Trebuchets, SuperBall Missles, and Related Multi-Frame Mechanics

A millenial embarrassment
(and redemption)
for Physics

FElegant EPducational Doals Efince ROOI

Elementary Trebuchet Model - Multiple Rotating and Translating Frames

Pre-Launch Coordinate Manifold

Early Human Agriculture and Infrastructure Building Activity

What Trebuchet mechanics is really good for...

Later Human Recreational Activity

Space Probe "Planetary Slingshot"

Trebuchet analogy with racquet swing - What we learn

Early on

(Gain the energy/momentum)

Later on

(Steer or guide)

Rotation of body r_{b} provides most of energy of arm-racquet lever L

Ball hit occurs.
Center-of-mass for semi-rigid
arm-racquet system L is "cocked."

An Opposite to Trebuchet Mechanics- The "Flinger"

Early on

(Not much happening)

Trebuchet-like experiment

Later on

(Last-minute "cram" for energy)

Trebuchet model in lab frame
Flinger model in lab frame

$v_{l a b}$ frame $($ trebuchet $)=$
$\int \omega\left(r_{b}+\ell+\sqrt{2 \ell r_{b}}\right)$ half-cocked 6 o'clock
$\omega\left(r_{b}+\ell+2 \sqrt{\ell r_{b}}\right)$ fully-cocked 9 o'clock
$=\left\{\begin{array}{l}5.00 \omega \\ 5.82 \omega\end{array}=\left\{\begin{array}{c}5.16 \omega \\ 6.00 \omega\end{array},=\left\{\begin{array}{c}5.00 \omega \\ 5.82 \omega\end{array}\right.\right.\right.$
$\left(r_{b}=2, \ell=1\right),\left(r_{b}=1.5, \ell=1.5\right),\left(r_{b}=1, \ell=2\right)$
$v_{\text {lab frame }}($ flinger $)=$
$=\omega \sqrt{\left(r_{b}+\ell\right)^{2}+\ell\left(2 r_{b}+\ell\right)}=\omega \sqrt{2\left(r_{b}+\ell\right)^{2}-r_{b}^{2}}$

(compare)

$$
=3.74 \omega \quad=3.96 \omega \quad=4.12 \omega
$$

$\left(r_{b}=2, \ell=1\right),\left(r_{b}=1.5, \ell=1.5\right),\left(r_{b}=1, \ell=2\right)$

Many Approaches to Mechanics (Trebuchet Equations)
Each has advantages and disadvantages (Trebuchet exposes them)

- U.S. Approach Quick'n dirty
Newton F=Ma Equations Cartesian coordinates
- French Approach Tres elegant Lagrange Equations in Generalized Coordinates

$$
F_{\ell}=\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{\ell}}-\frac{\partial T}{\partial q^{\ell}}
$$

- German Approach Pride and Precision Riemann Christoffel Equations in Differential Manifolds

$$
F^{k}=\ddot{q}^{k}+\Gamma_{m n}{ }^{k} \dot{q}^{m} \dot{q}^{n}
$$

- Anglo-Irish Appproach

Powerfully Creative
Hamilton's Equations
Phase Space $\dot{p}_{j}=-\frac{\partial H}{\partial q^{j}}, \quad \dot{q}^{k}=\frac{\partial H}{\partial p^{k}}$.

- Unified Approach

Another thing in common:
Equations Require Kinetic Energy $T=\frac{1}{2} \gamma_{\mu \nu}^{\text {sum }} \dot{q}^{\mu} \dot{q}^{\nu}$ in terms of coordinates and derivitives.

It helps to use Covariant Metric $\gamma_{\mu \nu}$ matrix:

$$
\begin{aligned}
T= & \frac{1}{2}\left(M R^{2}+m r^{2}\right) \dot{\theta}^{2}-\frac{1}{2} m r \ell \dot{\theta} \dot{\phi} \cos (\theta-\phi)=\frac{1}{2}\left(\begin{array}{ll}
\dot{\theta} & \dot{\phi}
\end{array}\right)\left(\begin{array}{ll}
\gamma_{\theta, \theta} & \gamma_{\theta, \phi} \\
\gamma_{\phi, \theta} & \gamma_{\phi, \phi}
\end{array}\right)\binom{\dot{\theta}}{\dot{\phi}} \\
& -\frac{1}{2} m r \ell \dot{\phi} \dot{\theta} \cos (\theta-\phi)+\frac{1}{2} m \ell^{2} \dot{\phi}^{2}
\end{aligned}
$$

The $\gamma_{\mu \nu}$ give
Covariant Momentum $p_{\mu}=\gamma_{\mu \nu} \dot{q}^{\nu}$ (a.k.a. "canonical" momentum)

$$
\binom{p_{\theta}}{p_{\phi}}=\left(\begin{array}{cc}
\gamma_{\theta, \theta} & \gamma_{\theta, \phi} \\
\gamma_{\phi, \theta} & \gamma_{\phi, \phi}
\end{array}\right)\binom{\dot{\theta}}{\dot{\phi}}
$$

The inverse $\gamma^{\mu \nu}$ give Contravariant Momentum $\dot{q}^{\nu} \quad p^{\nu}=\gamma^{\nu \mu} p_{\mu}$ (a.k.a. "generalized" velocity)

$$
\binom{\dot{\theta}}{\dot{\phi}}=\left(\begin{array}{cc}
\gamma^{\theta, \theta} & \gamma^{\theta, \phi} \\
\gamma^{\phi, \theta} & \gamma^{\phi, \phi}
\end{array}\right)\binom{p_{\theta}}{p_{\phi}}
$$

Trebuchet equations nonlinear and Lagrange-Hamilton methods are a bit messy..

$$
\begin{array}{lll}
\text { Lagrangian } & \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta}+F_{\theta} & \dot{p}_{\theta}-\frac{\partial L}{\partial \theta}=F_{\theta}=-M g R \sin \theta+m g r \sin \theta \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}}\right)=\frac{\partial L}{\partial \phi}+F_{\phi} & \dot{p}_{\phi}-\frac{\partial L}{\partial \phi}=F_{\phi}=-m g \ell \sin \phi
\end{array}
$$

Lagrange quations need rearrangement to solve numerically

$$
\begin{aligned}
& -M g R \sin \theta+m g r \sin \theta=\left(M R^{2}+m r^{2}\right) \ddot{\theta}-m r \ell \ddot{\phi} \cos (\theta-\phi)-m r \ell \dot{\phi}^{2} \sin (\theta-\phi) \\
& -m g \ell \sin \phi=m \ell^{2} \ddot{\phi}-m r \ell \ddot{\theta} \cos (\theta-\phi)+m r \ell \dot{\theta}^{2} \sin (\theta-\phi)
\end{aligned}
$$

Riemann Christofffel Equations give less mess.. $\quad T=\gamma_{m n} \dot{q}^{m} \dot{q}^{n}$

$$
F^{k}=\ddot{q}^{k}+\Gamma_{m n}{ }^{k} \dot{q}^{m} \dot{q}^{n} \quad \text { where }: \Gamma_{m n ; \ell} \quad \frac{1}{2}\left[\frac{\partial \gamma_{n \ell}}{\partial q^{m}}+\frac{\partial \gamma_{\ell m}}{\partial q^{n}}-\frac{\partial \gamma_{m n}}{\partial q^{\ell}}\right]
$$

...they are immediately computer integrable. (..and help with qualitative analysis..)
$\left[\begin{array}{c}\ddot{\theta} \\ \ddot{\phi}\end{array}\right]=\frac{1}{\mu}\left(\begin{array}{cc}m \ell^{2} & m r \ell \cos (\theta-\phi) \\ m r \ell \cos (\theta-\phi) & M R^{2}+m r^{2}\end{array}\right)\left[\begin{array}{c}-m r \ell \dot{\phi}^{2} \sin (\theta-\phi)+(m r-M R) g \sin \theta \\ m r \ell \dot{\theta}^{2} \sin (\theta-\phi)-m g \ell \sin \phi\end{array}\right]$
where: $\mu=m \ell^{2}\left[M R^{2}+m r^{2} \sin ^{2}(\theta-\phi)\right]$

FINAL Beam angular velocity for $r=\ell$

$$
=\frac{1-\frac{4 m r^{2}}{M R^{2}}}{1+\frac{4 m r^{2}}{M R^{2}}} \dot{\theta}_{\text {INITIAL }}
$$

$$
=\left\{\begin{array}{cc}
0 & \text { Optimal Throw } \\
\dot{\theta}_{\text {INITIAL }} & \text { Quickest Throw }
\end{array}\right.
$$

FINAL beam-relative lever angular velocity for $r=\ell$

$$
\dot{\phi}_{F I N A L}=\dot{\theta}_{F I N A L}+2 \dot{\theta}_{\text {INITIAL }}
$$

$$
= \begin{cases}2 \dot{\theta}_{\text {INITIAL }} & \text { Optimal Throw } \\ 3 \dot{\theta}_{\text {INITIAL }} & \text { Quickest Throw }\end{cases}
$$

FINAL "Bottom line" lab velocity for $r=\ell$

$$
\left.\begin{array}{rl}
\text { KE FINAL } & =\frac{1}{2} m r^{2}\left(\dot{\phi}_{\text {FINAL }}+\dot{\theta}_{\text {FINAL }}\right)^{2} \\
& =\frac{1}{2} m r^{2} \begin{cases}\left(2 \dot{\theta}_{\text {INITIAL }}\right)^{2} & \left(\dot{\theta}_{\text {FINAL }}=0\right) \\
\left(4 \dot{\theta}_{\text {INITIAL }}\right)^{2} & \left(\dot{\theta}_{\text {FINAL }}=\dot{\theta}_{\text {INITIAL }}\right)\end{cases} \\
\text { fully-cocked } 9 \text { osith } & \omega\left(r_{b}+\ell+2 \sqrt{\ell} r_{b}\right)
\end{array}\right)
$$

Coupled Rotation and Translation (Throwing)

Early non-human (or in-human) machines: trebuchets, whips.. (3000 BC-1542 AD)

X-stimulated pendulum:
(Quasi-Linear Resonance)

Forced Harmonic Resonance

$$
\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\frac{\mathrm{g}}{\ell} \phi=\frac{\mathrm{A}_{\mathrm{x}}(\mathrm{t})}{\ell} \quad \frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\left(\frac{\mathrm{g}}{\ell}+\frac{\mathrm{A}_{\mathrm{y}}(\mathrm{t})}{\ell}\right) \phi=0
$$

A Newtonian $\mathrm{F}=$ Ma equation A Schrodinger-like equation
Lorentz equation (with $\Gamma=0$) (Time t replaces coord. x)

Y-stimulated pendulum:
(Non-Linear Resonance)

Parametric Resonance

For small ϕ $(\cos \phi \sim 1)$:

General ϕ :

General case: A Nasty equation! $\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\frac{\mathrm{g}+\mathrm{A}_{\mathrm{y}}(\mathrm{t})}{\ell} \sin \phi+\frac{\mathrm{A}_{\mathrm{X}}(\mathrm{t})}{\ell} \cos \phi=0$

Chaotic motion from both linear and non-linear resonance (a) Trebuchet, (b) Whirler .

Schrodinger Equation Parametric Resonance

Schrodinger Wave Equation

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

Mathieu Equation

Jerked Pendulum Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

Supernova Superballs

Class of W. G. Harter,
"Velocity Amplification in Collision Experiments Involving Superballs,"
Am. J. Phys.
39, 656 (1971)
(A class project)

Coming Next to Theaters Near You? ?!!

Super Trebuchet?
(Multi-frame)

Supersonic?

Most important: Quantum multiframe trebuchets...they're already inside you! (Proteins RNA)

