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Abstract

A quantitatively precise and logically compelling Occam’s Razor development for special relativ-

ity and quantum theory can be done with a few simple steps aided by ruler and compass. A number

of concepts that students invariably find arbitrary, mysterious, or quasi-paradoxical are elegantly

resolved. This geometric approach improves both conceptual visualization and the computational

techniques for these subjects while showing they are really two sides of one subject. This unified

approach could allow these pillars of modern physics to be introduced earlier and greater depth in

a growing range of physics curricula. It also reveals heretofore hidden insight and provides new

avenues for research. (At current date above, this is an unfinished rough draft . WGH )
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I. INTRODUCTION: A CASE FOR GEOMETRY IN PHYSICS

Relativity and quantum theory are foundations of modern (20th century) physics, ar-

guably the greatest renaissance of physical science that has occurred so far. Seminal work

by Planck in 19001 and Einstein in 19052 lead to an explosion of new science and technology

that already surpasses even the great classical renaissance of the 16 th through 19th centuries.

The latter was initiated most notably by Kepler, Galileo, Newton, Lagrange, Hamilton,

Poincare, and Maxwell. Long before that were pre-classical renaissance movements includ-

ing those in natural sciences by Aristotle, astronomy by Ptolemy and Copernicus, Middle

Eastern algebra, and early geometry by Thales (600 BCE) and Euclid (300 BCE). There

appears a 300 year gap wherein new mathematical science seems in no rush to advance.

In our post-modern rush toward ever more advanced theory, it is easy to regard ancient

fundamental methods to be obsolete or irrelevant. In contrast, this article will describe

a decade-long effort to improve modern STEM teaching using a combination of computer

graphics with geometry of Thales and Euclid. Here modern silicon computers meet the

most ancient computer, a ruler-and-compass. It is surprising to students and particularly to

instructors that geometric development of both classical and modern physics can be such a

powerfully elegant and creative pedagogy given a little help from the silicon.

One glance at tediously engraved plates of spider-web-like geometric constructions in

Newton’s Principia might convince one that such geometric tedium is quite obsolete. Nev-

ertheless, it is geometry that allowed Newton to discover the algebraic shorthand of analytic

geometry, calculus, and ultimately his classical mechanics. Nowadays, it is plate engraving

that is obsolete. Modern students may easily produce fine coordinate grids to do 2 or 3-figure

precision analytic geometry on paper or display nearly unlimited precision on a screen.

More important than numerical precision is the precision and clarity of logic. Newton’s

“spider-web” constructions would have been clearer if each logical step occupied a separate

plate, an impracticality in 1687. But, starting in 1987 (another 300 year gap) we do many

such mega-pixel “plates” in seconds. Now browsers do Giga-pixel color animation frames in

milli-seconds so one can gray-out or re-color preceding steps to help clarify geometric logic.

Still geometric logic always starts somewhere, that is, with certain axioms. To the extent

that geometry or any mathematics underwrites physics, there must also be physical axioms.
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A. Axiomatic hurdles

This geometric redevelopment first considers the axioms of modern physics and conceptual

underpinnings. Modern physics axioms seem more mysterious or nebulous than rock-solid

laws accepted in classical physics. Modern physics texts introduce a variety of rhetorical

axiomatic restatements for relativity and, with even greater variety, for quantum mechanics.

The plurality of modern physics axiom-sets is close to the number of textbook authors.

Relativity and quantum courses begin with axiomatic hurdles that increase difficulty to

teach or learn, particularly if both teacher and learner espouse critical thinking. Students

of these subjects comment (paraphrasing), “I don’t get this stuff, but then neither does the

instructor!” The instructor may claim, (again paraphrasing), “OK, it seems crazy. But trust

me! It’ll work out.” And, it usually does. Sort of.

But, are such hurdles and fundamental logical confusion really and forever necessary?

For over a century relativity has been introduced basically as Einstein presented it, and

at least a half century of quantum mechanics texts are largely based on logical structure

in the notes by Fermi, Oppenheimer, and earlier developers. There is a single exceptional

QM restructuring in the Feynman Lectures Volume III of 1964. Full disclosure: Richard

Feynman and William Wagner, one of Feynman’s co-authors of a general relativity text,

were my graduate advisors from 1964 to 1967. Feynman and Wagner greatly influenced my

theoretical pedagogy, but work to continue Feynman’s QM restructuring came much later.

B. Einstein Centennial redevelopment effort

In 2004 the Pirelli Relativity Challenge in honor of the 2005 Einstein Centennial stim-

ulated a multimedia geometric redevelopment of upper division and graduate level modern

physics pedagogy at the University of Arkansas. The goal was to significantly reduce concep-

tual confusion by effectively combining relativity and quantum theory using the geometry

of optical wave interference.

The results as described below reduce several hurdles and improve the introduction to

relativity and quantum theory for students of all ages. This gives one a way to derive,

construct, relate, and explain a dozen (or so) fundamental variables of relativistic quantum

mechanics by way of a half dozen (or so) ruler-and-compass steps on graph paper. Doing this
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provides a visually compelling logic and derivation of algebraic formulas that are consider-

ably simpler and more student-friendly than the old-fashioned Einstein-Lorentz formulation.

Moreover, such a 6-step program represents a fairly radical curriculum unification of relativ-

ity and quantum theory into what is more nearly a single subject. This lets one see quantum

mechanics as a relativistic effect while similarly, relativity is a quantum mechanical one.

The 6-step logic of Sec.III is preceded in Sec.II by historical context, philosophy, motiva-

tion, and most importantly, the improved axioms needed to build such a concise geometry

of both classical and modern physics fundamentals. The underlying methodology is known

generally as symmetry analysis, Lorentz symmetry in particular, but all this is presented

simply as grown-up plane geometry and trigonometry. (And, as a bonus, students of all ages

gain a clearer appreciation of those two ancient subjects, as well!)

II. HISTORICAL CONTEXT OF MODERN PHYSICAL AXIOMS

Most texts note the original historical axiomatic beginnings of modern physics. Here

we view them as extraordinary prefaces to new chapters in a great story of light. First is

Planck’s 1900 axiom E=hNυ for his theory of low temperature light-in-a-box. This is the

beginning of a subject we call quantum mechanics (QM) where cavity mode energy E is

restricted to a discrete number N=1,2,... of very tiny action quanta (}=1.05∙10−34 Jsec.) in

proportion to optical frequency υ(Hz) or angular frequency ω=2πυ
(

radian
second

)
.

Shortly thereafter comes Einstein’s 1905 theory based on the extraordinary lightspeed

invariance axiom. This is now embodied in a 9-digit metrological super constant c=

299,792,458m/sec for speed of light. The c-axiom is an iconic beginning of the subject

now called special relativity (SR). Also in 1905, Einstein’s miracle year, he introduces

the theory of the photoelectric effect. This begins the subject of quantum electrodynamics

(QED) where quanta of light are emitted and absorbed in what we now know as the quantum

field theory of modern molecular, atomic, nuclear, and subnuclear optical spectroscopy.

QED supports a century of exploration covering a spectral range of energy from nano-

Kelvin to Tera-electron-volt, over 30 orders of magnitude, with some parts of the infrared

and visible spectrum being studied with a precision of 15 to 18 decimal digits.

The degree to which the power and precision of modern physics has surpassed that of
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classical physics might seem surprising given that the light-axioms of the modern science

seem to lack the self-evident rock hard feel-of-steel logical precision of classical mechanics.

A classicist (and our students) should be excused (even encouraged) to be skeptical of the

modern SR and QM axioms and to become more aware of the mystery within them.

So it is that deeper evidence has shown we are fooled by the apparent classical hardness

of rocks and steel. All this is now seen to be an illusion perpetrated by some extremely wavy

and ethereal atomic or subatomic entities, indeed by light itself. Moreover the concept of

mass in Newton’s laws can no longer be taken for granted (or granite) and has always been

at least as puzzling a mystery as any that the modern axioms are proposing.

Yet we become easily accustomed to undeniably wonderful technology such as global

positioning systems (GPS) that achieve geographic ultra-precision more by modern physics

of ethereal and wavy light and not so much by classical mechanics of steel frames. One

may argue that modern physics deserves a natural philosophy and logical development that

better reflects the ultra precision and elegance of the technology it is providing.

A. Mythos vs. Logos and Occam’s Razor

This motivates us to reclaim intellectual tradition wherein technological success reinvig-

orates the perennial Mythos vs Logos battle to replace natural mysteries with simpler and

more logical explanations. Ever since Thales of Miletus (600 BCE) explained and predicted a

solar eclipse and Euclid (300 BCE) developed the geometry of Thales, inventors and artisans

like Archimedes, Michaelanglio, Hypatia, daVinci and others have grown the Seven Liberal

Arts into thousands of creative arts and sciences. Now relativity and quantum theory are

among the latest of such intellectual success stories.

Philosophers generally agree that such explosive intellectual growth owes something to

discovery of more concise and trustworthy axiom sets according to an ideal stated by William

Ockham (also Occam 1386-1443 ACE). One ideal is known as Occam’s Razor (Pluralitas non

set poneda sine necessitate.) and has many translations: literally (A plurality of conjectures

should not be made without necessity.), logically (Assume less to prove more.), and practical

programming advice (Keeping it simple makes it powerful.).

Mathematical development from the beginning of Euclidean geometry has repeatedly

shown the value of finding deeper and sharper axioms. Doing so produces more powerful
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theorems and thereby grows the discipline. To the extent that mathematics underwrites

physics one might expect deeper and sharper physical axioms to similarly generate more

powerful theoretical physics.

FIG. 1. Lightspeed c-Axiom

B. Lightspeed axiom meets Occam’s Razor

The first modern physics axiom mentioned above is the SR lightspeed invariance axiom.

In his famous monograph The Meaning of Relativity, Einstein envisions train passengers

measuring train-relative velocity of a lightning flash-wave emanating from its strike point

at a central railway station. Their measurements are sketched by cartoon comments in

Fig. 1 for each of six trains on parallel tracks. Regardless of train speed or direction each

passenger (if so equipped) records the same flash speed c relative to his or her respective

train. (Henceforward we take a 4-figure approximation for light speed c=3.000∙108m/s.)

This version of the SR c-axiom is a pedagogical showstopper! Anyone being introduced

to SR between the year 1905 and (We guess optimistically now.) a future year of 2050, is

hard put to conceive of a finite velocity c that you cannot exceed, in fact that you cannot

even begin to exceed, and that moreover, is the same speed for everyone in the universe no

matter what train (or galaxy) they ride.

For years I introduced the c-axiom by calling it The Coyote vs Roadrunner Axiom. This is

after the Chuck Jones cartoon characters so loved by students of all ages circa 1940-2012. In

over 40 episodes a slow and frustrated Wile E. Coyote tries to run down a speedy Roadrunner

by purchasing from the Acme Co. vehicles of dubious safety standards but enormous speed.

(Most notable is a rocket powered unicycle.) No matter what Acme contraption Wile E.

rides, the Roadrunner zooms by with identical ‘meep-meep’ passing speed. (This may be a
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singular case where cartoon physics is inadvertently consistent with a real physical effect!)

FIG. 2. Lightspeed c-Axioms for (a) Pulse Waves, (b) Continuous Waves (CW)f

C. Galileo loses one

Still it wears on one’s credibility to base physics on a cartoon series, even one that is 20

years older than string theory or supersymmetry or other postmodern arts that, as of this

writing, also seem equally unable to provide helpful new insight for modern physics students.

Instead, our students need a way to transcend the Galilean relativity that is programmed

into our human limbic systems inherited from earlier animals (perhaps even coyotes). How

then do we disabuse students of a Galilean notion that any velocity ux added to your motion
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causes you to see that same component ux subtracted from the motion of all other things

in the universe? One needs a way to show clearly how Galilean worldviews fail totally for

passing light waves (or Roadrunners). Moreover, this primitive worldview cannot conceive

of any speed that appears the same to all observers, except an undefinable infinite one.

To begin disabusing Galilean notions we apply Occam’s razor to the Einstein c-axiom

of Fig.1 involving a lightning flash wave shown again in Fig.2a. A flash is a complicated

electromagnetic pulse wave (PW) composed of a multitude of Fourier components that are

each a continuous wave (CW). With Occam’s razor we cut the PW down to a single laser

CW that has a more concise and eventually more comprehensible axiom.

The result will be called the Evenson CW axiom after Kenneth M. Evenson whose ultra-

precise speed of light measurements led to a 1981 revision of international metrology that

fixed c= 299,792,458m/sec as a definition of the meter in terms of the second. This paved the

way for applications of greater metrological precision such as the GPS. A short retrospective

of Ken’s life and work is given in an Appendix.

The Einstein PW-axiom and the Evenson CW-axiom are compared in Fig.2. The latter

Evenson CW axiom claims CW light en in a vacuum travels the same speed c for all fre-

quencies. While it is rare for an axiom to have a self-evident proof, the Evenson CW-axiom

comes close to having just that. Moreover it becomes the main motivator for a compelling

derivation of an analytic-geometric formulation of relativity and relativistic quantum me-

chanics. Indeed, we intend to show that all the mechanics that we experience every day is

due pretty much to a simple fact: All colors go c.

Relativity is not just about high energy physics (or high-speed roadrunners). As we will

see, it is about everything, slow or fast.

D. Doppler shifts add some color

It is important to see why Occam-razor surgery of the PW-axiom is a logical lifesaver

that makes the Evenson CW axiom come alive for analysis. The acronym CW stands for

Continuous Wave (This is standard laser jargon.) or Coherent -state Wave. (CW laser modes

are described by quantum coherent oscillator states.) CW may also denote simply Cosine

Wave (the real part of a classical plane wave), or finally and most important here, a Colored

Wave (assuming optical frequency υ in the visible range of 450THz[red] to 700THz[blue])
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The latter is in contrast to PW (Pulse Wave, Particle-like Wave, or Packet Wave) that is

a colorless or “white” combination of CW that has much more complexity and variability.

Neither PW observers in Fig.2a nor CW observers in Fig.2b can see any shift in light wave

speed away from the super-constant c. However moving CW observers of the blue-green 600

THz light could (in principle) see a shift in color, that is a shift in CW frequency υ or angular

velocity ω=2π∙υ of CW phase. This is the optical Doppler shift and is a primary relativistic

variable. It is also a primary way for the highway patrol to very precisely measure your

freeway velocity relative to a Doppler monitor. Doppler shift is 1st–order, that is, linear in

velocity if you travel at a freeway speed well below the ultimate speed limit of c.

Now most texts introduce relativity by way of 2nd-order effects such as Einstein time

dilation or Lorentz contraction that are quite mysterious and immeasurably tiny at freeway

speeds. A first-things-first introduction uses CW Doppler, a 1st–order effect that is far less

mysterious. In 1626, Johannes Doppler showed how a descending frequency of a passing

train whistle is a simple wave effect. One encounters more wave crests per second (a blue

shift for light) when approaching a wave source and less (a red shift for light) when fleeing

a source. But, how much more or less for light waves that have this strange c-limit? Also,

why must there be such a limit?

Geometric construction of relativity in the following sections is based on thought exper-

iments involving quite large Doppler shifts of a 600 THz blue-green CW light to ultraviolet

1200 THz and then a case of Doppler redshift of that 600 THz beam to infrared 300 THz.

Here this kind of thought experiment is used first to clarify the Evenson CW axiom. Such

extreme shifts require that pokey old trains of Einstein be replaced by relativistic spaceships.

The thunderous old PW source of Thor is replaced by 600 THz CW laser sources as in Fig.

2b. Finally, high-resolution spectrometers managed by two laser physicists, Alice and Bob,

will replace the old-fashioned Einstein train riders.

It has become traditional for quantum opticians to imagine optical channels between a

point B and a point A to be manned (or woman-ed) by live characters named Bob and

Alice, respectively. Alice’s tunable CW laser replaces Thor’s thunderbolts, and Bob’s high-

resolution spectrometer on his faraway spaceship replaces train-riding observers in Fig. 2b.
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E. Alice’s tricks and Bob’s surprises

This particular thought-vignette begins with Bob sitting stationary relative to Alice. Bob

is located millions of kilometers to the East of Alice (far right of Fig.2b.) with Alice’s laser

shining on Bob. Thus a precise 600 THz appears on both the digital readout of Alice’s CW

laser source and on a readout of Bob’s frequency receiver. Unbeknownst to Bob, Alice is

able to tune the laser on her spaceship and plans to do so as she accelerates toward Bob.

Alice has cleverly programmed the laser to tune its frequency down with each increase of

her velocity and do so just the right amount so Bob continues to see an unchanged 600 THz

reading on his receiver-spectrometer.

Alice wants to fool Bob into thinking she has not moved and then surprise him by zooming

by with a loud ‘meep-meep.’ To really fool Bob into thinking that she is the dutiful stay-at-

home he imagines, Alice must also detune wave amplitude using the same velocity formula

that works for Doppler frequency. (This formula and it’s double duty nature will be derived

later.) If Alice and Bob have a communication channel like a cell phone, Alice will also have

to detune her end of that channel appropriately in order to not make Bob suspicious.

Now suppose Alice pauses her acceleration at a velocity corresponding to an octave

Doppler blue factor of b=2, that is, while Bob thinks he is still receiving her steady blue-

green 600 THz laser beam, she has actually down-tuned her laser to an infrared 300 THz.

To receive Bob’s calls Alice must tune her phone receiver up by factor of 2 and her phone

transmitter down by a factor of 2, just like her laser, in order to call up Bob. (The tune-up-

or-down by 2 is a result of time reversal symmetry as will be described shortly.)

Always the trickster, Alice asks Bob if he notices anything different about her laser beam.

Bob replies, “It’s still your beautiful blue-green and reads 600 THz to 18 digits.” Alice says,

“Okay, that checks your frequency, but what is your wavelength reading?”

Alice’s leading question is a crucial one for relativity and quantum theory. She is asking if

Bob is receiving some ‘phony’ kind of blue-green 600 THz, in this case, one that was produced

by an infrared 300 THz laser moving very rapidly toward Bob. And, more generally, one

may ask, “How many different kinds of ‘phony’ blue-green, or of any other color or frequency,

are possible in the great vacuum of the universe?”
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FIG. 3. Dispersion plot analysis of light speed v. color or frequency.

F. Dispersion plots: Keyboards of the gods

A (κ,υ) graph in Fig.3 frames Alice’s question by plotting parameters that define Alice’s

laser wave shape, frequency υ of waves per second and wavenumber κ of waves per meter.

Per-space-per-time (or per-space-time) plots are reciprocal to space-time (x,t) plots used

by Minkowsky to represent Einstein-Lorenz frame relativity and are known as a dispersion

plots. They help to clarify wave mechanics and, in turn, relativity and quantum mechanics.

In a sense they are control panels for wave dynamics in space and time and one might

prosaically name them keyboards of the gods. (The professional jargon is “Fourier-space.”)

Imagine a dispersion plot as an extraordinary keyboard that, like ordinary mortal key-

boards, produces a wave of frequency υ if pressed at point (κ,υ), but this ‘deity’ keyboard

tunes both wave period τ (inverse τ=1/υ of frequency υ=1/τ ) and wavelength λ=1/κ .

Ordinary mortal keyboards (and Alice’s laser control) cannot set υ and κ independently.

Instead, we will show CW frequency υ must be locked to a particular wave number κ by a

dispersion function υ(κ). For plane wave light this is a linear dispersion-less function υ=cκ

plotted by the diagonal straight line also labeled ω=ck by angular parameters in Fig.3.

In Alice’s frame the υ and κ values are well established. Her υ = 600 THz laser puts out

600 trillion λ-wavelengths per second all going at speed c=300 million meters per second.

Dividing a one-second travel distance by 600 trillion gives a half-micron wavelength ( λ =

300 ∙ 106m/600∙1012 =0.5μm) . Alice’s laser cavity length must be an integral multiple of

wavelength λ for these waves to fit perfectly and resonantly amplify 600THz light.

But what wavelength does Bob see for the 600THz light beam coming from Alice’s space-

ship laser that she has detuned to 300THz, a wavelength of 1μm(300 million/300 trillion) as
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she rapidly approaches Bob? Bob must see some λ = 1/κ value on the horizontal 600THz

line in Fig.3. Could it be point D with wavelength λ = 1μm (κ = 106 waves per meter)

that Alice set on her laser? Or could λ be some other value like point B with λ = 1/4μm

(κ = 4 ∙ 106 ). Or will Bob tally an in-between point C with λ = 1/2μm (κ = 2 ∙ 106 )?

G. Support for Evenson’s Axiom

If the vacuum cannot support an infinite variety of blue green 600THz waves then Bob

must find his λ at compromise point C on line υ=cκ in Fig.3. Point C has wavelength λ

=0.5μm that Alice would have measured when she first turned on her blue-green 600 THz.

If the vacuum treats all frequencies equivalently then they all lie on line υ=cκ with slope

υ/κ=ω/k=c and thus all travel at speed c.

This essentially proves Evenson’s axiom: All colors go c. Any point like B to the left of

C will have less κ, greater slope υ/κ, and thus corresponds to a CW with a speed greater

than c. Conversely, any point like D to the right of C corresponds to a CW slower than c.

One might speculate that a frequency-υ oscillator produces all varieties of frequency υ

with a range of κ or λ but only the κ = υ/c variety survives resulting wave interference.

A key idea is that plane waves of different frequencies moving in a given direction must

march in lock step. This is a powerful idea that will take us far into relativistic quantum

mechanics. First of all, Einstein’s mysterious PW axiom in Fig.1 is now a theorem since all

Fourier components forming a PW must march in lock step and maintain a dispersion-free

pulse going at speed c as agreed by all observers. (PW shape is quite another matter.)

Evenson’s axiom demands a dispersion-less (linear) dispersion function υ = cκ. This

logical clarification jives with experimental observation of the night sky whether by eye

or through Hubble and Spitzer telescopes. If speed of red light differed by even a small

percentage from that of blue light coming from a billion light-year distant galaxy then their

arrival times would differ by millions of years. That is plenty of time for a galaxy to move or

change shape. The resulting image would be more like a psychedelic smear, not the crystal

clear images of cataclysmic behavior Earthlings have recently come to enjoy.

In summary, Evenson’s axiom shows that Bob cannot detect that Alice is tricking him.

Bob sees 600THz light that has no birth certificate to tell it was actually created by Alice’s

300THz laser advancing just fast enough to make him think she is using her 600Thz laser.
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H. Rapidity: Doppler arithmetic and geometry

When Alice does her ‘meep-meep’ zoom-by passing of Bobs observatory, there are two

surprises for him. First, that she has been moving all this time and second that he sees her

600 THz light suddenly redshift its frequency. (Assuming Alice maintains her speed and the

300 THz laser broadcasting from both ends of her spaceship, Bob hears ‘MEEP-moop’ if

the wave optics could be vocalized like Doppler’s passing train whistle.)

To find Bob’s ‘MEEP-moop’ shift one re-examines the earlier shift of Alices υA=300THz

source readout to Bob’s υB=600THz receiver readout. A question arises. Should one relate

the Alice and Bob frequencies by an arithmetic Doppler decrement Δ (as in υB= υA+Δ) or

with a geometric Doppler blue-shift factor b (as in υB=b ∙ υA)?

Evenson’s axiom demands that waves of different frequencies such as Alice’s laser (υA=

300THz) and her cell phone (υa= 3 THz) must march in lockstep and do so for any other

observer such as Bob who sees υB= 600THz=2υA for her laser and therefore must see the

same proportional increase b=2 in frequency (υb= 6 THz=2υa) for her cell phone.

Thus the Doppler factor bBA=2 depends on the relative motion of Bob and Alice and not

at all on the frequency of light waves that pass between them. Meanwhile an arithmetic

decrement is ΔBA=300THz for her laser but only 3THz for the cell phone. Doppler factor

b is defined as received frequency divided by source frequency, and is greater than 1.0 if the

spatial interval between source and receiver is decreasing and less than 1.0 if the interval is

increasing, that is (b<1) for departing and (b>1) for arriving. (A Doppler factor b might be

viewed has a be-happy-coefficient if Alice and Bob are simpatico.)

The Doppler factor flips in a time reversed situation. Suppose a detailed movie of Alice

approaching Bob is played backwards. The digital readouts υA= 300 THz for Alice and υB=

600 THz for Bob remain the same, but Alice reverts to being a departing 300THz receiver

and Bob becomes a 600THz source. (Output light becomes input light and vice-versa.)

Then receiver-over-source ratio is b=υA/υB=1/2, inverse to what it is if source and receiver

are approaching each other at the same speed.

This flip factor b=1/2 applies to Bob’s ‘MEEP-moop’ shift from 600THz to (1/2)υA=150THz

that he receives from Alice’s departing υA= 300THz source after passing . It is not a happy-

feeling turn of events unless Alice reverses and returns to raise Bob’s frequency-reading.

Indeed, Alice must return to facilitate a wave-interference development of relativity and
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quantum theory. Wave dynamics, like personal interactions, simply do not exist without

having (at least) two-to-tango. Feynman’s approach to quantum processes is based on 〈A|B〉

amplitudes that tell to what extent a condition A arises after B and vice versa. Pairwise

Doppler relativity underlies the wave mechanics that precisely governs quantum processes.

The Evenson CW axiom depicted in Fig.2 and Fig.3 claims that CW laser light goes c

(en vacuo) regardless of color (frequency). Alternatives to this lead to logically untenable

behavior of optical Doppler shifts. Instead, lock-step marching of frequencies favors Doppler

blue-shift factors bBA that relate frequency υA of approaching source-A (Alice returns!) to

frequency υB seen by receiver-B (Bob awaits!) in a linear transfer equation.

(B/A)= bBA=
υB

υA

or: υB = bBAυA=(B/A)υA (1)

(Transform coefficient bBA is the same for all frequency values it transforms.)

Each arrival case has a time-reversed departure case with inverse red-shift factor rAB.

(A/B)= rAB=
υA

υB

or: υA = rABυB =(A/B)υB (2)

Then Bob (source) says goodbye to departing Alice (receiver). Colorful mnemonic of b for

blue (or “be-happy”) and r for red (or “remorse”) is replaced by transform (R/S) that is

source-to-receiver ratio with right-index source frequency υS in denominator.

(R/S) =
υR

υS

=
1

(S/R)
(3)

Usual quantum Hebrew-like right-to-left index order applies to Doppler arithmetic of Lorentz

transforms of motion in one-dimension of space. Then (R/S) is blue ((R/S )=bRS>1) if R-to-S

space is decreasing (or deflating) and red ((R/S )=rRS<1) if it is increasing or inflating. A

third receiver C (Carla, a slightly evil twin sister to Alice) can come online and see Alice’s

laser beam at frequency υC=(C/A)υA. If Carla can see Bob passing on υB light he got from

Alice, then Carla also sees υC=(C/B)υB. Then (1) implies a product rule.

υC=(C/A)υA and υC=(C/B)υB=(C/B)(B/A)υA imply : (C/A)=(C/B)(B/A) (4)

Defining relative rapidity ρAB=ln(A/B) turns the product rule (4) into a ρ-sum rule (5).

ρCA= ρCB+ ρBA where : eρCA = (C/A) = e−ρAC =1/(A/C) (5)

A 1TeV proton has velocity u=.9999956c ,Doppler ratio b=(C/A)=2132, rapidity ρCA=7.665

so ρ-arithmetic is simpler. Sum rule (5) makes ρ a Galilean-like parameter for adding speeds

easily in Lorentz symmetry. (ρ, b, u, and energy are all related later by (18) and (49).)
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III. LASER PHASOR CLOCKS IN SPACE AND TIME

A single laser CW moving in time t and space x is denoted by a complex exponential in

Eq.(6) and shown by phasor clocks lined up above a related space-time plot in Fig.4.

ψ(x, t) = Aei(kx−ωt) = A (cos(kx − ωt) + isin(kx − ωt)) (6)

Real angular wavenumber (wavevector) k = 2πκ and frequency ω = 2πυ are per-space-time

quantities discussed after Fig.3. Together they determine the phase φ= kx−ωt at each point

x in space and time t. The phase is a dimensionless quantity giving a reading in φ-radians

of a clock hand on a phasor -clock at space-time point (x, t). (φ is also called gauge as in a

gas-gauge or a sweep-second-hand. It is a polar coordinate of wave function ψ(x, t).)

FIG. 4. Plane wave phasors drawn above their space-time (x,ct)-plot for single 300Thz CW.

A phasor is analogous to Hamilton-Poincare oscillator phase space with abscissa q and

ordinate p giving clockwise elliptical orbits. A physicist’s complex phasor has a real axis

(Re(ψ) in Fig.4 top left) for plotting oscillating variables such as electric field.

Re ψ(0, t) = E(t) = Acos(ωt) (7)
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An imaginary axis (Im(ψ)) tracks field time rate of change. The latter is scaled to units

of angular frequency ω . Then orbits are clockwise circles sketched by clock hands in Fig.4.

Im ψ(0, t) = Ė(t)/ω = −Asin(ωt) (8)

At x=0 amplitude A is real (A=1) . Elsewhere, A is a complex factor like Aeikx , however

amplitude A may also be complex |A| eiφ0 so as to set initial phase lag φ0 at origin(0,0).

ψ(x, t) = Aeikxe−iωt = |A| eiφ0eikxe−iωt = |A| ei(kx−ωt+φ0) (9)

For ω > 0 , phasors turn clockwise at rate ω as time t advances but each is set anti -clockwise

(back in time) by k ∙ Δx relative to neighbors Δx to its right. Thus, phase-leading phasors

feed phase-lagging ones, and the positive-k wave shown in upper Fig.4 moves left to right.

Just below the phasor clock wave in the top row of Fig.4 is a cosine-wave real part (7)

and a sine-wave imaginary part (8). Both move left-to-right at phase velocity ω/k with

the latter exactly a quarter wave ahead. (It mirrors a U.S. corporate mantra,“ Imagination

precedes Reality by exactly one Quarter! ”) As phasor clock hands rotate clockwise at angular

velocity ω any phase value φ translates at c= ω/k while clock bodies remain fixed to x axis.

φ = kx − ωt = const. =⇒ x =
ω

k
t + const. (10)

The space-time (x,ct)-plot centered in Fig.4 tracks the left-to-right motion of just the

real part (7) of the wave represented by Eq.(6) or Eq.(9). There clock bodies move at or

very near the phase velocity of light with hands virtually frozen! It will be shown that clock

trains for all moving frames adjust their local ω and k to phase-match each clock in Fig.4.

One gains insight from wave-optical-relativity or relawavity of laser waves that now are

our most precise clocks and meter-sticks. Old Swiss cuckoo-clocks lack 18-figure precision

of CW or PW laser oscillators and do not reveal the relativistic logic of wave mechanics.

In Fig.4, white lines track real-part zero-paths with phase φ =(2n+1) π/2 lying between

crest paths (φ = 2nπ) in light shaded regions and trough paths (φ = (2n + 1)π) in dark-red

regions. Real CW zero-paths become precise space-time grids in Fig.5 below. Much insight

is gained by letting Nature provide its own coordinate grids and “frames.”

IV. LASER-PHASOR LORENTZ-MINKOWSKI FRAME GEOMETRY

If two green 600THz waves in Fig.5a-b collide they make a space-time grid as in Fig.5c

where they interfere to create a standing wave with real-zero-paths making a square grid in
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(ct) -time vs. (x)-space. Zeros of wave real parts of the wave-sum factored into a product of

a complex exponential (phase factor e−iωt) and amplitude (group or envelope factor 2 coskx ).

Zeros of the latter are vertical white lines parallel to time axes (kx=(n+1/2)π grid lines).

Zeros of real part of phase factor Re e−iωt=cos(ωt) are horizontal lines parallel to the space

axis (ωct=(n+1/2)π grid lines). Plots of vertical time axes and horizontal space axes are

Minkowski plots, complementary to Newtonian plots of space versus horizontal t-axes.

Fig.6 shows how Fig.5 appears in a left-moving frame facing a right-beaming laser blue-

shifted by bBA=2 to 1200THz and a receding left-beaming laser red-shifted to 300THz. A

Doppler factor of bBA =2 represents enormous relative velocity u between Alice and Bob.

To meet at such speed would end their relationship in a blinding flash. Derivation is needed

of their u and related quantities including cost of slowing them. This will be done in the

original scenario wherein Alice travels at positive velocity (left-to-right) toward Bob fast

enough that he experiences Doppler bBA=2 and sees a searing UV-beam of 1200THz going

left to right. Add to this sister Carla who is far to the right and co-moving with Alice

while shining 600THz back at Bob. He sees Carla’s light red-shifted (rBC = 1
2
) to a gentler

infra-red beam of 300THz going right to left. If Alice and Carla have identical velocity

and 600THz frequency set for their counter-propagating laser beams then they make for

themselves a standing wave like Fig.5 with a 2-CW Cartesian time-space (x, t) grid.

Now what does Bob see if Alice and Carla’s beams interfere to form their shared (x, t)

grid? A related question: What grid does Bob make by beaming his own 300THz lab laser

leftward (like Carla’s beam) and his own 1200THz laser rightward (like Alice’s beam)?

The answer must be: He makes the (x′, ct′) grid in Fig.6. And, (with ideal coherence dis-

cussed later) so do Alice and Carla’s beams. Both Minkowski (x′, ct′) grids display Einstein-

Lorentz transformation (ELT) to Bob’s lab frame from that of Alice or Carla. This gives a

quick derivation of ELT matrices by factoring Doppler-shifted wave-sums to get real-zeros

giving (x′, ct′) and (ω′, ck′) plots. This is done easily by algebra as follows and then even

more easily by geometry in Fig.7 that reveals underlying physics of ELT.

A sum Ψ of right-moving wave ψR=eiR and left-moving wave ψL=eiL factors as follows.

Ψ(x, t)=eiR+eiL=ei R+L
2 (ei R−L

2 +e−i R−L
2 )= ei R+L

2 2 cos
R −L

2
= ψphaseψgroup (11)

Right wave phase R=kRx−ωRt is a blue-shift eρ(kAx−ωAt) of Alice’s phase (kAx − ωAt).

Left wave phase L=kLx−ωLt is a red-shift e−ρ(−kAx−ωAt) of Carla’s phase (−kAx − ωAt).
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FIG. 5. Colliding pair of 600Thz CW. Real wave zeros trace square coordinate grid.

Phase of factor ψphase is a half-sum R+L
2

and that of factor ψgroup is a half-difference R−L
2

.

R + L

2
=

kR+kL

2
x −

ωR+ωL

2
t=

eρ−e−ρ

2
kAx−

eρ+e−ρ

2
ωAt (12)

R − L

2
=

kR−kL

2
x −

ωR−ωL

2
t =

eρ+e−ρ

2
kAx−

eρ−e−ρ

2
ωAt (13)

The CW geometry begins in Fig.5d with a baseball diamond. Its 1st-baseline is an (ω, ck)

vector R=(ωA, ckA)=ωA(1,+1) of Alice’s right-moving laser beam. Its 3rd-baseline is a

vector L =(ωC , ckC)=ωA(1,−1) of Carla’s left-moving laser beam having same frequency

but opposite wave vector. Then half-sum phase vector P=(R+L)/2=ωA(1, 0) is drawn to
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FIG. 6. (a-b)1200THz collides 300THz CW (c) (x′, ct′)-zero-paths (d) (P′,G′)-lattice vectors.

diamond center (Pitcher’s mound!). Half-difference group vector G=(R−L)/2=ωA(0, 1) is

to below 1st baseline (Grandstand!) along ck-axis in Fig.5d. Alice and Carla’s reciprocal-

space (ω, ck) vectors P and G switch positions to be their space-time (ct, x) axes with G

along group-zero path defining x -axis and P along phase-zero path that defines their ct-axis
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in Fig.5c. Bob’s view of zero-paths in Fig.6 is plotted in detail in Fig.7 for wave-crest paths.

According to Bob, Alice’s right-moving 600THz laser beam is blue-shifted by bBA=eρ=2

as she approaches him. So vector R′ that Bob ascribes to Alice is her vector R doubled in

length to R′ =ωAbBA(1, +1). (It must stay on the 1st-baseline to obey Evenson’s axiom.)

Meanwhile, Bob sees Carla’s left-moving 600THz laser beam red-shifted by bBC=e−ρ=1
2

as

she recedes and her vector L halved in length to L′=ωAbBC(1,−1) along the 3rd baseline.

Bob’s phase P′ =(R′+L′)/2 and group G′ =(R′−L′)/2 vectors define his warped view of

Alice’s baseball diamond (Fig.5c-d) using his (x′, ct′) and (ω′, ck′) coordinates in Fig.7c-d.




ω′

phase

ck′
phase



=P′=
R′+L′

2
= ωA




eρ+e−ρ

2

eρ−e−ρ

2



 = ωA




cosh ρ

sinh ρ



 = ωA




5
4

3
4



 (14)




ω′

group

ck′
group



=G′=
R′−L′

2
= ωA




eρ−e−ρ

2

eρ+e−ρ

2



 = ωA




sinh ρ

cosh ρ



 = ωA




3
4

5
4



 (15)

Ratio
V ′

phase

c
=

ω′
phase

ck′
phase

is slope of phase vector P′ in Fig.7d (ω′, ck′)-plot. Note V ′
phase > c.

V ′
phase

c
=

ω′
phase

ck′
phase

=
cosh ρ

sinh ρ
= coth ρ =

5

3
(16)

Ratio
V ′

group

c
=

ω′
group

ck′
group

is slope of group vector G′ in Fig.7d (ω′, ck′)-plot. Note V ′
group < c.

V ′
group

c
=

ω′
group

ck′
group

=
sinh ρ

cosh ρ
= tanh ρ =

3

5
(17)

Alice and Carla see a 600THz standing wave between them. So velocity u of Alice, Carla,

and standing wave is precisely group velocity V ′
group =u= 3

5
c in Bob’s (x′, ct′) frame. This

relates conventional relativity parameter β≡u
c
, rapidity ρ=ρBA , and blue-shift b=bBA=eρ .

V ′
group

c
=

u

c
= tanh ρ =

eρ − e−ρ

eρ + e−ρ
=

b − b−1

b + b−1
=

b2 − 1

b2 + 1
≡ β (18)

Inverse Doppler-blue includes a conventional Lorentz coefficient λ=
√

1−β2 in denominator.

b =

√
1 + β

1 − β
=

√
1 + u/c

1 − u/c
=

1 + u/c
√

1 − u2/c2
≡

1 + β

λ
(19)

Period τ=2π/ω (seconds per wave) and wavelength λ=2π/k (meters per wave) are plot-

ted in Fig.7a based on frequency υ=ω/2π (waves per second) and wave-number κ=k/2π

(waves per meter ) values plotted in Fig.7b. Alice’s wavelength unit λA=1
2
∙10−6meter (or
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FIG. 7. Plot of Fig.6 so point (cκ′, υ′) in (b) or (d) maps to paths in (a) or (c) of slope- υ′

cκ′ = λ′

cτ ′ .

period=τA=λA/c =5
3
∙10−15seconds per wave) scales Fig.7a while her laser frequency unit,

υA=600THz=c∙κA (or wave-number=κA=2∙106waves per meter ) scales Fig.7b. Alice’s right

-moving laser vector R is seen by Bob to blue-shift by factor bBA=eρ=2 to R′=2R, while

Carla’s left-moving L vector red-shifts to L′=1
2
L. Vector components (cκ′, υ′) get inverted to
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give wavelength λ′= 1
κ′ or period τ ′= 1

υ′ intervals between dash-line crest-paths intercepting

space or time axes as right-moving short-λR waves hit left-moving long-λL waves in Fig.7b.

In Fig.7c dash-line 1-CW paths vanish due to interference and solid-line 2-CW paths appear

as derived from components (cκphase, υphase) of phase vector P′=R′+L′

2
and (cκgroup, υgroup)

of group vector G′=R′−L′

2
in Fig.7d. Recall (14) and (15).

Inverses of P′-point coordinates (cκphase, υphase)=(3
4
, 5

4
)υA in Fig.7d are space-time axial

intercepts of phase-wave period 1
υphase

≡τphase=
5
4
τA and wavelength 1

κphase
≡λphase=

4
3
cτA shown

in Fig.7c where phase-wave crests move at their velocity Vphase=
λphase

τphase
=5

3
c along lines parallel

to P′-vector. Similarly, G′-point coordinates (cκgroup, υgroup)=(5
4
, 3

4
)υA invert to group wave

period τgroup=
4
3
τA and wavelengthλgroup=

5
4
cτA moving at Vgroup=

λgroup

τgroup
=3

5
c parallel to G′.

Vectors (P′,G′) in (υ, κ)-space of Fig.7d map to vectors (P′,G′) in (t, x)-space of Fig.7c.

Slopes trade since velocity is frequency
wave−number

= υ
κ

in (υ, κ) and space
time

= λ
τ
in (t, x). The (P′,G′)

rhombus in Fig.7d spawns a rhombic lattice of crest-paths in Fig.7c that are extensions of P′

and G′. P′-lines have constant φ′
phase=k′

phasex
′−ω′

phaset
′=2πNp while G′-lines have constant

φ′
group=k′

groupx
′−ω′

groupt
′=2πNg . Integer Nk={..−1, 0, 1, 2..} give crest-paths in Fig.7c. Odd

1
4
-integer Nk= 1

2
{.. − 1

2
, 1

2
, 3

2
, 5

2
..} give two zero-paths for each crest-path as shown in Fig.6c.

A. Transformations and phase invariance

A laser phasor sketched in Fig.4 should be taken seriously as a gauge of time (clock) and

of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ) in Fig.7c.

A reading of phase φ by Alice at a space-time point must equal reading φ′ by Bob in spite

of their unequal readings (x, t) and (x′, t′) for that point and unequal frequency-wavevector

readings (ω, k) and (ω′, k′) for a laser group-wave or its phase-wave.

φ′
phase ≡ k′

phasex
′ − ω′

phase t′ = kphasex − ωphase t ≡ φphase

φ′
group ≡ k′

groupx
′ − ω′

group t′ = kgroupx − ωgroup t ≡ φgroup

(20)

Bob’s (ω′, k′) components are in (14) and (15). Alice’s (ω, k) are the same with ρ=0.

An Einstein-Lorentz Transformation (ELT) of Bob’s (x′, t′) to Alice’s (x, t) follows.

φphase ≡ x′ωA

c
cosh ρ − t′ωA sinh ρ = 0 ∙ x − ωA t ⇒ ct = ct′ cosh ρ − x′ sinh ρ

φgroup ≡ x′ωA

c
cosh ρ − t′ωA sinh ρ =

ωA

c
x − 0 ∙ t ⇒ x = −ct′ sinh ρ + x′ cosh ρ

(21)
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The ELT matrix form and its inverse resolve Bob-Alice space-time for Fig.7c.




ct

x



=




cosh ρ − sinh ρ

− sinh ρ cosh ρ








ct′

x′



⇒




ct′

x′



=




cosh ρ + sinh ρ

+ sinh ρ cosh ρ








ct

x



 (22)

Direct derivation of ELT uses base vectors P′ and G′ or P′ and G′ in (14) and (15).

P′=




ω′

phase

ck′
phase



= ωA




cosh ρ

sinh ρ



=




ωA

0



cosh ρ +




0

ωA



sinh ρ=P cosh ρ+G sinh ρ (23)

G′=




ω′

group

ck′
group



= ωA




sinh ρ

cosh ρ



=




ωA

0



 sinh ρ +




0

ωA



cosh ρ=P sinh ρ+G cosh ρ (24)

Thus ELT matrices (25) identical to (22) resolve Bob-Alice per-space-time for Fig.7d.




ω

ck



=




cosh ρ − sinh ρ

− sinh ρ cosh ρ








ω′

ck′



⇒




ω′

ck′



=




cosh ρ + sinh ρ

+ sinh ρ cosh ρ








ω

ck



 (25)

The effects of ELT on time, frequency, wave-number, and wavelength is most easily seen by

examining contraction and dilation of wave variables involving both sides of Fig.7 or Fig.8.

B. Hyperbolic contraction and dilation functions of wave quantities

Lorentz length contraction is a 2nd-order relativistic effect. Alice’s group wavelength λA

in Fig.5c contracts in Fig.8a by 4
5

to λgroup , the interval between group crests crossing x′-axis.

λgroup = λAsechρ = λA

√
1 − tanh2ρ = λA

√
1 − u2/c2 =

4

5
λA (26)

Two group zeros exist for each crest so zero-path intervals in Fig.6a are 1
2
λgroup. Inverse

to λgroup in Fig.8a is wave-number κgroup = 1
λA

in Fig.8b. Alice’s κA dilates by 5
4

to κgroup. .

κgroup = κAcoshρ =
κA√

1 − tanh2ρ
=

κA√
1 − u2/c2

=
5

4
κA (27)

Einstein time dilation or “clock-slowing” is perhaps the most famous 2nd-order effect.

Alice’s group period τA in Fig.5c expands in Fig.8a by 5
4

to G′ time component τA cosh ρ.

t′ = τAcoshρ =
τA√

1 − tanh2ρ
=

τA√
1 − u2/c2

=
5

4
τA (28)

SR treatments focus on Einstein dilation and Lorentz contraction formulas and leave stu-
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FIG. 8. Hyperbolic functions for relativistic shifts (a) Space-time (x, ct) (b) Per-space-time (cκ, υ)

dents more mystified than enlightened. More enlightened wave geometry in Fig.8 reveals

dual pairs of contraction-dilation effects, most with no famous name attached. Alice’s

group-wave κgroup number-dilation (27) or Bob’s phase-period τperiod contraction, use even

2nd-order hyperbolic function cosh ρ or its inverse sechρ. Others, like Alice’s group-period

τgroup contraction or Bob’s phase-wavelength λphase dilation, use odd 1st-order hyperbolic

function sinh ρ or its inverse cschρ with range ±∞. Each is a fraction of Alice’s wave unit

(λA=cτA)(1
2
, 3

4
, 4

5
, 5

4
, 4

3
, 2) listed in Table I. They repeat along Bob’s x′ or ct′ axes in Fig.8a.

Equations (14-15) or geometric pairs in Fig.5c-d, Fig.6c-d, and Fig.8a-b allow more com-

prehensive coverage of SR effects. The Evenson axiom lets one first use CW Doppler light

to find per-space-time ELT of (ω, ck). Then space-time ELT of (cτ, λ) follows.

phase bDoppler
RED

c
Vphase

κphase

κA

τphase

τA

υphase

υA

λphase

λA

Vphase

c bDoppler
BLUE

group 1

bDoppler
BLUE

Vgroup

c
υgroup

υA

λgroup

λA

κgroup

κA

τgroup

τA

c
Vgroup

1

bDoppler
RED

rapidity
ρ e−ρ tanh ρ sinh ρ sech ρ cosh ρ cschρ coth ρ e+ρ

value for
β=3/5

1
2 = 0.5 3

5 = 0.6 3
4 = 0.75 4

5 = 0.80 5
4 = 1.25 4

3 = 1.33 5
3 = 1.67 2

1 = 2.0height

TABLE I. Hyperbolic rapidity functions. Final row lists numerical values for Doppler b=2 .
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Space-time metrology begins with the famous Einstein-Lorentz pair. They correspond

to the Lorentz sechρ-column (τphase, λgroup) and the Einstein coshρ-column (υphase, κgroup) of

Table I that describe Alice’s υA=600THz or τA=5
3
fs or λA=1

2
μm standing CW cavity mode

in Fig.5 that is a model for a laser clock. Its “ticker” or time standard is the time tphase= τA

between mid-cavity phase-wave crests. It is also a laser meter stick, or at least half of a

micro-meter stick where its length standard is λgroup=λA group-wave. (To upgrade it to a

1m standard, one would lengthen it to hold exactly two-million half-micron waves.)

Bob sees quite warped standards coming from Alice including a mid-cavity “tick” time

t′phase= τA cosh ρ=5
3

5
4
fs dilated by 5

4
from 1.67fs to 2.083fs and a group-wave length con-

tracted from λA=1
2
μm by 4

5
to λ′

group=λAsechρ = 1
2

4
5
μm= 2

5
μm. So Bob sees Alice’s time

25% late and her laser group wave 20% short. Now, Bob can build his own 600THz laser

CW-standing wave. (Just to show Alice and Carla how it’s done!). But, then after doing

her own Fig.8 sorting, Alice must conclude that it is Bob who is 25% late and 20% short.

This begins a most pernicious kind of lovers-quarrel where each contestant is both right

and wrong. Here it is labeled the Heighway Paradox after John E. Heighway, a talented

NASA electric rocket engineer and author of several novel relativistic viewpoints. Sketched

below the 1st paradox (Fig.9a) is a 2nd paradox (Fig.9b) involving larger 1st-order Doppler

shifts. (Recall that these are responsible for the smaller 2nd-order shifts in the 1st paradox.)

In the 2nd paradox (Fig.9b) Bob complains that Alice’s 1
2
μm laser appears at 1

4
μm and

thus 50% short on wavelength. (Now Carla has left in disgust.) Alice replies, “No Bob,

you’re the short one giving me a lousy 1
4
μm. Who sold you that so-called 1

2
μm laser?”

Since the mutuality of a (b=2) -Doppler blue-shift is well understood, the 2nd paradox

evaporates, and with it, so should the 1st paradox. One might still argue that light waves

just give flaky metrology. (Quick! Sell the GPS! ) Do the steel mirror cavities actually

maintain their rigidly assigned λA=1
2
μm while only the light wave shrinks to λ′

group=
2
5
μm ?

If so, then laser resonance would fail! Anyone who has tuned a laser or Etalon plates

feels how precisely sensitive laser waves are to cavity length. Optical interference is our most

precise measure of relative differences in position, time, frequency, and velocity.

Steel cavities (along with Alice and Bob) are made of waves and do what waves do! They

undergo relative space-time shift ratios drawn in Fig.8 and listed in Table I. As will be shown

later, these eight shift ratios are the underlying variables of relativistic quantum mechanics.

Their precise shiftiness precisely gives mechanics, both quantum and classical.
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FIG. 9. Heighway paradox for (a) 2-CW laser frame shifts (b) 1-CW laser Doppler shifts

C. Thales-Euclid means and geometry of hyperbolic invariants

A reverse analysis of the Alice, Bob, and Carla laser thought experiment is instructive.

Imagine as before, that Bob detects counter-propagating laser beams of frequency ωR going

left-to-right (previously Alice’s laser) and ωL going right-to-left (Carla’s laser). We ask

two questions: (1.) To what velocity uE must Bob accelerate so he sees beams with equal

frequency ωE? And, (2.) What is that frequency ωE?

Query (1.) has a Jeopardy-style answer-by-question: What is beam group velocity?

uE = Vgroup =
ωgroup

kgroup

=
ωR − ωL

kR − kL

= c
ωR − ωL

ωR + ωL

(29)

Query (2.) similarly: What ωE is blue-shift bωL of ωL and red-shift ωR/b of ωR?

ωE=bωL=ωR/b ⇒ b=
√

ωR/ωL ⇒ ωE=
√

ωR ∙ωL (30)

V ′
group/c is ratio of difference mean ω′

group =ωR−ωL

2
to arithmetic mean ω′

phase =ωR+ωL

2
.
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FIG. 10. (a) Thales-Euclid geometric and arithmetic means (b) Hyperbola construction step

Frequency ωE=B is geometric mean
√

ωL∙ωR of left and right-moving frequencies defin-

ing the geometry in Fig.7 as detailed in Fig.10a. Line sum of ωL= ωEe−ρ and ωR= ωEe+ρ

is bisected at center C of a circle connecting shifted phase vector P′ to its original P.
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Original P (P itcher’s mound) is the geometric mean point
√

1∙4=2 at Alice’s base fre-

quency B=υA=600 THz (Fig.10 units are 300 THz.) that lets you construct points P′,P′′,...

on a hyperbola that other frames claim to be 600 THz. Simply prick any point ck′ with

compass needle, set its pencil to point-P, and draw arc PP′ to the hyperbola point ω′(k′) on

vertical above ck′. (Whole arc is optional if graph paper gives verticals.) Time-flip axiom

e−ρe+ρ=r∙b=1 implies phase points P′,P′′,... form hyperbolas ω′
Rω′

L=ω2
A whose asymptotes

hold Doppler-shifted rectangles with area 2ω2
A of initial (ρ=0) “baseball diamond.” Cartesian

(ω′, ck′) hyperbola equations for ωA=2 and ωA=4 in Fig.10b are also ρ-invariant to ELT.

ω2
A = (ω′)2 − (ck′)2 = (ω′′)2 − (ck′′)2 = ... (31)

Similar equation sets with signs reversed apply to points G′,G′′,... for group-vector hyperbola

plots on the right of Fig.10b. Negative-kA hyperbolas would lie to the left.

(ckA)2 = (ck′)2 − (ω′)2 = (ck′′)2 − (ω′′)2 = .. (32)

Negative-ωA hyperbolas lie below Fig.10b. Alice’s invariant or proper frequency ωA in per-

space-time relations (31) is matched by a space-time ρ-invariant τA known as proper time.

(cτA)2 = (ct′)2 − (x′)2 = (ct′′)2 − (x′′)2 = .. (33)

A common name for τA is age, Alice’s in this case. If Alice’s laser clock and cycle counter is

attached at birth and remains always with her then counter reading τA is a precise reading

of her age. The key words ‘always with her ’ mean no separation. If she leaves her clock

downstairs and sleeps upstairs (in a higher gravitational energy) then the clock understates

her age! Proper separation xA is defined similarly to proper time τA by an xA-hyperbola.

x2
A = (x′)2 − (ct′)2 = (x′′)2 − (ct′′)2 = .. (34)

D. Space-proper-time plots and the stellar-aberration angle

Lewis C. Epstein developed a novel approach to space-time relativity that uses the trans-

verse stellar aberration angle σ to define relative velocity by u=c sin σ as sketched in Fig.11

in place of longitudinal Doppler definition u=c tanh ρ by rapidity ρ given in (17). This al-

ternative to Minkowski-(x, ct)-plots involves flipping proper-time definition (33) as follows.

(cτ )2 + (x′)2 = (ct′)2 (35)
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FIG. 11. Stellar aberration angle σ of light beam normal to direction of velocity u.

FIG. 12. Epstein space-proper-τ geometry of relativistic effects in terms of ρ or σ.

A Pythagorean geometry for space-proper-time or (x, cτ )-plots is shown by Fig.12. There

it is imagined all things travel at light-speed c including a stationary object (x′=0) that

“moves” parallel to the cτ -axis. Moving object P is indicated by an vector ct′ that is

inclined at aberration angle σ and also grows at rate c as given by (35) with x′=u∙t′ .

Both the longitudinal parameter ρ for hyperbolic geometry and the transverse σ for

circular geometry are useful and insightful. Applications to wave guide and cavity Relawavity

and quantum wave mechanics follow a detailed survey of ρ and σ geometric relations.
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E. Unifying circular-hyperbolic relativistic geometry

Fig.13 begins to relate hyperbolic and circular geometry using Thales structure in Fig.10.

Elementary sine (s lope of incline), tangent, and secant geometry of (sin σ,tan σ, sec σ) in

Fig.13a for a 3
5
:4
5
:5
5

triangle shows tan σ is length of tangents subtending secants sec σ. It is

useful to define angle σ=37◦=0.6435radian by total sector area σ=0.6435m2 as well as arc

length of unit circle. Angle σ is relative to horizontal x -axis with vertical sine y-component.

FIG. 13. (a) Elementary sine, tangent, and secant geometry (b) Hyperbolic equivalents are equal.
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Hyperbolic functions in Fig.13b use a sector area ρ defined to make sinh ρ=tan σ and

tanh ρ=sin σ. A unit-hyperbola subtends area ρ/2 so its branch-pair subtends ρ.

ρ/2 =
1

2
cosh ρ sinh ρ −

∫
d(cosh ρ) sinh ρ (36)

Each circular function fc(σ) of angle σ has a ‘country-cousin’ hyper-function gh(ρ)=fc(σ)

of rapidity ρ in adjacent column of Fig.14 (upper left). Its ‘cousin-pair’ fh(ρ)=gc(σ) lies in

an adjacent row. The 1st (sin
tan)-pair tan σ=sinh ρ and sin σ=tanh ρ of lines P ′C ′ and

SA in Fig.13 is listed first in Fig.14. The 2nd (sec
cos)-pair is lineCP ′ (Einstein t-dilation

sec σ=cosh ρ) and lineA′S (Lorentz x -contraction cos σ=sechρ. ) (Recall Fig.12.) Slope of

hyperbola tangent-line-QAP ′ is cscσ=coth ρ and its y-intercept OQ=cot σ=cschρ is the 3rd

(cot
csc)-pair type listed. Fig.14 shows other objects described by gh(ρ)=fc(σ) functions.

Fig.13a-b sets up ruler-compass construction of gh(ρ)=fc(σ). First, a compass-swing

about center point C ′ at (x=sec σ=cosh ρ) of vertical (tan σ=sinh ρ)-radius C ′S thru C ′P ′

starts the g-circle companion to Thales p-circle. Arc SP ′ is one of three arcs in Fig.14 that

FIG. 14. Hyperbolic functions of rapidity ρ related to circular stellar-aberration σ-functions
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subtend stellar angle σ. Arc PS of b-circle (radius B=1) about origin O has arc length σ.

p-circle arc PP ′ has radius sec σ=cosh ρ around center point C at (y=tan σ=sinh ρ), and

g-circle arc SP ′ has radius tan σ = sinh ρ around center point C ′ at (x=secσ=cosh ρ). The

intersection S of b-and-g-circles defines tangent-normal lines C ′SY and OSS ′ inclined by

stellar-aberration angle σ to the main axis OC ′. This is also shown in Fig.15. There Fig.14

has been reflected through its [11]-diagonal so x -axial PP ′ hyperbola and p-circle are on

y-or-υ-axes as in conventional υ(κ) dispersion plots such as Fig.10b.

Prime phase point P ′ in Fig.15 at (υ, cκ)=B(sinh ρ, cosh ρ) is on Alice’s υA-axis OP ′ of

slope coth ρ . P ′ is a hyperbolic tangent point for line LP ′R of slope tanh ρ = LL′

L′R
with

axis intercepts QO=Bcschρ and AO=Bsechρ. (P ′Q parallels G′ line of group cκA-axis.)

Prime stellar point S at (υ, cκ)=B(sechρ, tanh ρ) defines stellar ray OSk of slope cschρ. S

is b-circle tangent point for line C ′SY having slope − sinh ρ=−A′S
AS

with axis intercepts of

C ′O=B cosh ρ and OY =Bcothρ. All ρ-functions are related to σ-functions in Table II.

FIG. 15. Bob-(υ′, cκ′)-view of Alice-(υA, cκA) tangent geometry and (inset) Occam-Sword pattern.
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time bDoppler
RED

c
Vphase

κphase

κA

τphase

τA

υphase

υA

λphase

λA

Vphase

c bDoppler
BLUE

space 1

bDoppler
BLUE

Vgroup

c
υgroup

υA

λgroup

λA

κgroup

κA

τgroup

τA

c
Vgroup

1

bDoppler
RED

rapidity
ρ e−ρ tanh ρ sinh ρ sech ρ cosh ρ cschρ coth ρ e+ρ

stellar ∀
angle σ 1/e+ρ sin σ tan σ cos σ sec σ cot σ cscσ 1/e−ρ

β ≡ u
c

√
1−β
1+β

β
1

1√
β−2−1

√
1−β2

1
1√

1−β2

√
β−2−1

1
1
β

√
1+β
1−β

value for
β=3/5

1
2 =0.5 3

5 =0.6 3
4 =0.75 4

5 =0.80 5
4 =1.25 4

3 =1.33 5
3 =1.67 2

1 =2.0

TABLE II. Hyperbolic and circular function pairing. Final row has values for u
c = 3

5 .

Table II relates ‘cousin-pairs’ of functions fh(ρ) based on p-hyperbola and fc(σ) based

on b-circle. b-circle tangent intercept B coth ρ=B csc σ at bottom of Fig.15 is paired with p-

hyperbola tangent intercept Bcschρ=B cot σ in 3rd-column-pair of Table II relating, respec-

tively, phase velocity Vphase and wavelength λphase. Just above that in Fig.15 is b-circle tan-

gent slope −B sinh ρ=−B tan σ paired with p-hyperbola tangent slope Btanhρ=B sin σ in

1st-column-pair relating, respectively, group velocity Vgroup and frequency υgroup (1st ‘cousin-

pair’ of Fig.13). Mid-Fig.15 has coordinate pair B sech ρ=B cos σ and B cosh ρ=B sec ρ of

tangent intercepts OA and OC ′ related to τphase=λgroup and υphase=κgroup , respectively, by

2nd-column-pair of Table II. These are the Lorentz-contraction and Einstein dilation factors

and the only ‘cousin-pair’ to be mutually reciprocal. (The value of each Table II column is

reciprocal to the value of its mirror-image column.) Values rise left-to-right for u
c
=3

5
, but

trade on the way to high-speed limits u
c
→±1, σ→±π

2
, or ρ→±∞. (See Fig.21 ahead.)

Applications that follow use a pattern-recognition aid labeled Occam’s Sword in Fig.15(inset).

It focuses mostly on geometry of (sin
tan) and (cos
sec) columns of Table II. (The

(cot
csc) intercepts are outliers for low to moderate u
c

values.) The sword has a staircase

whose steps belong to a (cosh ρ)n-geometric series: (B cosh ρ,B,B sechρ, ...). Multiplying

that series by tanh ρ gives line (C ′P ′=B sinh ρ), then (PB=B tanh ρ), and lowest step

(AB′=B tanhρ sechρ). Steps subtend a triple-cross-X -point of tangents C ′XS, AXP ′, and

b-baseline PXB. Extensions of the tangents have κ-axis (cot
csc)-intercepts on either side

of the sword in Fig.15. The sword’s leading k-edge defines wavevectors for waveguides and

for free-electron lasers that make them easier to analyze and visualise.
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FIG. 16. TE-Waveguide and Occam sword geometry for stellar angle σ=30◦ and σ=60◦ .

1. TE-Waveguide geometry

Consider a sum of plane waves with wave-vectors k(+)=(k sin σ, +k cos σ)=(kx, ky) and

k(−)=(k sin σ,−k cos σ)=(kx,−ky) at declination angles ±σ relative to the y-axis in Fig.16.

Ez(r, t)=ei(k(+)∙r−ω∙t)+ei(k(−)∙r−ω∙t)=ei(kx∙x−ω∙t)
[
eiky ∙y+e−iky ∙y

]
(37)

The result in xy-plane is a Transverse-Electric-(TE)-mode E-field with plane-normal z-

component Ez that vanishes on metallic floor and ceiling (y=±Y
2
) of the waveguide.

Ez(r, t)=ei(k∙x sin σ−ω∙t)2cos(ky cos σ)|y= Y
2
=0 implies: k

Y

2
cos σ = n

π

2
(38)

Fig.16 shows two examples of lowest (n=1) guide modes with Occam-sword geometry. Pro-

jection Ycos σ of floor-to-ceiling Y onto k(±)-vectors is shown by right triangles at guide ends

(or Eq.38) to be π
k
=λ

2
, that is 1

2
-wave λ

2
. Waveguide angle σ and dispersion function follows.

υ=cκ=c
√

κ2
x+κ2

y =c
√

κ2
x+κ2cos2 σ=

√

c2κ2
x+(

c

2Y
)2 =

√
c2κ2

x+υ2
A (39)

Surprising insight into Fig.16 waves results if we note it is what Bob sees if Alice and Carla

beam their υA= 600 THz 2-CW across Bob’s x -line of motion and not along it as in Fig.6.

Bob can Doppler shift his wave-number κx to zero and reduce frequency υ in (39) to υ=υA.

34



Then Bob will be co-moving with Alice and Carla and see Alice’s k(+)-vector at zero

aberration angle (σ=0) if she is below Fig.16 beaming straight up the y-axis. Meanwhile,

Carla’s k(−)-vector points straight down. For σ=0, the wave given by (38) is a y-standing

wave of wavelength λA=2Y between Alice and Carla and not just a half-wave section (Y =λA

2
)

modeling this xy-wave guide. Ideally Alice and Carla’s laser mode viewed along y looks like

their x -standing wave in Fig.5 and appears the same over its x -beam-width by having zero

x -wave number (κx=κA sin σ=0). Zero-κx or infinite x -wavelength (λx =λA csc σ=∞) is a

flat-line wave parallel to the x -axis oscillating at Alice’s (or Carla’s) frequency υA.

This x -flat wave is better known in wave guide theory as a cut-off-frequency mode where

the cut-off-frequency υCUTOFF = c
2Y

=υA is the lower bound to frequency that can enter a

waveguide of width Y. In Fig.16b it corresponds to dispersion function bottom point B (or

P) that is well separated from its phase point P ′ in the upper left of the figure. That

separation OC=B sinh ρ =B tan σ gives a mode in Fig.16a that is more robust than the

near-cutoff mode in Fig.16c having less OC and more nearly vertical k-vector in Fig.16d.

The tan σ-column of Table II represents the phase wave-number ratio
κphase

κA
of Bob’s

κphase to κA that Alice and Carla claim is their output. Later it is shown that OC =κx is

mode wave momentum while vertical interval CP ′ = B cosh ρ = B sec σ =υphase or phase

frequency ratio
υphase

υA
in Table II correspond to mode carrier wave energy. These determine

wave robustness and their ratio
υphase

κphase
=

λphase

τphase
is the phase velocity Vphase .

The importance of waveguide phase or carrier behavior is matched by that of group or

signal wave dynamics. Each has six of twelve variables listed in Table II. Matching phase

velocity Vphase/c=coth ρ=csc σ is reciprocal to Vgroup/c=tanh ρ=sin σ. Both are indicated

by arrow lengths at the base of Occam Sword plots in Fig.16b or Fig.16d. The latter has

Vgroup much lower than Vphase while the former has both closer to light speed c.

Group velocity Vgroup equals projection c sin σ of ck̂-vector onto the waveguide x -axis.

One may imagine a signal bouncing off guide floor or ceiling riding on the k-vectors normal

to phase wavefronts moving at speed c along k(+) or k(−) in Fig.16a or Fig.16c. So a signal

wastes time bouncing around the guide x -axis while the phase crests proceed via a greater

c csc σ. A signal may be imagined as an extra wrinkle in symmetry of identical wave crests

due to lately added Fourier components that are limited to the envelope’s group velocity

while the established underlying phase maintains Evenson’s c-lockstep. (υ, cκx) per-space-

time geometry of Fig.16b or d determines that of space-space (x, y) in Fig.16a or c.
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FIG. 17. Spherical wave pair. (a)Alice-Carla source frame. (b) Bob-frame (dilated by 5
4)

2. Spherical wave geometry

A pair of synchronized spherical waves are shown in Fig.17a being emitted by laser

lighthouses separated by 10 light-seconds. The upper lighthouse C belonging to Carla

emits a green blink every second in response to each red blink wave arriving from the lower

lighthouse A occupied by Alice and vice versa so A and C blink together with a 10 second

delay between each stimulus-response pair. The waves along line AC collide head-on and

would form a standing wave if they were CW (Continuous Waves) like previous examples

in Fig.5 through Fig.8. Here red and green PW (Pulse Waves) are imagined merging and

marching lock-step along line CP just above line AC. Fig.17a shows green PW of radius 5c
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that is 5 seconds old at t=0. It is moving upward through its tangent point k shared with

its stimulus wave, a red PW of radius 15c that is 15 seconds old.

Fig.17b shows Bob’s view of the Alice-Carla waves from his frame that is approaching

theirs along the x-axis at velocity u =−3c/5. Bob must see each blink wave expand at

rate c as a perfect circle around each point of emission as the emitting laser moves on at

velocity u′= +3c/5 toward Bob. Bob sees top and bottom points on each circular wave

move vertically at rate ±c, but each successive emission point advances to position x′=u∙t′

where Alice-Carla time interval Δt is seen dilated to Δt′=Δt cosh ρ= 5
4
Δt by Bob. Six such

emission points are labeled by Alice-Carla emission times t=(-5,-4,-3,-2,-1,0) along the upper

(green) laser path and t=(-15,...,-6,-5,-4,-3,-2,-1,0) along the lower (red) laser path. Dilation

factor 5
4

increases the size of the light circles (spheres) by exactly that factor in Bob’s frame.

Light wave circles do not translate in any frame. Their centers are fixed as radii vary

at a uniform c-rate only. Blink circle geometry dilates by Einstein time factor coshρ of

(28). However, transverse-to-motion y-distance between Alice and Carla’s lighthouses for

Bob does not vary with x-rapidity ρx=ρ. Placing dilated circles in y-fixed space involves

1st-order asimultaneity effects including stellar σ-rotation of their k′-vectors.

Top points of wave circles in Fig.17b move to the left by 5u-units as they rise by 5c-

units. Meanwhile, the k′-point corresponding to top tangent point k in Fig.17a follows a

stellar angle path in Bob’s view of Fig.17b by moving to the right by 5u-units but rising

by only 4c-units. k′-points lie on a line tilting into source direction of travel by angle

σ=sin−1 u
c
. Bob’s circle-top points lie on a line tilting away from normal to source velocity

by slightly smaller angle ν=tan−1u
c
. Difference σ-ν between these angles (angular Occam

sword-width) decreases with u
c

as all three parameters σ, ν, and ρ approach u
c
.

The rectangle OCk′P ′ in Fig.17b has the geometry of the Occam Sword rectangle in

Fig.15(inset) and Fig.16d. The k-line defines the k-vector normal to the red and green

wavefronts at each mutual tangent point and that direction tilts by stellar angle σ.

3. Doppler geometry of spectral ellipse in (x,y) space

Space-space geometry of two circular PW sources in Fig.17 is developed further in Fig.18

for a single CW source. The wave crests are bounded by a circular crest of radius c that

supports an Occam sword pattern with the same proportions as the one drawn in the upper
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FIG. 18. Geometry of spectral ellipse in Bob’s space-space (x′, y′) view of Alice source at u
c = 3

5 .

half of Fig.17b with an added hyperbola and ellipse. The hyperbola is a proportional copy

of the dispersion hyperbola seen in previous Fig.15 and Fig.16d. The ellipse will serve

to quantify Doppler wavelength as a function of wave direction around its focal point F.

Dimensions in Fig.18 are velocities multiplied by an Alice-Carla time unit as in Fig.17b.

Here a unit Alice time interval Δt=1 is dilated to Δt′=cosh ρ= 1√
1−β2

=5
4

for Bob assuming

β≡u
c
=3

5
. Key dimensions are labeled by functions of u and c that are to be dilated by cosh ρ

in the box at the base of Fig.18 and thereby converted to (x′, y′)-distance in Bob’s light-

second units. This shows a remarkable connection of space-space geometry and algebra to

that of the frequency-wavenumber (υ, cκ)-per-time-per-space diagrams in Fig.15.
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Doppler frequency blue-shift doubling e+ρ=2 of frequency in Fig.15 is connected to halving

e−ρ=1
2

of wavelength in Fig.18 corresponding to the segment Fa=c−u whose coshρ dilation

is exactly ce−ρ. A small square with diagonal OL has side ce−ρ that is a lower bound for the

g-circle and the p-circle in either figure. Opposite to that is a large square with diagonal OR

and side dimension ce+ρ serving as upper bound for p and g circles. In Fig.18, dimension

ce+ρ corresponds to a coshρ dilation of segment a′F′F=c+u.

The spectral ellipse aba′ and its tangent-line T′TT′′ in Fig.18 are two features not present

in Fig.15. Ellipse major radius OFa=c dilates to c coshρ, that equals the radius FTkP′ of

the p-circle. Ellipse minor radius b=OP=FTk =
√

c2−u2 dilates to b coshρ=c and is equal

to the major radius of the dispersion hyperbola that is its bottom (Base=B) in Fig.15.

Focal length OF=u=c tanhρ of the ellipse dilates to u coshρ=c sinhρ. This corresponds

to the hyperbola wavenumber cκ=B sinhρ in Fig.15 and segment Pk=u in Fig.18. It con-

nects to ellipse tangent point T and vertical latus-radius TF=c
√

1−u2

c2
that dilates to c sechρ.

Ellipse tangent-line T′TT′′ has slope -u
c

normal to the positive phase velocity line having

slope c
u
, quite like the stellar k-ray that is normal to its wave front tangents. (Slope values

are invariant to uniform dilation.) As noted before, sword pattern steps form geometric

series in coshnρ. In Fig.18 the 4th (top) y-intercept step c√
1−u2

c2

=c coshρ dilates to c cosh2ρ.

4. Doppler geometry of spectral ellipse in wavenumber per-space (κx, κy)

Fig.19 returns to frequency and wavenumber description of Alice’s lasers now assuming

each may be aimed at an arbitrary angle θ relative to the y-axis normal to the x-axial line of

relative Alice-Bob motion as they approach each other. In Fig.19a four k-vectors in ±y and

±x directions are labeled k0, k180, k+90 and k−90, respectively. Fig.19b diagrams extreme

Doppler effects seen by Bob for a rapid approach u
c
=

√
3

2
previously treated in the waveguide

example of Fig16a whose geometry in Fig16b has a similar “sword”(P ′kO matches P ′k′
0F

′)

and the same stellar aberration angle σ=60◦. Fig.19b shows a complete tangent line going

between upper right hand corner R of blue-Doppler square (with side Rk′
−90) and upper

left hand corner L of the tiny red-Doppler square (with side Lk′
+90). This line is tangent

to the dispersion hyperbola at P ′ and to the Doppler ellipse just above its prime focus F ′.

The Doppler blue-shift for σ=60◦ is eρ=coshρ+sinhρ= sec σ+tan σ= 2+
√

3 and reciprocal

red-shift is e−ρ=2−
√

3. The rapidity is a quite rapid ρ=ρx=1.317.
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FIG. 19. Doppler spectral ellipse geometry in wavenumber (κx,κy)-per-space

It is helpful to return to the original algebraic ELT formulas of (14) or (25) for comparison.









υ′(θ)

cκ′
x(θ)

cκ′
y(θ)

cκ′
z(θ)










=










cosh ρ sinh ρ ∙ ∙

sinh ρ cosh ρ ∙ ∙

∙ ∙ 1 ∙

∙ ∙ ∙ 1



















υ0

−υ0 sin θ

υ0 cos θ

0










= υ0










cosh ρ − sinh ρ sin θ

sinh ρ − cosh ρ sin θ

cos θ

0










(40)

This extension of (25) has a unit sub-matrix for (y,z)-components normal to x-boost axis.
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If Alice points her laser at Bob (θ =−π
2
) the ELT reduces to a blue-Doppler eρ shift for him.










υ′(−π/2)

cκ′
x(−π/2)

cκ′
y(−π/2)

cκ′
z(−π/2)










=










cosh ρ sinh ρ ∙ ∙

sinh ρ cosh ρ ∙ ∙

∙ ∙ 1 ∙

∙ ∙ ∙ 1



















υ0

υ0

0

0










= υ0










cosh ρ + sinh ρ

sinh ρ + cosh ρ

0

0










= υ0










eρ

eρ

0

0










(41)

He sees the monster k′
−90-vector along positive x-axis in Fig.19b. For (θ=+π

2
) there is a

tiny k′
+90-vector pointing the other way. Given this we ask: Can Bob see a minus-k beam?










υ′(π/2)

cκ′
x(π/2)

cκ′
y(π/2)

cκ′
z(π/2)










=










cosh ρ sinh ρ ∙ ∙

sinh ρ cosh ρ ∙ ∙

∙ ∙ 1 ∙

∙ ∙ ∙ 1



















υ0

υ0

0

0










= υ0










cosh ρ − sinh ρ

sinh ρ − cosh ρ

0

0










= υ0










e−ρ

−e−ρ

0

0










(42)

This question hi-lights differences between (k, ω)-space and space-time that exist despite

the remarkable geometric similarity shared, for example, between Fig.18 and Fig.19. A pure

optical k-wave imagined in Fig.19 would fill the entire universe uniformly and thus might

be seen by Bob no matter where he is located or going. More practical wave states such

as spherical waves in Fig.17 and Fig.18 are quite complicated combinations of k-waves that

have singularities or other features to pin down space-time geography. They also have non-

uniform amplitudes varying with time and location and this limits their range and duration.

Another difference between Fig.18 and Fig.19 is that the latter does not involve t-dilation

so critical to the former. Instead, the (y,z)-components of any k transverse to the x-boost

axis are identical for Alice and Bob while the k′
x-component and k′-length or frequency υ′

vary with rapidity ρ or aberration angle σ and Alice-angle θ according to ELT (40).

υ′(θ) = υ0(cosh ρx − sinh ρx sin θ) = υ0(sec σ − tan σ sin θ) (43)

cκ′
x(θ) = υ0(sinh ρx − cosh ρx sin θ) = υ0(tan σ − sec σ sin θ) (44)

Alice and Bob agree on y-component cκy(θ)=cκ′
y(θ)=cos θ of each k-vector and interval

PK in Fig.19b is an example of (44) bending cκx from leaning backwards by θ=45◦ to cκ′
x

pointing toward positive x-axis. Any k not on x-axis follows the ellipse toward +x-direction.

The k-vector starting way back at θ= 60◦ is made vertical by this relativistic aberration.

The elliptic protractor solves Alice-Bob stellar aberration relations forwards or backwards.
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Each wavevector k or ~κ=k/2π has hypotenuse length |κ| that is related to frequency

υ=c|κ| as given by (43). The k-vector false-coloring sketched in Fig.19 shades longer k-

vectors toward the blue or violet for the longest k′
−90 and shorter ones toward the red

color of the shortest case k′
+90 . At larger values of Alice-Bob relative velocity most of

the Doppler shifted frequencies must fall outside of the visible spectrum and are plotted

as black (or invisible) outside of that narrower visible rainbow. This is done in Fig.20 for

examples that begin with Alice using only her favorite color υ0=600THz green for a uniform

array of k-directions that Bob sees Doppler-shortened or lengthened while being rotated

into “headlight” directions according to (40). This provides a revealing lab-based picture of

radiation of atoms accelerated in free-electron lasers and related experiments in high energy

spectroscopy at SLAC.

FIG. 20. Doppler aberration (a) u
c = 1

3 . (b) u
c = 3

4 .
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As relative velocity u
c

or rapidity ρ grows, so do most of the eight wave-ratio variables listed

in Table II with some approaching infinity while others approach zero. Fig.21 shows a plot

of those eight quantities versus group velocity u
c
=Vgroup

c
with their values for u

c
=3

5
appearing

mid-plot in the order listed in Table II. There near u
c
=3

5
=0.6, function pair cschρ and coshρ

and pair sechρ and sinhρ are close to their respective crossing points one above the other on

the vertical line u
c
=G− where G−=

√
5−1
2

=0.618... is a Golden Mean. The sech-sinh pair cross

at the Golden Root
√

G−=0.7862... and csch-cosh cross at inverse root
√

G+= 1√
G−

=1.272...

of G+=
√

5+1
2

=1.618... The cschρ and tanhρ pair cross at (u
c
=
√

G−,y=
√

G−). The sinh-coth

pair cross at (u
c
=
√

G−,y=
√

G+). Between “golden” intersections are three crossing points

on the vertical line u
c
=x= 1√

2
:sech-tanh at y= 1√

2
, csch-sinh at y=1, and cosh-coth at y=

√
2.

Each crossing in Fig.21 corresponds to a singularly symmetric geometry in Fig.15 .

FIG. 21. Plot of Table II values versus group velocity u
c listed explicitly for u

c =3
5 .
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V. BASIC RELATIVISTIC QUANTUM MECHANICS

In Sec.IV paired Continuous Wave (2-CW) properties are derived by optical interference

of a left-right pair of single Continuous plane Waves (1-CW) each labeled by frequency-

wavevector 2π(υL, cκL)=(ωL, ckL) and 2π(υR, cκR)=(ωR, ckR), respectively. 2-CW prop-

erties such as group velocity υR−υL

υR+υL
c,(29), invariant frequency

√
υL∙υR ,(30), a Minkowski

coordinate frame (Fig.5c or Fig.6c) are things that lie beyond the reach of a single 1-

CW. A 1-CW by itself just obeys Evenson’s axiom that fixes its phase velocity to exactly

c=2.99792458∙108m/s∼= 3∙108m/s. This pins its internal phasor clocks to a standstill as

noted in discussion of 300THz CW example in Fig.4 following equation (10).

Real world occupants such as humans must regard c as mortally unattainable velocity.

An intrepid photon chaser (Wile E. Coyote?) going at ever increasing rate ρ in pursuit of a

1-CW will not see light’s speed reduce at all but will observe its frequency and amplitude

dying exponentially according to Doppler-red factor e−ρ . Thus a 1-CW disappears without

revealing any sign of a 1-CW rest-frame. Neither will this same chaser see a c change by

attempting to pursue a 1-CW upstream. Again, rest frame search is futile. (But, this time

it may be the chaser who dies exponentially, burned by the e+ρ blue-shift factor.)

All this leaves the 1-CW, a mythical lone Fourier component ψ1=ak1,ω1e
i(k1•r−ω1t), outside

our mortal world where real things have locations that change with more-or-less well defined

velocities. One might ask, “What is the least that might lend mortality to a 1CW or give it

a frame of reference in the classical world?”

The answer is a second 1-CW ψ2=ak2,ω2e
i(k2•r−ω2t)! But, ψ2 must differ from ψ1 in at

least one way: wave vector direction k̂2=
k2

|k2|
of ψ2 cannot equal k̂1=

k1

|k1| of ψ1 and preferably

should be opposite. (k̂2=-k̂1) To acquire solid mortal credentials requires head-on interfer-

ence to make the 2-CW described first by equation (11) that leads directly to Minkowski

wave coordinates in Fig.6c, phase P′ and group G′ base vector transformations (14-15),

Doppler-Vgroup relations (18), and shows Einstein-Lorentz transformation (ELT) matrices

for (x, ct)-space-time (22) are equal to those for Fourier (ck, ω)-per-space-time in (25). It

turns out that 2-CW interference endows other mortal properties such as classical mass

and relativistic mechanics of energy-momentum that characterize a quantum matter wave.

Such endowment uses phase coordinates of frequency ωphase =2πυphase and wave-vector or

wave-number kphase=2πκphase of the P-hyperbola listed in Table II, Fig.10, and Fig.15.
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A. Basic wave mechanics of matter

Since the last century, fundamental developments of quantum mechanics have relied on

concepts from advanced classical mechanics of Lagrange, Hamilton, Legendre, Jacobi, and

Poincare that were developed mostly in the preceding (19 th) century. The latter contains a

formidable web of formalism using ecclesiastical terms such as canonical that once implied

higher levels of truth, but for modern physics students, they mean not so much.

Below is a simpler approach that connects wave geometry of Sec.IV to 16 th through 18th

century mechanics of Galileo, Kepler, and Newton and then derives mechanics fundamentals

for the 20th and 21st centuries. It also clarifies some 19th century concepts that are often

explained poorly or not at all, including Legendre contact transformations, canonical mo-

mentum, Poincare invariant action, and Hamilton-Jacobi equations. Understanding of these

difficult classical ideas and connections is helped by wave geometry.

2-CW geometry of Fig.15 has hyperbolic coordinates of phase frequency υphase =B coshρ

and wave number cκphase=B sinhρ with slope equal to group velocity Vgroup

c
= u

c
= tanhρ. Each

depends on rapidity ρ that approaches u
c

for Galilean-Newtonian speeds (u�c).

υphase = B cosh ρ ≈ B +
1

2
Bρ2 (for u � c)

cκphase = B sinh ρ ≈ Bρ (for u � c)

u

c
= tanh ρ ≈ ρ (for u � c)

(45)

At low speeds υphase and κphase are simple functions u2 and u of group velocity u.

υphase ≈ B +
1

2
[B/c2]u2 ⇐ for (u � c) ⇒ κphase ≈ [B/c2] u (46)

Recall Newtonian energy E = const.+1
2
Mu2 and Galilean momentum p = Mu. A single

scale factor h=Mc2/B, relates both (υ, cκ) wave coordinates to classical E and p formulas.

hυphase ≈ Mc2 +
1

2
Mu2 ⇐ for (u � c) ⇒ hκphase ≈ M u (47)

One may ask, “Is this just a coincidence?” Also, “What is that constant (const.= hB=Mc2)?”

The answer to the second question involves the base or bottom value B=υA of Alice’s

frequency hyperbola. It is also Bob’s bottom due to hyperbola invariance. The constant

const. = hB = hυA = Mc2 (48)
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may be the most famous formula in physics. Here it is Einstein’s rest-mass-energy equation.

It is an add-on to Newton’s kinetic energy 1
2
Mu2 that is perhaps the second most famous

physics formula. This add-on does not contradict Newton’s result. Physical effects depend

only on difference or change of energy so any constant add-on has no observable effect.

The question of false coincidence criticizes (47) for Galilean-Newtonian formulas valid

only at low velocity (u�c) and low ρ. The approximate υphase and κphase in (47) need to be

replaced by Table II formulas υphase=B coshρ and cκphase=B sinh ρ that hold for all ρ.

E = hυphase = Mc2 cosh ρ ⇐ for all ρ ⇒ p = hκphase = Mc sinh ρ

=
Mc2

√
1 − u2

c2

⇐ for −c<u<c ⇒ =
Mu

√
1 − u2

c2

(49)

Here the old-fashioned u
c
-form for coshρ in Table II gives Einstein’s 1905 form for exact

total energy E=hυphase. Sixteen years later, DeBroglie’s 1921 formula p=hκphase for wave

momentum appears. The u
c
-form for Mc sinhρ derives relativistic momentum p similarly.

Underlying (49) is physics of “scale factor” h or the Planck constant h=6.62607∙10−34J ∙s

that appears in his cavity energy axiom EN=hNυ. Thus (49) gives just the lowest quantum

level (N=1 ) of Planck’s axiom. (Modern form EN=}Nω in Sec.II has angular frequency

ω=2πυ and angular }=1.05∙10−34J ∙s.) A quick-fix replaces h with hN , but underlying

quantum oscillator theory of electromagnetic cavity waves still needs to be discussed.

So far, the axioms behind (49) are just Evenson’s (All colors go c.) discussed after Fig.2

and a time reversal axiom or Doppler inversion symmetry (r= 1
b
) following Fig.3. These

involve space, time, frequency and phase factors of plane light waves that are sufficient to

develop the special relativity theory. But this phase approach has so far ignored amplitude

factor A of a light wave ψ=Aei(k•r−ωt). While phase factor ei(kr−ωt) describes the quality

aspects of the light, the amplitude factor A describes the quantity of light, or more to the

point, an average number N of quanta or photons in the wave that is related to the N factor

of Planck’s axiom. Raising N raises overall phase frequency Nυphase and in proportion, both

total energy hNυphase and total wave mass MN=hNυphase/c
2.

The logical efficiency of optical axioms leading to (49) sheds some light on the three

of the most logically opaque concepts of physics, namely energy, momentum and mass by

expressing them as frequency υ (inverse time τ) and wavenumber κ (inverse length λ).

Perhaps, the terms energy and momentum will someday go the way of phlogiston!
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1. What is energy?

Once I asked a professor lecturing on energy, “What is Energy?” He replied, “It measures

ability to do Work.” So, I asked, “What is Work?” He replied, “Well, it’s Energy, of course!”

Probably, he would give the same circular logic if asked about momentum, another sine

qua non of basic physics. A favorite flippant response to E and p questions is that momentum

is the “Bang” and energy is the $Buck$ that pays for it. ($1.00=10kWHr is close to national

average.) This satisfies many who know the (unfortunate) American expression “Get more

bang for your buck!” particularly if it is around the 4 th of July.

Wave energy and momentum results (49) defeat such circular logic by showing how energy

E is proportional to temporal frequency (υphase waves per second) and momentum pα is

proportional spatial frequency (κphase waves per meter in direction α). One should note the

ratio of momentum p and energy E in (49) is cp
E

= ck
ω

=u
c

for any scale-factor h (or hN).

The answer in (49) for wave energy inside Alice’s laser cavity is a product of her tick-

rate υphase =υA =600THz with scale factor h (actually hN) and Einstein dilation factor

coshρ that is cosh 0=1 for her and coshρ=5
4

for Bob in Fig.9a. There Bob is complain-

ing about her 1- 4
5
=20% less wavelength λgroup=(1

2
μm)sechρ=(1

2
4
5
μm) instead of compli-

menting her for 5
4
-1=25% more wave energy. (When you can’t say something nice...)

Also, Bob fails to note her considerable increase of momentum from zero (sinh 0=0) to

p=hNκphase=hNκA sinh ρ=hN υA

c
3
4

. (He could be excused for overlooking such a tiny mo-

mentum. It is over 1
c
-times smaller than the energy value E=hNυAcosh ρ=hNυA

5
4

that he

records for her wave.)

A most remarkable thing about (energy-momentum)∝(υphase,κphase) relations (49) (now

with hN in for h) and the Alice-Bob story is that (49) applies not just to Alice’s light

wave but also to its laser cavity frame. (Recall discussion around Fig.9.) In fact any

mass M including Alice and Bob themselves is subject to the claim that it has an internal

“heartbeat” frequency υphase=Mc2/Nh that is incredibly fast due to the c2-factor and tiny

Planck-h divisor. Also, Alice’s light wave with υphase=υA actually has a mass MA=NhυA/c2

that is incredibly tiny in this case due to the tiny Planck-h factor with the huge c2-divisor.

Such relations in (49) of mass, energy, momentum, and frequency need further clarification.
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2. What’s the matter with energy?

Evenson axioms of optical dispersion and time symmetry imply a 2-CW light geometry

that leads directly to exact mass-energy-momentum and frequency relations (49) with low-

speed approximations (47). A light wave with rest mass and rest energy proportional to a

proper invariant phase frequency υphase=υA= υ′
A is effectively a quantum matter wave that

acquires intrinsic rest mass MAN
=NhυA/c2 due to its phase frequency.

In so doing, concepts of mass or matter lose classical permanence and become fungible.

We define three types of mass Mrest, Mmom, and Meff distinguished by their dependence on

rapidity ρ or velocity u. The first is Mrest=MAN
. The other two approach Mrest at low u.

Einstein rest mass MAN
is invariant to ρ . It labels a hyperbola with bottom base level

EN (ρ=0)=MAN
c2 respected by all observers including Alice and Bob. Each mode A of

Alice’s cavity has a stack of N=1,2,3,... hyperbolas, one for each quantum number N .

E2
N = (hNυA )2 =

(
MAN

c2
)

2cosh2ρ =
(
MAN

c2
)

2(1 + sinh2ρ)

=
(
MAN

c2
)

2 + (cpN)2
(50)

(E,cp)-space hyperbola E2=(Mc2)2+(cp)2 in Fig.22 is a plot of an exact Einstein-Planck

matter wave dispersion(49). The inset is a plot of approximation (47) for low p and u�c .

Properties and pitfalls of this Bohr-Schrodinger approximation are discussed later.

The second type of mass Mmom is momentum-mass defined by ratio p
u

of relativistic

momentum p=Mc sinh ρ from (49) with group velocity u=c tanhρ. Mmom satisfies Galileo’s

old definition p=Mmomu using the newly defined relativistic wave quantities.

p

u
≡ Mmom =

Mrestc

u
sinh ρ = Mrest cosh ρ −−→

u→c
Mreste

ρ/2

=
Mrest√

1 − u2/c2
−−→
u�c

Mrest

(51)

The third type of mass Meff is effective-mass defined by ratio dp
du

of change of momentum

p=Mc sinh ρ from (49) with change of group velocity du=c sech2ρdρ. Meff satisfies Newton’s

old definition F=Meffa using relativistic wave quantities.

F

a
≡ Meff ≡

dp

du
=

dp

dρ

/
du

dρ
= Mrestc cosh ρ/c sech2ρ = Mrestcosh3ρ (52)
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A standard derivation of Meff uses group velocity Vgroup=
dυ
dκ

=u as the independent variable.

F

a
≡ Meff ≡

dp

du
=

hdκ

dVgroup

= h

/
d

dκ

dυ

dκ
= h

/
d2υ

dκ2

= Mrest

/(
1 − u2/c2

)3/2
−−→
u�c

Mrest

(53)

Group velocity and its tangent geometry is a crucial but hidden part of the matter wave

theory. Physicists tend to commit to memory the derivative formula dυ
dκ

=dω
dk

for group velocity

and forget the finite-difference formula Δυ
Δκ

=Δω
Δk

from which it is derived. This is mistaken

since the latter is exact for discrete frequency spectra while the former is ill-defined and may

give wrong results. The wave Minkowski coordinate geometry starts out with half-difference

V ′
group in (17) and (18) in Sec.IV. What follows in Fig.6 through Fig.15 is based entirely

upon the more reliable finite-difference definition Δυ
Δκ

=Δω
Δk

.

Nevertheless, Nature is kind to derivative definition dυ
dκ

as seen in Fig.15. There hyperbolic

tangent slope of line RL with altitude Δυ=υR-υL and base Δκ=κR-κL has a finite-difference

slope Δυ
Δκ

=tanhρ exactly equal to the derivative dυ
dκ

=tanhρ of the hyperbola at tangent point

P′ on phase velocity line OP′. Geometry of Doppler υBLUE=υR and υRED=υL is at play.

FIG. 22. (a) Einstein-Planck energy-momentum dispersion (b) Bohr-Schrodinger approximation
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That slope dυ
dκ

equals Vgroup=u and is the velocity of Alice relative to Bob. It is also

related to the momentum/energy ratio cp
E

=u
c

as noted before.

Vgroup = u =
Δυ

Δκ
=

dυ

dκ
=

dω

dk
=

dE

dp
=

c2p

E
(54)

As slope dυ
dκ

=u of dispersion hyperbola υ(κ) affects velocity u and relations with momen-

tum p, so does curvature d2υ
dκ2 affect acceleration a and its relation to force F or momentum

time rate of change dp
dt

in the effective-mass Meff equations (52) and (53). One is inclined to

regard Meff as a quantum mechanical result since it is a product of Planck constant h with

inverse d2υ
dκ2 , the approximate Radius of Curvature (RoC=1/d2υ

dκ2 ) of dispersion function υ(κ).

Geometry of a dispersion hyperbola υ=υA coshρ is such that its bottom (ρ=0=u) radius of

curvature RoC equals the rest frequency υA=Mrestc
2/h that is labeled as the b-circle radius

B in Fig.15. Hyperbola curvature decreases as ρ increases, and so its RoC and Meff grow

according to (52) in proportion to exponential e3ρ as velocity u approaches c, three times

faster than the eρ for high-ρ growth of momentum mass Mmom in (51).

Since 1-CW dispersion (υ=±cκ) is flat, its RoC and photon effective mass are infinite

(Mγ
eff=∞). This is consistent with the Evenson’s axiom prohibiting c-acceleration. (All

colors always go c.) The other extreme is photon rest mass which is zero (Mγ
rest=0). Between

these extremes, photon momentum-mass Mγ
mom depends on CW color or frequency υ.

(a) γ - rest mass: Mγ
rest = 0,

(b) γ - momentum mass: Mγ
mom =

p

c
=

hκ

c
=

hυ

c2
,

(c) γ - effective mass: Mγ
eff = ∞.

(55)

Newton’s Optics text is famous for his rejection of wave nature of light in favor of a cor-

puscular one. He described interference effects as light’s “fits.” Perhaps, light having three

mass values in (55) would, for Newton, verify its schizophrenic insanity. Also 2-CW 600THz

cavity momentum p averages zero, but each photon adds a tiny mass Mγ
mom.

Mγ
mom =

hυ

c2
= υ(7.4 ∙ 10−51)kg ∙ s = 4.4 ∙ 10−36kg (for: υ = 600THz)

A 1-CW state has zero Mγ
rest, but 1-photon momentum (49) is a non-zero pγ=Mγ

momc .

pγ = hκ =
hυ

c
= υ(2.2 ∙ 10−42)kg ∙ m = 1.3 ∙ 10−27kg ∙ m ∙ s−1 (for: υ = 600THz)

These numbers are so tiny that relativistic or quantum effects go unnoticed for so long. Note

Galileo’s p=MV is exact for light in the form pγ=Mγ
momc. It seems like “Galileo’s Revenge”

and includes exact Galilean addition (5) of rapidity and of phase angular velocity (11).
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B. Field quantization

The continuous classical mechanical world is revealing an underlying ethereal wave-like

quantum mechanical world. There classical quantities such as energy and momentum become

“quantized” as they get restricted to discrete values or “spectra” like key-notes of a piano

or Fraunhofer lines is solar spectra. Quantization occurs when waves bounce around a trap

of some kind where they self-interfere. There results a natural selection of survival-by-the-

fittest waves that fit in the trap with discrete quantum wave-numbers n of undulations.

For light (em fields
∑

Ak,ωei(k•r−ωt)) there are two kinds of quantization. 1st-quantization

is of phase-(k∙r-ωt) variables k and ω . 2nd-quantization is of field amplitudes Ak,ω. Modes

for 1st-quanta n=1,2,3 are sketched above photon energy levels for 2nd-quanta N=1,2,.. in

Fig.23. Each photon level-Nn is drawn as a relativistic hyperbola in a stack for mode-n.

Cavity boundary conditions 1st-quantize classical wave mode variables (ωn, ckn) that have

FIG. 23. 1st quantized cavity wave modes n=1,2,3 and their quantized photon levels Nn=1,2,3..
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discrete numbers n=1,2,3,.. of half-wave anti-nodes fitting a model cavity of length-` as

sketched at the top of Fig.23 with nodes dividing interval ` into exactly n equal sections.

(a) wave vector : kn =
π

λn

= n
π

`
(b) ∠−frequency : ωn = ckn = cn

π

`
(56)

2nd-quantization of cavity mode kn (or k in 3D cavity) uses normal coordinates Akn=Ak

satisfying Maxwell equations that behave as harmonic oscillators. A 2-CW-standing-wave

vector potential amplitude Ak ≡ A =e1 |A| sin (k∙r−ωt+φ) has Maxwell E-and-B-fields.

E = −
∂A

∂t
B = ∇× A

E = e1E0 cos (k∙r−ωt+φ) B = (k × e1) B0 cos (k∙r−ωt+φ)

(57)

Two unit polarization directions e1 of E and e2=k×e1
1
k

of B share equal energy.(Let:k= ω
c
)

(a) E0e1 = |A| ω e1 (b) B0 (k × e1) = |A| ke2 (58)

Maxwell equations gives orthonormal unit vectors {e1,e2,ek} and average field energy 〈U〉V

in a volume V containing the 2-CW vector potential amplitude: A=e1 |A| sin (k∙r−ωt+φ).

〈U〉V =

〈
ε0

2
E∙E +

1

2μ0

B∙B

〉

V =V

(
ε0

2
|A|2ω2+

|A|2

2μ0

k2

)
〈
cos2 (k∙r − ωt+φ)

〉

=
ε0

2
ω2|A|2V =

1

2μ0

k2|A|2V given average:
〈
cos2 (k ∙ r − ωt + φ)

〉
=

1

2

(59)

Constants ε0=8.854∙10−7 Nm2

C2 and μ0=4π10−7 N
A2 have geometric mean c−1=

√
ε0μ0 , an old

and still awe inspiring expression for the speed of light.

Feynman’s approach to field quantization (using Occam’s razor) favors Fourier combina-

tions of 1-CW moving waves ei(kr−ωt) rather the 2-CW standing waves in (57).

A=
∑

k

[
(ak1e1+ ak2e2) ei(k∙r−ωt) + c.c.

]
=
∑

k

2∑

α=1

[
akαeαei(k∙r−ωt)+a∗

kαeαe−i(k∙r−ωt)
]

(60)

The k-sum kα = Nα
2π
`

(Nα=1, 2, . . .∞; α=x, y, z) separates the the 2D polarization base

vectors of (58) belonging to its E and B oscillator dimensions. Fourier amplitudes akα of

1-CW modes in (60) are complex and half the magnitude of the 2-CW amplitude Akα in

(59) since A cos φ=A
2
eiφ + A

2
e−iφ. Setting 〈U〉V in (59) to Planck E=}Nω relates A to N .

〈U〉V = ~Nω =
ε0

2
ω2|A|2V ⇒ |A|=

√
2~N
ε0ωV

⇒ |E|= ω|A|=

√
2~Nω

ε0V
(61)

This would presume all energy to be concentrated into a single quantum level Nkα of a single

cavity mode k and polarization-α . Lasers and coordinate frames in Fig.5 and Fig.6 require

coherent state N -distribution in a single 2-CW mode, and do not work with pure N -states.
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1. Quantum numbering of photons and modes

Building 1-CW Fourier expansions of fields E and B to construct their energies UEV and

UBV from vector potential A in (60) is detailed in Appendix B.

UEV =
∑

kα

ε0V

2

[
2|akα|

2ω2 − a∗
−kαa∗

kαω2e−2iω t − a−kαakαω2e−2iω t
]

UBV =
∑

kα

ε0V

2

[
2|akα|

2ω2 + a∗
−kαa∗

kαω2e−2iω t + a−kαakαω2e−2iω t
] (62)

Cancellation of cross-terms simplifies total energy sum.

UV = (UE + UB) V =
∑

kα

2ε0ω
2|akα|

2V =
∑

kα

2ε0V ω2a∗
kαakα (63)

This may be factored and relabeled into a harmonic oscillator Hamiltonian.

UV =
∑

kα

1
2

[
2ω
√

ε0V
(
aRe
kα − iaIm

kα

)] [
2ω
√

ε0V
(
aRe
kα − iaIm

kα

)]

=
∑

kα

1
2
[ωQkα + iPkα] [ωQkα + iPkα]

=
∑

kα

1
2

(
P 2

kα + ω2Q2
kα

)

(64)

Real and imaginary parts of phasor amplitudes akα are coordinates Qkα and momenta Pkα .

Qkα= 2
√

ε0V aRe
kα =

√
ε0V (akα+a∗

kα) where: akα=aRe
kα+iaIm

kα=
1

2
√

ε0V

(

Qkα+
iPkα

ω

)

Pkα= 2ω
√

ε0V aIm
kα=ω

√
ε0V (akα−a∗

kα)/i and: a∗
kα=aRe

kα−iaIm
kα=

1

2
√

ε0V

(

Qkα−
iPkα

ω

) (65)

Amplitudes akα and a∗
kα become operators of photon destruction akα and creation a†

kα that

find 2D oscillator waves and energy spectrum for each k-mode and each polarization α=x, y.

Ek = ~Ωk = ~(Nk + 1)ωk = ~(Nx,k + Ny,k + 1)ωk (66)

The ground quantum state has zero (Nk=0) photons with zero-point energy }ωk. (Zero

point energy is 1
2
}ωk for each polarization dimension.) There are two energy-degenerate

states having one photon (Nk=1) each with energy Ek=}2ωk, that is, one photon with x-

polarization or else one photon with y-polarization. Similarly, there are three states of two

photons (Nk=2) with energy Ek=}3ωk, that is, (Nx,k,Ny,k)=(2,0), (1,1), or (0,2). A general

Nk-photon energy level Ek=}(Nk+1)ωk has polarization degeneracy of Nk+1.
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FIG. 24. 1st and 2nd quantized harmonic-oscillator cavity waves

A sketch of the first few quantum cavity wave states is given in Fig.24. It is companion

to Fig.23 showing a stack of Nk-labeled energy-level hyperbolas for each cavity mode kn=k.

The quantum numbers N (Number of photons) and n (number of “kinks” or anti-nodes per

cavity dimension `) are invariant to observer rapidity ρ while wave energy (frequency) and

momentum (wave number) vary with observer rapidity as coshρ and sinhρ, respectively.

Newton might be consoled that number N of photons in a box is invariant to speed ρ'u
c

so they act like self-respecting corpuscles without “fits” that he saw waves suffer. However,

photon number N is a wave-based property, a wave kink-count in amplitude (Ax,Ay) space,

just as mode number n of wavenumber kn counts wave kinks in real (x, y, z) space.

2. Quantum wave normalization

Classical variables such as momentum, energy, or fields become operators whose eigen-

values are observed. This is discussed in a following section devoted to Hamiltonian and

Lagrangian mechanics. Here the focus is upon field oscillators whose classical energy (63)

has a form of 2nd-power amplitude-frequency product E=kA2ω2, while quantum eigenvalues

have the Planck form (66) that is only 1st-power in a frequency-quantum-number product

EN=}Nω. Planck may have had some anxious doubts about this.
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This and other issues are resolved by re-examining quantum |E|-amplitude in (61). It

shows that product Nω is proportional to ω2|A|2 in the expression for energy density U .

〈U〉 =
~Nω

V
=

ε0

2
|E|2 =

ε0

2
ω2|A|2 ⇒ |E| = ω |A| =

√
2~Nω

ε0V
(67)

Scaling E by s=
√

V ε0
2}ω gives an N -photon wave Ψ amplitude whose norm is N .

~Ψ =




Ψx

Ψy



 = sE =

√
ε0V

2~ω
E ⇒ ~Ψ∗~Ψ=|Ψx|

2+|Ψy|
2 = N (68)

Having the absolute-square Ψ∗Ψ=|Ψ|2 or norm of a Ψ-wave function equal to the number

N of quanta is a familiar axiom of modern quantum theory. If the wave is a variable

wave-function Ψ(x, y, z) then a volume integral is required to sum up energy density U .

∫∫∫⊙
d(xyz)~Ψ∗~Ψ = N (69)

Elementary quantum theory of a single particle requires unit normalization
∫
d(xyz)Ψ∗Ψ=1.

Poynting flux S=E×B or “photon current” of a plane moving wave (1-CW ψ) also has a

classical 2nd-power expression that reduces to a Planck 1st-power form. Flux S has direction

along k and magnitude S=cU . The quantum number n for S is flux rate: n=cN/V (m−2s−1).

S = cU = cε0|E|2 = ~nω where: n = cN/V (per m2s) (70)

The 1-CW flux rate of photons n per square-meter per second is not invariant to observer

rapidity ρ as is the cavity count of N/V photons per cubic meter of cavity in (61). In-

stead n transforms like frequency ω and suffers the same Doppler factor eρ for an observer

approaching the source or else e−ρ when fleeing the source.

This amounts to a double-whammy for an approaching observer experiencing a Doppler

increase in both quality (color or frequency ω=2πυ) and quantity (of photon hits) and raises

flux impact to 2nd-power (eρ)2. This matches the 2nd-power |E|2 of the E-field and implies

that the E-field amplitude shifts by eρ just like 1-CW wave vector k and frequency ω=c|k|.

Perhaps, this is a lesson from Planck quantum axiom reminding us that the relativistic wave

amplitude is a frequency, too, just like energy and momentum.
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C. Geometry of Hamiltonian and Lagrangian relativity

A 2-CW matter-wave has a rest frame with origin x′=0 and k′=0=kphase where the

invariant phase function Φ=kx-ωt=k′x′-ω′t′ reduces to Φ=0-$τ , a product of its proper or

base frequency B=$=Mc2/} defined by (48) with proper time t′=τ defined by (28). The

(x, t)-differential of phase is reduced as well to a similar negative mass-frequency $-term.

dΦ = kdx − ωdt = 0∙0 −
Mc2

~
dτ ≡ −$dτ (71)

By (28) proper-time interval dτ dilates to ρ-moving frame time interval dt as follows.

dt =
dτ

√
1 − u2

c2

= dτ cosh ρ ⇔ dτ = dt

√

1 −
u2

c2
= dt sechρ (72)

One of the more interesting tales of modern physics is the first meeting between Dirac and

the younger Richard Feynman. Both had been working on aspects of quantum phase and

classical Lagrangian mechanics. Dirac mused about some formulas in one of his papers

that showed similarities between a Lagrangian function and quantum phase. Feynman said

adruptly,“That’s because the Lagrangian is quantum phase!” At the time that was a fairly

radical bit of insight. Below is a geometrical clarification of underlying phase relations.

1. Phase, action, and Lagrangian Hamiltonian functions

Feynman’s observation needs some adjustment for units since Lagrangian L has units of

energy (Joules) while phase Φ is a dimensionless invariant. A quantity S called Action is

quantum phase Φ scaled by Planck’s }= h
2π

=1.05∙10−34Js and is a time integral of L.

S ≡ ~Φ ≡
∫

Ldt where: ~ ≡
h

2π
= 1.05 ∙ 10−34Joule ∙Second (73)

Differentials of action (74), phase (71) and time (72) combine to give expressions for Ldt.

dS ≡ Ldt = ~ dΦ = −Mc2dτ = −Mc2

√

1 −
u2

c2
∙ dt = −Mc2dt sechρ (74)

Clearing ρ-frame time differential dt gives that frame’s Lagrangian by itself.

L = −Mc2

√

1 −
u2

c2
= −Mc2sechρ = −Mc2 cos σ (75)
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Table II supplies identity sechρ=cos σ for L in (75) and tanhρ=sin σ for group velocity u.

u ≡ Vgroup = c tanh ρ = c sin σ (76)

It is conventional that Lagrangian L is explicit function of velocity. This is consistent with

the low-(ρ∼= u
c
) approximate Lagrangian that has the Newtonian KE=1

2
Mu2 term.

L = −Mc2

√

1 −
u2

c2
−−→
u�c

−Mc2 +
1

2
Mu2 + ... (77)

2. Hamiltonian functions, Poincare invariants, and Legendre contact transformation

The invariant phase differential (71) with an }-factor as in (74) is a key relation.

dS ≡ Ldt ≡ ~ dΦ = ~kdx − ~ωdt (78)

Energy E=hυphase=}ω=H and momentum p=hκphase=}k from (49) for N=1 are used.

dS ≡ Ldt ≡ ~ dΦ = pdx − Hdt ⇒ L = p
dx

dt
− H = p∙ẋ − H (79)

Here energy E is identified with Hamiltonian function H. Results include the classical

differential Poincare invariant Ldt=pdx-Hdt and the Legendre transform L=pu-H between

Lagrangian L and Hamiltonian H. Remarkably, L
Mc2

is the negative reciprocal of H
Mc2

.

H = ~ω = Mc2 cosh ρ L = ~Φ̇ = −Mc2sechρ

= Mc2 sec σ = −Mc2 cos σ

=
Mc2

√
1 − u2

c2

= −Mc2

√

1 −
u2

c2

(80)

Except for a (-)sign, H and L use the same co-inverse (cos,sec)-cousin functions (mid-columns

of Table II) as Einstein t-dilation and Lorentz x-contraction, respectively. H (or L) are

explicit functions of momentum p (or velocity u), the 1st cousin (sin,tan) pair in Table II.

cp = ~ck = Mc2 sinh ρ u = Vgroup = c tanh ρ

= Mc2 tan σ =
Mcu

√
1 − u2

c2

= c sin σ
(81)

Legendre contact transformation H(cp)=up-L=u
c
cp-L uses slope u

c
and intercept -L of

tangent line LR contacting H-hyperbola in Fig.25a to locate point L(u) of Lagrangian plot.
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FIG. 25. (a) Slope u
c and intercept -L of H(p)-tangent -LP′ give (u, L) point S on L(u)-circle.

(b) Slope cp and intercept H of L(u)-tangent C′S give (p,H) pointP′ on H(p)-hyperbola.

Inverse Legendre contact transformation L(u)=pu-H uses slope p and intercept H of stellar

tangent line C′SY contacting L-circle in Fig.25b to locate point H(p) of Hamiltonian plot.

This construction is clarified by separate plots of H(p) in Fig.26a and L(u) in Fig.26b.

Tangent contact transformation is a concept based upon wave properties and goes back to

the Huygens and Hamilton principles discussed below. The basics of this lie in construction
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FIG. 26. Legendre contact transformation between (a)Hamiltonian H(p) (b) Lagrangian L(u)

of space-time (x, ct) wave-grids given frequency-k-vectors (υ, cκ) like P′ and G′ in Fig.7 and

Fig.8. Each P′ or G′ coordinate pair (υ, cκ) determines lines with speed υ
κ

and t-intercept

spacing τ= 1
υ

on ct-axis while x-intercept spacing is λ= 1
κ

on x-axis. Together these phase

and group grid lines make Minkowski crest-line coordinates. Now this geometry applies

as well to energy-momentum (E, cp)=h(υ, cκ)=}(ω, ck) spaces. Functional dependence of

wave grid spacing and slopes determines classical variables and equations of motion and so

does functional non-dependence. For example, the Lagrangian L is an explicit function of

velocity u but not momentum p, that is ∂L
∂p

=0. The Hamiltonian H is an explicit function of

momentum p but not velocity u, that is ∂H
∂u

=0. These 0th-equations and identity L=pu-H

give 1st-Hamilton and 1st-Lagrange equations.

0 =
∂L

∂p
=

∂

∂p
(pu − H) 0 =

∂H

∂u
=

∂

∂u
(pu − L)

u =
∂H

∂p

(
Hamilton′s
1stequation

)
p =

∂L

∂u

(
Lagrange′s
1stequation

) (82)

In Fig.25a slope of H(p)-hyperbola at tangent point P′ is group velocity u
c
=tanhρ=sinσ=3

5
.

In Fig.25b slope of -L(u)-circle at tangent point S is momentum cp=Bsinhρ=Btanσ=3
4
Mc2

with minus (-) sign. A minus sign in (80) for Lagrangian (L=-Mc2 cosσ, for example) is a

result of (-) in phase (kx-ωt) and phasor (They turn clockwise.-=y) conventions.

For a low-(ρ∼= u
c
) approximate Lagrangian (77), one may drop the -Mc2 term and just

keep the Newtonian kinetic energy term 1
2
Mu2 that is equal to the corresponding kinetic
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term p2

2M
in the approximate Hamiltonian. Of course p2

2M
reduces to 1

2
Mu2 upon substituting

approximate momentum p=Mu. Then students may ask,“Why be so fussy about having

only momentum or p-dependence of H and only velocity or u-dependence of L?”

Hamiltonian H(p) hyperbola minimum in Fig.25 and Fig.26a is nearly identical to the

Lagrangian L(u) circle minimum in Fig.26b that lies below Fig.25b. There both curves

are nearly parabolic. But, at higher speeds the Lagrangian L(u) approaches zero as stellar

angle σ approaches ±π
2

and velocity u approaches c. Then Hamiltonian H(p)=Bcoshρ and

its momentum p=Bsinhρ each approach B eρ

2
as rapidity ρ grows apparently without bound.

Clearly hyperbolic “Country cousin” functions involving rapidity ρ and momentum p fit

a Hamiltonian infinite horizon, while circular “City cousin” functions of the restricted stellar

angle -π<σ<π and velocity -c<u<c fit localized Lagrangian, the keeper of quantum phase.

The third (csc,cot)-cousin pair λphase=Bcschρ=Bcotσ and Vphase=c cothρ=c cscσ from

Table II do not appear in the preceding discussions of classical correspondence. These

describe the phase part or “quantum guts” of a 2-CW internal structure, and as such were

not known by 19-century classicists and still difficult to observe. Now we see that phase is

the heartbeat of quantum physics. Fig.27 shows Debroglie wavelength λphase and Vphase at

the edges of the geometric construction just inside the Doppler blue shift b=eρ.

3. Hamilton-Jacobi quantization

Integration of invariant phase differential (78) and (79) requires certain forms.

dS ≡ Ldt ≡ ~ dΦ = pdx − Hdt = }kdx − }ωdt (83)

Each coefficient of differential term dq in dS should be partial derivative ∂S
∂q

.

∂S

∂x
= p,

∂S

∂t
= −H. (84)

These are known as Hamilton-Jacobi equations for the phase action function S. Classical

HJ-action theory was intended to analyze families of trajectories (PW or particle paths).

Dirac and Feynman showed its relevance to matter-wave mechanics (CW phase paths) by

proposing approximate semi-classical wavefunction based on Lagrangian action as phase.

Ψ ≈ eiΦ = eiS/~ = ei
∫

L dt/~ (85)
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FIG. 27. Geometric elements of positive-energy relativistic quantum mechanics

Approximation symbol (≈) indicates that phase but not amplitude is able to vary here. HJ

form ∂S
∂x

=p turns x -derivative of Ψ into standard quantum p-operator form p=~
i

∂
∂x

.

∂

∂x
Ψ ≈

i

~
∂S

∂x
eiS/~ =

i

~
pΨ ⇒

~
i

∂

∂x
Ψ = pΨ (86)

The HJ form ∂S
∂t

=-H turns t-derivative of Ψ similarly into Hamiltonian operator H=i~ ∂
∂t

.

∂

∂t
Ψ ≈

i

~
∂S

∂t
eiS/~ = −

i

~
HΨ ⇒ i~

∂

∂t
Ψ = HΨ (87)

Action integral S=
∫
Ldt is to be minimized. Feynman’s interpretation of this is depicted

in Fig.28. Any mass M appears to fly so that its phase proper time τ is maximized. The

proper mass-energy frequency $ =Mc2/~ is constant for a mass M . Minimizing -$τ is thus

the same as maximizing +τ . Clocks near light cone tick slowly compared ones near max-τ .

One may explain how the flying mass finds and follows its max-τ path by imagining it

is first a wave that could spread Huygen’s wavelets out over all paths. But, an interference
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FIG. 28. Feynman’s flying clock contest winner has the greatest advance of time.

of Huygen wavelets favors stationary and extreme phase. This quickly builds constructive

interference in the stationary phase regions where the the fastest possible clock path lies.

Nearby paths contain a continuum of non-extreme or non-stationary wavelet phase that

interfere destructively to crush wave amplitude off the beaten max-τ path as sketched in

Fig.29. The best are so-called stationary-phase rays that are extremes in phase and thereby

satisfy Hamilton’s Least-Action Principle requiring that S=
∫

Ldt is minimum for true classi-

cal trajectories. This in turn enforces Poincare invariance by eliminating, by de-phasing, any

false or non-classical paths because they do not have an invariant (and thereby stationary)

phase. So “bad” rays cancel each other in a cacophonous mish-mash of mismatched phases.

Each Huygen wavelet in Fig.29 is tangent to the next wavefront being produced. That

contact point is precisely on a ray or true classical trajectory path of minimum action and

on the resulting best wavefront. Time evolution from any wavefront to another is thus a

contact transformation between two wavefronts described by geometry of Huygens Principle.

Thus a Newtonian clockwork-world appears to be the perennial cosmic gambling-house
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winner in a kind of wave dynamical lottery on an underlying wave fabric. Einstein’s God

may not play dice, but some persistently wavelike entities seem to be gaming at enormous

Mc2

} -rates down in the cellar! And in so doing, geometric order is created out of chaos.

FIG. 29. Quantum waves interfere constructively on “True ” path but mostly cancel elsewhere.

It is ironic that Evenson and other metrologists have made the greatest advances of

precision in human history, not with metal bars or ironclad classical mechanics, but by

using the most ethereal and dicey stuff in the universe, light waves. This motivates a view

of classical matter or particle mechanics that is more simply and elegantly done by its relation

to light and its built-in relativity, resonance, and quantization that occurs when waves are

subject to boundary conditions or otherwise confined. While Newton was complaining about

fits of light, perhaps this crazy stuff was just trying to tell him something!

Derivation of quantum phenomena using a classical particle paradigm seems as silly now

as deriving Newtonian results from an Aristotelian paradigm. It now seems much more likely

that particles are made by waves, optical or otherwise, rather than vice versa as Newton

believed. Also, CW trumps PW as CW symmetry axioms of Evenson (All colors go c.)

and Doppler time-reversal (r=1
b
) derive classical Lorentz-Einstein-Minkowski transformation

algebra and geometry (14) through (25) summarized in Table II and give exact relations (49)
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for relativity and quantum theory together. Such Occam economy is found lacking on any

currently existing PW path from Newton to Einstein and Planck. Thus do basic CW half-

sum-and-difference phase relations seem to underlie the physics of Poincare contact geometry

and be based quite solidly upon ancient circular and hyperbolic geometry.

VI. GEOMETRY OF RELATIVISTIC QUANTUM TRANSITIONS

Preceding theory uses combinations of states |N,kn, ω〉 or wavefunctions ΨN,k,ω=ANei(k∙r−ωt)

of an ideal optical cavity that are quantized by quantum mode numbers n for phase and

photon numbers N for amplitude. This leads to geometry of elementary quantum transitions

that involve change or transition of one such state into another. Such a discussion begins

with symmetry and related conservation rules that restrict such transitions.

A. Symmetry and conservation principles

In Newtonian mechanics the first law or axiom is one of momentum conservation. Such

physical axioms, by definition, have only experimental proof or justification. Logical proof

or disproof is possible only if an older theory like classical mechanics becomes undermined

by a more general theory like relativity or quantum mechanics having finer axioms. Then

an older axiom might be proved using newer and more basic axioms, or else it might be

disproved or reduced to an approximate or conditional result.

Good teachers respect critically thinking students having doubt about the classical mo-

mentum conservation law. Indeed, How does Nature avoid losing even the tiniest bit of a

momentum current however large it may be? This seems miraculous as does conservation

of energy, though the latter is a provable result of the former given time reversal symmetry.

So it provides pedagogical relief to unite momentum and energy conservation rules using

quantum wave nature of light that appears to be shared by all matter. Undermining New-

ton axiom-1 (momentum conservation) by Occam-shaved CW axioms gives Einsein-Planck-

DeBroglie scaling results (49) matching momentum p to wavenumber vector ~κ scaled in h

or Nh units while doing the same to energy E and frequency υ. A rough statement of how

CW axioms undermine or prove p-or-E conservation axioms is that their conservation is

required by wave coherence and so p=h~κ and E=hυ must be conserved, too. However, this
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oversimplifies deeper concepts of symmetry logic, a kind of “grown-up” geometry.

A strength (and also, weakness) of CW axioms is that they are symmetry principles due

to the Lorentz-Poincare isotropy of space-time that invokes invariance to translation T(~δ, τ )

in the vacuum. Operator T has plane wave eigenfunctions ψk,ω=Aei(kx−ω t) and eigenstates

|ψk,ω〉 with roots-of-unity eigenvalues ei(k∙δ−ω∙τ) as described by bra-ket relations below.

T(δ, τ ) |ψk,ω〉 = ei(k∙δ−ω∙τ) |ψk,ω〉 (a) 〈ψk,ω|T
† = 〈ψk,ω| e

−i(k∙δ−ω∙τ) (b) (88)

The relations apply also to N -part or N -particle states ΨK,Ω = ψk1,ω1ψk2,ω2 ∙ ∙ ∙ψkN ,ωN
where

exponents add (kj ,ωj)-values of each constituent to a total K-vector K=k1+k2+... +kN and

total frequency Ω=ω1+ω2+...+ωN to give T(~δ, τ )-eigenvalue exponential form ei(K∙δ−Ω∙τ).

Now T-symmetry requires that quantum time evolution operator U is unaffected by being

moved by T, that is U=TUT† or that U commutes with all T, that is UT=TU for all T.

So any transition matrix 〈ΨK′,Ω′ |U |ΨK,Ω〉 can be replaced by 〈ΨK′,Ω′ |TUT† |ΨK,Ω〉. Then

eigenvalue relations (88) yield (K,Ω) conservation rules: K ′=K and Ω′=Ω.

〈Ψ′
K′,Ω′ |U |ΨK,Ω〉 = 〈Ψ′

K′,Ω′ |T†(δ, τ )UT(δ, τ ) |ΨK,Ω〉 (if UT = TU for all δ and τ)

= e−i(K′∙δ−Ω′∙τ)ei(K∙δ−Ω∙τ) 〈Ψ′
K′,Ω′ |U |ΨK,Ω〉 = 0 unless: K ′ = K and: Ω′ = Ω

(89)

T-symmetry requires that both total energy E=}Ω and total momentum P=}K be con-

served for ideal CW states.

However, laboratory CW have momentum uncertainty Δk=1/Δx due to finite beam size

Δx and energy uncertainty ΔE=}Δω=}/Δτ due to finite lifetime Δτ . Newton’s 1st law is

verified but becomes precise only to the extent that lifetime or beam-width is large enough

to accommodate great numbers of wavelengths or wave periods.

1. Single-photon transitions and Feynman diagram geometry

The geometric analysis of photon-affiliated transitions begins with the simple Doppler

shifted or Lorentz transformed “baseball-diamond” geometry shown in Fig.30. Most figures

showing this geometry so far, including Fig.15, Fig.10 and the original Fig.6, are drawn

for velocity u
c
=3

5
or Doppler shift b=2. Here, Fig.30 uses odd values b=3

2
or u

c
= 5

13
to avoid

distracting crossings found in Fig.21. The Planck-Einstein-DeBroglie relation (49) is labeled

by energy E=}ω versus comentum cp=}ck so that both have the same dimensions of energy.
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FIG. 30. Energy-comentum diagram for 1-photon transition H-to-P ′ having recoil u
c = 5

13 .

(Tiny photon momentum p=}k needs the c-factor to show up in plots.) Also, Fig.30 is

bisected by a wavy right-angle HP′K inscribed in the g-circle that represents photon (ω, ck)-

vectors connecting levels of high-state |ωh〉 of rest frequency ωh=3, middle-state |ωm〉 of rest

frequency ωm=2, and low-state |ω`〉 of rest frequency ω`=
4
3
.

Each frequency relates to one above it (or below it) by blue-shift factor eρ=3
2

(or red-shift

factor e−ρ=2
3
) so middle frequency ωm is the geometric mean ωm=

√
ωhω` of the other two.

3 = ωh = e+ρωm 2 = ωm = e+ρω`
4

3
= ω` = e−ρωm = e−2ρωh (90)

Wavy segment HP′ represents a photon of energy }ΩHP′=}ωm sinhρ that would be emitted in

a transition from a stationary mass MH=}ωh/c
2 at point H to a moving mass MP=}ωm/c2

with rapidity ρ at point P′. Implicit in Fig.30 is the choice of right-to-left direction for

the outgoing photon comentum cp=-}ωm sinh ρ so that mass MH recoils left-to-right by just

enough to conserve comentum as (89) requires. Mass MH loses energy (frequency) equal to

comentum (wavevector) of outgoing photon. Since MH is initially stationary, it must lose

energy by reducing rest-mass from MH to MP by Doppler shift ratio ωh

ωm
=eρ.

MH

MP

=
ωh

ωm

= eρ (91)
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A rest mass formula results for recoil rapidity ρ with a simple low-ρ∼= u
c

approximation.

ρ = ln
MH

MP

−−−→
ρ→u

c

u = c ln
MH

MP

(92)

Interestingly, this quantum recoil formula is reminiscent of a famous rocket formula.

Vburnout = cexhaust ln
Minitial

Mfinal

(93)

One might recall a popular expression,“This isn’t rocket science!” Usual notions are that

quantum transitions are infinite discrete “jumps” or that emitted (or absorbed) photons act

like bullets. These appear wrong-headed in light of a more complete relativistic picture of

an atom or nucleus in (92) gradually exhaling its mass with an optical exhaust velocity of c.

One may recall classical Lorentz resonance models of atomic transitions. (It is Lorentz of

ELT but these are non-relativistic models.) They show atoms undergo over 10 5 “heartbeats”

during their ring-down decay lifetime of roughly 10−8seconds, hardly instant-death jumps.

Here this beat frequency is not the enormous mass-energy phase velocity ωh=
MHc2

} mentioned

previously, but rather difference beats Δhm=ωh-ωm -δ where δ is a tiny recoil downshift due

to atom borrowing recoil kinetic energy. (Lorentz did not consider a δ.) The exact δ in

Fig.30 is the height of point P′ above ωm-baseline, and }δ is KE acquired by mid-mass MP.

δ = ωm cosh ρ − ωm '
ωm

2
ρ2 ⇒ KErecoil'

~ωm

2
ρ2 w

MP

2
u2 (94)

Recoil momentum p of the deflated MP is exactly p=MPc sinh ρ with }ωm=MPc2.

The H-to-P′ transition just discussed could be followed by a P ′-to-K transition with

forward emission of a photon with the same energy and further reduction of mass from MP′

to a stationary mass MK . Lowest energy level }ω`=MKc2 in Fig.31 has frequency ω`=
4
3

and

zero momentum due to its leftward recoil from rightward emitted photon. Feynman diagrams

in right-hand inset panels are scale models of photon energy-momentum kab-vectors emitted

from head of initial mass-MA KA-vector on the tail point of recoiling mass-MB KB-vector.

One may imagine these per-space-time (ω, k) diagrams as actual space-time (x, ct) mass

and photon tracks because of the Fourier reciprocity demonstrated in Fig.7 and Fig.8. One

may rearrange K-vectors into head-to-tail zero-sum triangles representing energy-momentum

conservation demanded by (89) and “relawavity” geometry of optical wave interference.

Level sequence {...ω`, ωm, ωh,...} in (90) is part of an infinite geometric series having

blue-shift ratio b=eρ=3
2

or red-shift ratio r=e−ρ=2
3

ranging from 0 to ∞. The energy
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FIG. 31. Feynman diagrams of 1-photon transitions connecting 3-levels ωh, ωm, and ω`.

Em=}ωm or frequency ωm value labeling hyperbola-ωm may be scaled to give a sequence

{...,r2ωm,r1ωm,r0ωm,b1ωm,b2ωm,b3ωm,..,bqωm,..} based on ratio b1=3
2
=r−1 that labels a ge-

ometric stack of hyperbolas shown in Fig.32. Meanwhile, rapidity ρ=ln3
2

labeling velocity

line-(u
c
= 5

13
) is boosted through a sequence of ρp-values {...,-2ρ,-ρ,0,2ρ,3ρ,..,p∙ρ,..}, and de-

fines p-points of momentum cpp,q=bqωm sinh ρp (where: ρp=p∙ρ) on each bqωm-hyperbola.

The result is a lattice in Fig.32 of transition points Pp,q=(cpp,q,Eq) that are scaling-and-

Lorentz-boost-equivalent to the point P=P0,0 at the center of Fig.30 and Fig.31 or else the

point P′=P1,0 that is the center of transitions in those figures. Choice of origin is quite

arbitrary in a symmetry manifold defined by group operations. The ±45◦-light-cone bound-

aries and their intersection (cp, E)=(0,0) lie outside of this open set of Pp,q points. The

choice of the base Doppler ratio b=eρ is also arbitrary and may be irrational. However, a

rational b guarantees all 16 functions in Table.II are also rational. The lattice in Fig.32

68



FIG. 32. Rapidity-ρp=pρ and rest-frequency-ωmeqρ Pp,q-lattice based on integer powers of b=eρ=3
2

may be viewed at ±45◦ as a Cartesian grid of lines. Each line is positioned according to

rest-frequency power ωmeqρ at its meeting point on the vertical ω-axis (or 2nd-base of a

Doppler baseball diamond) as shown in Fig.33. The +45◦-R-axis (1st-baseline) is marked-off

by sequence ωR=ωmeRρ (R=-2,-1,0,1,2...) and the -45◦-L-axis (3rd-baseline) is marked-off

by sequence ωL=ωmeLρ (L=-2,-1,0,1,2...). (Here base constants eρ=3
2

and ωm=1 are fixed.)

At the intersections of R and L grid-lines are discrete transition (p, q)-points Pp,q.

Pp,q = (ckp,q , ωp,q) = ωmeqρ(sinh pρ, cosh pρ) (95)

Each coordinate point is related by half-sum and difference coordinate transformations.

p =
R − L

2
, q =

R + L

2
⇔ R = p + q , L = q − p (96)

These are integer versions of the phase and group relations (14) and (15) to right and left laser

K-vectors, yet another result of factoring optical wave coordinate functions. The geometric
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structure represented here might become a useful basis for a kind of lattice-gauge theory to

explore cavity quantum electro-dynamics (CQED) or pseudo-relativistic theories of graphene

gauge dynamics. Such a structure offers a possible solution to the flaw that made Feynman

path integration so difficult due its uncountable universe of possible paths. The structure

in Fig.33 offers a labeling of every discrete path by an operation in a discrete subgroup of

the continuous Poincare-Lorentz group (PLG) that has a discrete Poincare-Lorentz algebra

(PLA). The discrete paths are easily made as fine as desired so that each PLA becomes

a larger and better approximation to the parent PLG. Each PLA has a discrete spectral

decomposition that derives a range of Hamiltonians with their eigensolutions and transition

amplitudes parametrized by discrete paths.

FIG. 33. Hyperbolic lattice of (p,q)-transition points for base b=eρ=3
2 and coordinate relations.
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B. Accelerated frames and optical Einstein-elevator

Fig.5c and Fig.6c show Lorentz-Minkowski space-time frames made by a 2-CW pair of

lasers. Fig.5c shows a Cartesian (x,ct)-grid made as Alice’s and Carla’s lasers collide 600THz

beams. Fig.6c shows Bob’s view of Alice coming in at u=3
5
c with her laser beam Doppler

blue-shifted by (B|A)=2=e+ρ to 1200THz and Carla going away at u=3
5
c with her beam

Doppler red-shifted by (B|C)=1
2
=e−ρ to 300THz. If Bob attenuates Alice’s beam E-field

amplitude by 1
2

so its amplitude matches Carla’s then he may see the Alice-Carla (x,ct)-grid

in Fig.5c form the Minkowski (x′,ct′)-grid shown in Fig.6c. Alice and Carla can provide

Bob with the same ρ=ln 2=0.69 grid without expending the energy needed to move their

lasers to enormous speeds of u=3
5
c relative to him. Instead they may be at rest in his frame

and gradually tune up or up-chirp Alice’s laser from υA=600THz to e+ρυA=1200THz while

Carla is down-chirping from υA to υAe−ρ=300THz. This opens the possibility of projecting

accelerating frames for optical “Einstein elevators” with curving space-time coordinates that

span a finite region between the lasers for a finite time interval. Imagine Bob has a space

ship that accelerates to a velocity u=c tanh ρ that Doppler shifts the Alice and Carla beams

back to their initial green frequency υA=600THz. (Or else, an excited atom b could be

imagined to be trapped in a single group-wave anti-node space-time cell so b accelerates

with that cell while staying in resonance with the cell’s constant phase frequency υA.)

The instantaneous velocity u of Bob (or the atom b) relative to Alice and Carla depends on

their chirp factors e±ρ that vary with rapidity ρ. Bob can find his ρ relative to Alice if she

broadcasts a fixed frequency υa that he sees at υb=υae
−ρ. This rapidity is a function ρ=ρ(τ)

of proper time τ for Bob (or atom) and τ is related by (72) to time t for Alice or Carla.

u=
dx

dt
=c tanhρ where:

dt

dτ
=coshρ and :

dx

dτ
=

dx

dt

dt

dτ
=c tanhρ coshρ=c sinhρ (97)

Integrating the (97) relations gives Bob’s time-space path (ct,x) as seen by Alice or Carla.

ct=c

∫
cosh ρ(τ) dτ and: x=c

∫
sinh ρ(τ) dτ (98)

The simple case with constant rapidity ρ=const. gives a Minkowski τ -axis of slope x
ct

= sinh ρ
cosh ρ

.

ct = cτ (cosh ρ) and: x = cτ (sinh ρ) (99)

This case is sketched in Fig.34a as a tiny CW Minkowski frame at the intersection of paths

of PW light waves from Alice and Carla. This repeats the situation described for Fig.6.
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FIG. 34. Space-time laser-formed paths of constant g-acceleration (a) g=0, (b) g=9.8m
s2

Fig.34b has a path of acceleration g=9.8m
s2 . Rapidity is linear in Bob’s proper time (cρ=gτ ).

ct=c

∫
coshρ dτ =

c2

g
sinh

(gτ

c

)
(for:uvρc=gτ ) x=c

∫
sinhρ dτ =

c2

g
cosh

(gτ

c

)
(100)

Recall that low rapidity (ρ�1) is approximated by u
c
, and so setting cρ equal to gτ is ap-

proximated by the classical uniform acceleration equation (u=gτ ). The resulting space-time

path shown in Fig.34b is a hyperbola of radius a= c2

g
that is enormous unless “gravity” g is

also enormous. For terrestrial 1g acceleration (g=9.8m
s2 ) the radius is a=0.97LightYear. Even

this small 1g acceleration can, over several years, rack up considerable light-year mileage.

After the first year (τ1=3.15∙107sec.) the rapidity is ρ1=
gτ1

c
=1.03 giving an x-coordinate of

x=acosh gτ1

c
=1.53LightYr with a total mileage of x-a=0.56LightYr. But, after 21 years (the

age of legality) it balloons to x=a cosh 21gτ1

c
=1.22∙109LightYr ! Now hyperbolic radius a is

an insignificant part of a billion light-year journey. After 25 years (about the age of Ein-

stein when he developed relativity theory) the mileage is 76 billion light-years, well beyond

age-of-universe estimates in the frame of Alice (who has long since passed away). The geo-

metric and exponential behavior of relativistic Doppler components dominates this example

of space-time inflation and takes the Alice-Bob saga beyond the realm of possibility. Still

it is instructive to explore such surprising thought experiments as far as possible and note

the asymptotic extremes of scaling and curvature. Rapidity ρ is defined in Fig.13b as twice

the area subtended by a unit hyperbola, its radius vector, and the horizontal axis. The
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FIG. 35. Constant-gq= c2

aq
paths (qAl=-1, qBob=0, qCarl=1) vary ρp=pρ1=pln3

2 from p=-1 to 3.

independent rapidity variable ρ= gτ
c

in (100) is proportional to the space-time area α swept

in time τ by hyperbolic path radius as it grows from initial radius r0=a= c2

g
shown in Fig.35a.

α (Area) =
x ∙ ct

2
−
∫ x1

0

ct ∙ dx =
x ∙ ct

2
−
∫ ρ1

0

ct ∙
dx

dρ
dρ (101)

Substituting x=a cosh ρ and ct=a sinh ρ from (100) gives swept area α(ρ1).

α (ρ1) = a2 cosh ρ1 ∙ sinh ρ1

2
−
∫ ρ1

0

(a sinh ρ)2dρ =
a2

2
ρ1 =

a2

2

gτ1

c
(102)

Hyperbolic radius a= c2

g
then gives proper time cτ1 as a radius∙rapidity product aρ1.

aρ1 = cτ1 (103)

Details of Fig.34b optical geometry are revealed in Fig.35b using three pairs of colliding

Alice-versus-Carla laser beams. The central GREEN (lab frequency υ0=600THz) beam-

pair meet at t0=0 on the x-axis at x0=a0 where Bob is instantaneously stationary but
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accelerating to the right with g0=
c2

a0
. The righthand RED (lab frequency υ1=υ0e

−ρ1) beam-

pair meet at t0=0 on the x-axis at a1=a0e
ρ1 where Bob’s companion Carl is also stationary

but accelerating right with g1=
c2

a1
. The lefthand BLUE (lab frequency υ−1=υ0e

+ρ1) beam-

pair meet at t0=0 on the x-axis at a−1=a0e
−ρ1 where Bob’s companion Al is also stationary

but accelerating right with g−1=c2/a−1. Bob and his companions share a line of rising slope

x
ct

=cothρ as they travel up their respective hyperbolic paths in Fig.35b as given by (100).

All points on such a line share the same rapidity ρ and the same tangent slope dx
dct

=tanhρ or

lab velocity u
c
, and so Al, Bob, and Carl on the ρ1-line in Fig.35b apply the same Doppler

blue-shift factor b1=e+ρ1 to light they meet head-on and the same red-shift factor r1=e−ρ1 to

light that catches them from behind. Thus Bob down-shifts Carla’s blue beam from its lab

BLUE frequency υBLUE=υ0e
ρ1 to his observed GREEN υ0=600THz and up-shifts Carla’s

red beam from its lab RED frequency υRED=υ0e
−ρ1 to the same base frequency υ0=600THz.

This is consistent with Alice and Carla’s original plan for Bob on an optically accelerated

“Einstein elevator” but now it includes two companions Al and Carl that travel in spatial

lock-step beside Bob in Fig.35b with Al maintaining a fixed distance Δa0=a0-a−1 below

Bob as Carl maintains a larger fixed distance Δa1=a1-a0 =eρ1Δa0 above Bob (As plotted in

their frames of equal rapidity ρ1.) Meanwhile, the lab x -view in Fig.35b clearly shows their

relative spatial separations suffering Lorentz contraction. Each hyperbolic path is invariant

so a boost in rapidity by Δρ moves any of its points of rapidity ρp to ρp+Δρ on the same

hyperbola. While Al, Bob, and Carl maintain initial spatial separations tallied by Alice and

Carla at zero rapidity or velocity (ρ0=0=u0

c
), they do not maintain equal proper time-τ

readings. According to (103) proper time cτp,q on hyperbola-q is a product of its radius

aq=eqρ1a0 with rapidity ρp=pρ1 for a given p-line shared by travelers q=-1,0, and +1.

cτq,p = aqρp = a0e
qρ1pρ1 where: q=−1(Al), 0(Bob), and 1(Carl). (104)

Hyperbolas of smaller radius aq have proportionally slower local or proper time evolution and

proportionally greater acceleration gq=
c2

aq
hence more curvature of hyperbolas closer to origin

in Fig.35. Indeed, each (q, p)-cell has the same number of wavelengths and wave-periods

packed into a tighter space-time as the radius aq is reduced. The hyperbolic acceleration

geometry of space-time in Fig.35b has similar geometry (rotated by 90◦) to that of Compton

scattering in per-space-time of Fig.33, but the physics is inverted. A boost of Bob (q=0)

from ρ0 to ρ1 (p=0→1) in Fig.35b corresponds to a Compton transition of a rest-mass q=0
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from ρ0 to ρ1 in Fig.33. Increased energy E=hυ and momentum p=hκ on reciprocal (E,p)

lattice Fig.33 is decreased wave length λ= 1
κ

and wave period τ= 1
υ

for space-time (x,ct) in

Fig.35. And vice-versa, a low-hyper-radius aq=
c2

gq
or high acceleration gq=

c2

aq
in Fig.35 has

high energy E (or frequency υ) and momentum p (or wavenumber κ) in Fig.33.

This mythical odyssey of intrepid accelerating voyagers (Al, Bob, and Carl) depends on

optical metrology provided by a pair of laser-chirping Sirens (Alice and Carla) stationed at

the left and right edges of Fig.34b and Fig.35b. While Carla leisurely de-tunes her right-

to-left beam, Alice tries to meet an impossible up-tuning schedule of her left-to-right beam,

planned to end with an exponential chirp and explosion of infinite frequency at ct=0. Her

ct0=-a0 emission of frequency υ0=600THz hits Bob at x=a0, one of a geometric sequence of

frequencies υq

υ0
=eρ1 ,e2ρ1 ,e3ρ1 ,...,eqρ1 emitted at times ctq

a0
=-e−ρ1 ,-e−2ρ1 ,-e−3ρ1 ,...,-e−qρ1→0, to

hit a point xq=a0e
−qρ1 at ct=0. (The geometric ratio in Fig.35b is eρ1=3

2
.) No light emitted

by Alice after t=0 can reach Al, Bob, Carl or any fellow traveler-q maintaining enough

acceleration to stay under hyperbolic asymptote or “event-horizon” x=ct in Fig.35b. Carla,

the right-to-left half of this 2-CW metrology, hits the same q-points xq=a0e
qρ1 on the (ct=0)-

line (x-axis) with the same frequencies υq=υeqρ1 that Alice sent to each traveler-q. She can

continue hitting Carl (traveler q=1) at (q, p)-points (1,1) and (1,2) with beams that later

on hit Bob (traveler q=0) at (q, p)-points (0,1), (0,2) and (0,3) and Al (traveler q=-1) at

(q, p)-points (-1,2), (-1,3) and (-1,4). However, Carl passes Carla soon thereafter (upper

right hand corner of Fig.35b) and so also will Bob followed by Al. Thus laser coordination

by either Siren, Alice or Carla, has a finite limit in its coverage.

C. Metrology in accelerated frames

Accelerated frame metrology of space, time, and relative velocity is quite counter-intuitive

and easily misinterpreted. The space-time grid of CW and PW paths provided by Alice and

Carla in Fig.34b (and with greater detail in Fig.35b) help to analyze what Al, Bob, and Carl

might be able to observe at each (q, p)-intersection of light beams sent by Alice and Carla.

Let us assume each intersection marks colliding pulse waves (PW) that are separated by the

same number N of CW wavelengths in space and N wave periods in time. In Fig.36 the

CW paths for N=4 are drawn as the finer CW grid for the sake of clarity, but it should be
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evident that increasing integer scale N sharpens the space-time fine-grid precision.

Meanwhile, the course-grid defined by integer coordinates (q, p) mark equally spaced proper

time p-instants cτq,p=aqρp along the q-path hyperbola of traveler q according to Eq.(104).

Bob (q=0), starting from his origin (p=0) at rest in Fig.36, accelerates past his proper time

points cτ0p=a0ρ1(0, 1, 2, 3, 4) before exiting at the very top of the plot. Bob sees the same

proper time interval cτ01=a0ρ1 between each of his p-instants wherein he gains the same unit

ρ1=ln( 3
2
)=0.405 of rapidity per interval. (That is velocity u

c
=tanh(ρ1)=0.385.) Meanwhile,

distance x traveled in inertial frame (x, ct) of Fig.36 grows only quadratically at first but

soon explodes exponentially due to hyperbolic cosine x=a0 cosh ρ in Eq.(100).

Meanwhile, Bob’s companions, Al (q=-1) and Carl (q=1), also see equal proper time intervals

between p-points, but each cτq,p is proportional to qth hyperbolic radial constant aq=a0e
qρ1 .

So Al’s proper time interval cτ−1,1=a0e
−ρ1=2

3
a0 is (2

3
)-times less than Bob’s interval while

Carl’s time interval cτ1,1=a0e
ρ1=3

2
a0 is (3

2
)-times greater. Nevertheless, all three travelers

gain exactly the same amount of rapidity ρ1=ln( 3
2
) during each of their intervals.

Having uniform proper Δτq-intervals allows spatial intervals between each pair of accelerat-

ing neighbors to be easily measured by radar echo ranging. A dash-line rectangle connecting

(q, p)-points [0,0], [1,1], [0,2], and [-1,1] outlines paths of Bob’s radar pulses he might send

rightward (That is “up” in his perceived “gravity” field.) from [0,0] to reflect from Carl

at [1,1] and leftward (that is down-field) to reflect from Al at [-1,1]. Both pulses return

to Bob simultaneously at [2,2] at precisely cτ0,2=2a0ρ1 or two “ticks” of his proper time

given in distance units. (Recall that a0=0.97lt-yr was derived from Eq.(100) for g=9.8m
s2 .)

Thus Bob finds a radar-range coordinate x[−1,1]=-a0ρ1=-0.39lt-yr for Al below him and a

coordinate x[1,1]=a0ρ1=0.39lt-yr of equal distance for Carl above him. Bob gets the same

±a0ρ1 coordinates if he sends out radar pulses one “tick” earlier from the [0,-1] point (below

[0,0] and not visible in Fig.36) that return to him two “ticks” later at point [0,1].

If Bob’s radar pulses could echo off next-nearest neighbor’s paths having radius a±2=a0e
±2ρ1

or a±3=a0e
±3ρ1 they would return four “ticks” later at [0,4] (as shown in Fig.36) or six “ticks”

later at [0,6] (not shown in Fig.36). Such echo range values would indicate uniformly spaced

neighbors at constant positions ±a0ρ1, ±2a0ρ1, and ±3a0ρ1 above and below Bob.

Such uniformity of spacing seems paradoxical in light of a decidedly non-uniform spacing

of neighbor-q positions xq(0)=aq=a0e
qρ1 on the x-axis of Alice and Carla’s inertial frame at
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FIG. 36. CW Doppler and PW radar metrology for frame of constant acceleration g=9.8 m
s2 .

time ct=0 (and ρ=0). These make a geometric series aq= a0{...,e−2ρ1 , e−ρ1 ,1, e+ρ1 , e+2ρ1 ,...}

of hyperbolic radii that includes Bob’s radius a0 at origin [q, p]=[0,0].

However, the initial (ct=0) spacing of travelers, that is Δaq=a0(e
qρ1-e(q−1)ρ1) in Alice’s in-

ertial frame, is to 1st-order in ρ1, a uniform Δaq=a0ρ1 that agrees with Bob’s radar-range

values. Later, as traveler-q gains speed according to its respective acceleration gq=
c2

aq
, Alice

will see neighbor intervals Lorentz contract non-uniformly by Δaqsechρp factors.

When a neighbor-q of Bob sends his own inquiring radar-echo ranging pulses he will get

results that differ by the same exponential factor eqρ1 relating his proper time value τq,p to

the corresponding value τ0,p for Bob intercepting echo-return-p. Bob’s radar-range intervals

are all seen by up-stairs neighbor-q, to be uniformly expanded by eqρ1 , while down-stairs

neighbor-(-|q|), sees them uniformly contracted by e−|q|ρ1 .

Consider Doppler blue-shifts e+qρ1 seen by Bob (q=0) of CW light sent by an up-stairs
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neighbor-(+|q|) or a red-shift e−qρ1 of a down-stairs neighbor-(-|q|) source. Each light beam

on ±45◦-paths in Fig.35b is a copy of laser light sent by Alice (+45◦) or Carla (-45◦) and

Doppler-shifted by Bob’s velocity so he always sees a fixed green from either direction.

Al and Carl are similarly seeing fixed colors as long as they can maintain their respective ac-

celerations g−1 and g1 through a field of up-chirped frequency sent by Alice and down-chirped

frequency sent by Carla. Thus each traveler only sends or receives its unique frequency: blue

for Al, green for Bob, and red for Carl. So Bob always receives a green from Al down-stairs

that is Doppler red-shifted by e−ρ1 from Al’s blue or else a green from Carl up-stairs that is

blue-shifted by e+ρ1 from Carl’s red.

It might seem travelers sharing a line of equal ρ and fixed radar-range separation should

see no Doppler shift between them, that is (R|S)=1. However, each ±45◦-path connects

a (q,p)-point to the nearest up-stairs (q+1,p±1)-points of traveler(q+1) who deals in re-

FIG. 37. Space-time paths of dropped objects hitting accelerating travelers
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duced frequency and to the nearest down-stairs (q-1,p∓1)-points of traveler(q-1) who deals

in higher frequency. In each case rapidity differs by one ρ1-unit implying a Doppler blue-shift

factor e+ρ1 if light is falling down-stairs or a Doppler red-shift factor e−ρ1 if light is rising

up-stairs. Travelers must have identical and constant rapidity for their shifts to go away.

D. Mechanics in accelerated frames

The curved space-time in Fig.36 facilitates tracking light waves going back-and-forth

between the co-accelerating travelers Al(q=-1), Bob(q=0), Carl(q=1) and Don(q=2) and

reconciling them to Alice and Carla with their inertial frame laser sources. The same may

be done for freely flying massive objects that travelers might drop or throw at each other.

A simple example involves travelers dropping objects on downstairs companions at just the

moment they all have zero velocity in the inertial (x, ct) frame. Alice and Carla would

see such objects to be stationary and represented by vertical lines parallel to their inertial

ct-axis as shown in Fig.37. Each object dropped by traveler-(q=Q) will hit (or pass closely

by) traveler-(q=Q-1) then traveler-(q=Q-2) and so forth as seen by examples in Fig.37. The

first example has Don(q=2) drop something onto Carl(q=1), Bob(q=0), and Al(q=-1) as is

indicated at the top of the figure. Don’s object hits Carl (or as witnessed by Alice and Carla:

Carl hits Don’s stationary object.) when Carl’s x-coordinate equals a2 of Don’s object.

x2HIT1 = a2 = a0e
2ρ1 = xCarl = a1 cosh ρ

2HIT1
= a0e

ρ1 cosh ρ
2HIT1

(105)

This is solved for the relative rapidity ρ2HIT1 between Carl and Don’s “falling” object.

ρ2HIT1 = cosh−1 eρ1 = cosh−1 3

2
= 0.962 ⇒ u2HIT1 = 0.745c (106)

Course-grid scale factor eρ1=3
2

yields high relative velocity. So, one hopes Don’s object misses

Carl. But, then it falls toward Bob(q=0) and Al(q=-1) with an ever increasing velocity.

ρ2HIT0 = cosh−1 e2ρ1 = 1.451 ⇒ u2HIT0 = 0.896c (107)

ρ2HIT−1 = cosh−1 e3ρ1 = 1.887 ⇒ u2HIT−1 = 0.955c (108)

From Fig.37 it is seen that Don’s object hits (or passes) Carl with the same relative speed

that Carl’s object hits Bob or that Bob’s object hits Al. These hits (or passings) lie on a

single line of rapidity ρ2HIT1=ρ1HIT0=ρ0HIT−1 as seen by generalizing Eq.(105).

xQHITq = aQ = a0e
Qρ1 = aq cosh ρ

QHITq
= a0e

qρ1 cosh ρ
QHITq

(109)
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Thus rapidity ρ
QHITq

and its hyper-cosine vary with the q-index difference (Q-q).

e(Q−q)ρ1 = cosh ρ
QHITq

(110)

The (q,p) points in Fig.36 or Fig.37 mark intersections of light rays or massive objects with

members of a fleet of co-accelerating ships (q=...-2,-1,0,1,2,...) located at each moment

(p=...-2,-1,0,1,2,...) on a line of equal rapidity ρp=pρ1 or velocity up=c tanh ρp with low-q

ships accelerating more in the (x,ct) frame to have the same velocity up as their neighbors

by gaining it sooner in local time τ or inertial time t than their high-q “upstairs” neighbors.

Light acquires Doppler shift eρ1 in “falling” from a traveler to one below. A mass shifts its

phase frequency (or Hamiltonian H=Mc2 cosh ρ=hυphase in(49)) by eρ1 according to (110).

VII. SYMMETRY ANALYSIS OF DOPPLER SHIFTS

Doppler blue-shift factor b for approach or arrival of a traveling source becomes the inverse

1/b=r (red-shift) if that source is receding or departing at the same speed. This was related

to T -symmetry with respect to time-reversal (t↔-t), a more general symmetry axiom that

is usually assumed for fundamental processes.

T -symmetry makes us unable to tell if a movie of action is being played forwards or

backwards. Hollywood movies (especially Road-Runner cartoons) never have T -symmetry.

But fundamental processes at low to medium energies are supposed to have precise T -

symmetry as long as they remain undisturbed (and unobserved). This renders meaningless

classical notions of cause and effect at the fundamental level and is the source of protracted

arguments about the conservation of quantum information in extreme environments.

Inversion or parity P-symmetry of space-reversal (r↔-r) is assumed for optical physics

en-vacuo as are σμ-reflection symmetries for each spatial dimension xμ = {x, y, z} . So

far P-symmetry axioms engender fewer arguments. T and P together in a product is

known as charge conjugation PT =C=T P . C-analysis factors a wave-sum (11) of plane

waves Ψ=eiR+eiL into a product ψphaseψgroup of phase factor ψphase=ei R+L
2 and group factor

ψgroup=ei R−L
2 +e−i R−L

2 =2 cos R−L
2

. The latter envelopes the former and together they define

time axes or ct-grid lines and space axes or x-grid lines. (Recall Fig.5c and Fig.6c.) They

also define the frequency axes or (ω=2πυ)-grid lines and wave-number (ck=2πcκ)-gridlines

in per-space-time of Fourier space.
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Each reflection operator σx, σy, σz, or σt, has a unit square (σ2
μ=1) and minimal equations.

σ2
μ − 1 = 0 = (σμ − 1)(σμ + 1) (111)

These yield spectral projectors P+ and P− for eigenvector and operator decomposition.

1=P++P− and σμ=P+−P− where : P+=
1 + σμ

2
and P−=

1 − σμ

2
(112)

These projectors produce half-sum and half-difference combinations in the exponents of the

ψphase and ψgroup factors used in the wave factorization (11).

Appendix: CW-pairing vs. Newton’s corpuscles: CW and PW space-time grids

It helps to see wave coordinate grids generated by general CW pairs. A CW sum with

four parameters {ω1, k1, ω2, k2} ={4.5, 3.0, 0.5, -1.0} chosen in Fig.38 will factor wave Ψ as

shown in the upper half of the figure and trace a non-square or affine space-time grid shown

in the lower half. A left-hand source-1 emits a wave with a right-moving phase velocity

equal to ω1/k1 = 4.5/3.0 = 1.5 to collide head-on with source-2 left-moving wave going at

ω2/k2 = −0.5. Here wave speed is not c, so Fig.38 waves are not light waves, rather each is

a Schrodinger non-relativistic approximation to a matter wave that (as shown later) has a

quadratic dispersion function ω = k2/2. This shows ways to analyze CW-pairs for any set

of parameters {ω1, k1, ω2, k2} including Evenson’s linearly dispersive (ωa = cka) CW-light.

Dispersion (ω, k)-plot in per-space-time helps to sort complicated wave dynamics in space-

time (x,ct)-plots such as Fig.38. One simply draws four parameters judiciously as a pair

of vectors K1 = (ω1, k1) and K2 = (ω2, k2) in a per-space-time (ω, k)-plot in Fig.39. Then

half-sum Kphase = (K1 +K2)/2 and half-difference Kgroup = (K1−K2)/2 vectors are found.

Fig.39a is a standard ω(k) dispersion plot. Fig.39b is a complementary plot of k(ω).

Fig.?? compares a square laser CW zero path lattice to diamond shaped laser PW path

lattice. Henceforward short notation lets G be Kgroup, P be Kphase, R be K1, and L be K2.

(L and R refer to single CW laser beams going left and right, respectively.) The PW

simulation in Fig.39b was made using a tapered sum of several CW harmonics that pile up

pulses moving diagonally at light speed ±c through the crest regions (light square areas in

Fig.39a ) and reduce trough regions (dark squares) to nearly zero. Thus the pulse pile-ups

move more or less rigidly on diamond shaped PW tracks parallel to L or R in Fig.39b as
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FIG. 38. General non-optical 2-CW factorization and resulting space-time grid.

though they were Newtonian “corpuscles.” Meanwhile, CW wave zeros stand still along G

paths or dart with velocity ±∞ along P paths in the Minkowski plot of Fig.39a. Note that P

paths (horizontal white lines in Fig.39a) are separated in time by a half period (τ/2 = 5/6fs)

while the G paths (vertical white lines) are separated by half wavelength (λ/2 = 1/4μm).

The L to R pulse paths in Fig.39b, having eliminated troughs, are separated from neighbors

by a full period (τ = 5/3fs) and a full wavelength (λ = 1/2μm). The size and shape of

each pulse in a PW train made of harmonics {a1 cos φ, a2 cos 2φ, . . . , aN cos Nφ} depends

inversely on the number N of harmonics and is sensitive to how the amplitudes ak converge.

One can imagine that primitive source vectors K1 = (ω1, k1) and K2 = (ω2, k2) define paths

for Newtonian “corpuscles” if the waves they represent were corpuscular bursts that did

82



FIG. 39. (a)Vectors K1 and K2 on ω(k) plot sum to Kphase and Kgroup . (b) k(ω) plot has axes

switched. (c) The k(ω) plot vectors correspond to PW and CW paths in Minkowski t(x) time-space.

not suffer the “fits” Newton mistakenly ascribed to light undergoing interference. Suppose

each K2 corpuscle passes x=0 at speed ω2/k2 (-0.5 here) with a time interval between the

one before (or after) equal to wave period τ2 = 2π/ω2 (τ2 = 4π) and maintains a spacing

between the one after it equal to signed wave length λ2 = 2π/k2 (λ2 = −2π).

3,4,5,6,7,8,9,1,10,11,12,13,14,15,2,16,17,18,19,20,21,22,23,? ,25,26,? ,28,29,30,? ,? ,33

Appendix: Ken Evenson(1932-2002)-The Purest Light of a Resonance Hero

When travelers punch up their GPS coordinates they owe a debt of gratitude to an under

sung hero who, alongside his colleagues and students, often toiled 18 hour days deep inside

a laser laboratory lit only by the purest light in the universe. Ken was an Indiana Jones of

modern physics. While he may never have been called Montana Ken, such a name would

describe a real life hero from Bozeman, Montana, whose extraordinary accomplishments in
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many ways surpass the fictional characters in cinematic thrillers like Raiders of the Lost Arc.

Indeed, there were some exciting real life moments shared by his wife Vera, one together

with Ken in a canoe literally inches from the hundred-foot drop-off of Brazils largest water-

fall. But, such outdoor exploits, of which Ken had many, pale in the light of an in-the-lab

brilliance and courage that profoundly enriched the world. Ken is one of few researchers

and perhaps sole physicist to be twice listed in the Guinness Book of Records. The listings

are not for jungle exploits but for his labs highest frequency measurement and for a speed

of light determination that made c many times more precise due to his labs pioneering work

with John Hall in laser resonance and metrology. The meter-kilogram-second (mks) system

of units underwent a redefinition largely because of these efforts. Thereafter, the speed of

light c was set to 299,792,458ms−1. The meter was defined in terms of c, instead of the

other way around since his time precision had so far trumped that for distance. Without

FIG. 40. Ken Evenson
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such resonance precision, the Global Positioning System (GPS), the first large-scale wave

space-time coordinate system, would not be practical. Kens courage and persistence at

the Time and Frequency Division of the Boulder Laboratories in the National Bureau of

Standards (now the National Institute of Standards and Technology or NIST) are legendary

as are his railings against boneheaded administrators who seemed bent on thwarting his best

efforts. Undaunted, Ken’s lab painstakingly exploited the resonance properties of metal-

insulator diodes, and succeeded in literally counting the waves of near-infrared radiation

and eventually visible light itself. Those who knew Ken miss him terribly. But, his indelible

legacy resonates today as ultra-precise atomic and molecular wave and pulse quantum op-

tics continue to advance and provide heretofore unimaginable capability. Our quality of life

depends on their metrology through the Quality and Finesse of the resonant oscillators that

are the heartbeats of our technology. Before being taken by Lou Gehrig’s disease (ALS),

Ken began ultra-precise laser spectroscopy of unusual molecules such as HO2, the radical

cousin of the more common H2O. Like Ken, such radical molecules affect us as much or

more than better known ones. But also like Ken, they toil in obscurity, illuminated only

by the purest light in the universe. The 2005 Nobel Physics Prize was awarded to Glauber,

Hall, and Hensch for laser optics and metrology.

K. M. Evenson, J.S. Wells, F.R. Peterson, B.L. Danielson, G.W. Day, R.L. Barger and J.L.

Hall, Phys. Rev. Letters 29, 1346(1972)
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