Lecture 9 Tue. 9.23.2014

Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits

(Ch. 9 and Ch. 11 of Unit 1)

Constructing 2D IHO orbits by phasor plots

Phasor "clock" geometry Integrating IHO equations by phasor geometry

Constructing 2D IHO orbits using Kepler anomaly plots

Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry (Derived rigorously later in Ch. 12)

Some Kepler's "laws" for central (isotropic) force F(r)

Angular momentum invariance of IHO: $F(r)=-k\cdot r$ with $U(r)=k\cdot r^2/2$ (Derived rigorously)

Angular momentum invariance of Coulomb: $F(r)=-GMm/r^2$ with $U(r)=-GMm\cdot/r$ (Derived later in Unit 5)

Total energy E=KE+PE invariance of IHO: $F(r)=-k\cdot r$ (Derived rigorously)

Total energy E=KE+PE invariance of Coulomb: $F(r)=-GMm/r^2$ (Derived later in Unit 5)

Brief introduction to matrix quadratic form geometry

BoxIt simulation of U(2) orbits
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html

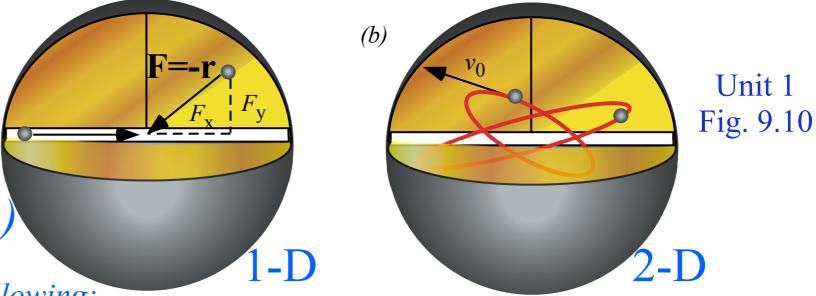
→ Introducing 2D IHO orbits and phasor geometry

Phasor "clock" geometry

I.H.O. Force law

$$F = -x$$
 (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)



Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

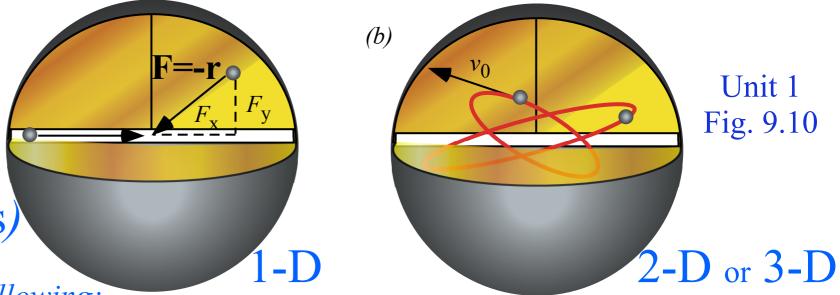
(a)

(Paths are always 2-D ellipses if viewed right!)

I.H.O. Force law

$$F = -x$$
 (1-Dimension)

$$\mathbf{F} = -\mathbf{r}$$
 (2 or 3-Dimensions)



Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$
Equations for x motion

(a)

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y=v(t)$] and $[z(t) \text{ and } v_z=v(t)] \text{ in the }$ ideal <u>isotropic</u> case.

(Paths are always 2-D ellipses if viewed right!)

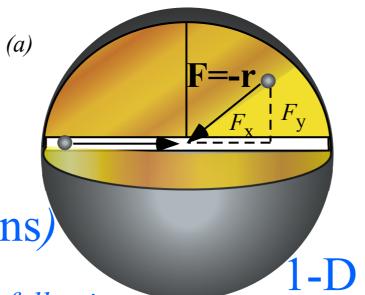
Unit 1

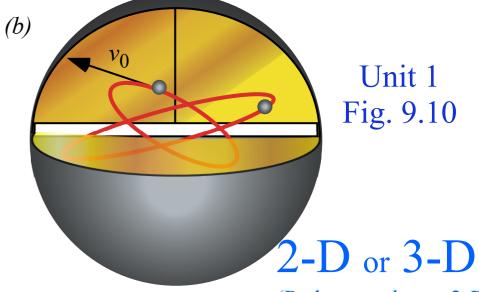
Fig. 9.10

I.H.O. Force law

F = -x (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)





(Paths are always 2-D ellipses if viewed right!)

Each dimension x, y, or z obeys the following: $Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y=v(t)$] and [z(t) and $v_z = v(t)$] in the ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick...

trick...

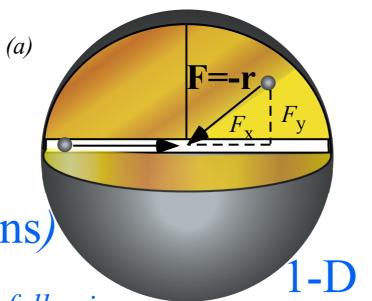
velocity: position: Let: (1) $v = \sqrt{2E/m}\cos\theta$, and: (2) $x = \sqrt{2E/k}\sin\theta$

(2)
$$x = \sqrt{2E/k} \sin \theta$$

I.H.O. Force law

$$F = -x$$
 (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)



(b) Unit 1 Fig. 9.10 2-D or 3-D (Paths are always 2-D

Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y=v(t)$] and [z(t) and $v_z = v(t)$] in the ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick...

ellipses if viewed

right!)

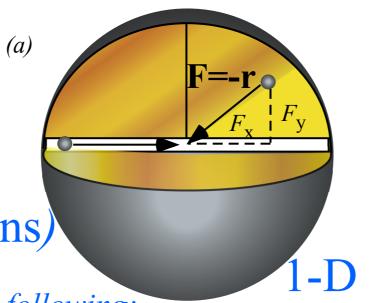
 $\frac{2E}{2E} + \frac{1}{2E} - \frac{1}{2E$

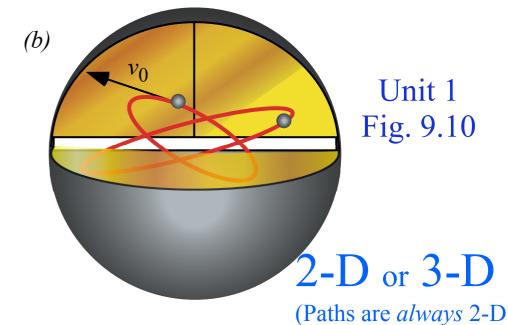
$$\sqrt{\frac{2E}{m}} \frac{\text{velocity:}}{\cos \theta = v} = \frac{dx}{dt} = \frac{d\theta}{dt} \frac{dx}{d\theta} = \omega \frac{dx}{d\theta}$$
by (1)
by def. (3)

I.H.O. Force law

F = -x (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)





Each dimension x, y, or z obeys the following: $Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y=v(t)$] and

[z(t) and $v_z = v(t)$] in the

ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick...

 $\frac{2E}{2E} + \frac{1}{2E} - \frac{1}{2E$

ellipses if viewed

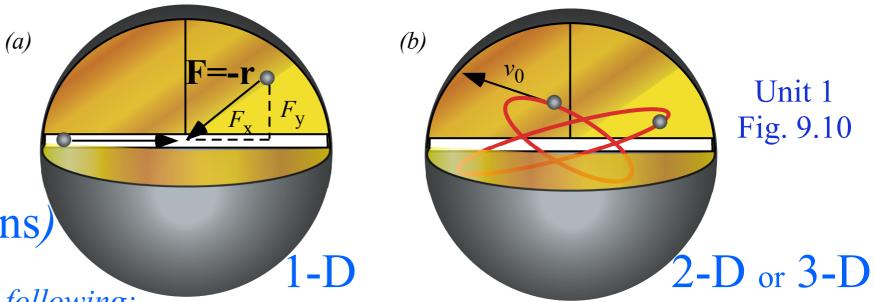
right!)

$$\sqrt{\frac{2E}{m}} \frac{\text{velocity:}}{\cos \theta = v} = \frac{dx}{dt} = \frac{d\theta}{dt} \frac{dx}{d\theta} = \omega \frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}} \cos \theta$$
by (1)
by (2)
by (2)

I.H.O. Force law

F = -x (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)



Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y=v(t)$] and [z(t) and $v_z = v(t)$] in the ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick...

$$\sqrt{2E/m}$$
 $\sqrt{2E/k}$

Unit 1

Fig. 9.10

(Paths are always 2-D

ellipses if viewed

right!)

$$2E \quad 2E$$

$$velocity: \qquad position: \qquad angular \ velocity: \qquad d\theta$$

$$Let: \textbf{(1)} \ v = \sqrt{2E/m} \cos \theta, \quad and: \quad \textbf{(2)} \ x = \sqrt{2E/k} \sin \theta \qquad def. \quad \textbf{(3)} \ \omega = \frac{d\theta}{dt}$$

$$\sqrt{\frac{2E}{m}} \cos \theta = v = \frac{dx}{dt} = \frac{d\theta}{dt} \frac{dx}{d\theta} = \omega \frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}} \cos \theta$$

$$by (1)$$

$$by (2)$$

$$by def. (3)$$

$$by def. (3)$$

$$by (2)$$

$$divide this by (1)$$

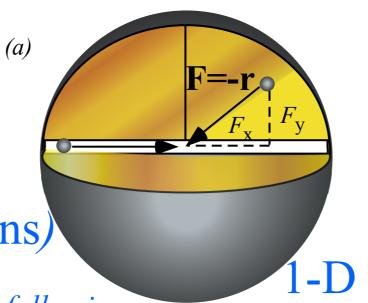
$$\omega = \frac{d\theta}{dt} = \sqrt{\frac{k}{m}}$$

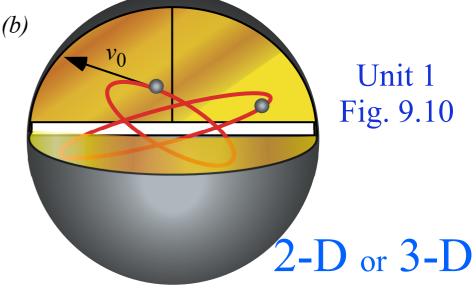
$$divide this by (1)$$

I.H.O. Force law

F = -x (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)





(Paths are always 2-D ellipses if viewed right!)

Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y=v(t)$] and [z(t)] and $v_z=v(t)$ in the ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

the
$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
 Another example of the old "scale-a-circle" trick...

velocity: $v = \sqrt{\frac{2E}{m}\cos\theta}$ and $v = \sqrt{\frac{2E}{m}\cos\theta}$ and $v = \sqrt{\frac{2E}{m}\sin\theta}$ def. (3) $v = \sqrt{\frac{2E}{m}\cos\theta}$

(2)
$$x = \sqrt{2E/k} \sin \theta$$

gular velocity:
$$\det(3) \quad \omega = \frac{d\theta}{dt}$$

$$\sqrt{\frac{2E}{m}} \frac{\text{velocity:}}{\cos \theta = v} = \frac{dx}{dt} = \frac{d\theta}{dt} \frac{dx}{d\theta} = \omega \frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}} \cos \theta$$

$$\frac{dy}{dt} \frac{dy}{d\theta} = \omega \frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}} \cos \theta$$

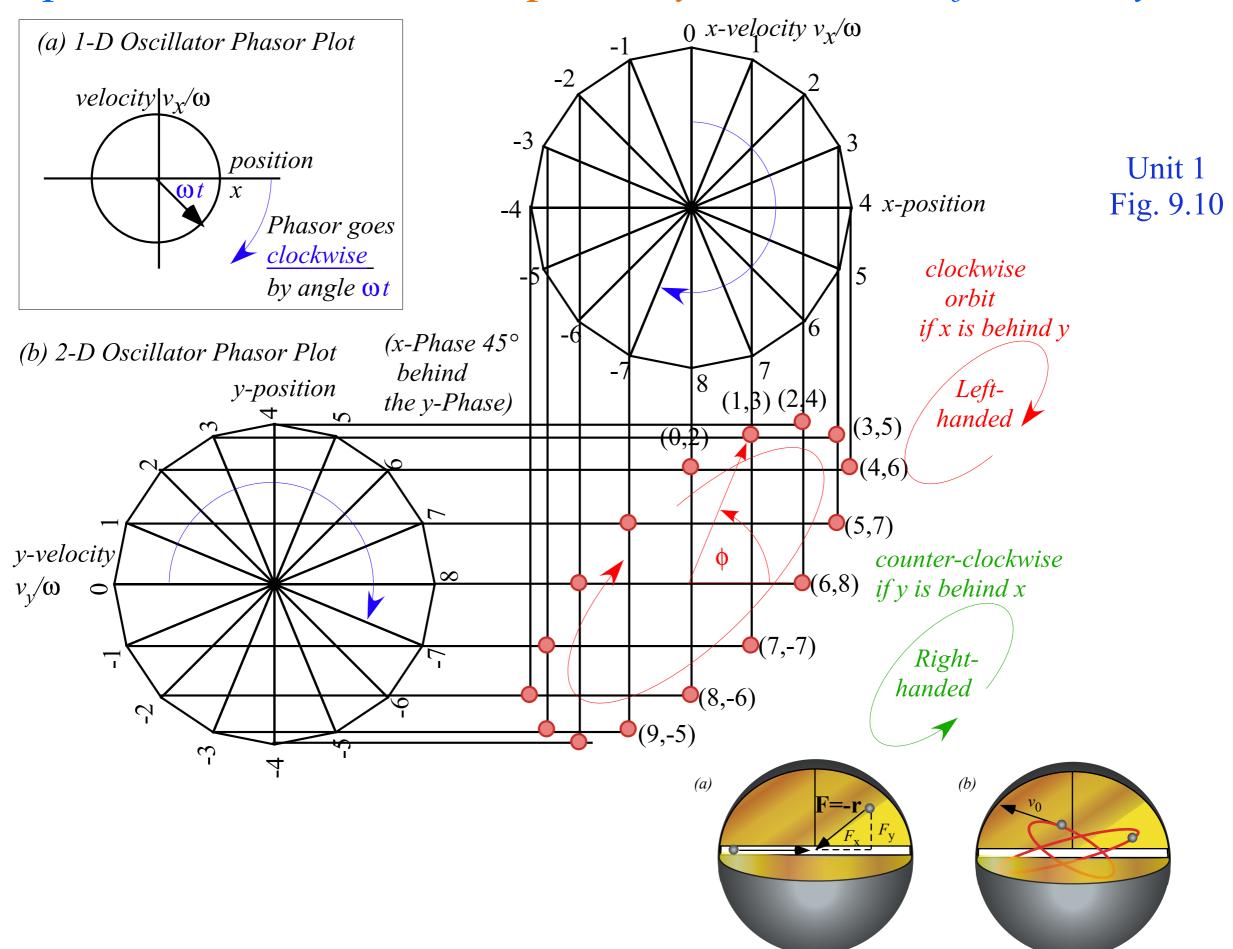
$$\frac{dy}{dt} \frac{d\theta}{dt} = \sqrt{\frac{k}{m}} \cos \theta$$

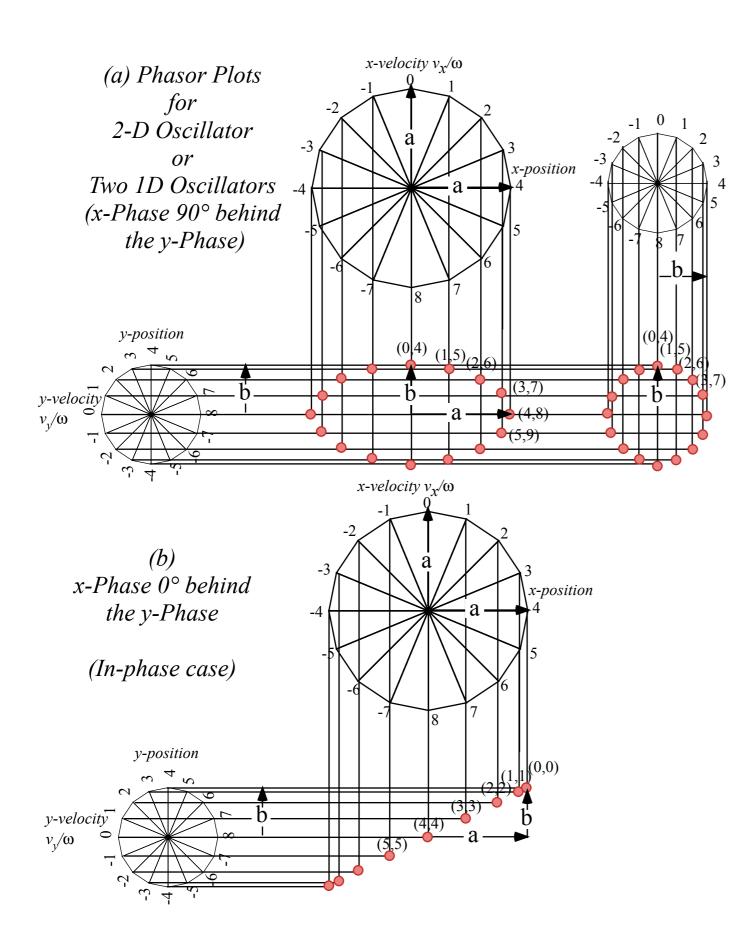
$$\frac{dy}{dt} = \sqrt{\frac$$

by def. (3)
$$\omega = \frac{d\theta}{dt} = \sqrt{\frac{k}{m}}$$
divide this by (1)

by integration given constant ω ?

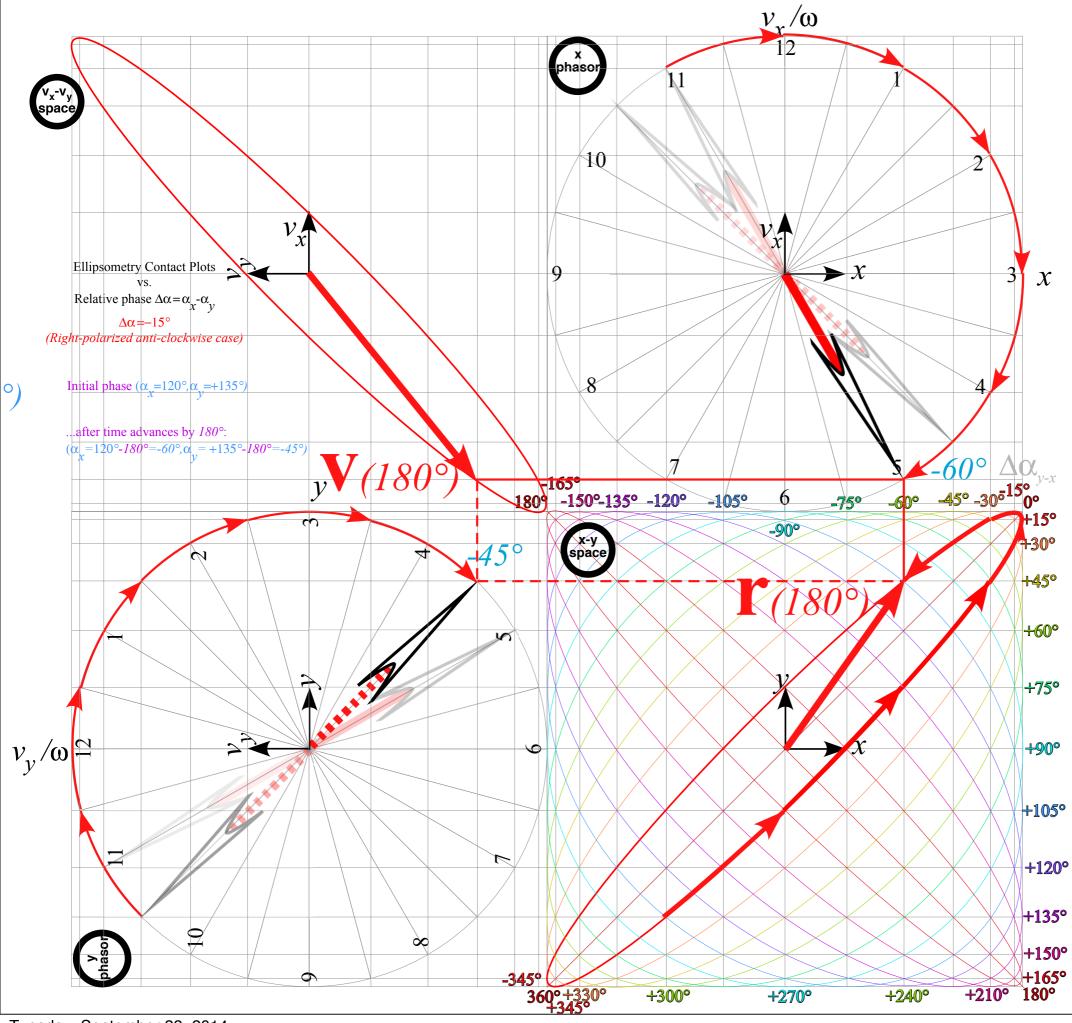
$$\theta = \int \omega \cdot dt = \omega \cdot t + \alpha$$





Unit 1 Fig. 9.12

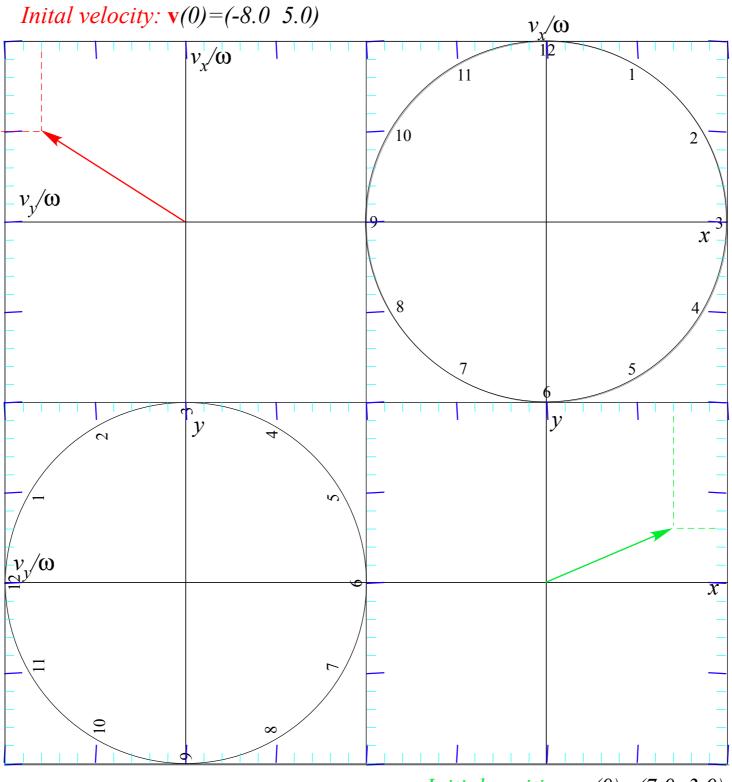
These are more generic examples with radius of x-phasor differing from that of the y-phasor.



Constructing 2D IHO orbits by phasor plots

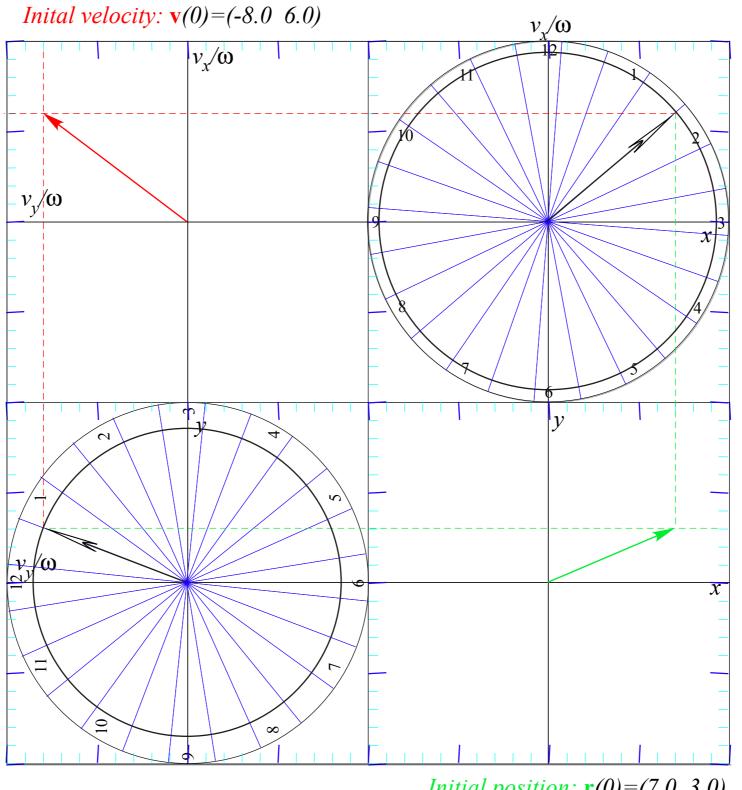
Review of phasor "clock" geometry (From Lecture 8)

Integrating IHO equations by phasor geometry (case of unequal x and y phasor area)



Initial position: $\mathbf{r}(0) = (7.0 \ 3.0)$

BoxIt simulation of U(2) orbits
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html

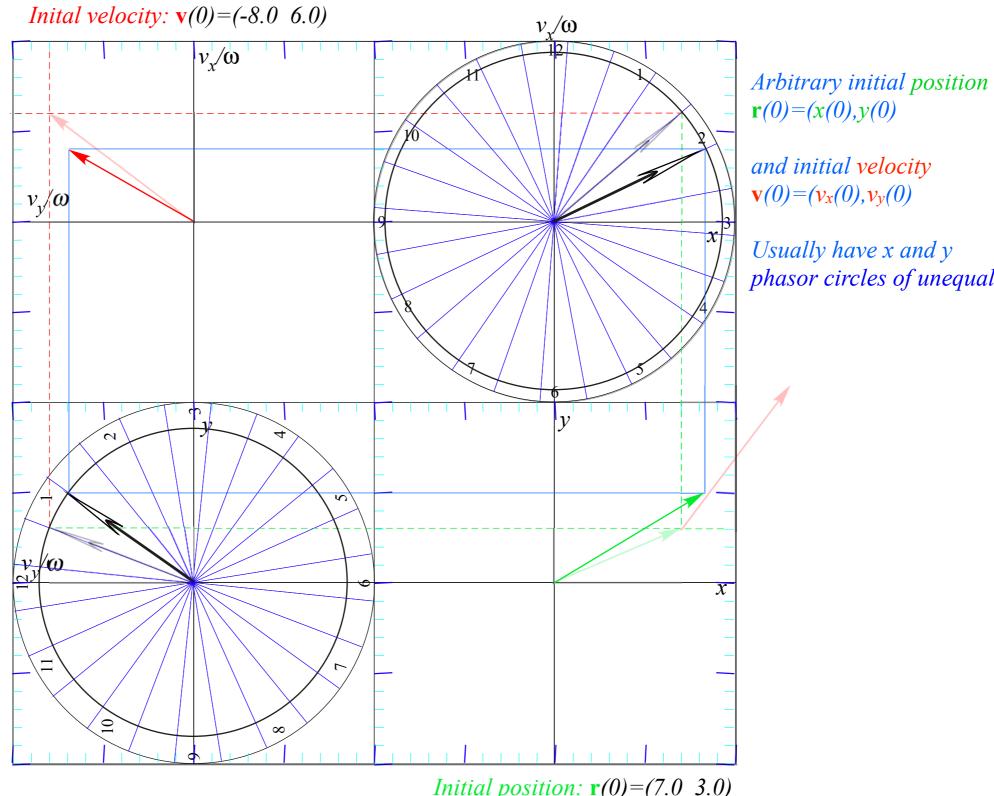


Arbitrary initial position $\mathbf{r}(0) = (x(0), y(0))$

and initial velocity $\mathbf{v}(0) = (\mathbf{v}_{x}(0), \mathbf{v}_{y}(0))$

Usually have x and y phasor circles of unequal size

Initial position: $\mathbf{r}(0) = (7.0 \ 3.0)$

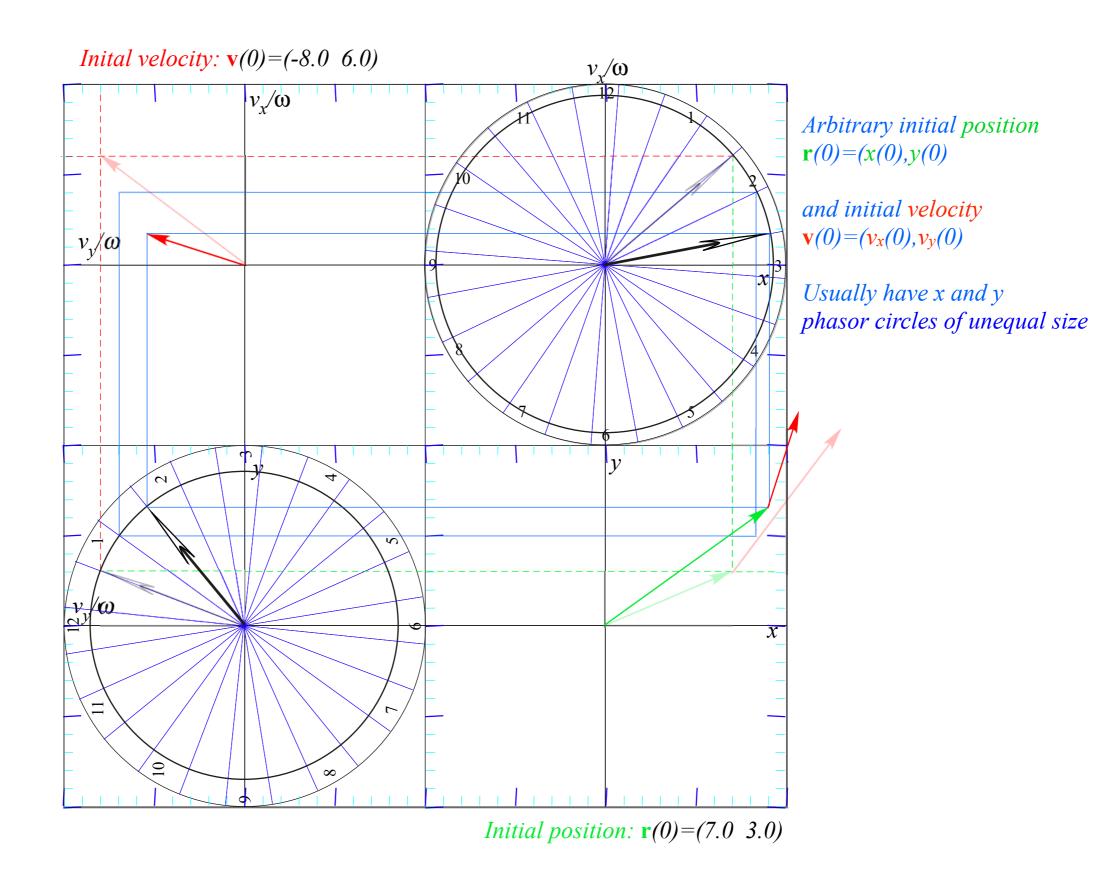


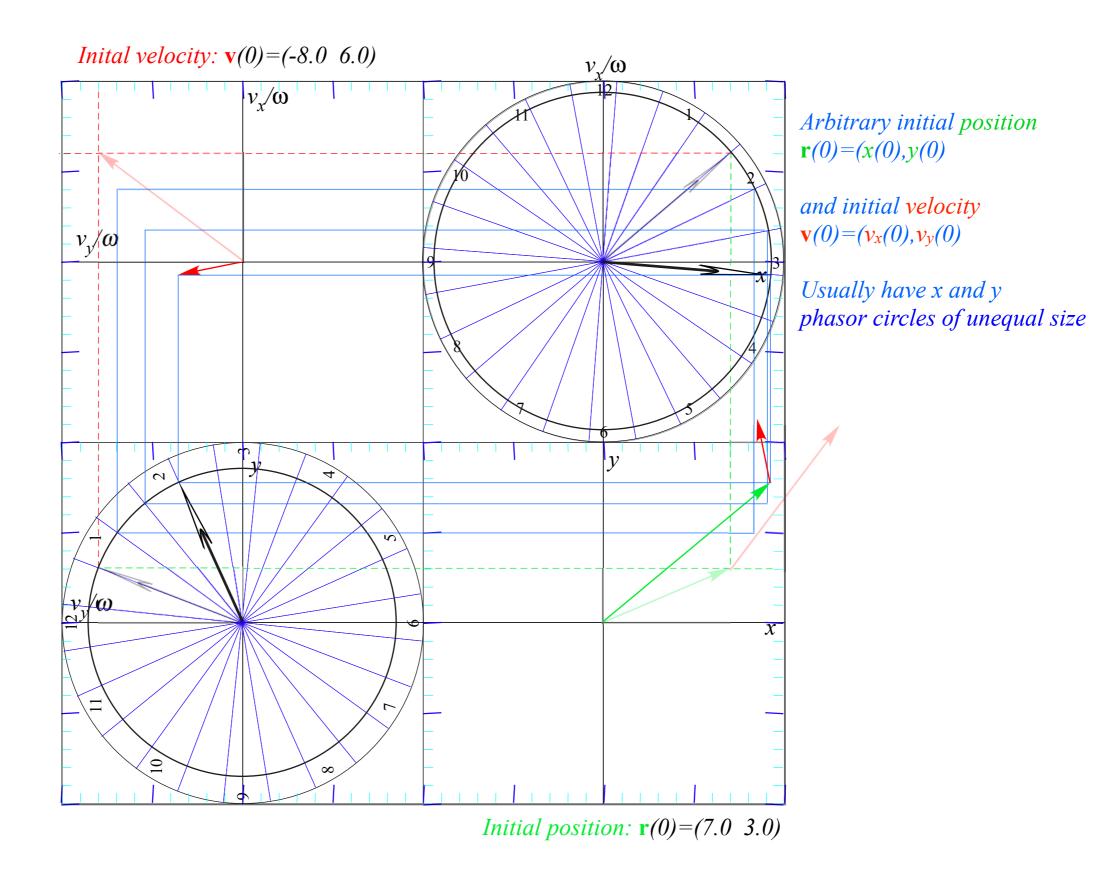
 $\mathbf{r}(0) = (x(0), y(0))$

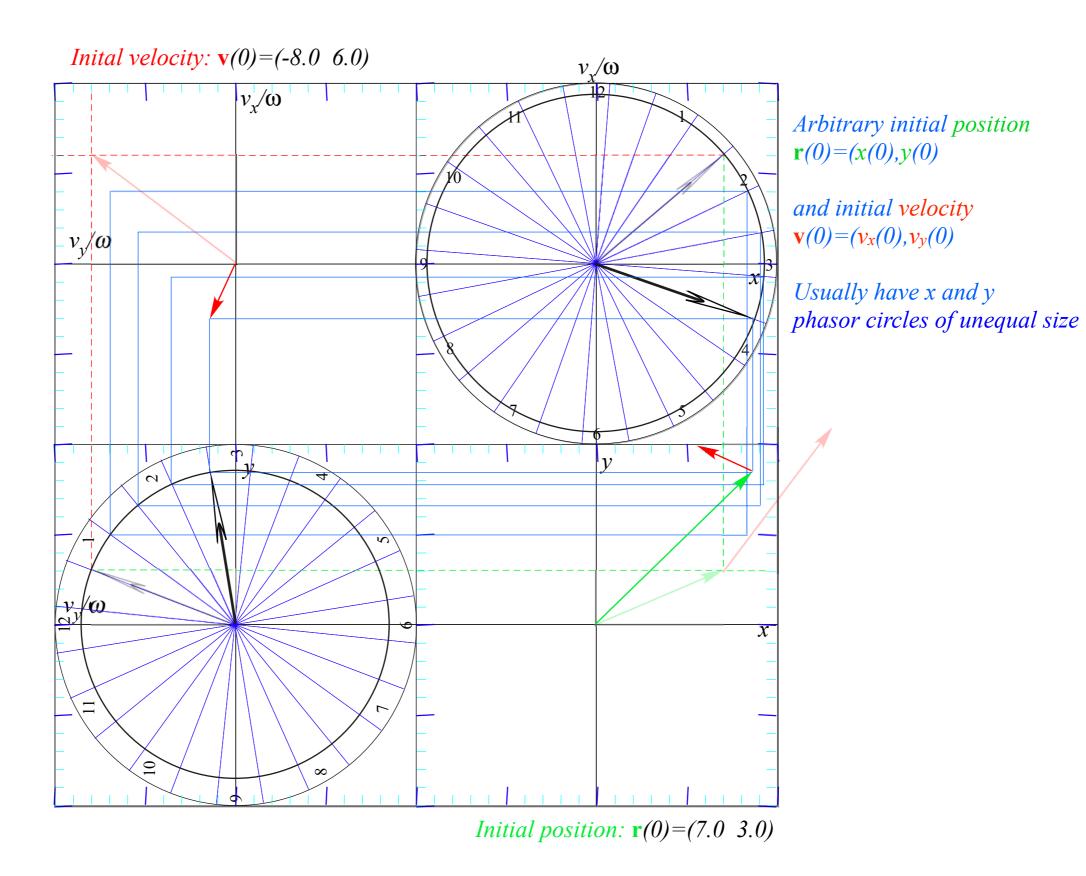
and initial velocity $\mathbf{v}(0) = (\mathbf{v}_{x}(0), \mathbf{v}_{y}(0))$

Usually have x and y phasor circles of unequal size

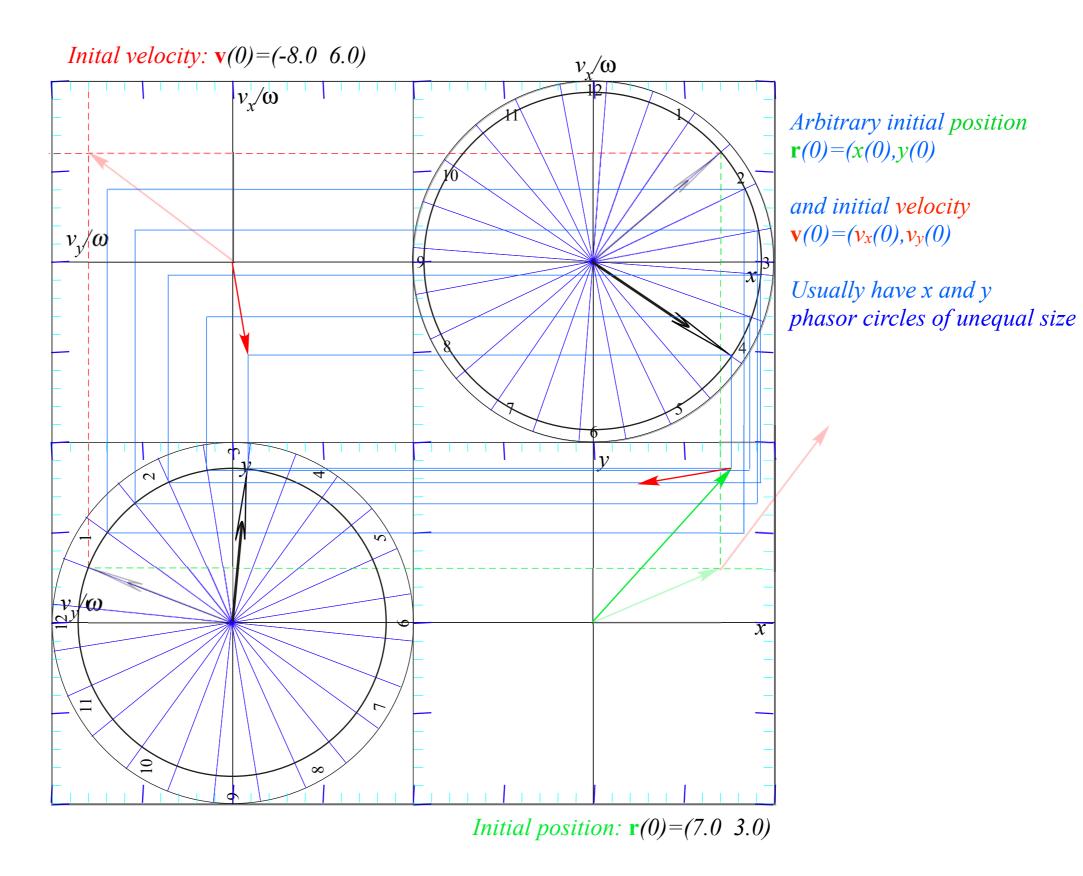
Initial position: $\mathbf{r}(0) = (7.0 \ 3.0)$

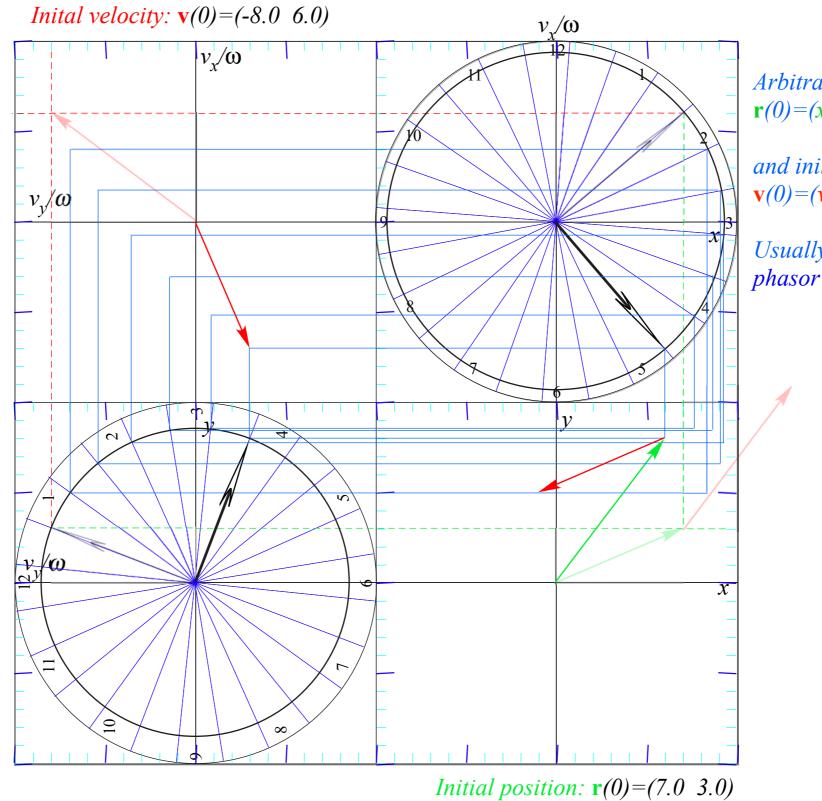






19

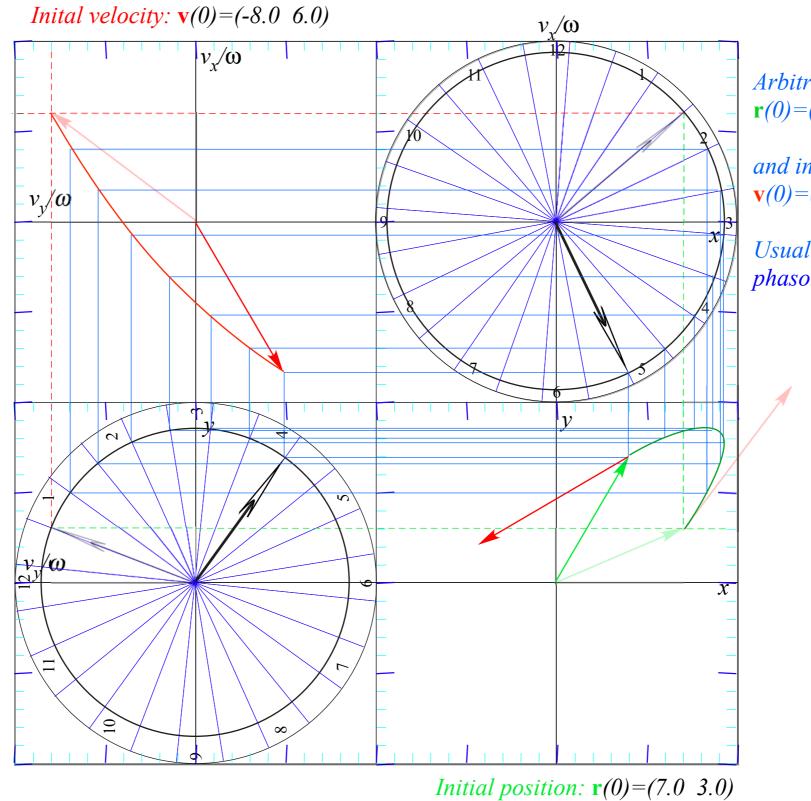




Arbitrary initial position $\mathbf{r}(0) = (x(0), y(0))$

and initial velocity $\mathbf{v}(0) = (\mathbf{v}_{x}(0), \mathbf{v}_{y}(0))$

Usually have x and y phasor circles of unequal size



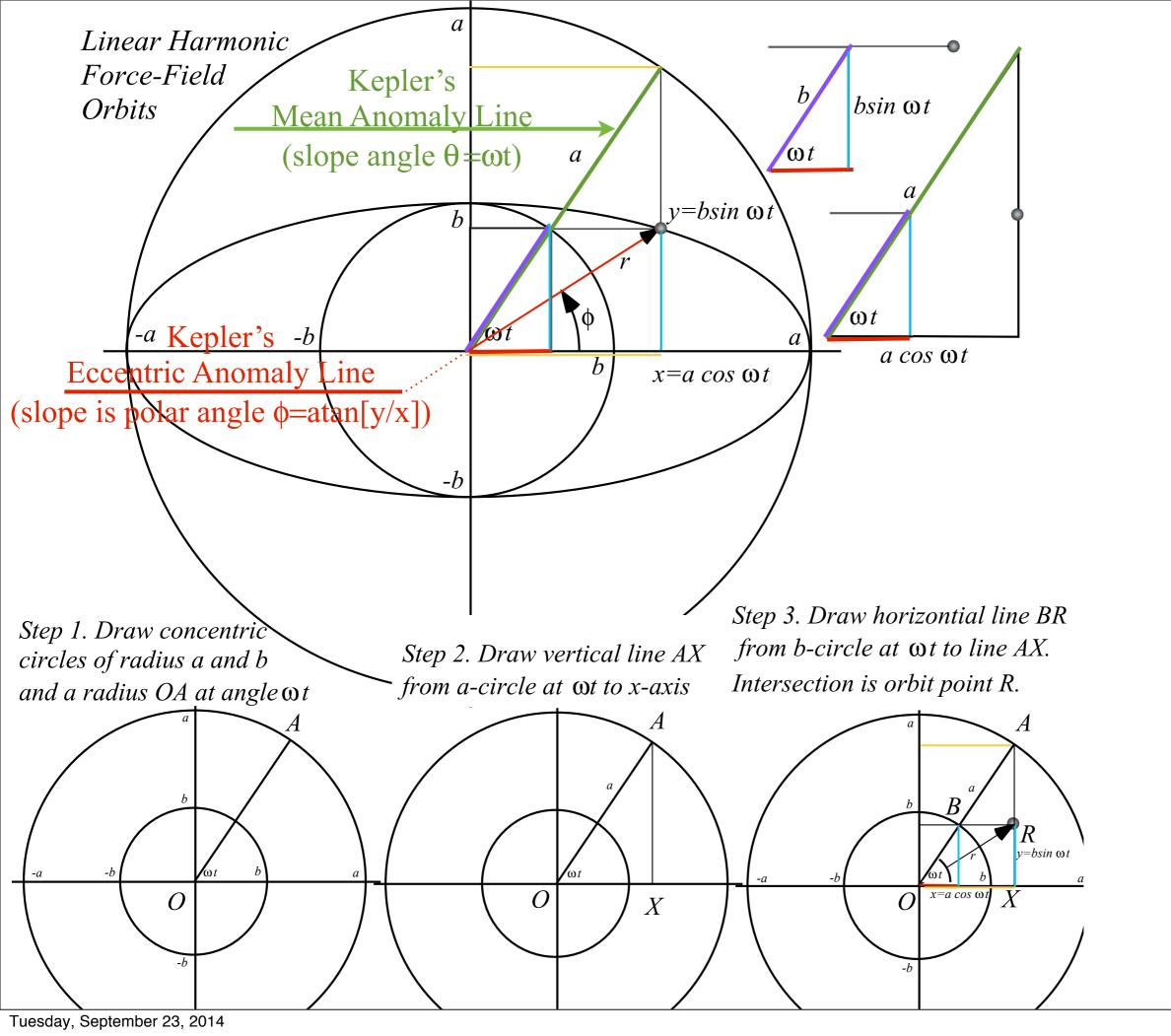
Arbitrary initial position $\mathbf{r}(0) = (x(0), y(0))$

and initial velocity $\mathbf{v}(0) = (\mathbf{v}_{x}(0), \mathbf{v}_{y}(0))$

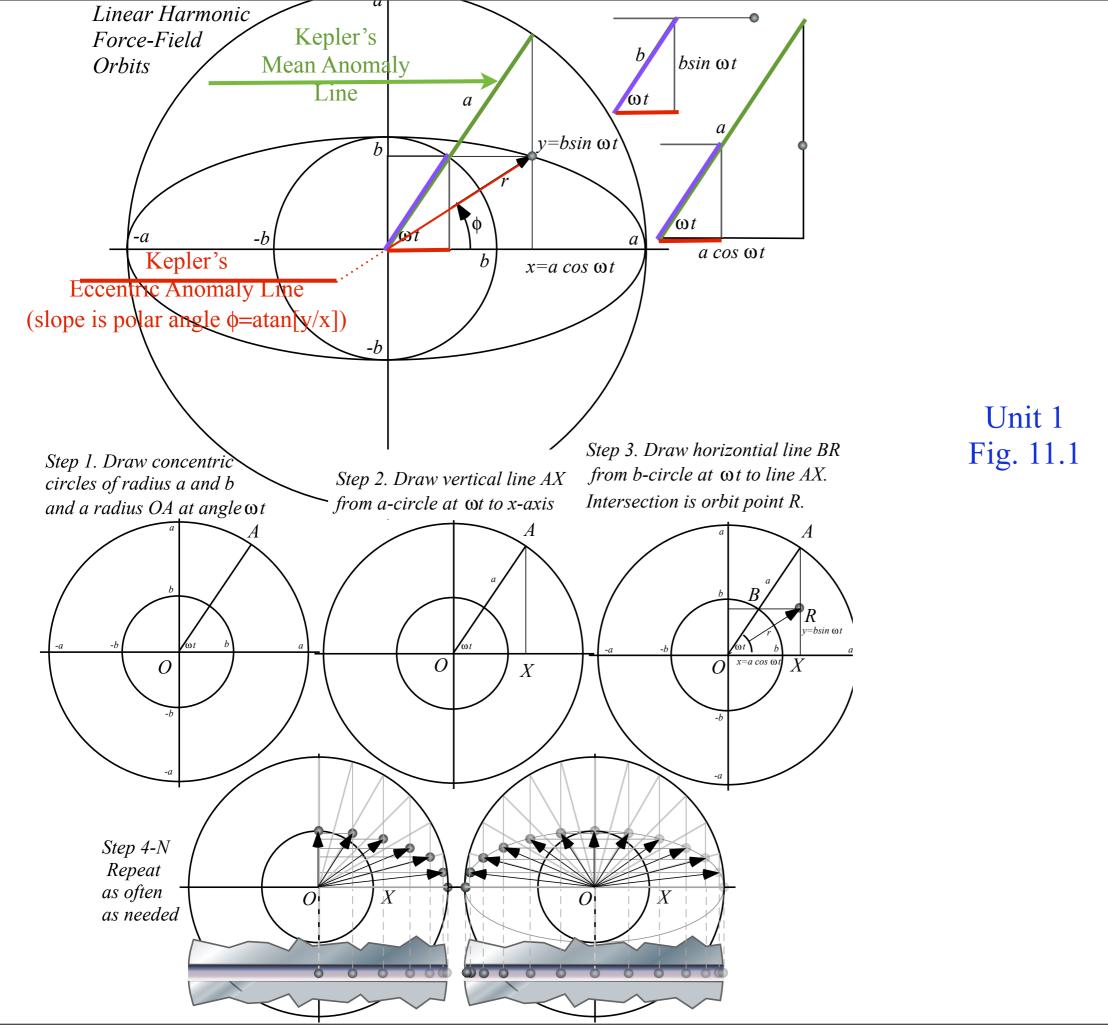
Usually have x and y phasor circles of unequal size

Constructing 2D IHO orbits using Kepler anomaly plots

Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry



Unit 1 Fig. 11.1 (top 2/3's)

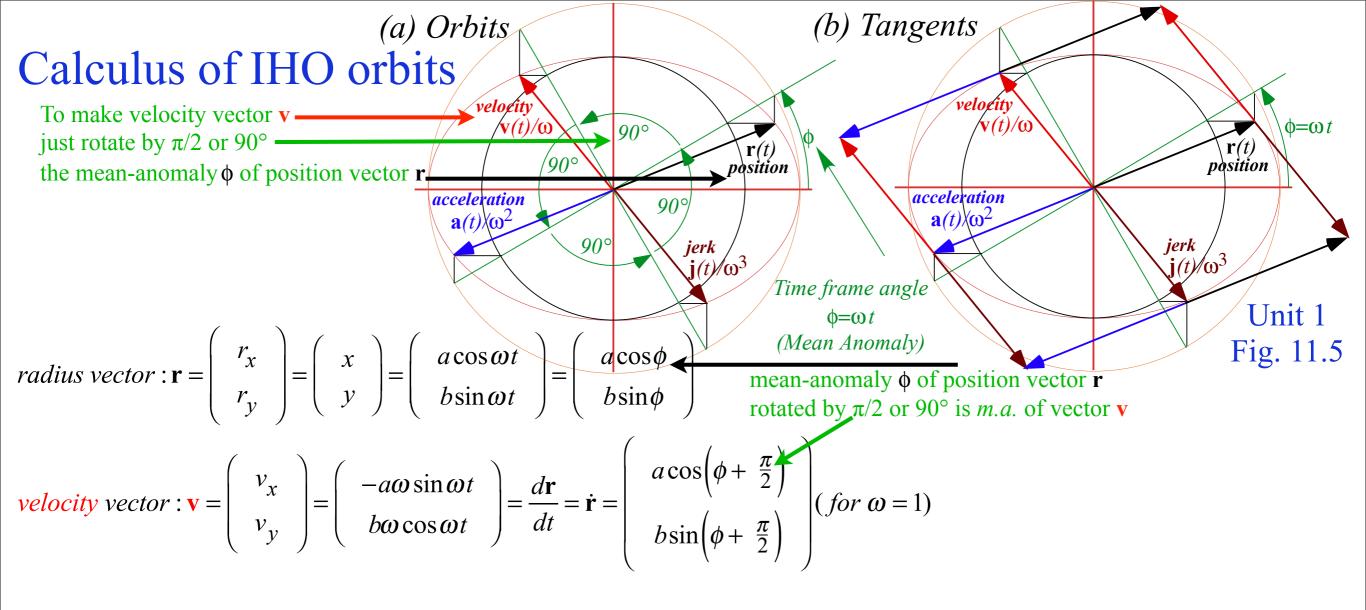


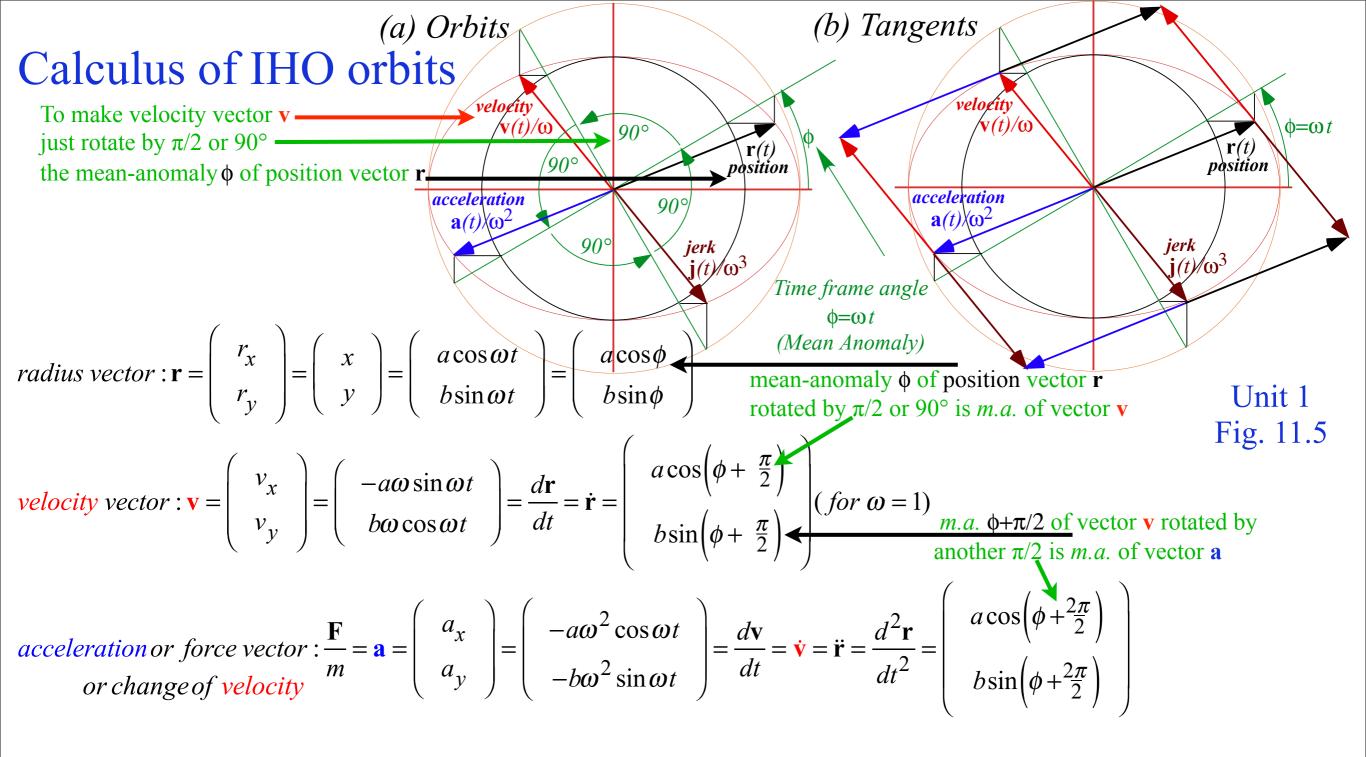
Constructing 2D IHO orbits using Kepler anomaly plots

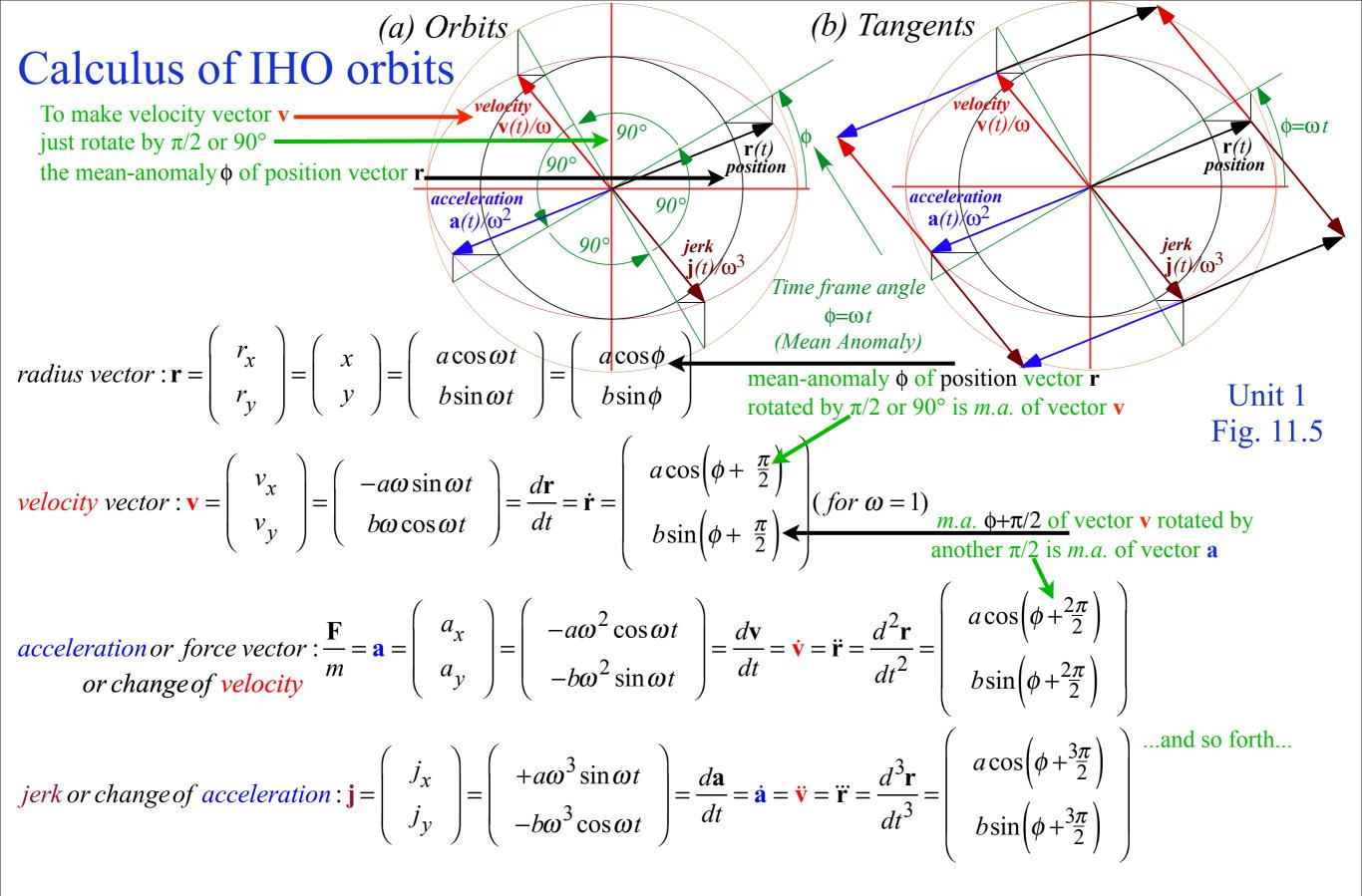
Mean-anomaly and eccentric-anomaly geometry

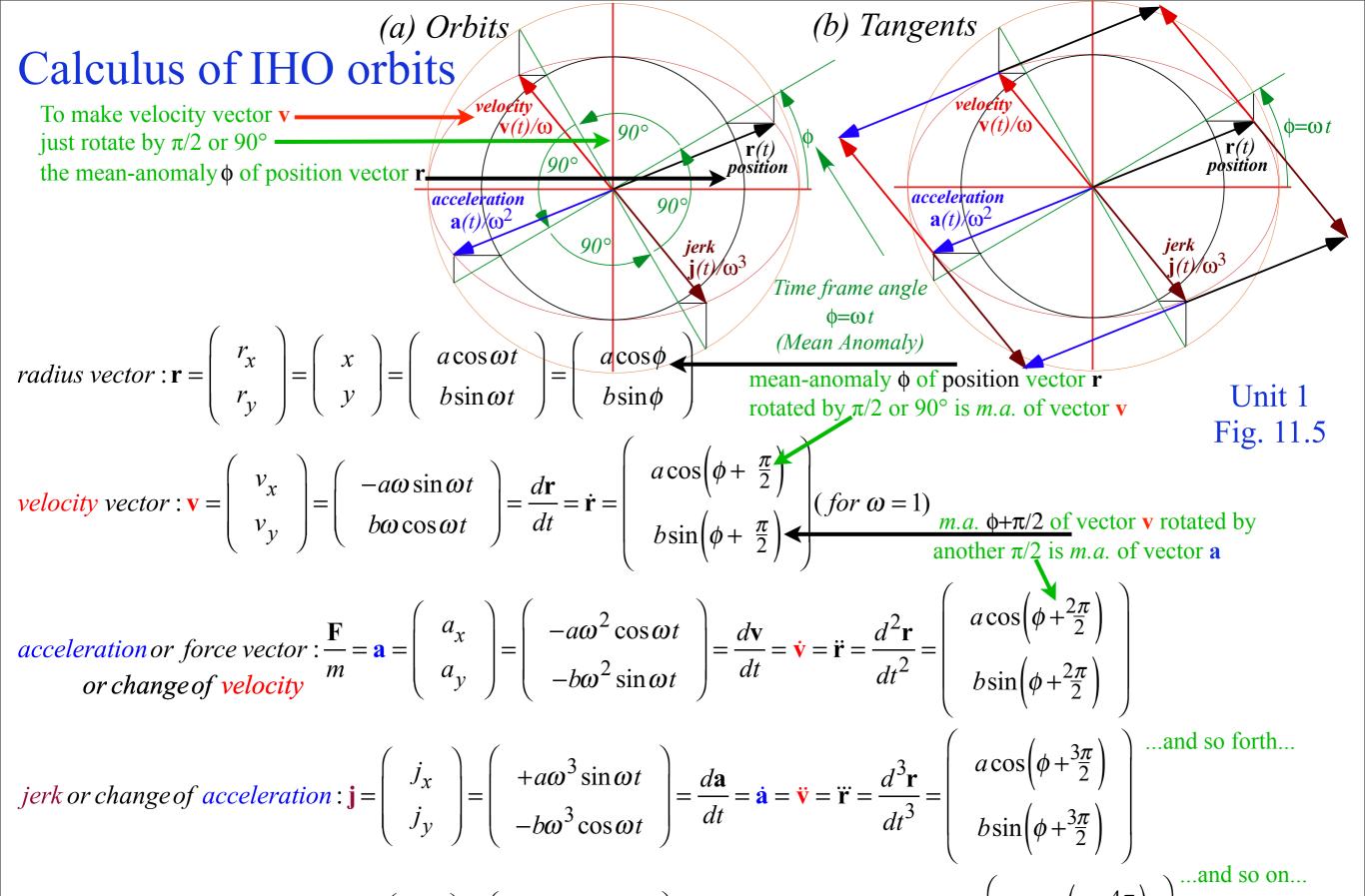
Calculus and vector geometry of IHO orbits

A confusing introduction to Coriolis-centrifugal force geometry









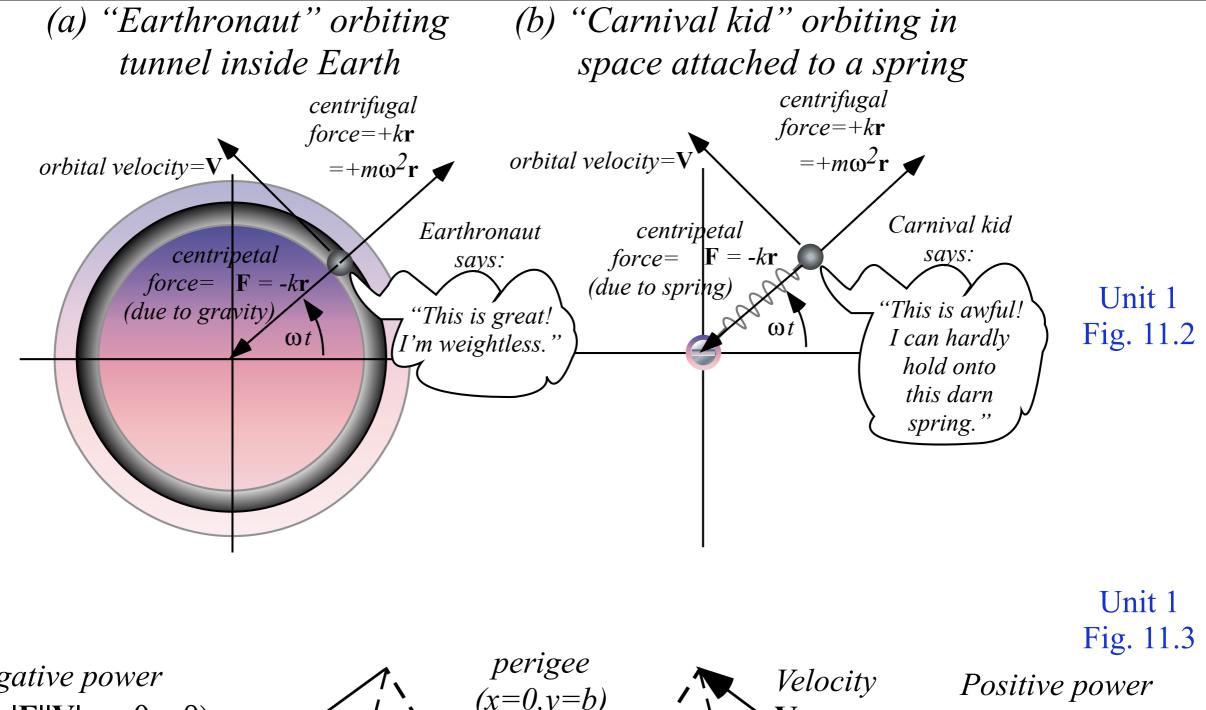
inauguration or change of jerk: $\mathbf{i} = \begin{bmatrix} i_x \\ i_y \end{bmatrix} = \begin{bmatrix} +a\omega^4 \cos \omega t \\ +b\omega^4 \sin \omega t \end{bmatrix} = \frac{d\mathbf{j}}{dt} = \mathbf{j} = \mathbf{\ddot{a}} = \mathbf{\ddot{v}} = \mathbf{\ddot{r}} = \frac{d^4\mathbf{r}}{dt^4} = \begin{bmatrix} a\cos\left(\phi + \frac{4\pi}{2}\right) \\ b\sin\left(\phi + \frac{4\pi}{2}\right) \end{bmatrix}$

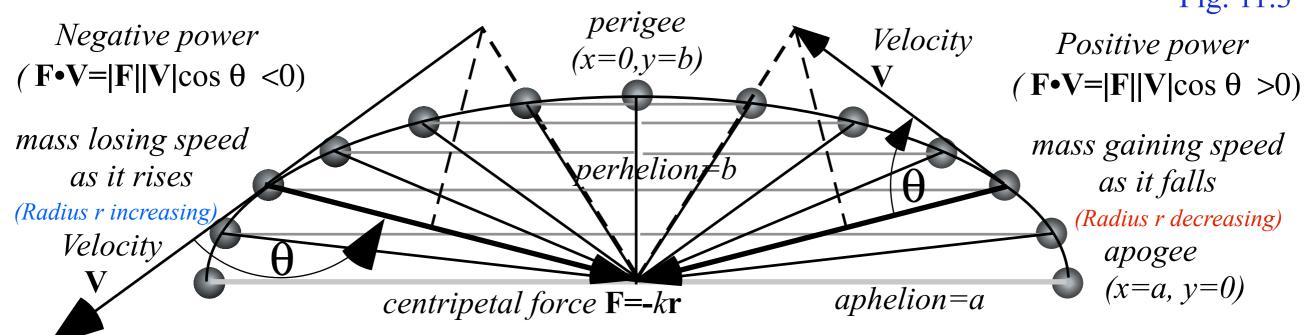
30

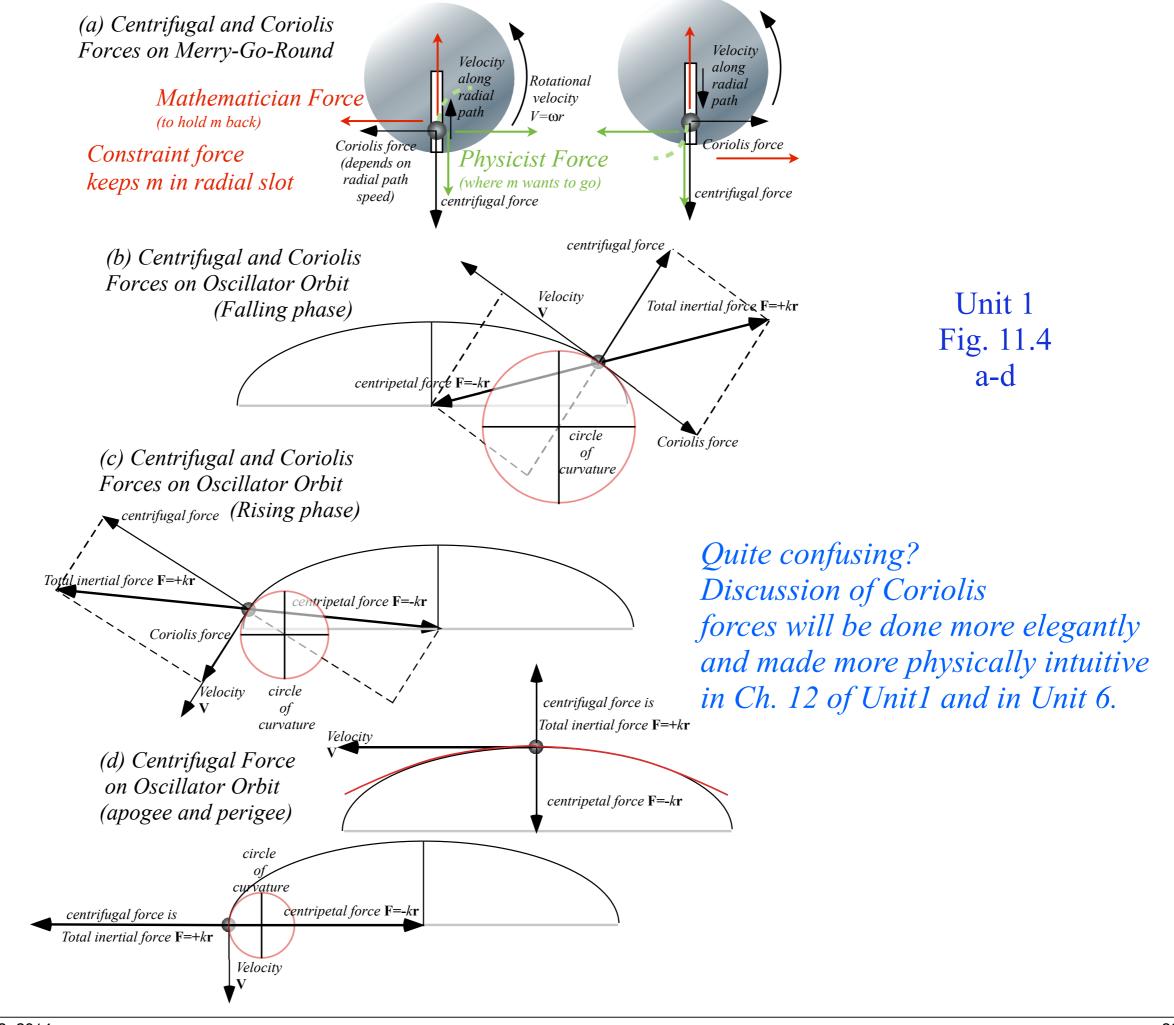
Constructing 2D IHO orbits using Kepler anomaly plots

Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits

A confusing introduction to Coriolis-centrifugal force geometry





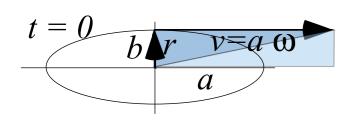


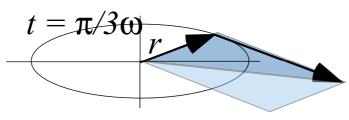
Some Kepler's "laws" for central (isotropic) force F(r)

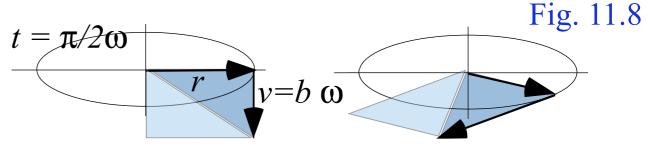
Angular momentum invariance of IHO: $F(r)=-k\cdot r$ with $U(r)=k\cdot r^2/2$ (Derived rigorously) Angular momentum invariance of Coulomb: $F(r)=-GMm/r^2$ with $U(r)=-GMm\cdot/r$ (Derived later) Total energy E=KE+PE invariance of IHO: $F(r)=-k\cdot r$ (Derived rigorously) Total energy E=KE+PE invariance of Coulomb: $F(r)=-GMm/r^2$ (Derived later)

Some Kepler's "laws" for central (isotropic) force F(r)

...and certainly apply to the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Recall from Lecture 8: $k = Gm \frac{4\pi}{3} \rho_{\oplus}$) Unit 1







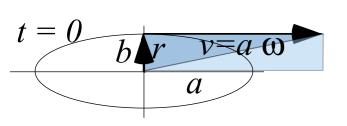
1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

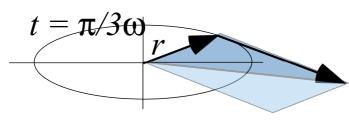
 $\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - b \sin \omega t \cdot (-a\omega \sin \omega t) = ab \cdot \omega (\cos^2 \omega t + \sin^2 \omega t)$ for IHO

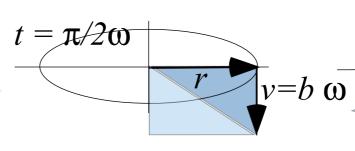
$$\begin{pmatrix} r_x \\ r_y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a\cos\omega t \\ b\sin\omega t \end{pmatrix} \qquad \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} -a\omega\sin\omega t \\ v_y \end{pmatrix}$$

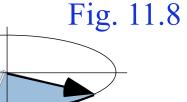
Some Kepler's "laws" that apply to any central (isotropic) force F(r)

...and certainly apply to the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Recall from Lecture 8: $k = Gm^{\frac{4n}{3}} \rho_{\oplus}$) Unit 1









1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

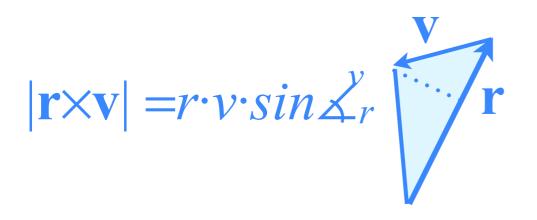
$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - a \sin \omega t \cdot (-b\omega \sin \omega t) = ab \cdot \omega$$

for IHO

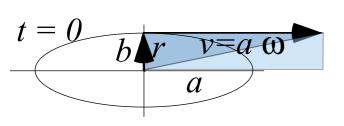
2. Angular momentum $\mathbf{L} = m\mathbf{r} \times \mathbf{v}$ is conserved

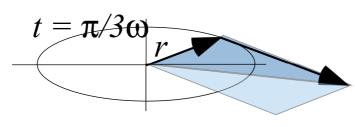
$$L = m \mid \mathbf{r} \times \mathbf{v} \mid = m \left(r_x v_y - r_y v_x \right) = m \cdot ab \cdot \boldsymbol{\omega}$$

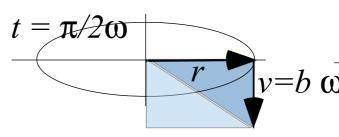
for IHO

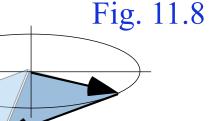


...and certainly apply to the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Recall from Lecture 8: $k = Gm^{\frac{4n}{3}}\rho_{\oplus}$) Unit 1









1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - a \sin \omega t \cdot (-b\omega \sin \omega t) = ab \cdot \omega$$

✓ for IHO

2. Angular momentum $\mathbf{L} = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m \mid \mathbf{r} \times \mathbf{v} \models m \left(r_x v_y - r_y v_x \right) = m \cdot ab \cdot \omega$$

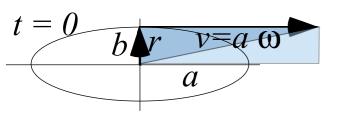
✓ for IHO

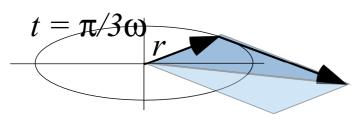
3. Equal area is swept by radius vector in each equal time interval T

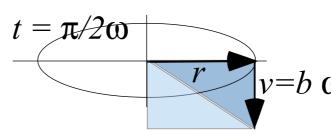
$$A_{T} = \int_{0}^{T} \frac{\mathbf{r} \times d\mathbf{r}}{2} = \int_{0}^{T} \frac{\mathbf{r} \times \frac{d\mathbf{r}}{dt}}{2} dt = \int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} dt = \frac{L}{2m} \int_{0}^{T} dt = \frac{L}{2m} T$$

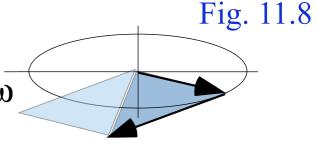
$$|\mathbf{r} \times d\mathbf{r}| = r \cdot dr \cdot \sin^{dr} \mathbf{r}$$

...and certainly apply to the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Recall from Lecture 8: $k = Gm^{\frac{4\pi}{3}} \rho_{\oplus}$) Unit 1









1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - a \sin \omega t \cdot (-b\omega \sin \omega t) = ab \cdot \omega$$

for IHO

2. Angular momentum $L = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m\mathbf{r} \times \mathbf{v} = m(r_x v_y - r_y v_x) = m \cdot ab \cdot \boldsymbol{\omega} = m \cdot ab \cdot \frac{2\pi}{\tau}$$

✓ for IHO

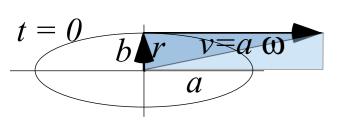
3. Equal area is swept by radius vector in each equal time interval T

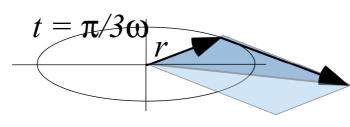
$$A_{T} = \int_{0}^{T} \frac{\mathbf{r} \times d\mathbf{r}}{2} = \int_{0}^{T} \frac{\mathbf{r} \times \frac{d\mathbf{r}}{dt}}{2} dt = \int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} dt = \frac{L}{2m} \int_{0}^{T} dt = \frac{L}{2m} T$$

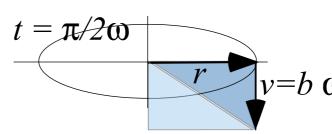
for IHO

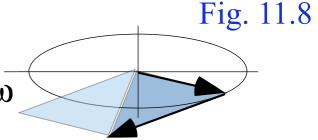
In one period:
$$\tau = \frac{1}{v} = \frac{2\pi}{\omega} = \frac{2mA_{\tau}}{L}$$
 the area is: $A_{\tau} = \frac{L\tau}{2m}$ (= $ab \cdot \pi$ for ellipse orbit)

...and certainly apply to the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Recall from Lecture 8: $k = Gm^{\frac{4\pi}{3}}\rho_{\oplus}$) Unit 1









1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - a \sin \omega t \cdot (-b\omega \sin \omega t) = ab \cdot \omega$$

for IHO

2. Angular momentum $L = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m\mathbf{r} \times \mathbf{v} = m(r_x v_y - r_y v_x) = m \cdot ab \cdot \boldsymbol{\omega} = m \cdot ab \cdot \frac{2\pi}{\tau}$$

for IHO

3. Equal area is swept by radius vector in each equal time interval T

$$A_{T} = \int_{0}^{T} \frac{\mathbf{r} \times d\mathbf{r}}{2} = \int_{0}^{T} \frac{\mathbf{r} \times \frac{d\mathbf{r}}{dt}}{2} dt = \int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} dt = \frac{L}{2m} \int_{0}^{T} dt = \frac{L}{2m} T$$

for IHO

In one period:
$$\tau = \frac{1}{v} = \frac{2\pi}{\omega} = \frac{2mA_{\tau}}{L}$$
 the area is: $A_{\tau} = \frac{L\tau}{2m}$ (= $ab \cdot \pi$ for ellipse orbit)

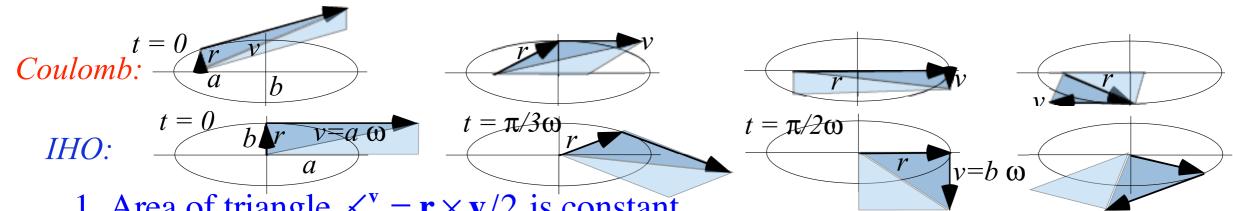
(Recall from Lecture 8: $\omega = \sqrt{k/m} = \sqrt{G\rho_{\oplus} 4\pi/3}$)

Some Kepler's "laws" for central (isotropic) force F(r)

Angular momentum invariance of IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Derived rigorously)

Angular momentum invariance of Coulomb: $F(r)=-GMm/r^2$ with $U(r)=-GMm\cdot/r$ (Derived later) Total energy E=KE+PE invariance of IHO: $F(r)=-k\cdot r$ (Derived rigorously) Total energy E=KE+PE invariance of Coulomb: $F(r)=-GMm/r^2$ (Derived later)

Apply to IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ and Coulomb: $F(r) = -GMm/r^2$ with $U(r) = -GMm \cdot /r$



1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

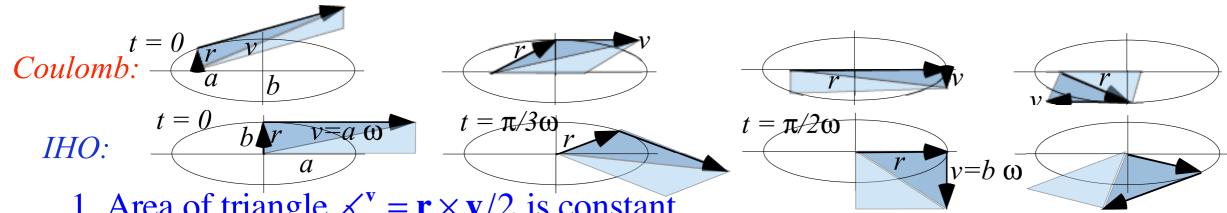
$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = \begin{cases} ab \cdot \sqrt{G\rho_{\oplus}} 4\pi / 3 & \text{for IHO} \\ a^{-1/2}b\sqrt{GM_{\oplus}} & \text{for Coul. (Derived in Unit 5)} \end{cases}$$

for IHO

for Coul.

41

Apply to IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ and Coulomb: $F(r) = -GMm/r^2$ with $U(r) = -GMm \cdot /r$



1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = \begin{cases} ab \cdot \sqrt{G\rho_{\oplus}} 4\pi/3 & \text{for IHO} \\ a^{-1/2}b\sqrt{GM_{\oplus}} & \text{for Coul.} \text{ (Derived in Unit 5)} \end{cases}$$

for IHO

✓ for Coul.

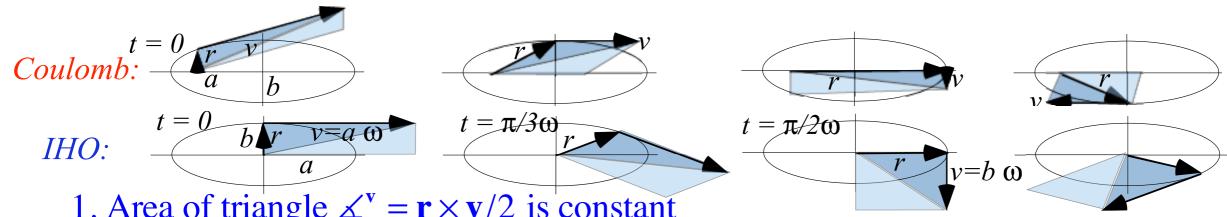
2. Angular momentum $L = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m \mathbf{r} \times \mathbf{v} = m \left(r_x v_y - r_y v_x \right) = \begin{cases} m \cdot ab \cdot \sqrt{G \rho_{\oplus}} 4\pi / 3 & \text{for IHO} \\ m \cdot a^{-1/2} b \sqrt{G M_{\oplus}} & \text{for Coul.} \end{cases}$$

✓ for IHO

✓ for Coul.

Apply to IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ and Coulomb: $F(r) = -GMm/r^2$ with $U(r) = -GMm \cdot /r$



1. Area of triangle $\angle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = \begin{cases} ab \cdot \sqrt{G\rho_{\oplus}} 4\pi / 3 & \text{for IHO} \\ a^{-1/2}b\sqrt{GM_{\oplus}} & \text{for Coul. (Derived in Unit 5)} \end{cases}$$

for IHO

for Coul.

2. Angular momentum $L = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m \mathbf{r} \times \mathbf{v} = m \left(r_x v_y - r_y v_x \right) = \begin{cases} m \cdot ab \cdot \sqrt{G \rho_{\oplus}} 4\pi / 3 & \text{for IHO} \\ m \cdot a^{-1/2} b \sqrt{G M_{\oplus}} & \text{for Coul.} \end{cases}$$
 for Coul.

3. Equal area is swept by radius vector in each equal time interval T

In one period:
$$\tau = \frac{1}{\upsilon} = \frac{2\pi}{\omega} = \frac{2mA_{\tau}}{L} = \frac{2m \cdot ab \cdot \pi}{L} = \begin{cases} \frac{2m \cdot ab \cdot \pi}{m \cdot ab \cdot \sqrt{G\rho_{\oplus} 4\pi/3}} &= \frac{2\pi}{\sqrt{G\rho_{\oplus} 4\pi/3}} & \text{for IHO} \\ \frac{2m \cdot ab \cdot \sqrt{G\rho_{\oplus} 4\pi/3}}{m \cdot a^{-1/2}b\sqrt{GM_{\oplus}}} &= \frac{2\pi}{\sqrt{G\rho_{\oplus} 4\pi/3}} & \text{that is } \omega_{\text{IHO}} \\ \frac{2m \cdot ab \cdot \pi}{m \cdot a^{-1/2}b\sqrt{GM_{\oplus}}} &= \frac{2\pi}{\sqrt{G\rho_{\oplus} 4\pi/3}} & \text{that is } \omega_{\text{Coul}} \end{cases}$$

Some Kepler's "laws" for central (isotropic) force F(r)

Angular momentum invariance of IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Derived rigorously)

Angular momentum invariance of Coulomb: $F(r) = -GMm/r^2$ with $U(r) = -GMm \cdot /r$ (Derived later)

Total energy E=KE+PE invariance of IHO: $F(r)=-k \cdot r$ (Derived rigorously)

Total energy E=KE+PE invariance of Coulomb: $F(r)=-GMm/r^2$ (Derived later)

Now consider orbital energy conservation of the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$

Total energy=KE + PE is constant

$$KE + PE = \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} + \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r}$$

$$= \frac{1}{2} \begin{pmatrix} v_x & v_y \end{pmatrix} \cdot \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix} + \begin{pmatrix} r_x & r_y \end{pmatrix} \cdot \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \cdot \begin{pmatrix} r_x \\ r_y \end{pmatrix}$$

$$= \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 + \frac{1}{2} k r_x^2 + \frac{1}{2} k r_y^2$$

$$= \frac{1}{2} m (-a\omega \sin \omega t)^2 + \frac{1}{2} m (b\omega \cos \omega t)^2 + \frac{1}{2} k (a\cos \omega t)^2 + \frac{1}{2} k (b\sin \omega t)^2$$

$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} -a\omega \sin \omega t \\ b\omega \cos \omega t \end{pmatrix}$$

$$\begin{pmatrix} r_x \\ r_y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a\cos \omega t \\ b\sin \omega t \end{pmatrix}$$

Now consider orbital energy conservation of the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$

Total *IHO* energy=KE + PE is constant

$$KE + PE = \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} + \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r}$$

$$= \frac{1}{2} \begin{pmatrix} v_x & v_y \end{pmatrix} \cdot \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix} + \begin{pmatrix} r_x & r_y \end{pmatrix} \cdot \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \cdot \begin{pmatrix} r_x \\ r_y \end{pmatrix}$$

$$= \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 + \frac{1}{2} k r_x^2 + \frac{1}{2} k r_y^2$$

$$= \frac{1}{2} m (-a\omega \sin \omega t)^2 + \frac{1}{2} m (b\omega \cos \omega t)^2 + \frac{1}{2} k (a\cos \omega t)^2 + \frac{1}{2} k (b\sin \omega t)^2$$

$$= \frac{1}{2} m a^2 \omega^2 (\sin^2 \omega t) + \frac{1}{2} m b^2 \omega^2 (\cos^2 \omega t)^2 + \frac{1}{2} k a^2 (\cos^2 \omega t) + \frac{1}{2} k b^2 (\sin^2 \omega t)$$

$$= \frac{1}{2} m \omega^2 (a^2 + b^2)$$
Given: $k = m\omega^2$

Now consider orbital energy conservation of the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$

Total *IHO* energy=KE + PE is constant

$$KE + PE = \frac{1}{2}\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} + \frac{1}{2}\mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r}$$

$$= \frac{1}{2} \begin{pmatrix} v_x & v_y \end{pmatrix} \cdot \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix} + \begin{pmatrix} r_x & r_y \end{pmatrix} \cdot \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \cdot \begin{pmatrix} r_x \\ r_y \end{pmatrix}$$

$$= \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}kr_x^2 + \frac{1}{2}kr_y^2$$

$$= \frac{1}{2}m(-a\omega\sin\omega t)^2 + \frac{1}{2}m(b\omega\cos\omega t)^2 + \frac{1}{2}k(a\cos\omega t)^2 + \frac{1}{2}k(b\sin\omega t)^2$$

$$= \frac{1}{2}ma^2\omega^2(\sin^2\omega t) + \frac{1}{2}mb^2\omega^2(\cos^2\omega t)^2 + \frac{1}{2}ka^2(\cos^2\omega t) + \frac{1}{2}kb^2(\sin^2\omega t)$$

$$= \frac{1}{2}m\omega^2(a^2 + b^2) \quad Given: k = m\omega^2$$

$$E = KE + PE = \frac{1}{2}m\omega^2(a^2 + b^2) = \frac{1}{2}k(a^2 + b^2) \quad \text{since: } \omega = \sqrt{\frac{k}{m}} = \sqrt{G\rho_{\oplus} 4\pi/3} \quad \text{or: } m\omega^2 = k$$

Some Kepler's "laws" for central (isotropic) force F(r)

Angular momentum invariance of IHO: $F(r)=-k\cdot r$ with $U(r)=k\cdot r^2/2$ (Derived rigorously)

Angular momentum invariance of Coulomb: $F(r)=-GMm/r^2$ with $U(r)=-GMm\cdot/r$ (Derived later)

Total energy E=KE+PE invariance of IHO: $F(r)=-k\cdot r$ (Derived rigorously)

Total energy E=KE+PE invariance of Coulomb: $F(r)=-GMm/r^2$ (Derived later)

Now consider orbital energy conservation of the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$

Total *IHO* energy=KE + PE is constant

$$KE + PE = \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} + \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r}$$

$$= \frac{1}{2} \begin{pmatrix} v_x & v_y \end{pmatrix} \cdot \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix} + \begin{pmatrix} r_x & r_y \end{pmatrix} \cdot \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \cdot \begin{pmatrix} r_x \\ r_y \end{pmatrix}$$

$$= \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 + \frac{1}{2} k r_x^2 + \frac{1}{2} k r_y^2$$

$$= \frac{1}{2} m (-a\omega \sin \omega t)^2 + \frac{1}{2} m (b\omega \cos \omega t)^2 + \frac{1}{2} k (a\cos \omega t)^2 + \frac{1}{2} k (b\sin \omega t)^2$$

$$= \frac{1}{2} m a^2 \omega^2 (\sin^2 \omega t) + \frac{1}{2} m b^2 \omega^2 (\cos^2 \omega t)^2 + \frac{1}{2} k a^2 (\cos^2 \omega t) + \frac{1}{2} k b^2 (\sin^2 \omega t)$$

$$= \frac{1}{2} m \omega^2 (a^2 + b^2) \qquad Given: k = m \omega^2$$

$$E = KE + PE = \frac{1}{2} m \omega^2 (a^2 + b^2) = \frac{1}{2} k (a^2 + b^2) \quad \text{since: } \omega = \sqrt{\frac{k}{2}} = \sqrt{G \rho_{\omega} 4\pi / 3} \quad \text{or: } m \omega^2 = k$$

$$E = KE + PE = \frac{1}{2}m\omega^2(a^2 + b^2) = \frac{1}{2}k(a^2 + b^2)$$
 since: $\omega = \sqrt{\frac{k}{m}} = \sqrt{G\rho_{\oplus}4\pi/3}$ or: $m\omega^2 = k$

We'll see that the Coul. orbits are simpler:

(like the period...not a function of b)

$$E = KE + PE = \frac{1}{2}mv_{x}^{2} + \frac{1}{2}mv_{y}^{2} - \frac{k}{r} = \frac{1}{2}mv_{x}^{2} + \frac{1}{2}mv_{y}^{2} - \frac{GM_{\oplus}m}{r} = -\frac{GM_{\oplus}m}{a}$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ is called positive-definite (if $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$ always > 0)

$$\begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = 1 = \begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{x}{a^2} \\ \frac{y}{b^2} \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
Lect. 10
topics

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ called inverse or dual ellipse:

$$\begin{pmatrix} p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \bullet \begin{pmatrix} p_x \\ p_y \end{pmatrix} = 1 = \begin{pmatrix} p_x & p_y \\ p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 p_x \\ b^2 p_y \end{pmatrix} = a^2 p_x^2 + b^2 p_y^2$$

Quadratic forms and tangent contact geometry of their ellipses

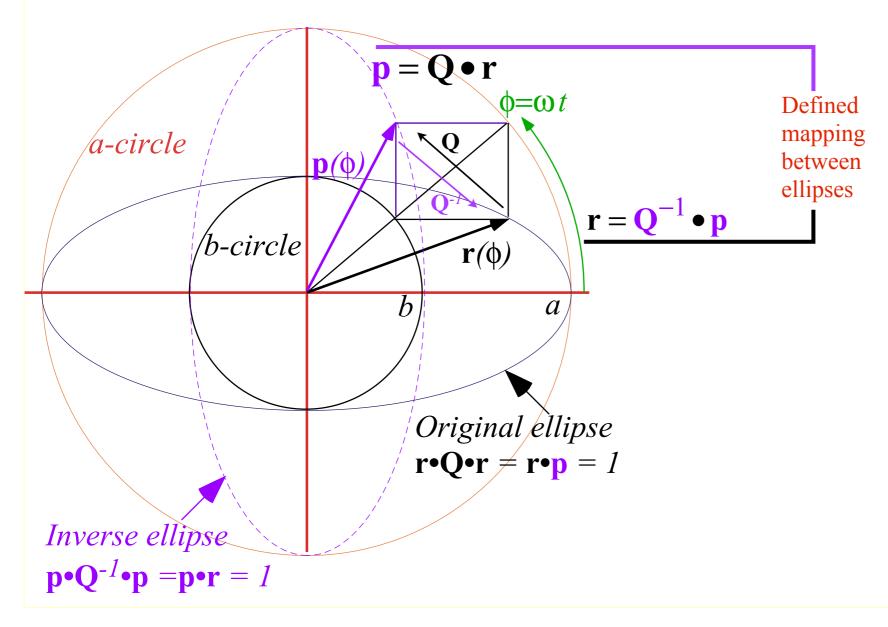
A matrix Q that generates an ellipse by $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ is called positive-definite (if $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$ always > 0)

$$\begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = 1 = \begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{x}{a^2} \\ \frac{y}{b^2} \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
Defined mapping between ellipses

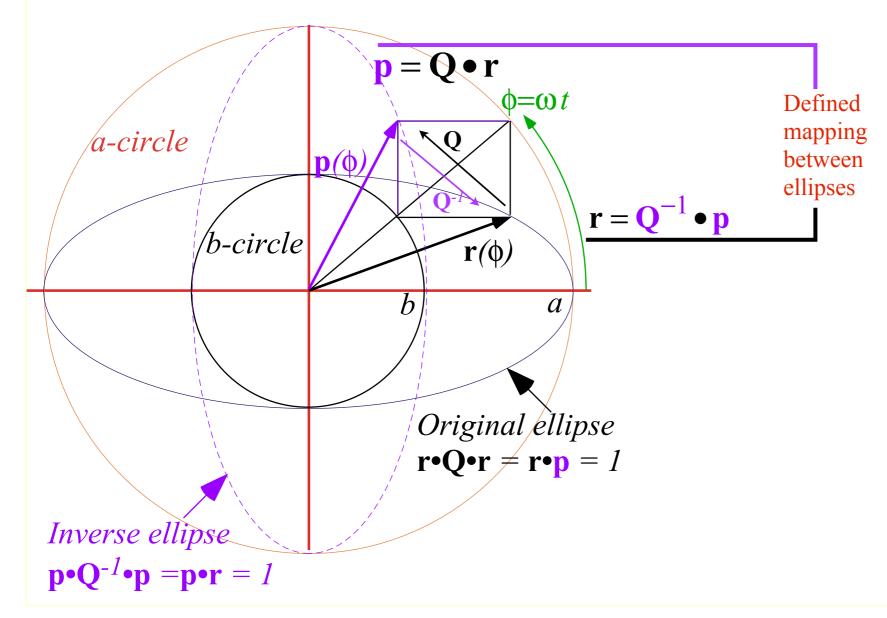
A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ called inverse or dual ellipse:

$$\begin{pmatrix} p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \bullet \begin{pmatrix} p_x \\ p_y \end{pmatrix} = 1 = \begin{pmatrix} p_x & p_y \\ p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 p_x \\ b^2 p_y \end{pmatrix} = a^2 p_x^2 + b^2 p_y^2$$

based on Unit 1 Fig. 11.6

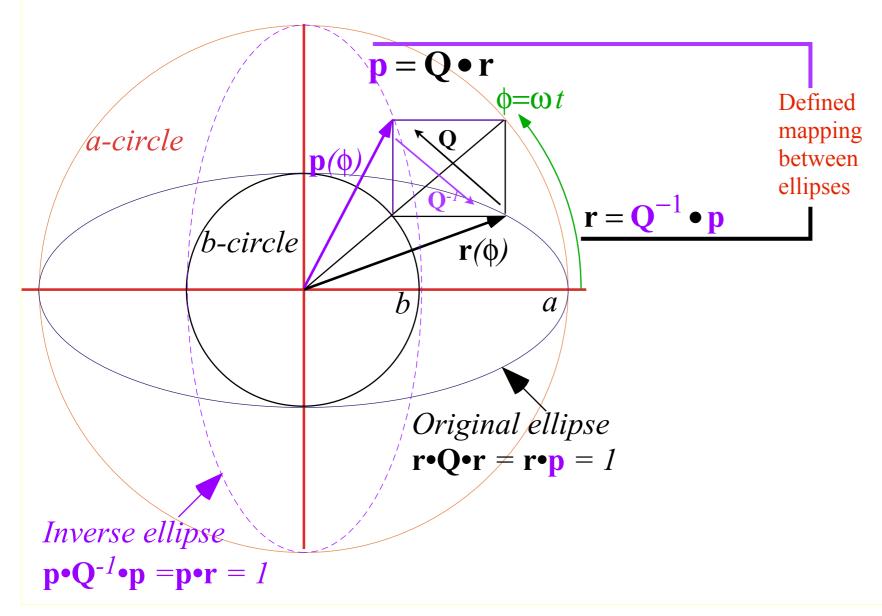


based on Unit 1 Fig. 11.6



Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1 = \mathbf{p} \cdot \mathbf{r}$

based on Unit 1 Fig. 11.6

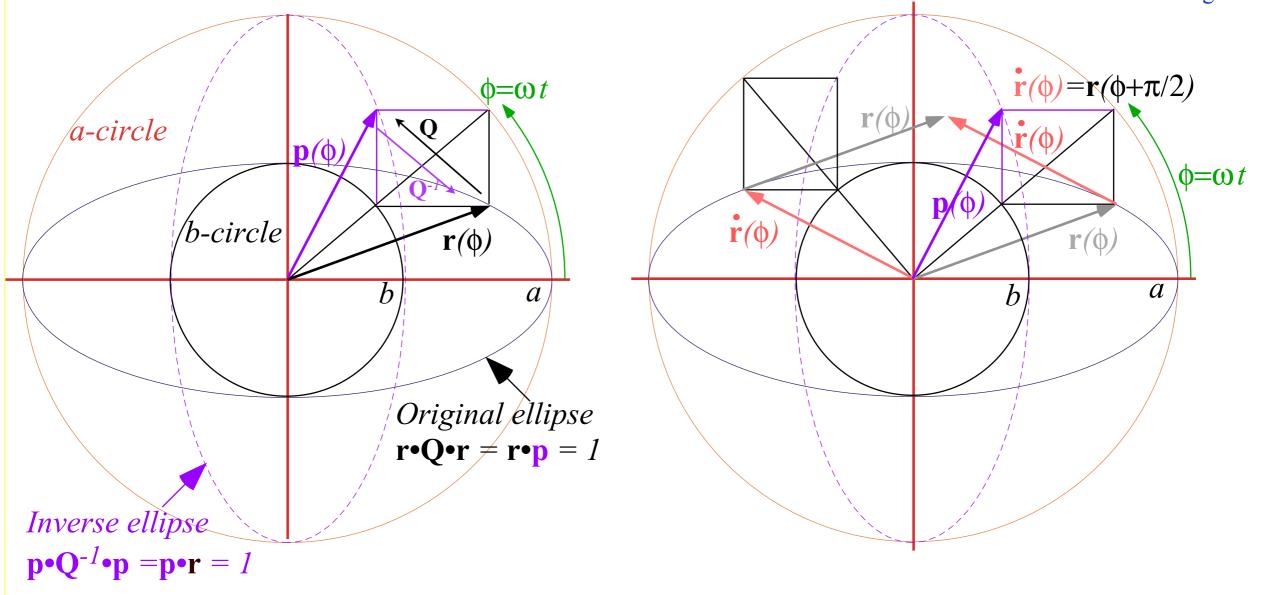


Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1 = \mathbf{p} \cdot \mathbf{r}$

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{cases} x = r_x = a\cos\phi = a\cos\omega t \\ y = r_y = b\sin\phi = b\sin\omega t \end{cases} \text{ so: } \mathbf{p} \cdot \mathbf{r} = 1$$

(b) Ellipse tangents

based on Unit 1 Fig. 11.6



Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1 = \mathbf{p} \cdot \mathbf{r}$

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{cases} x = r_x = a\cos\phi = a\cos\omega t \\ y = r_y = b\sin\phi = b\sin\omega t \end{cases} \text{ so: } \mathbf{p} \cdot \mathbf{r} = 1$$