# Classical Constraints: Comparing various methods (Ch. 9 of Unit 3) 

Some Ways to do constraint analysis
Way 1. Simple constraint insertion
Way 2. GCC constraint webs
Find covariant force equations
Compare covariant vs. contravariant forces
Other Ways to do constraint analysis
Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

# Some Ways to do constraint analysis 

$\longrightarrow$ Way 1. Simple constraint insertion
Way 2. GCC constraint webs
Find covariant force equations
Compare covariant vs. contravariant forces

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion


Way 1. Lagrangian has the constraint(s) simply inserted. $L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}^{\text {Let: } y=\frac{1}{2} k x^{2} \quad \text { and: } \dot{y}=k x \dot{x}, ~}$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.


$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y} \quad \text { Let: } y=\frac{1}{2} k x^{2} \quad \text { and: } \dot{y}=k x \dot{x}
$$

$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k x^{2} \quad p_{x}=\frac{\partial L}{\partial \dot{x}} \quad f_{x}=\frac{\partial L}{\partial x}
$$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

$$
\begin{aligned}
& L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y \\
& \text { Let: } y=\frac{1}{2} k x^{2} \\
& \text { agrangian then has one dimensiontone momentum } p_{x} \text {, and one force } f_{x} \text {. } \\
& L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k \dot{x}^{2} \\
& p_{x}=\frac{\partial L}{\partial \dot{x}} \\
& f_{x}=\frac{\partial L}{\partial x} \\
& =\frac{m}{2}\left(\dot{x}^{2}+k^{2} x^{2} \dot{x}^{2}-g k x^{2}\right)
\end{aligned}
$$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

$$
\begin{aligned}
& L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y \\
& \text { Let: } y=\frac{1}{2} k x^{2} \\
& \text { agrangian then has one dimensiontone momentum } p_{x} \text {, and one force } f_{x} \text {. } \\
& L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k \dot{x}^{2} \\
& =\frac{m}{2}\left(\dot{x}^{2}+k^{2} x^{2} \dot{x}^{2}-g k x^{2}\right) \\
& p_{x}=\frac{\partial L}{\partial \dot{x}} \\
& f_{x}=\frac{\partial L}{\partial x} \\
& =m\left(\dot{x}+k^{2} x^{2} \dot{x}\right)
\end{aligned}
$$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.


$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y
$$

Let: $y=\frac{1}{2} k x^{2}$ and: $\dot{y}=k x \dot{x}$
$L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k x^{2}$
$=\frac{m}{2}\left(\dot{x}^{2}+k^{2} x^{2} \dot{x}^{2}-g k x^{2}\right)$

$$
\begin{aligned}
p_{x} & =\frac{\partial L}{\partial \dot{x}} \\
& =m\left(\dot{x}+k^{2} x^{2} \dot{x}\right)
\end{aligned}
$$

$$
f_{x}=\frac{\partial L}{\partial x}
$$

$$
=m\left(k^{2} x \dot{x}^{2}-g k x\right)
$$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.


$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}
$$

Let: $y=\frac{1}{2} k x^{2}$
and: $\dot{y}=k x \dot{x}$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial}{\partial} \frac{L}{x}$
$\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial x}$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.


$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}
$$

Let: $y=\frac{1}{2} k x^{2}$
and: $\dot{y}=k x \dot{x}$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial}{\partial} \frac{L}{x}$
$\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \frac{L}{x}=m\left(k^{2} x \dot{x}^{2}-g k x\right)$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.
$y=\left.\frac{1}{2} k x^{2}\right|_{x=2} ^{1}=2$

$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}
$$

Let: $y=\frac{1}{2} k x^{2}$
and: $\dot{y}=k x \dot{x}$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial L}{\partial} \underline{x}$

$$
\begin{aligned}
\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \underline{L} & =m\left(k^{2} x \dot{x}^{2}-g k x\right) \\
\dot{p}_{x}=m\left(1+k^{2} x^{2}\right) \ddot{x} & =-m k^{2} x \dot{x}^{2}-m g k x
\end{aligned}
$$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.
$y=\left.\right|_{x=2} ^{2} k x_{y=2 k}^{2}$

$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}
$$

Let: $y=\frac{1}{2} k x^{2}$
and: $\dot{y}=k x \dot{x}$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial}{\partial} \underline{L}$ gives oscillator $\dot{x}=-K(x, \dot{x}) x$

$$
\begin{aligned}
\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial x} & =m\left(k^{2} x \dot{x}^{2}-g k x\right) \\
\dot{p}_{x}=m\left(1+k^{2} x^{2}\right) \ddot{x} & =-m k^{2} x \dot{x}^{2}-m g k x=-m\left(k \dot{x}^{2}-g\right) k x
\end{aligned}
$$

Ways to analyze a particle $m$ constrained to parabola $y=1 / 2 k x^{2}$ on $(x, y)$-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraints) simply inserted.


$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}
$$

Let: $y=\frac{1}{2} k x^{2}$
and: $\dot{y}=k x \dot{x}$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial L}{\partial x}$ gives oscillator $\dot{x}=-K(x, \dot{x}) x$ with "spring factor" $K$ :

$$
\begin{aligned}
\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \frac{L}{x} & =m\left(k^{2} x \dot{x}^{2}-g k x\right) \\
\dot{p}_{x}=m\left(1+k^{2} x^{2}\right) \ddot{x} & =-m k^{2} x \dot{x}^{2}-m g k x=-m\left(k \dot{x}^{2}-g\right) k x
\end{aligned}
$$

# Some Ways to do constraint analysis 

Way 1. Simple constraint insertion
$\longrightarrow$ Way 2. GCC constraint webs
Find covariant force equations
Compare covariant vs. contravariant forces
(a) Constrained motion

$$
x=X
$$



Cartesian
$(x, y)$
$y=\frac{1}{2} k x^{2}+Y \quad \begin{gathered}\text { transform to } \\ \operatorname{GCC}(X, Y)\end{gathered}$


Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

## (a) Constrained motion



Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

(a) Constrained motion
(b) GCC constraint web


Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covariant $\mathbf{E}_{k}$ in column $\sigma$ of Jacobian $J$ matrix

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{x}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

(a) Constrained motion
(b) GCC constraint web
(c) GCC E-vectors


Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covariant $\mathbf{E}_{k}$ in columns of Jacobian $J$ matrix

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x-\frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{X}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

Contravariant $\mathbf{E}^{k}$ in rows of Kajobian $K$

$$
\left(\begin{array}{cl}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K \quad \begin{aligned}
& \mathbf{E}^{X}=\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
&
\end{aligned} \quad \mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right)
$$

(c) GCC E-vectors

(a) Constrained motion
(b) GCC constraint web
(b) GCC constraint web $\frac{1}{2} k x^{2}+0$


Incorporate the conistraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covariant $\mathbf{E}_{k}$ in column of Jacobian $J$ matrix $\quad$ Contravariant $\mathbf{E}^{k}$ in rows of Kajobian $K$

$$
\left.\begin{array}{l}
\left.J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad\left(\begin{array}{c}
\frac{\partial X}{\partial x}=1 \\
\frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x \\
\hline
\end{array}\right)=\begin{array}{c}
\frac{\partial Y}{\partial y}=1 \\
k x
\end{array}\right), \mathbf{E}_{Y}=\binom{0}{1} \\
\text { ind: } 1^{\text {st }} \text { coordinate differentials and velocity relations: }\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
\mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1 \\
+k x & 1
\end{array}\right) \\
\dot{X} \\
\dot{Y}
\end{array}\right) \quad\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}} .
$$

## (a) Constrained motion

(b) GCC constraint web


Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covaritant $\mathbf{E}_{k}$ in column $\sigma$ of Jacobian $J$ matrix
Contravariant $\mathbf{E}^{k}$ in rows of Kajobian $K$

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{x}=\binom{1}{k x}, \mathbf{E}_{r}=\binom{0}{1}
$$

$$
\left(\begin{array}{ll}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K \quad \mathbf{E}^{X}=\left(\begin{array}{cc}
1 & 0
\end{array}\right)
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations:

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
1 & 0 \\
+k x & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \quad\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$ Find: Kinetic coefficients $\gamma_{A B}=m g_{A B}$ fron metric tensor $g_{A B}$ or Jacobian square $g_{A B}=J_{A C} J_{B C}=\left(J J^{\dagger}\right)_{A B}$ $m\left(\begin{array}{cc}\mathbf{E}_{X} \cdot \mathbf{E}_{X} & \mathbf{E}_{X} \cdot \mathbf{E}_{Y} \\ \mathbf{E}_{Y} \cdot \mathbf{E}_{X} & \mathbf{E}_{Y} \cdot \mathbf{E}_{Y}\end{array}\right)=\left(\begin{array}{cc}\gamma_{X X} & \gamma_{X Y} \\ \gamma_{Y X} & \gamma_{Y Y}\end{array}\right)=m\left(\begin{array}{cc}\ddots+k^{2} x^{2} & k x \\ k x & 1\end{array}\right)$



## (a) Constrained motion

(b) GCC constraint web
(b) GCC constraint web $\frac{1}{2} k x^{2}+0$


Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covariant $\mathbf{E}_{k}$ in columnsof Jacobian $J$ matrix
Contravariant $\mathbf{E}^{k}$ in rows of Kajobian $K$

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}= \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{X}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K \quad \begin{array}{ll}
\mathbf{E}^{X} & =\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
& \mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right)
\end{array}
$$

Find: $1^{\text {st }}$ coordinate differentials ànd velocity relations:

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
1 & 0 \\
+k x & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \quad\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$ Find: Kinetic coefficients $\gamma_{A B}=m g_{A B}$ fron ${ }_{n}$ etric tensor $g_{A B}$ or Jacobian square $g_{A B}=J_{A C} J_{B C}=\left(J J^{\dagger}\right)_{A B}$ $m\left(\begin{array}{ll}\mathbf{E}_{X} \cdot \mathbf{E}_{X} & \mathbf{E}_{X} \cdot \mathbf{E}_{Y} \\ \mathbf{E}_{Y} \cdot \mathbf{E}_{X} & \mathbf{E}_{Y} \cdot \mathbf{E}_{Y}\end{array}\right)=\left(\begin{array}{cc}\gamma_{X X} & \gamma_{X Y} \\ \gamma_{Y X} & \gamma_{Y Y}\end{array}\right)=m\left(\begin{array}{cc}\vdots+k^{2} x^{2} & k x \\ k x & 1\end{array}\right)$

$$
\frac{1}{m}\left(\begin{array}{cc}
\mathbf{E}^{X} \cdot \mathbf{E}^{X} & \mathbf{E}^{X} \cdot \mathbf{E}^{Y} \\
\mathbf{E}^{Y} \cdot \mathbf{E}^{Y} & \mathbf{E}^{Y} \cdot \mathbf{E}^{Y} \\
\text { (Need contra- } \gamma
\end{array}\right)=\left(\begin{array}{cc}
\gamma^{x X} & \gamma^{X Y} \\
\gamma^{Y X} & \gamma^{Y Y}
\end{array}\right)=\frac{1}{m}\left(\begin{array}{cc}
1 & -k x \\
-k x & 1+k^{2} x^{2}
\end{array}\right)
$$

## (a) Constrained motion

(b) GCC constraint web $\frac{1}{2} k x^{2}+0$

$y=\left|\frac{1}{2} k x^{2}\right|_{x=2} x$

Cartesian

$$
(x, y)
$$

$$
X=x
$$

$y=\frac{1}{2} k x^{2}+Y \quad$ transform to $\quad G C C(X, Y) \quad Y=y-\frac{1}{2} k X^{2}$
Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covariant $\mathbf{E}_{k}$ in columnsof Jacobian $J$ matrix
Contravariant $\mathbf{E}^{k}$ in rows of Kajobian $K$

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{X}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K
$$

$$
\begin{aligned}
& \mathbf{E}^{X}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& \mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right)
\end{aligned}
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations:

$$
\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$ Find: Kinetic coefficients $\gamma_{A B}=m g_{A B}$ from hetric tensor $g_{A B}$ or Jacobian square $g_{A B}=J_{A C} J_{B C}=(J J \dagger)_{A B}$ $m\left(\begin{array}{ll}\mathbf{E}_{X} \cdot \mathbf{E}_{X} & \mathbf{E}_{X} \cdot \mathbf{E}_{Y} \\ \mathbf{E}_{Y} \cdot \mathbf{E}_{X} & \mathbf{E}_{Y} \cdot \mathbf{E}_{Y}\end{array}\right)=\left(\begin{array}{ll}\gamma_{X X} & \gamma_{X Y} \\ \gamma_{Y X} & \gamma_{Y Y}\end{array}\right)=m\left(\begin{array}{cc}1+k^{2} x^{2} & k x \\ k x \ddots & \ddots\end{array}\right)$.

$$
\frac{1}{m}\left(\begin{array}{cc}
\mathbf{E}^{X} \cdot \mathbf{E}^{X} & \mathbf{E}^{X} \cdot \mathbf{E}^{Y} \\
\mathbf{E}^{Y} \cdot \mathbf{E}^{Y} & \mathbf{E}^{Y} \cdot \mathbf{E}^{Y} \\
\text { (Need contra- } \gamma
\end{array}\right)=\left(\begin{array}{cc}
\gamma^{X X} & \gamma^{X Y} \\
\gamma^{Y X} & \gamma^{Y Y} \\
\gamma^{Y m i l t o n} \text { or Riemann equations) }
\end{array}\right)=\frac{1}{m}\left(\begin{array}{cc}
1 & -k x \\
-k x & 1+k^{2} x^{2}
\end{array}\right)
$$

$$
\text { Find: Kinetic energy: } \quad T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(\hat{\gamma}_{X X} \dot{X}^{2}+2 \gamma_{X Y} X Y+\gamma_{Y Y} \dot{Y}^{2}\right)=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}\right]
$$

## (a) Constrained motion

(b) GCC constraint web $\frac{1}{2} k x^{2}+0$


Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covariant $\mathbf{E}_{k}$ in columns of Jacobian $J$ matrix
Contravariant $\mathbf{E}^{k}$ in rows of Kajobian $K$

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{x}=\binom{1}{k x}, \mathbf{E}_{r}=\binom{0}{1}
$$

$$
\left(\begin{array}{ll}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K \quad \begin{array}{ll} 
& \mathbf{E}^{X}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& \mathbf{E}^{Y}=\left(\begin{array}{ll}
-k x & 1
\end{array}\right)
\end{array}
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations:

$$
\left.\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
+k x & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \quad\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$ Find: Kinetic coefficients $\gamma_{A B}=m g_{A B}$ from hetric tensor $g_{A B}$ or Jacobian square $g_{A B}=J_{A C} J_{B C}=\left(J J^{\dagger}\right)_{A B}$

 Find: Kinetic energy: $\quad T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(\hat{\gamma}_{X X} \dot{X}^{2}+2 \gamma_{X Y} X \dot{Y}+\gamma_{Y Y} \dot{Y}^{2}\right)=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}\right]$
...and Lagrangian: $\quad L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right] \quad V=m g y=m g\left(Y+k X^{2} / 2\right)$

## (a) Constrained motion

(b) GCC constraint web $\frac{1}{2} k x^{2}+0$


Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Find: Covariant $\mathbf{E}_{k}$ in columns of Jacobian $J$ matrix
Contravariant $\mathbf{E}^{k}$ in rows of Kajobian $K$

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{X}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K \quad \begin{array}{ll}
\mathbf{E}^{X}=\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
& \mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right)
\end{array}
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations:

$$
\left.\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
+k x & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \quad\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$ Find: Kinetic coefficients $\gamma_{A B}=m g_{A B}$ from hetric tensor $g_{A B}$ or Jacobian square $g_{A B}=J_{A C} J_{B C}=\left(J J^{\dagger}\right)_{A B}$

 Find: Kinetic energy: $\quad T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(\hat{\gamma}_{X X} \dot{X}^{2}+2 \gamma_{X Y} X \dot{Y}+\gamma_{\dot{Y} Y} \dot{Y}^{2}\right)=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}\right]$
...and Lagrangian: $\quad L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right] \quad V=m g y=m g\left(Y+k X^{2} / 2\right)$

# Some Ways to do constraint analysis 

Way 1. Simple constraint insertion
Way 2. GCC constraint webs
Find covariant force equations Compare covariant vs. contravariant forces

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$ $\binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}1+k^{2} X^{2} & k X \\ k X & 1\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial} \dot{X}}{\frac{\partial L}{\partial} \dot{Y}}$ (1st Lagrange equations) $\quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}}$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial} \tilde{X}}{\frac{\partial L}{\partial}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\left(\begin{array}{c}
\frac{\partial L}{\partial} \\
\frac{\partial L}{\partial L} \\
\partial \underline{Y}
\end{array}\right)
\end{aligned}
$$

$$
\text { ( lIst Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}}
$$

( 2nd Lagrange equations) $\quad \dot{p}_{m}=\frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}}$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { (1 }{ }^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial L}{\partial q^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \bar{Y}}} \\
& \text { (2 }{ }^{\text {nd }} \text { Lagrange equations) } \dot{p}_{m}=\frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial D}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X_{i}^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{c}
\frac{\partial L}{\partial} \\
\frac{\partial L}{\partial} \\
\partial \dot{Y}
\end{array}\right) \\
& \text { (1 }{ }^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial} X}{\frac{\partial L}{\partial \bar{Y}}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial J}}{\frac{\partial L}{\partial} \bar{Y}}=m\binom{k^{2} \dot{X} \dot{X}^{2}+k \dot{X} \dot{Y}}{-g k X} \\
& \text { (2 } 2^{\text {nd }} \text { Lagrange equations, } \quad \dot{p}_{m}=\frac{\partial L}{\partial q^{m}}+F_{m}^{\mathrm{cov}}
\end{aligned}
$$

No constraints added yet to these equations (only gravity in $L$ ) so covariant force $F_{m}^{\text {cos }}$ is zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right)$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { ( } 1^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 } 2^{\text {nd }} \text { Lagrange equations } \dot{p}_{m}=\frac{\partial L}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} \dot{X} \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in $L$ ) so covariant force $F_{m}^{\text {cove }}$ is zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right.$ )

$$
\binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+m\left(\begin{array}{cc}
2 k^{2} X \dot{X} & k \dot{X} \\
k \dot{X} & 0
\end{array}\right)\binom{\dot{X}}{\dot{Y}}-m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { ( } 1^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 } 2^{\text {na }} \text { Lagrange equations) } \dot{p}_{m}=\frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equations (only gravity in $L$ ) so covariant force $F_{\text {cove }}^{\text {con }}$ is zero. ( $F_{X}^{\text {con }}=0=F_{Y}^{c o v}$ )

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+m\left(\begin{array}{cc}
2 k^{2} X \dot{X} & k \dot{X} \\
k \dot{X} & \cdots
\end{array}\right)\binom{\dot{X}}{\dot{Y}}-m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{\alpha^{2}}=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}} \\
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \ddot{Y}}} \\
& \text { (1 }{ }^{\text {st }} \text { Lagrange equations) } p_{m}=\frac{\partial L}{\partial q^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \bar{Y}}} \\
& \text { (2 } 2^{\text {nd }} \text { Lagrange equations) } \dot{p}_{m}=\frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in $L$ ) so covariant force $F_{m}^{\text {cove }}$ is zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right.$ )

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+q} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}} \\
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial \underline{Y}}}=\quad m\left(\begin{array}{c}
\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2} \\
\cdots k X X X X X X \\
\cdots
\end{array}\right) \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial} \dot{X}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { ( } 1^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \bar{Y}}} \\
& \text { (2 } 2^{\text {nd }} \text { Lagrange equations) } \dot{p}_{m}=\frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in $L$ ) so covariant force $F_{\text {cov }}^{\text {cov }}$ is zero. ( $F_{X}^{c o v}=0=F_{Y}^{c o v}$ )

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X X \\
k X & \ddots
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+q} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}} \\
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial \bar{Y}}}=\quad m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2} 4 g k X}{\cdots k X X X+\ddot{Y}+k \dot{X}^{2}+g^{\prime}} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Use $\gamma^{A B}$ to get contravariant (Riemann) equations. (Contra-force $F_{c o n}^{m}$ also zero here.)

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { ( } 1^{\text {st }} \text { Lagrange equations) } p_{m}=\frac{\partial L}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 }{ }^{\text {nd }} \text { Lagrange equations } \dot{p}_{m}=\frac{\partial L}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in $L$ ) so covariant force $F_{\text {cov }}^{\text {cov }}$ is-zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right.$ )

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{X}^{\text {cov }}}{F_{Y}^{c o v}}
\end{aligned}
$$

Use $\gamma^{A B}$ to get contravariaint (Riemann) equations. (Contra-force $F_{c o n}^{w i}$ also zero here.)
$\frac{1}{m}\left(\begin{array}{cc}1 & -k X \\ -k X & 1+k^{2} X^{2}\end{array}\right)\binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=\binom{\ddot{X}}{\ddot{Y}}+\left(\begin{array}{cc}1 & -k X \\ -k X & 1+k^{2} X^{2}\end{array}\right)\binom{k X\left(k \dot{X}^{2}+g\right)}{k \dot{X}^{2}+g}^{\text {con }} \quad=\binom{0}{0}=\binom{F_{\text {con }}^{X}}{F_{\text {con }}^{Y}}$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { ( } 1^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 }{ }^{\text {nd }} \text { Lagrange equations } \dot{p}_{m}=\frac{\partial L}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in $L$ ) so covariant force $F_{\text {cov }}^{\text {cov }}$ is-zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right.$ )

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Use $\gamma^{A B}$ to get contravariaint (Riemann) equations. (Contra-force $F_{c o n}^{w i}$ also zero here.)
$\frac{1}{m}\left(\begin{array}{cc}1 & -k X \\ -k X & 1+k^{2} X^{2}\end{array}\right)\binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=\binom{\ddot{X}}{\ddot{Y}}+\binom{\cdots \cdots \cdots-k X^{\prime}}{\cdots-k X X 1+k^{2} X^{2} \ldots}\binom{k X\left(k \dot{X}^{2}+g\right)}{k \dot{X}^{2}+g}^{\text {con }} \quad=\binom{0}{0}=\binom{F_{\text {con }}^{X}}{F_{\text {con }}^{Y}}$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { ( } 1^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 }{ }^{\text {nd }} \text { Lagrange equations) } \quad \dot{p}_{m:}=\frac{\partial \underline{\partial L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in $L$ ) so covariant force $F_{\text {cov }}^{\text {cov }}$ is zero. ( $F_{X}^{c o v}=0=F_{Y}^{c o v}$ )

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+m\left(\begin{array}{cc}
2 k^{2} X \dot{X} & k \dot{X} \\
k \dot{X} \cdots & \cdots
\end{array}\right)\binom{\dot{X}}{\dot{Y}}-m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{\alpha^{2}}=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}} \\
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Use $\gamma^{A B}$ to get contravariant (Riemann) equations. (Contra-force $F_{c o n}^{m i}$ also zero here.)

$$
\begin{aligned}
& \frac{1}{m}\left(\begin{array}{cc}
1 & -k X \\
-k X & 1+k^{2} x^{2}
\end{array}\right)\binom{\dot{p}_{X}-\frac{\partial L}{\partial}}{\dot{p}_{Y}-\frac{\partial L}{\partial}}=\binom{\ddot{X}}{\ddot{Y}}+\quad\binom{0}{\ddot{k} \dot{X}^{2}+g}=\binom{\ddot{X}}{\ddot{Y}+k \dot{X}^{2}+g}=\binom{0}{0}=\binom{F_{\text {con }}^{X}}{F_{\text {con }}^{Y}} \quad \ddot{X}=0=\ddot{X}
\end{aligned}
$$

# Some Ways to do constraint analysis 

Way 1. Simple constraint insertion
Way 2. GCC constraint webs Find covariant force equations
$\longrightarrow$ Compare covariant vs. contravariant forces

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{c o v}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{\operatorname{cov}} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{\operatorname{cov}} \nabla Y$

Frictional force components are contravariant Frictional or driving forces have contravariant components $\quad F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have
contravariant components $F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have
contravariant components $\quad F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y}$ ).

$$
\dot{Y}=0=\ddot{Y}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have
contravariant components $F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations
are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$ ).

$$
\dot{Y}=0=\ddot{Y}
$$

$$
m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0 \mp k^{2}-X X^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \quad \cdots \quad \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k x
$$

FINALLY! We get the Way 1. solution

$$
\ddot{x}=\frac{-k \dot{x}^{2}-g}{1+k^{2} x^{2}} k x
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have
contravariant components $F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations
are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$ ).
$m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0 \mp k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \quad \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X$

$$
\begin{aligned}
& \mathbf{F}=\begin{array}{cc}
F_{Y}^{c o v} & \mathbf{E}^{Y} \\
=m\left(k X \ddot{X}+0+k \dot{X}^{2}+g\right) & \binom{-k X}{1}
\end{array}, ~
\end{aligned}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have contravariant components $F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial X}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations
are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$ ).
$m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0 \bar{k}^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \quad \ddot{\quad} \quad \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X$

$$
\begin{aligned}
& \mathbf{F}=\quad F_{Y}^{c o v} \quad \mathbf{E}^{Y} \\
& =m\left(k X \ddot{X}+0+k \dot{X}^{2}+g\right)\binom{-k X}{1} \\
& =m\left(\frac{k^{2} \cdot X^{2}\left(-k \dot{x}^{2}-\dot{g}\right)}{1+k^{2} X^{2}}+\frac{\left(k \dot{X}^{2}+g\right)\left(1+k^{2}-x_{-}^{2}\right)}{1+k^{2} X^{2}}\right)\binom{-k X}{1}
\end{aligned}
$$

Constraint force components are covariant Frictionless constraint forces have covariant components $\quad F_{B}^{c o v}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have contravariant components $F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations
are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$ ).
$m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0 \mp k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \quad \cdots \cdots \cdots \ddot{X}^{2}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X$

$$
\begin{aligned}
& \mathbf{F}=\quad F_{Y}^{c o v} \quad \mathbf{E}^{Y} \\
& =m\left(k X \ddot{X}+0+k \dot{X}^{2}+g\right)\binom{-k X}{1} \\
& =m\left(\frac{k^{2}-X^{2}-\left(k \dot{x}^{2}-\dot{F}-g\right)}{1+k^{2} X^{2}}+\frac{\left(k \dot{X}^{2}+g\right)\left(1+E^{2} \cdot x^{2}\right)}{1+k^{2} X^{2}}\right)\binom{-k X}{1}
\end{aligned}
$$

$$
\binom{F_{x}}{F_{y}}=m \frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}}\binom{-k X}{1} \quad\left(=\binom{0}{m k \dot{X}^{2}+m g \cdots}\right) \quad \begin{aligned}
& \text { Centripetal } \\
& \text { at:X=0 (what the roller-coaster rider feels) }
\end{aligned}
$$

Constraint force components are covariant Frictionless constraint forces have covariant components $\quad F_{B}^{c o v}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have contravariant components $F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations
are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$ ).
$m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0 \mp k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \quad \cdots \cdots \cdots \ddot{X}^{2}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X$

$$
\begin{aligned}
& \mathbf{F}=\quad F_{Y}^{c o v} \quad \mathbf{E}^{Y} \\
& =m\left(k X \ddot{X}+0+k \dot{X}^{2}+g\right)\binom{-k X}{1} \\
& =m\left(\frac{k^{2}-X^{2}-\left(k \dot{x}^{2}-\dot{F}-g\right)}{1+k^{2} X^{2}}+\frac{\left(k \dot{X}^{2}+g\right)\left(1+E^{2} \cdot x^{2}\right)}{1+k^{2} X^{2}}\right)\binom{-k X}{1}
\end{aligned}
$$

$$
\binom{F_{x}}{F_{y}}=m \frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}}\binom{-k X}{1}\left(=\binom{0}{\left.m k \dot{X}^{2}+m g . \cdots f\right)} \begin{array}{l}
\text { Centripetal } \\
\text { at:X=0 (what the roller-coaster rider feels) }
\end{array}\right.
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{c o v}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have $F_{A}^{A}$ contravariant components $F_{c o n}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial X}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass $m$ by parabola $Y=$ const. is normal to parabola (along its gradient $\nabla Y$.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$ ).

Constraint requirements in contravariant equations

$$
A \quad(\text { winn: } Y=0=Y) \text {. }
$$

$$
m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0 \div \dot{F}^{2} X X^{2}+g k X}{k X X X+0+k \dot{X}^{2}+g}=\binom{0 \ldots}{F_{Y}^{c o v}} \quad \cdots \quad \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X
$$

$$
\begin{aligned}
& \mathbf{F}=F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =m\left(k X \ddot{X}+0+k \dot{X}^{2}+g\right)\binom{-k X}{1} \\
& =m\left(\frac{k^{2}-X^{2}-\left(k \dot{X}^{2}\right.}{1+k^{2} X^{2}}+\frac{\left(k \dot{X}^{2}+g\right)\left(1+z^{2}=x^{2}\right)}{1+k^{2} X^{2}}\right)\binom{-k X}{1}
\end{aligned}
$$

$$
\binom{F_{x}}{F_{y}}=m \frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}}\binom{-k X}{1}\left(=\binom{0}{m k \dot{X}^{2}+m g \cdots} f_{a t: X=0} \quad \begin{array}{l}
\text { Centripetal } \\
\cdots
\end{array}\right) \quad \begin{aligned}
& -g=\ddot{y}=\frac{d^{2}}{d t^{2}}\left(\frac{1}{2} k X^{2}+Y\right) \\
& =k \dot{X}^{2}+k X \ddot{X}+\ddot{Y}\left(=k \dot{X}^{2}+\ddot{Y} \text { for } \ddot{X}=0\right)
\end{aligned}
$$

# Other Ways to do constraint analysis 

$\longrightarrow$ Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
Multiple multipliers
"Non-Holonomic" multipliers

Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and $\operatorname{OCC}(u, v)$
$z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}$


Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
y=2 u v^{-}
$$

$$
r=u^{2}+v^{2}
$$



Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and $\operatorname{OCC}(u, v)$

$$
\begin{aligned}
& z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \\
& x=u^{2}-v^{2} \\
& y=2 u v \\
& r=u^{2}, v^{2} \quad 2 u^{2}=r+x=\sqrt{x^{2}+y^{2}}+x \\
& 2 v^{2}=r=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$



Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and OCC $(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
-y=2 u
$$

$$
\therefore 2 u^{2}=r+x=\sqrt{x^{2}+y^{2}}+x
$$

$$
r=u^{2}-v^{2} \quad 2 v^{2}=r-x=\sqrt{x^{2}+y^{2}}-x
$$

$\because y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)$
Gives confocal parabolics


## Way 3. Parabolic OCC approach

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
\begin{aligned}
y & =2 u v \\
r & =u^{2}+v^{2} \quad 2 u^{2}
\end{aligned} \quad 2 v^{2}=r+x=\sqrt{x^{2}+y^{2}}+x=\sqrt{x^{2}+y^{2}}-x .
$$

$$
\because y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics

$$
\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$



Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and OCC $(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
\begin{aligned}
& x=2 u v \\
& r=u^{2}-v^{2} \quad 2 v^{2}=r+x=\sqrt{x^{2}+y^{2}}+x \\
& x^{2}+y^{2}-x
\end{aligned}
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics

$$
\left(\begin{array}{l}
\frac{\partial x}{\partial u} \\
\frac{\partial x}{\partial v} \\
\frac{\partial v}{\partial u} \\
\frac{\partial v}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right) \quad\left(\begin{array}{l}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial v} \\
\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial v}
\end{array}\right)=\binom{\mathbf{E}^{u} u}{\mathbf{E}^{v}}=\frac{\left.\binom{2 u}{-2 v} \frac{2 v}{4\left(u^{2}+v^{2}\right.}\right)}{4}=\frac{1}{2 v}\left(\begin{array}{cc}
u \\
-v & u
\end{array}\right)
$$



Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.

Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and OCC $(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
\begin{aligned}
& x=u v \\
& r=u^{2}<v^{2} \quad 2 v^{2}=r-x=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics


Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.
$L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right) \quad-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V$

# Other Ways to do constraint analysis 

Way 3. OCC constraint webs
$\rightarrow$ Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
Multiple multipliers
"Non-Holonomic" multipliers

## Way 3. Parabolic OCC approach

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v^{2}$

$$
\begin{aligned}
y & =2 u v \\
r & =u^{2}+v^{2} \quad 2 u^{2}=r+x=\sqrt{x^{2}+y^{2}}+x \\
2 v^{2} & =r-x=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
\because y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives coñfocal parabolics
$\left(\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{u} & \mathbf{E}_{v}\end{array}\right)=\left(\begin{array}{cc}2 u & -2 v \\ +2 v & 2 u\end{array}\right)$


Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Halmimiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.
$L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right) \quad-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V$
$H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V$

$$
V=\boldsymbol{\varepsilon} x+k \nmid r
$$

Stark-Coulomb potential

## Way 3. Parabolic OCC approach

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v^{2}$

$$
\begin{aligned}
y & =2 u v \\
r & =u^{2}+v^{2} \quad 2 v^{2}
\end{aligned}=r+x=\sqrt{x^{2}+y^{2}}+x=\sqrt{x^{2}+y^{2}}-x .
$$

$$
\begin{aligned}
& \because y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right) \\
& y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
\end{aligned} \quad \text { Gives confocal parabolics }
$$



Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Häminiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{g v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k \gamma r
$$

Stark-Coutomb pótential

For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable ifito $u$ and in parts. $^{\text {a }}$.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

## Way 3. Parabolic OCC approach

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of $z$ and then absolute square $|z|^{2}$ give relations between Cartesian $(x, y)$ and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v$

$$
\begin{aligned}
y & =2 u v \\
r & =u^{2}+v^{2} \quad 2 u^{2}=r+x=\sqrt{x^{2}+y^{2}}+x \\
2 v^{2} & =r-x=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

Gives confocal parabolics


Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Härmiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$V=\varepsilon x+k ケ r$
Stark-Coutomb pótential

For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into $u$ and parts.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Each sub-Hamiltonian paitt $h_{i}$ add $h_{v}$ is a constant Together they sum to zero total energy $0=h_{u}+h_{v}$.

$$
0=\frac{1}{2 m} p_{u}^{2}-4 E u^{2}+4 \varepsilon u^{4}+\frac{1}{2 m} p_{v}^{2}-4 E v^{2}-4 \varepsilon v^{4}+4 k=h_{u}+h_{v}
$$

# Other Ways to do constraint analysis 

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
$\longrightarrow$ Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
Multiple multipliers
"Non-Holonomic" multipliers


Metric $g_{u v}=\mathbf{E}_{u} \bullet \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

Stark-Coulomb potential


Metric $g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{\dot{q}} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

Stark-Coutomb potential
For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into $u$ and $v$ parts.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$



Metric $g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{\dot{q}} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

Stark-Coutomb potential
For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into $u$ and $v$ parts.

$$
4\left(u^{2}+v_{-}^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Each sub-Hamiltónian pait $h_{u}$ and $h_{v}$ is a constant. Fogether they sum to zero total energy $0=h_{u}+h_{v}$.

$$
0=\frac{1}{2 m} p_{u}^{2}-4 E u^{2}+4 \varepsilon u^{4}+\frac{1}{2 m} p_{v}^{2}-4 E v^{2}-4 \varepsilon v^{4}+4 k=h_{u}+h_{v}
$$



Metric $g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian $L$ uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian $H$ uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into $u$ and $v$ parts.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Each sub-Ȟailtónian pait $h_{v}$ and $h_{v}$ is a constant. Together they sum to zero total energy $0=h_{u}+h_{v}$.

$$
0=\frac{1}{2 m} p_{u}^{2}-4 E u^{2}+4 \varepsilon u^{4}+\frac{1}{2 m} p_{v}^{2}-4 E v^{2}-4 \varepsilon v^{4}+4 k=h_{u}+h_{v}
$$

Zero Stark-field $(\varepsilon=0)$ gives $h_{u}$ or $h_{v}$ harmonic oscillation if $E<0$. It's unstable or anharmonic otherwise.

$$
\dot{p}_{u}=-\frac{\partial h_{u}}{\partial u}=-8 E u+16 \varepsilon u^{3} \quad \dot{u}=\frac{\partial h_{u}}{\partial p_{u}}=p_{u} / m \quad \dot{p}_{v}=-\frac{\partial h_{v}}{\partial v}=-8 E v-16 \varepsilon v^{3} \quad \dot{v}=\frac{\partial h_{v}}{\partial p_{v}}=p_{v} / m
$$

# Other Ways to do constraint analysis 

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
$\longrightarrow$ Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
Multiple multipliers
"Non-Holonomic" multipliers

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Lagrange multiplier approaches
Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbf{F}$ is along its $c^{1}$-gradient $\quad .\left(\mathbf{F} \propto \nabla c^{1}\right)$

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbf{F}$ is along its $c^{1}$-gradient $\quad .\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbf{F}$ is along its $c^{1}$-gradient.$\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbf{F}$ is along its $c^{1}$-gradient.$\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component $F_{1}^{c}$ of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbf{F}$ is along its $c^{1}$-gradient $\quad .\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component $F_{1}^{c}$ of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force $\mathbb{F}$
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbf{F}$ is along its $c^{1}$-gradient $\quad .\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component $F_{1}^{c}$ of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force $\mathbf{F}$
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbf{F}$ is along its $c^{1}$-gradient $\quad .\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component $F_{1}^{c}$ of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force $\mathbb{F}$
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g} \quad\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g}
$$

Constraint function $y=1 / 2 k x^{2}$ gives derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x}^{2}+x \ddot{x}\right)$ that give multiplier $\lambda$.

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbb{F}$ is along its $c^{1}$-gradient.$\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component $F_{1}^{c}$ of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force $\mathbb{F}$
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g} \quad\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g}
$$

Constraint function $y=1 / 2 k x^{2}$ gives derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x}^{2}+x \ddot{x}\right)$ that give multiplier $\lambda$.

$$
\lambda=m\left(-k \dot{x}^{2}-k x \ddot{x}-g\right)
$$

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbb{F}$ is along its $c^{1}$-gradient.$\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component $F_{1}^{c}$ of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force $\mathbb{F}$
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g} \quad\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g}
$$

Constraint function $y=1 / 2 k x^{2}$ gives derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x}^{2}+x \ddot{x}\right)$ that give multiplier $\lambda$.

$$
\lambda=m\left(-k \dot{x}^{2}-k x \ddot{x}-g\right)
$$

Then the $\lambda$ function gives the new constrained $x$-equation of motion.

$$
\begin{aligned}
& m \ddot{x}=\lambda k x=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right) k x=-m\left(k^{2} x \dot{x}^{2}+k^{2} x^{2} \ddot{x}+k g x\right) \\
& \left(1+k^{2} x^{2}\right) \ddot{x}=\left(-k \dot{x}^{2}-g\right) k x
\end{aligned}
$$

## Lagrange multiplier approaches

Lagrange multiplier or $\lambda$-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

Imagine this is a coordinate line. Its normal constraining force $\mathbb{F}$ is along its $c^{1}$-gradient.$\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component $F_{1}^{c}$ of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force $\mathbb{F}$
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g} \quad\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g}
$$

Constraint function $y=1 / 2 k x^{2}$ gives derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x}^{2}+x \ddot{x}\right)$ that give multiplier $\lambda$.

$$
\lambda=m\left(-k \dot{x}^{2}-k x \ddot{x}-g\right)
$$

Then the $\lambda$ function gives the new constrained $x$-equation of motion.

$$
\begin{array}{ll}
m \ddot{x}=\lambda k x=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right) k x=-m\left(k^{2} x \dot{x}^{2}+k^{2} x^{2} \ddot{x}+k g x\right) \\
\left(1+k^{2} x^{2}\right) \ddot{x}=\left(-k \dot{x}^{2}-g\right) k x & \left(\begin{array}{l}
\ddot{x}=\frac{-k \dot{x}^{2}-g}{1+k^{2} x^{2}} k x
\end{array}\right.
\end{array}
$$

# Other Ways to do constraint analysis 

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
$\longrightarrow$ Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

## Lagrange multiplier basics

Suppose you need to find maximum of $H=\left(A x^{2}+B x y+A y^{2}\right) / 2$ subject to constraint: $C=\left(x^{2}+y^{2}\right) / 2=$ const. By geometry you are finding the largest ellipse (if $A>B>0$ ) to contact the circle $C$ or the smallest.

The contact points satisfy gradient proportionality equations:

$$
\nabla H=\lambda \cdot \nabla C
$$

$$
\begin{aligned}
& \binom{\partial_{x} H}{\partial_{y} H}=\lambda \cdot\binom{\partial_{x} C}{\partial_{y} C} \\
& \binom{A x+B y}{B x+D y}=\lambda \cdot\binom{x}{y}
\end{aligned}
$$



Extreme cases occur only at contact points

## Lagrange multiplier basics

Suppose you need to find maximum of $H=\left(A x^{2}+B x y+A y^{2}\right) / 2$ subject to constraint: $C=\left(x^{2}+y^{2}\right) / 2=$ const. By geometry you are finding the largest ellipse (if $A>B>0$ ) to contact the circle $C$ or the smallest.

The contact points satisfy gradient proportionality equations:

$$
\begin{gathered}
\nabla H=\lambda \cdot \nabla C \\
\binom{\partial_{x} H}{\partial_{y} H}=\lambda \cdot\binom{\partial_{x} C}{\partial_{y} C} \\
\binom{A x+B y}{B x+D y}=\lambda \cdot\binom{x}{y}
\end{gathered}
$$



Extreme cases occur only at contact points
This amounts to a $\lambda$-eigenvalue-eigenvector equation

$$
\left(\begin{array}{ll}
A & B \\
B & D
\end{array}\right)\binom{x}{y}=\lambda \cdot\binom{x}{y} \quad \text { (More about this in Units 4-6) }
$$

(Perhaps, this is why we label eigenvalues $\lambda$ with a Greek "L")

# Other Ways to do constraint analysis 

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
$\rightarrow$ Multiple multipliers
"Non-Holonomic" multipliers

Lagrange multipliers also work for constraints $c\left(q^{k}\right)=$ const. that cut across GCC lines.
It is only necessary to express the gradient of $c\left(q^{k}\right)$ in terms of the GCC using chainsaw sum rule.

$$
\begin{aligned}
& \nabla c=\frac{\partial c}{\partial x^{j}} \hat{\mathbf{e}}^{j}=\frac{\partial c}{\partial q^{k}} \mathbf{E}^{k} \\
& \frac{\partial c}{\partial q^{k}}=\frac{\partial}{\partial q^{k}} \frac{\partial c}{}=\frac{\partial x^{j}}{\partial q^{k}} \frac{\partial c}{\partial x^{j}}=\frac{\partial \mathbf{r}}{\partial q^{k}} \cdot \frac{\partial c}{\partial \mathbf{r}}=\mathbf{E}_{k} \cdot \nabla c
\end{aligned}
$$

Then the Lagrange equations for each GCC $q^{k}$ will share a $\lambda$-multiplier on its $c$-gradient component.

$$
\left(\begin{array}{c}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}} \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\lambda \frac{\partial c}{\partial q^{1}} \\
\lambda \frac{\partial c}{\partial q^{2}} \\
\vdots
\end{array}\right) \quad \dot{p}_{k}-\frac{\partial L}{\partial q^{k}}=\lambda \frac{\partial c}{\partial q^{k}}
$$

Lagrange multipliers also work for constraints $c\left(q^{k}\right)=$ const. that cut across GCC lines.
It is only necessary to express the gradient of $c\left(q^{k}\right)$ in terms of the GCC using chainsaw sum rule.

$$
\nabla c=\frac{\partial c}{\partial x^{j}} \hat{\mathbf{e}}^{j}=\frac{\partial c}{\partial q^{k}} \mathbf{E}^{k} \quad \frac{\partial c}{\partial q^{k}}=\frac{}{\partial q^{k}} \frac{\partial c}{}=\frac{\partial x^{j}}{\partial q^{k}} \frac{\partial c}{\partial x^{j}}=\frac{\partial \mathbf{r}}{\partial q^{k}} \cdot \frac{\partial c}{\partial \mathbf{r}}=\mathbf{E}_{k} \cdot \nabla c
$$

Then the Lagrange equations for each GCC $q^{k}$ will share a $\lambda$-multiplier on its $c$-gradient component.

$$
\left(\begin{array}{c}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}} \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\lambda \frac{\partial}{\partial q^{1}} \\
\lambda \frac{\partial c}{\partial q^{2}} \\
\vdots
\end{array}\right) \quad \dot{p}_{k}-\frac{\partial L}{\partial q^{k}}=\lambda \frac{\partial c}{\partial q^{k}}
$$

Two or more constraints $\quad c^{1}\left(q^{k}\right)=$ const.,$c^{2}\left(q^{k}\right)=$ const., $\cdots \quad$ add two or more $\lambda_{\gamma}$ terms to the equations.

$$
\left(\begin{array}{c}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}} \\
\dot{p}_{2}-\frac{\partial}{\partial} \underline{L} q^{2} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} \frac{\partial}{\partial} \frac{c^{1}}{q^{1}} \\
\lambda_{1} \frac{\partial}{\partial} \underline{c}^{1} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\lambda_{2} \frac{\partial}{\partial} \frac{c^{2}}{\partial q^{1}} \\
\lambda_{2} \frac{\partial}{\partial} \frac{c^{2}}{\partial q^{2}} \\
\vdots
\end{array}\right)+\ldots \quad \dot{p}_{k}-\frac{\partial L}{\partial q^{k}}=\lambda \gamma \frac{\partial c^{\gamma}}{\partial q^{k}}
$$

# Other Ways to do constraint analysis 

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
Multiple multipliers
"Non-Holonomic" multipliers

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral $c^{\gamma}$ surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

$$
\text { Constrained equations of mọtion } \quad \vdots
$$

$$
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots
$$

$$
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots
$$

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral $c^{\gamma}$ surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

Constrained equations of mọtion

$$
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots
$$

$$
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots
$$

If a differential can't be integrated to give a constraint function it's called a non-holonomic constraint.

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral $c^{\gamma}$ surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

Constrained equations of motion

$$
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots \quad \dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots
$$

If a differential can't be integrated to give a constraint function it's called a non-holonomic constraint. I guess that means that integrable ones are holonomic, but why do we need the bigger words. A requirement for integrability (or "holonomicty") is that double differentials are symmetric.

$$
\frac{\partial^{2} c^{\gamma}}{\partial q^{j} \partial q^{k}}=\frac{\partial^{2} c^{\gamma}}{\partial q^{k} \partial q^{j}}
$$

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral $c^{\gamma}$ surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

Constrained equations of motion

$$
\begin{array}{ll}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots & \dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots & \dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots
\end{array}
$$

If a differential can't be integrated to give a constraint function it's called a non-holonomic constraint. I guess that means that integrable ones are holonomic, but why do we need the bigger words. A requirement for integrability (or "holonomicty") is that double differentials are symmetric.

$$
\frac{\partial^{2} c^{\gamma}}{\partial q^{j} \partial q^{k}}=\frac{\partial^{2} c^{\gamma}}{\partial q^{k} \partial q^{j}}
$$

Force components $F_{k}^{\gamma}=\frac{\partial c^{\gamma}}{\partial q^{k}}=C_{k}^{\gamma}$ must satisfy reciprocity relations to be gradients of a $c^{\gamma}$ function.

Integral constraint differentials

$$
\frac{\partial F_{k}^{\gamma}}{\partial q^{j}}=\frac{\partial^{2} c^{\gamma}}{\partial q^{j} \partial q^{k}}=\frac{\partial F_{j}^{\gamma}}{\partial q^{k}}
$$

## General differential constraint relations

$$
\frac{\partial C_{k}^{\gamma}}{\partial q^{j}} \text { maynot be } \frac{\partial C_{j}^{\gamma}}{\partial q^{k}}
$$

