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We dertve a number of seemingly forgotten facts con-
cerning Coulomb orbits that make the subject simpler than
1t is as found in the texts.

I. INTRODUCTION

There exists a beautifully simple geometrical
construction for hyperbolic orbits of a mass in a
Coulomb field that does not appear to be well
known. In fact at least three of the more well-
known classical mechanics texts give impossible
trajectory'— diagrams that are misleading and fail
to show the simplicity of Coulomb scattering
geometry and the Rutherford cross section
formula.

We give here this construction for a single
particle scattering orbit in a fixed Coulomb field
and generalize it for the case of two different
particles scattering from each other in the center
of mass rest frame. Then the orbits in the so-called
“lab frame’ are drawn in order to exhibit some
other interesting points of geometry.
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II. CONSTRUCTING SINGLE PARTICLE
ORBITS OF POSITIVE ENERGY

Suppose a number of alpha particles are each to
be sent, one at a time, from infinity, down
different parallel paths [let these be the dotted
lines in Fig. 1(a)] toward the neighborhood of a
fixed or infinitely massive nucleus N. The nucleus
is assumed to give a repulsive Coulomb force field
k/r? that acts upon all of the alpha particles pro-
vided they remain outside the nuclear radius.
Let particle 1 be directed along the line that
intersects the center of the nucleus, while the
original path of the jth particle will be assumed
to lie parallel to and a distance b;. (This is the
impact parameter) above the path of the first
one. (by=0, but b;>0 for j1.)

The Coulomb force on particle 1 is therefore
always tangent to its path of motion. We shall
assume that each particle, including particle 1,
has kinetic energy ¥ at infinity. Hence particle 1
approaches on a straight line, slowing until it
stops at point A;, which is an assumed distance
2a= |k/E| from N, then returns to infinity
along the line whence it came. [Fig. 1(a)].

Assuming we know location of A, the following
construction gives the orbits of the other particles.
To find the orbit of particle 2 which started from
infinity along path 2 one bisects segment NAs,
to obtain two segments of length a [Fig. 1(a)],
and then draws a circle of radius a centered on the
line called path 2, directly above the midpoint
of NA,. [Fig. 1(b)]. Another line is then drawn
from the nucleus N through the center C; of the
circle, to point A,. Finally, the acute angle o
which NA, makes with path 2 is copied on the
arc of the circle to give point 4./, and a line is
drawn through A," from the center of the circle
to infinity.

The orbit of particle 2 is a hyperbola that
passes through A, tangent to the circle. (4, is
point of closest approach.) The asymptotes are
“path 2” and line C;4,’ as shown in Fig. 1(c). The



center of this hyperbola is at C, and the focal
distance is NC, so the exact orbit can easily be
constructed.

The proof of this follows easily from the
standard formulas?

a=k/2| E | (IL.1)
for the semimajor axis and
b=L(2m | E|)2 (I1.2)

for the semiminor axis of hyperbolic orbit. The
quantity a is clearly the same for each alpha
particle in our discussion, while b is the impact
parameter b;. (L is angular momentum measured
at N, different for each particle but constant in
time). Now the geometry of the hyperbola re-
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F1c. 1. Construction of an orbit in repulsive Coulomb
field (a). The given information is the closest approach
of a particle aimed dead-on down path 1. (b) A circle of
this diameter is drawn on another given path (c). The
desired orbit and scattering angle are then produced.
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Frc. 2. A family of orbits for particles having identical
linear momentum and energy, but varying angular momen-
tum.

quires that the focal distance NC; should be
ae= (a24-b?)12,

thus proving Fig. 1(c). Furthermore the angle
between the vertical segment labeled b and line
NC, is half the scattering angle 6, whence

b=a cot(6/2)= (k/2E) cot(6/2).

Then the differential scattering cross section
follows immediately.

do/d2= (b/sin®) (db/dO)
= (k2/16E?) sin—(0/2)  (IL3)

The total cross section is infinite since the
integral of (I1.3) diverges, and this can be
visualized by constructing the family of orbits
for various b, as is done in Fig. 2. Applying
standard methods? for deriving family envelopes we
obtain the following equation for the boundary
parabola in Fig. 2:

z=(—14*/8a)+2a

Finally we note that if the sign of & in Eq.
(I1.1) is changed with all else the same, (the
Coulomb field becomes attractive) the orbit is
constructed in an analogous way by facing the
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approach circle away from incoming beam. This is
demonstrated along with the generalized con-
struction of the following section.

III. TWO PARTICLE ORBITS IN CENTER
OF MASS SYSTEM

The standard procedure for describing the
orbit r; of a particle of mass m; interacting via
Coulomb force with the orbit r of a particle of
mass ms is to solve the differential equation

u(dr/de) = (kr/r®) = (k/r?)1, (I11.1)
for the relative coordinate r
I=I;—TI, (I11.2)
in terms of the reduced mass g, and coupling &:
p=myms/ (mi+ms) (I11.3)

However, to show that the construction given in
Sec. IT can be used, we write separate equations
in terms of m; and m,, in a coordinate system
which has the center of mass €™ fixed at origin.

1 = (muri+-mory) / (mi+my) =0. (I11.4)

Using this Eq. (II1.4) and Eq. (II1.2) we have
the following:
ri=[m,/ (mi+ms)Tr, (I111.5)
re=[—my/ (mi+ms)Jr. (IL.5)
Substituting this in Eq. (IIL.1), using Kq.

(IT1.3), two equations are obtained, one for each
mass:

ma (d?r:/d2) = (ku?/ms?) (t1/r:3)

= klrl/rl3, (III.G&)
e (dzl'z/dfz) = (]C;l.2/’m,22) (1'2/7‘23)
=t /1. (IIL.6b)
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Now it is seen that each mass m; behaves as
though it was orbiting in a fixed Coulomb field
whose origin is the center of mass, but has a
“reduced coupling constant’” k;.

Suppose the force is repulsive (k>0). Then in a
head-on collision, the potential energy of the
particles when they have. approached each other
to the least distance r., where

r<=2a:+2a, (I11.7)

must equal the sum of the kinetic energies Z; and
E, which they have at infinity in center of mass
coordinates. [In (II1.7), 2a; and 2a, are the
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Fic. 3. Construction of orbits in center of mass system of
two particles whose mass ratio is 2:1 for the repulsive
interaction (a) and the attractive interaction (b).



smallest values attained by r; and 7, respectively,
in a head-on collision. ]

k/r<=ku/2amm,=E1+E,= (mi/p)E;,

k/r<=ku/20mmy=Ey+Ey= (ms/u)Es.  (IIL8)

To obtain (III.8), we use Eq. (II1.3), and the
fact that momenta | mw; | and | me. | are equal
magnitudes in center of mass. It is now clear that
two sets of Egs. (II1.9) analogous to Eq. (IL.1)
and Eq. (I1.2) can be written

a=ki/2E,,

Ay =ks/2E>,

by=L,(2m.E,)"172,

ba= Ly (2moE5) 12, (I11.9)
where

ax/az=b1/b2=mz/m1

and that orbits can be constructed exactly as they
were in Sec. II. The hyperbola traced by ms is a
copy of the one traced in m,, but scaled down by
factor my/m,, as shown in Fig. 3(a). Figure 3 (b)
shows the construction when the sign of % is
reversed.

Fic. 4. Given the center of mass scattering angle 9CM (from
Fig. 3) and the mass ratio (2:1 in this case) a vector
addition construction produces angles §,LAB and g,LAB
shown here."
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Fic. 5. The laboratory picture of Fig. 3. The scattering
begins with both particles infinitely far to the right. The
heavier particle is at rest and the lighter particle is moving
left about 0.3 mile per day in the scale of this drawing.
When the heavier particle first appears on this picture, one
or two years before the “collision,” it is creeping extremely
slowly leftward, while the lighter particle is still over a
hundred miles off to the right. The heavier particle con-
tinues creeping until finally the lighter particle arrives in
the picture and moves through in about 12 sec. Most of the
momentum is transferred in 3 or 4 sec.

IV. TWO PARTICLE ORBITS IN
LABORATORY SYSTEM

Having obtained the scattering angle §°M and
the orbits in the center of mass system (Fig. 3)
it is interesting to see if the same thing can be
done in a so-called “laboratory’”’ coordinate
system which is defined so that the second mass
me is originally at rest.

It is shown in a number of texts that lab scat-
tering angles 6;“AB and 6,“4B are given by the
construction shown in Fig. 4, once §°M is known.
This gives the slopes of the final asymptotes of the
two particles in the lab system, which while con-
serving total angular momentum, must intersect
somewhere on the original path line of first mass
my. But, we had hoped to be able to construct the
lab coordinates of the two orbits including, if
possible, the starting position of the second mass
Mg, the point of closest approach, and the location
of the final asymptotes.

However, the construction of the orbits is
beyond the reach of simple geometry. Further-
more it is most interesting to note that, with
respect to the point of closest approach in the lab
system, neither the starting position of ms, nor the
final asymptotes exist at all!
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F1c. 6. Logarithmic recession of tangents demonstrates the
nonexistence of asymptotes, for pure Coulomb scattering in
laboratory system. At ¢ =103 the slopes of the tangents are
shy of ,L4B and 6,%AB by only 0.02° and 0.04°, respec-
tively.

As we shall now show, both the latter quantities
exist in a potential field 1/7»(n>2) or a Yukawa
field e=="/r, but not in a pure unscreened Coulomb
field.

To demonstrate the problem we produce by
direct calculation® a number of points on the lab
system orbits. Taking Fig. 3(a) where my=2m,,
we compute the times for a number of points on
the orbit of m;, using (IV.1)/7

»,®M (initial ) Xt = &£ {e[ (2’ — ae)?— a? ]2

+a cosh™*(2’—ae)/a} (IV.1)
These points are then transcribed onto the lab
system plot by placing the center of gravity for
each time at its correct position along its line of
motion. The result is drawn in Fig. 5. In this
drawing origin O in space and time is the location
of the center of mass when the particles are closest
to each other. Note that the lab particle m, has
been creeping up from the right, and was actually
never completely at rest at any finite time in the
past. In fact if you run time backwards the
velocity of particle 2 is given approximately by

vPAB(8) = [(| F |/me)dt
= [kdt/ms[v:®™ (initial )t J?
S —k/maw® (initial -1 (IV.2)
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and the position of this particle diverges logarith-
mically. However, if a proper screening is in-
serted, this divergence may be removed.

The locatior. of the asymptotes in the lab system
could be found if the final angular momentum of
just one of the particles, say L;“4B of m;, could
be found. Denoting by V the velocity of the
center of mass in the lab system, we have the
following:

L,LAB =1 LAB x v LAB

= (r,M+4-Vi) x (v,OM4V)

=LCY—V x (r,®M—v,CMf). (IV.3)

Since L;°M is known, we must determine the term
on the right of (IV.3):

1O — y,OM¢ = [y,CMgt— v,0My
= [tdv,o™
= [ (tdv,°M/dt)dt

= [ (tF/m,)dt. (IV.4)
For an unscreened Coulomb force, the integral
(IV.4) must diverge as a logarithm and with it
the position of the asymptotes.
This is shown on the Fig. 6. Again very small
changes in spatial dependence of the force can be
sufficient to eliminate the divergence.

V. FINAL COMMENTS

Any paper on classical Coulomb orbits that
appears in the late twentieth century may seem
to be a bit late. Indeed, it would be preposterous

Fia. 7. Attractive Coulomb scattering in laboratory system.
This has the same “anomalies” as the repulsive case.




to propose that the points brought up were new
since hardly anyone could claim to have examined
all literature on classical mechanics postdating
the Principia. However, in old and new texts
that were available to us, including those pre-
viously mentioned, we found these points had been
missed.

Since our colleagues found these points sur-
prising and intriguing, we decided to share them
with others through this paper. But, we felt it
would be more appropriate to introduce these
points of view as “forgotten” and “rediscovered”
even though we cannot presently say by whom, if
anyone, they were previously discovered or
where, if anywhere, they were forgotten.
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