r_{1} + r_{-1} + r_{2} + r_{-2} + r_{3} \\ \omega_{+1} = r_{0} + r_{1}e^{\frac{i\pi}{3}} + r_{-1}e^{\frac{i2\pi}{3}} + r_{-2}e^{\frac{-i2\pi}{3}} - r_{3} \\ \omega_{-1} = r_{0} + r_{1}e^{\frac{i\pi}{3}} + r_{-1}e^{\frac{-i2\pi}{3}} + r_{-2}e^{\frac{i2\pi}{3}} - r_{3} \\ \omega_{+2} = r_{0} + r_{1}e^{\frac{-i2\pi}{3}} + r_{-1}e^{\frac{-i2\pi}{3}} - r_{2}e^{\frac{-i\pi}{3}} + r_{3} \\ \omega_{-2} = r_{0} + r_{1}e^{\frac{-i2\pi}{3}} + r_{-1}e^{\frac{-i\pi}{3}} - r_{2}e^{\frac{-i\pi}{3}} + r_{3} \\ \omega_{3} = r_{0} - r_{1} - r_{-1} + r_{2} + r_{-2} - r_{3} \end{cases} \qquad r_{p} = \begin{cases} r_{0} = ? \\ r_{1} = ? \\ r_{2} = ? \\ r_{3} = ? \end{cases}$$

Geometric solution shown next...

$$\omega_m(\mathbf{H}_{complex}^{GZB(6)}) = H + 2r\cos\left(\pi\frac{m\cdot 1}{3} - \phi_1\right) + 2s\cos\left(\pi\frac{m\cdot 2}{3} - \phi_2\right) + t(-1)^m \quad \text{(for complex: } r_{-p} = r_p^*\text{)}$$

Step (contd.)
...eigensolutions for all possible C₆ symmetric complex H

$$H = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad where: \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m) \quad (Dispersion function)$$
Elementary
Bloch Model

$$H = H_{j1} \cdot r_{r} \cdot r_{r}'$$

$$= r_{r}' \cdot r_{p}' \cdot$$

 $\begin{pmatrix} r_0 & r_{-1} & & r_1 \\ r_1 & r_0 & r_{-1} & & \\ & r_1 & r_0 & r_{-1} & \\ & & r_1 & r_0 & r_{-1} \\ & & & r_1 & r_0 & r_{-1} \\ & & & r_1 & r_0 & r_{-1} \\ r_1 & & & & r_1 & r_0 \end{pmatrix}$

In this C-Type situation m-eigenstates are <u>required</u> to be <u>moving</u> waves $e^{ik_m \cdot x_p}$

Simulating Complex Systems With Simpler Ones

Discrete Rotor Waves Bohr-Rotors Made of Quantum Dots

Simulating Complex Systems With Simpler Ones

 H_1

2:1 splitting

 $2H_1$
