Photonic Zeno

1. Imagine a series of N polarization beam sorters like the ones in Fig. 1.2.1 or 1.2.3 are placed so the top x-output beam of each goes into the next sorter in line which is rotated clockwise by an angle ϕ relative to the one before. Suppose unit amplitude x-polarization ($\Psi_{x}=1, \Psi_{y}=0$) comes into the first sorter in the series.
(a) What angle ϕ makes the amplitude $1 / 2^{\mathrm{N}}$ coming out of this series? (Zeno attenuation)
(b) What angle ϕ makes the intensity $1 / 2^{\mathrm{N}}$ coming out of this series? (Zeno depletion)
(c) Suppose the objective is to have as much y-polarization as is practical come out of this series.

How does the output amplitude and intensity vary with the number N ?
How many (N) sorters are needed to give 99% photon conversion efficiency?

Electronic Zeno

2. Imagine a series of N electron beam sorters like the ones in Fig. 1.1.6 or 1.2.4 are placed so the top \uparrow - (up) output beam of each goes into the next sorter in line which is rotated clockwise by an angle ϕ relative to the one before. Suppose unit amplitude \uparrow - spin $\quad(\Psi \uparrow=1, \Psi \downarrow=0)$ comes into the first sorter in the series.
(a) What angle ϕ makes the amplitude $1 / 2^{\mathrm{N}}$ coming out of this series? (Zeno attenuation)
(b) What angle ϕ makes the intensity $1 / 2^{\mathrm{N}}$ coming out of this series? (Zeno depletion)
(c) Suppose the objective is to maximize \downarrow-spin (down) output from this series. How does the output amplitude and intensity vary with the number N ?

How many (N) sorters are needed to give 99% electron conversion efficiency?
(This is called adiabatic reversal.)
3. Effects of a $1 / 4$-wave and a $1 / 2$-wave plate are described in (1.3.1)- (1.3.3) and Fig. 1.3.6 for an input polarization angle of $\theta=30^{\circ}$ relative to x-axis. Here consider $\theta=45^{\circ}$.
(a) Describe effect of a "whole-wave" plate. ($\Omega=$ \qquad ? Give Ψ and sketch $\operatorname{Re} \Psi_{x}$ vs. $\operatorname{Re} \Psi_{y}$ path.)
(b) Describe effect of a " $1 / 3$-wave" plate. $(\Omega=$ \qquad ? Give Ψ and sketch $\operatorname{Re} \Psi_{x}$ vs. $\operatorname{Re} \Psi_{y}$ path.)

Polarizer exercise
1.2.1. A y-polarized light beam of unit amplitude (1 photon/sec.) enters the analyzer system as shown below. Fill in the blanks with numbers or symbols that tell as much as possible about what is present at each channel or branch.

A Dim View

1.2.2 (a) How far away from KUAF (10^{5} Watts at 91.3 MHz) do you only get 1 photon $/ \mathrm{m}^{2}$ s?
(b) How far away from a 10^{5} Watt green light source do you only get 1 photon $/ \mathrm{m}^{2} \mathrm{~s}$? Assume (incorrectly) scalar isotropic coherent wave sources.
Give $m k s$ E-field amplitude in each case.

