Assignment 6 - Group Theory and Quantum Physics 5093 All due Fri March 31 (3/31/17)
Main Reading: In text QTCA Unit 5 Ch .15 . Lectures 12-14
Try to finish Problem 15.1.1, 15.3.1a-c and 15.4.1 a-b by Fri March 17.

A Complete Completeness

15.1.1. The D-orthogonality relation (15.1.30) needs a completeness relation to go with it. Can you derive one? If so, do it, or else explain why not.

Fig. 15.4
The Square Deal
15.3.1. The analysis of D_{3} needs to be extended to the group D_{4} of a tetragonal 4-well ring.
(a) Derive an 8-by-8 D4 group table like Fig. 15.1.2. (Construct an operator/state diagram.) Give a standing wave and moving wave irrep analogous to (15.1.8) and (15.1.10) and check it works for some products.
(b) Derive the D_{4} class algebra analogous to (15.2.1) and reduce it so a complete D_{4} character table is found. First, how many classes? (It should be more than four.)
(c) Determine the rank of D_{4}. Write out all the D_{4} irrep projectors for the standing wave choice of basis that diagonalizes all elements of the D_{2} subgroup from Fig. 15.1.1. Label your D_{4} results using the standard labels $A_{1}, B_{1}, A_{2}, \ldots E_{n-1}$, for $D_{2 n}$ groups. (Let $A(B)$ parity be $+(-)$ for $\mathrm{R}_{\mathrm{z}}\left(90^{\circ}\right)$, and ${ }_{l(2)}$ parity be $+(-)$ for $\mathrm{R}_{\mathrm{x}}\left(180^{\circ}\right)$.)
(d) Use the irrep projectors to produce a complete set of D_{4} band states and sketch them in a way analogous to Fig. 15.3.2 or 3. (You may use actual solutions from previous problems.)

The Square Deal Continued
15.4.1. Apply analysis of the group D_{4} of a tetragonal 4 -well quantum ring as was done for D_{3}.
(a) Derive 8 -by- $8 \mathrm{D}_{4}$ dual regular representations like (15.1.15a) and (15.3.11d) for D_{3}.
(b) Derive the D_{4} Hamiltonian analogous to (15.4.2b) based on the Fig. 15.4 above, and reduce to 2-by-2 blocks.
(c) (Extra Credit optional) Do a $U(2)$ analysis of the residual 2-by-2 Hamiltonian matrix or matrices.
(d) Give eigensolutions if only S and M are non-zero. Consider $S \gg M$ and $M \gg S$.
(e) Give eigensolutions if only S and $R=R^{*}$ are non-zero. Consider $S \gg R$ and $R \gg S$.

A Super-Degenrate Square Deal

15.4.2. Let the Hamiltonian of the tetragonal 4-well quantum ring have symmetry $\mathrm{D}_{4}{ }^{*} \mathrm{D}_{4}$.
(a) What form does its Hamiltonian matrix have in the original group basis?
(b) What form do the eigensolutions take? If possible, give answer in closed form.

