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mentioned phenomena are of course well known,
however it seems profitable, from a didactic point
of view, to have available a Hamiltonian of the
form (12), which is intuitively simple and which
encompasses all these phenomena in the same
formulation.

It should be stressed that we have been working
entirely within a frame in which the Lorentz
expression, Eq. (2), is supposed to provide an
adequate description of the forees on the charged
particle. The Aharonov-Bohm effect,®® which
appears to depend uniquely upon the vector
potential A, is therefore outside the scope of the
present discussion.
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If a pen s stuck in a hard rubber ball and dropped from
o certain height, the pen may bounce to several itmes that
height. The results of two such experiments, which con
eastly be duplicated in any undergraduate physics labora-
tory, are plotted for o range of mass ratios. A simple
theoretical discussion which provides a guolitative under-
stonding of the phenomenon is presented. A more com-
plicated formulation which agrees very well with one of the
experiments is also presented. The latter involves o simple
analog compuier program. Finally, an intriguing generali-
zation of the phenomenon is considered.
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INTRODUCTION

Shortly after the well-known Superball' ap-
peared on the market, one of the anthors quite
accidentally discovered a surprising effect.? The
point of a ball point pen is imbedded in the
surface of a 3-in. diam Superball, and the pen and
ball are dropped from a height of 4 or 5 ft so that
the pen remains above the ball and perpendicular
to a hard floor below. As the ball strikes the floor,
the pen may be sjected so violently that it will
strike the ceiling of the average room with con-
siderable force. Furthermore, one can adjust the
mass of the pen so that the ball remains completely
at rest on the floor after ejecting the pen.,

Little attempt was made to obtain a qualitative
much less a quantitative understanding of this
velocity amplifieation until the fall of 1968, when
the authors came together as students and teacher
of the introductory physics course for nonphysics
majors at the University of Southern California.

The object of our investigation was to find the
final velocities of the pen and the ball as a fune-
tion of their masses and as a funetion of the initial
velocity just before contact with the floor.

Sufficient qualitative understanding of the
effect was obtained early in the project to predict



that even greater velocity amplification would be
obtained if one or more idler stages consisting of
smaller Superballs were introduced between the
pen and the bottom ball. Quantitative under-
standing of this multistage system is more
difficult and only a partial analysis of this is given
at the end of the paper.

I. APPARATUS AND EXPERIMENTAL
RESULTS

An apparatus consisting of a ball and “pen” of
variable mass along with a magnetic dropping
device (described below) was constructed, and a
12-ft vertical height measuring scale was marked
off on the wall next to the apparatus.
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F16. 1. Velocity gains in first experiment.

When the ball and pen were dropped from
initial height %, the two objects would achieve a
velocity v,= (2gh:)"? just before hitting the floor.
After collision with the floor, the pen separated
from the ball and rose to a maximum height h,
which was observed by an experimenter standing
on a stepladder. Another experimenter observed
the final maximum height A, of the ball.

Just after the collision, the pen is ejected with a
velocity v, much greater than v;. The gain in
velocity is obtained by computing the quotient

vp/vs= (20hy) "7/ (2gh:) 12 = (hp/hi) = gp. (1)
A gimilar coefficient may be defined for the
velocity of the ball immediately after the collision

?)1,/?)@'= (hb/hi>1/25gb- (2)

The two ratios g, and ¢, were plotted against the
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Fia. 2. Magnet (a) is wired to release ball and pen (b) an
instant before the other magnet (c) releases supporting
arm which swings clear.

ratio of mass m;/m,. A typical set of results is
shown in Fig. 1.

The initial velocity »; could be controlled by
adjusting the height of the magnetic dropping
device shown in Fig. 2. This device was designed to
release the ball and pen before springing out of the
path of the ascending pen.

Several different types of pens were tried since
a metal pen tip gouged the ball after many trials.
One arrangement that works well is shown in
Fig. 3. The moment of inertia of the pen shaft
increases the directional stability of the projectile.

¥1a. 3. The pen consisted of a steel-tipped aluminum rod
(a) which could hold various weights (b) and screwed into
a miniature Superball (c¢) which was fitted with a threaded
sleeve and pin. Large Superball (d) attached more or less
weakly to the pin. Another arrangement that can be used
is shown in Fig. 14(a).
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coilision

collision

Fro. 4. Exaggerated plot of trajectories of ball and pen
shows the assumptions made in the independent-collision
model.

II. THEORY: INDEPENDENT COLLISION
MODELS

A. Elastic Collisions

In the simplest theory one assumes that the ball
collides elastically with the floor and returns to
strike the pen in a second collision that is elastic
and independent of the first. This process is
indicated in Fig. 4.

By applying energy and momentum conserva-
tion laws to the second collision (Fig. 4), one
obtains formulas for the velocity gains ¢, and gs,
which are plotted in Fig. 5.

The dotted line indicates the actual final
velocity the ball would have after an inevitable
third independent elastic collision with the floor.
Naturally, these eurves are poor approximations
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F1e. 5. Elastic independent-collision gain formulas.
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for large m,>m, since then the ball suffers four or
more collisions.? They are also poor approxima-
tions for small m,<%ms, but nevertheless predict
zero final velocity for the ball at m, =3m,, which
agrees fairly closely with the experiment. Notice
that the maximum gain g, is 3.0, which is the
upper limit for any two-body collision model.

B. Inelastic Collisions

Initially the ball and pen are weakly stuck
together and a certain amount of “binding energy”
will be lost when they separate. Additional energy
is lost in every collision since the ball is not
perfectly elastic. In fact, a good Superball will
bounce back to about 909, of its original height
when dropped by itself onto a hard surface.

’f
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Fi1g. 6. Gain curves with binding quotient « =1 and bounce
coefficient 8 =1. Threshold occurs at M;/M,=15. Dotted
curves are gains with «=0 and g=1.

Let us assume that energy AE=a{(m;V2/2) is
lost in the second independent collision. In the
first collision let us assume that the ball returns
from the floor with velocity 8V; (0<8<1) just
before striking the pen. We assume that @ and 8
are practically constant in a given experiment
since V; and m, are held constant while m, is
varied. Again one must solve an equation for
energy conservation (3) with one for momentum
conservation (4):

Imp(BVr1)2 4 5m, Vo2
= %mp?)p2+ %mb V2o (meIZ/z) 5 (3>

mpBV 1 —mp Vi =mpVyt+-myv,. (4)



These yield ¢, and ¢, as functions of mass ratio
mp/ My,

e
b= Vs
_ (Bmfmy) — [+ 1) — alms/my 1)~ 1
my/mp+1 ’
(5)
_ Y
gP_ V[
1/2
Oy y 1 [<ﬁ+1>2—a (= +1)] -1
My My My,
- Cm/mp) 1]  ©

which are plotted in Fig. 6 for values a=% and
B=1. The dashed lines are the plots in Fig. 5 in
which & was zero.

The velocity gain peaks at 2.0 when m;/m, =6
and falls with decreasing pen mass until v,=uv,
when ms/m, =15. At this point the pen is so small
it cannot free itself from the ball because of the
binding energy. Of course, if « is decreased by
increasing V7 or lubricating the connecting pins to
decrease the binding energy, this ‘“‘threshold” will
move to the right. In Fig. 7 are superimposed plots
for a=0, a=1, and @ =1. The experimental results
for one experiment (Fig. 1) are plotted over these.

VELOCITY GAIN
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Fre. 7. Gain curves for §=0.95 and «=0, 1, and . The
a=1 curves come reasonably close to the results of the

first experiment.

.
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Fig. 8. Analog computer program. In the linear case, the
function generators F(z) and G(z) are replaced by coeffi-
cient potentiometers. ’

However, later experiments in which the binding
energy was kept to a minimum did not seem to
agree with formulas (5) and (6) for any « or 8.
Furthermore, previous experimentation had shown
that the shape and material of the pen point
affects the results a great deal.

Therefore, we sought to obtain curves re-
sembling those in Fig. 6 by constructing a more
detailed model of the collision process assuming
purely elastic forces.

III. ELASTIC CONTINUOUS-FORCE MODELS
ANALOG-COMPUTER RESULTS

In this section we discuss solutions of the simul-
taneous differential Eq. (7) for the positions 1 (£)
and 2, (¢) of the ball and pen, respectively.

The initial conditions are #;(0) =#(0)=—V;
and z1(0) =22(0) =e. Forces of gravity are not
studied since they are small compared to the
forces of collision. Finally, the terminal velocities
#1(0) and 4,( ) are plotted one above the other
as functions of the mass ratio my/m., so they may
be compared with Figs. 5 and 6.

midy = F<x1> — G(xz—fh) ’

Mals = G(x2—‘$1) ; (7)
in Eq. (7) the function F(z) represents the force
of the floor on the Superball as a function of
the distance z that the floor enters the Superball.
The function G(x) is the repulsive force between
the ball and pen as a function of the distance x
that the pen moves toward the center of the ball.

AJP Volume 39 / 659



Class of W. G. Harter

.
2 Ll
H
9 u.
* k =2
t
[ .
.
z
-
© i,
21T
=
o
=
S
2
2 L
A 1 ;"-' 1 . 1
o 1 2 3 4 5 6
MASS RATIO ™/ m,
2 ~
L0
k71
.1 C.
I 2
Z
<
& . o,
> 1 :
= L
i*3 -
=] .
— ..
2
> Foe e
2"
. L L L L | ;
o 1 2 3 4 5 6
MASS  RATIO r\"|/mz
2 .
k=1
9
e,
Kl
| P2
]
-
© .
> 1 P
[=f
o
<
-
a
& L
Lo ) : . .
——
0 1 2 3 4 5 6
MASS RATIO ™/ m,

2{ ,
K, =
e72
k=1 b-

{ +

Z

8

> 1r

©

3

=}

2

N L

L 1 L 1 1 J

o} 1 2 3 4 5 6

MASS RATIO ™/ m,
2 -
k=]
a7¢
k-l d'

" +2

z

<

&) -

1T ‘ .

9

g

=]

&

g L

1 L i . 1 -l
0 1 2 3 4 5 ]
MASS RATIO ™/ m,
2r -
-
L
T 2

4

< ,e

© i . I

>-1 “ae )

= LT

3] ‘.

< .

2

o

S 1 I, e L —
o 1 2 3 4 5 [}

Mass RATIO ™7 m,

Fic. 9. (a)—(f) Analog computer produced gain curves for various linear forces.

A. Quasi Linear Model

If the foree functions F (x) and G(x) were linear,
ie., F(z)=kmx and G(z)=Fk,z, one could solve
Eq. (7) analytically. These funections are not
linear for the Superball and pen experiments, but
they could be for linear air-trough experiments
involving two sliding masses with bumper springs.
In any case, we thought it worthwhile to solve the
problem assuming linear repulsive forces F(z)
and G(z).

However, these functions F(z) and G(2) would

660 / June 1971

be zero for positive z if there is no attractive-force
mechanism present. Because of this complication
we chose to solve the problem on an analog
computer.? The computer program shown in Fig. 8
is immediately applicable to the Superball-pen
experiment once one obtains F(x) and G(z) for
these two objects.®

In each of the Figs. 9(a)-9(f) the final velocity
of the pen and ball are plotted against mass ratio
mi/my as in Figs. 1 and 5-7. m; is held constant at
60 g while m, varies. Six different force combina-
tions are shown.



Fra. 10. Sagittal formula.

If F(xz) and G(z) were linear for all z, then the
form of the velocity gain curves would change
only for a change of ratio F(z)/G(x). The above
curves, however, would be affected slightly by
changes in absolute value of ¥ and G.

To compare these results with those of Fig. 1,
we imagine that the Superball and pen picturedin
Fig. 3 are masses connected by a spring. To the
soft skin of the balls we assign a spring constant &
and let =k and G=3k. The corresponding gain
vs mass ratio curves are shown in Fig. 9(b).

Apparently, the quasilinear model is not good
for the Superball since the top curve in Fig. 9(b)
i8 too low, and the bottom curve approaches zero
for my/ms less than 2. However the quasilinear
results become more and more like the independ-
ent-collision model results as the ratio F/@G
becomes large. In particular it is interesting to
note the behavior of the final velocity curves when.
my/my<1. In this case the ball underneath must

nes}

ENERGY € 10° ergs)

FORCE (107 dy»

2

e e : \ . . .
0 0.2 04 06 08 10 12 14 16
DISTANCT x {mm )

Fra. 11. Adiabatic force F(z) and energy curves for
Superball.
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107 dynesy
.

FORCE  G(x)
ES

DISTANCL  x (mm )

F1a. 12. Adiabatie force function G (z).

oscillate up and down several times to change the
momentum of the massive pen above.

B. The Nonlinear Model

The force function F(x) was obtained by
dropping a Superball of known mass onto a painted
flat metal surface from varying heights. The
radius of the paint spot on the skin of the ball was
then recorded. In this way the potential energy
could be plotted as a function of spot size. Using
the sagittal formula, one can easily relate the spot
size to the small value z of the depression of the
ball, as shown in Fig. 10.

With the potential energy plotted against x
(Fig. 11) one could approximate F (z) by plotting
the average derivative of the potential energy.

This was also done for the smaller Superball
which formed the tip of the pen. In this way the
forece funetion G(z) eould be computed. (Fig. 12)

Funections F(z) and G(x) were then placed on
the function generators of the analog computer.

GAIN
et

— .

VELOCITY
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| gy
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0 1 2 3
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Fra. 13. Comparison between analog computer gain curves
and second experiment.
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(a) (b)

Fic. 14. Two designs for a multiple stage tower of balls.
(a) Large number of balls can slide on a shaft. (b) Balls
connected by small pins stand to lose appreciable amounts
of binding energy.

One of the computer results [which are aceurate
solutions of Bq. (7) to within 29,] are displayed
in Fig. 13. In this the simulated initial velocity
was 300 cm/see, and the results are compared

mye | prams

{ m, =00 grams {a)
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with an experiment which was conducted with the
coupling between the two balls made as small as
possible. The experimental results remarkably
close to the computer predictions. Unfortunately,
this delicate arrangement could not withstand the
forces that occur when m,>m, and the smaller ball
split, making further readings impossible.

These large forces could be read directly from
the analog computer while it was operating, as
could the position functions z:(f) and x:(?). The
turning point of the ball was between 1 and 2 mm
and it experienced a force of between 20 and 150
kg. Forces of this order were felt by the upper mass
me when it is as large as my.

The balls are in contact for at least 0.7 msec. We
estimate that a shock wave moving with the
velocity of sound would take no more than 1.5X
104 sec to travel the diameter of the Superball.
This is greater than the collision time by a
sufficient margin to make our spring mass model a
good approximation. But one could probably not
make this assumption for masses composed of
steel. It would be very interesting to perform
experiments with magnetized steel ball bearings.

w, 2100 prame
my= 3 gams (b)

VELOCITY GAINS
Ld w -
T T

-
T

1 1 P hd L 1 L 1 1 )
) 1 2 3 4 5 6 K 8 3
MASS KATID ™/

m, = K0 grams
m,z 16 prams (d)
4r
3}
£
g
3 T
e2l
g .
1 -
2 -
> .
1he
> .“.! 2 RIS 1 ENELI. . 1 yE— 1
o 1 2 3 4. 5 6 7 8 9

MASS RATIO ®itm

Fic. 15. (a)—(d) Analog computer output for velocity gains of three-ball system.
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IV. MULTIPLE-STAGE COLLISIONS

Aceording to the independent-collision model, a
gain in veloeity of 3.0 is the upper limit for a pen
and ball system. We leave it to the reader to show
that the same theory prediets a maximum possible
gain of 27—1 for an n-stage tower of balls.

Furthermore, if the ratioc of the masses of
nearest neighbors is

m;/ (miga) = (j+2) /j,

the independent-collision model predicts the final
velocity of all the balls will be zero except for the
top one, which will speed away at n times the
initial velocity.

To test those predictions we constructed two
arrangements of three balls pictured in Fig. 14.

In the first arrangement [Fig. 14(a) ] a } in. rod
served as a guide upon which the smaller Super-
balls, which were fitted with metal sleeves, could
slide easily.

With these arrangements, velocity gains for the
smallest ball over 3.0 have been observed, but the
independent-collision model does not give good
predictions of the behavior of either system.

We used the analog computer to solve the three-
ball problem, and one set of results for an initial
velocity of 200 em/sec is shown in Fig. 15. Note
that a peak gain of 3.3 was obtained for the

* The members of the class of Dr. William G. Harter
included: Calvin W. Gray, Jr., Robert C. Frickman,
Brian P. Harney, Steven H. Hendrickson, Scott T. Jacks,
David F. Judy, William D. Koltun, Sam C. Kaplan,
Morton J. Kern, Edmund H. Kwan, Wayne E. Long,
Michael E. Mason, William D. Moore, Willard W. Moster,
Gary P. Rudolf, Henry G. Rosenthal, William F. Skinner,
Jay L. Stearn, Michael Weinberg, Mark Weiner, Frank
J. Wilkinson, and David Willner.

1 Trade name of product by Whammo Manufacturing
Co., San Gabriel, Calif.

2 A gimilar effect was discovered independently by
W. R. Mellen, Amer. J. Phys. 36, 845 (1968).
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smallest ball when m;=100 g, m,=23 g, and m;=
5 g. Subsequently we found that the computer
predicted a gain of 4.05 for the smallest ball when
the initial velocity was 400 cm/sec and my=
100 g, my=17 g, and m3=3 g.

‘We were not able to verify these predictions
since our laboratory room was only 12 ft high, and
we were not able to move the apparatus elsewhere.

However, these results correspond well with
Hart and Herrmann’s® mechanical analog of an
acoustical horn. In their formulation they claim
that if masses my, ms, mg, «+ - are hung together in
a horizontal line, as in the famous Newton
momentum conservation apparatus, then the
greatest energy transfer occurs when the following
relations hold.

My = (m1m3)1/2, Mg = (m2m4) 1/2’ Me= (msms) Y2. ..,

The formula m, = (myms)1? gives the high point of
each of the outputs in Fig. 15.

Clearly these formulas can greatly simplify the
search for the optimum launch that involves
three or more masses.
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