Kepler Geometry of IHO Insoropicit hammonecosachlaom) Elliptical Orbits
(Ch. 9 and Ch. 11 of Unit 1)
Constructing 2D IHO orbits by phasor plots
Review of phasor "clock" geometry (From Lecture 7)
Integrating IHO equations by phasor geometry
Constructing 2D IHO orbits using Kepler anomaly plots
Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry

Some Kepler's "laws" for central (isotropic) force F(r)

Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived rigorously)
Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$ (Derived later)
Total energy $E=K E+P E$ invariance of $I H O: F(r)=-k \cdot r$ (Derived rigorously)
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived later)

Brief introduction to matrix quadratic form geometry

Constructing 2D IHO orbits by phasor plots

\longrightarrow Review of phasor "clock" geometry (From Lecture 7)
Integrating IHO equations by phasor geometry

Isotropic Harmonic Oscillator phase dynamics in uniform-body
(a) 1-D Oscillator Phasor Plot

(b) 2-D Oscillator Phasor Plot

Unit 1
Fig. 9.10
Right-
handed

(a) Phasor Plots for
2-D Oscillator or
Two 1D Oscillators (x-Phase 90° behind the y-Phase)
y-velocit
locity

(b)
x-Phase 0° behind the y-Phase
(In-phase case)
y-velocity
ν_{y} / ω

Unit 1

Fig. 9.12

These are more generic examples with radius of x-phasor differing from that of the y-phasor.

Constructing 2D IHO orbits by phasor plots

Review of phasor "clock" geometry (From Lecture 7)

\longrightarrow Integrating IHO equations by phasor geometry (case of unequal x and y phasor area)

Inital velocity: $\mathbf{v}(0)=(-8.05 .0)$

Boxlt simulation of $U(2)$ orbits http://www.uark.edu/ua/modphys/markup/BoxltWeb.html

Initial position: $\mathfrak{r}(0)=\left(\begin{array}{ll}7.0 & 3.0\end{array}\right)$

Initial position: $\mathfrak{r}(0)=\left(\begin{array}{ll}7.0 & 3.0\end{array}\right)$

Inital velocity: $\mathbf{v}(0)=(-8.06 .0)$

Arbitrary initial position
$\mathbf{r}(0)=(x(0), y(0)$
and initial velocity
$\mathbf{v}(0)=\left(v_{x}(0), v_{y}(0)\right.$
Usually have x and y
phasor circles of unequal size

Initial position: $\mathfrak{r}(0)=\left(\begin{array}{ll}7.0 & 3.0\end{array}\right)$

Constructing 2D IHO orbits using Kepler anomaly plots

Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry

Unit 1
Fig. 11.1
(top 2/3's)

Orbits

Constructing 2D IHO orbits using Kepler anomaly plots

Mean-anomaly and eccentric-anomaly geometry
\longrightarrow Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90° the mean-anomaly ϕ of position vector

(b) Tangents
radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\binom{a \cos \phi}{b \sin \phi} \quad \begin{aligned} & \text { (Mean Anomaly) } \\ & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m \text {. a. of vector } \mathbf{v}\end{aligned}$
Unit 1
Fig. 11.5
velocity vector $: \mathbf{v}=\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\binom{a \cos \left(\phi+\frac{\pi}{2}\right.}{b \sin \left(\phi+\frac{\pi}{2}\right)}($ for $\omega=1)$

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90°
the mean-anomaly ϕ of position vector
(b) Tangents

Time frame angle
radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\left(\begin{array}{l}\phi=\omega t \\ a \cos \phi \\ b \sin \phi\end{array}\right) \quad \begin{aligned} & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m \text {.a. of vector } \mathbf{v}\end{aligned}$
Unit 1

accelerationor force vector $: \frac{\mathbf{F}}{m}=\mathbf{a}=\left(\begin{array}{c}a_{x} \\ a_{y} \\ \text { or changeof velocity }\end{array}\right)=\binom{-a \omega^{2} \cos \omega t}{-b \omega^{2} \sin \omega t}=\frac{d \mathbf{v}}{d t}=\dot{\mathbf{v}}=\ddot{\mathbf{r}}=\frac{d^{2} \mathbf{r}}{d t^{2}}=\binom{a \cos \left(\phi+\frac{2 \pi}{2}\right)}{b \sin \left(\phi+\frac{2 \pi}{2}\right)}, ~$

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90°
the mean-anomaly ϕ of position vector
(b) Tangents

Time frame angle
$\phi=\omega t$
radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\binom{a \cos \phi}{b \sin \phi} \quad \begin{aligned} & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m . a \text {. of vector } \mathbf{v}\end{aligned}$
Unit 1

jerk or change of acceleration $: \mathbf{j}=\binom{j_{x}}{j_{y}}=\binom{+a \omega^{3} \sin \omega t}{-b \omega^{3} \cos \omega t}=\frac{d \mathbf{a}}{d t}=\dot{\mathbf{a}}=\ddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{3} \mathbf{r}}{d t^{3}}=\binom{a \cos \left(\phi+\frac{3 \pi}{2}\right)}{b \sin \left(\phi+\frac{3 \pi}{2}\right)}$

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90°
the mean-anomaly ϕ of position vector

(b) Tangents

Time frame angle
$\phi=\omega t$
radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\binom{a \cos \phi}{b \sin \phi} \quad \begin{aligned} & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m . a \text {. of vector } \mathbf{v}\end{aligned}$
Unit 1

jerk or change of acceleration $: \mathbf{j}=\binom{j_{x}}{j_{y}}=\binom{+a \omega^{3} \sin \omega t}{-b \omega^{3} \cos \omega t}=\frac{d \mathbf{a}}{d t}=\dot{\mathbf{a}}=\ddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{3} \mathbf{r}}{d t^{3}}=\binom{a \cos \left(\phi+\frac{3 \pi}{2}\right)}{b \sin \left(\phi+\frac{3 \pi}{2}\right)}$...and so forth...
inauguration or change of jerk $: \mathbf{i}=\binom{i_{x}}{i_{y}}=\binom{+a \omega^{4} \cos \omega t}{+b \omega^{4} \sin \omega t}=\frac{d \mathbf{j}}{d t}=\dot{\mathbf{j}}=\ddot{\mathbf{a}}=\dddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{4} \mathbf{r}}{d t^{4}}=\binom{a \cos \left(\phi+\frac{4 \pi}{2}\right)}{b \sin \left(\phi+\frac{4 \pi}{2}\right)}$

Constructing 2D IHO orbits using Kepler anomaly plots

Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
$\longrightarrow A$ confusing introduction to Coriolis-centrifugal force geometry

(a) "Earthronaut" orbiting tunnel inside Earth

(b) "Carnival kid" orbiting in space attached to a spring
centrifugal

$$
\text { force }=+k \mathbf{r}
$$

centripetal Carnival kid says: force $=\mathbf{F}=$ (due to spring)
is is awful
I can hardly hold onto this darn spring."

Unit 1
Fig. 11.3
Positive power ($\mathbf{F} \cdot \mathbf{V}=|\mathbf{F}||\mathbf{V}| \cos \theta>0$)
mass losing speed as it rise
(Radius rincrea.
Velocity
perigee
Negative power ($\mathbf{F} \cdot \mathbf{V}=|\mathbf{F}||\mathbf{V}| \cos \theta<0$)
(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(b) Centrifugal and Coriolis (d) Centrifugal Force
on Oscillator Orbit
(apogee and perigee)

Forces on Oscillator Orbit
(Falling phase)
(c) Centrifugal and Coriolis Forces on Oscillator Orbit

Unit 1

Fig. 11.4
a-d

Some Kepler's "laws" for central (isotropic) force F(r)
\longrightarrow Angular momentum invariance of $\mathrm{IHO}: F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived rigorously) Angular momentum invariance of Coulomb: $F(r)=-G M m / /^{2}$ with $U(r)=-G M m / r$ (Derived later) Total energy $E=K E+P E$ invariance of IHO: $F(r)=-k \cdot r$ (Derived rigorousy)
Total energy $E=K E+$ PE invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived later)

Some Kepler's "laws" for central (isotropic) force Fr)
... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lecture 7: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1
 Fig. 11.8

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-b \sin \omega t \cdot(-a \omega \sin \omega t)=a b \cdot \omega$
\checkmark for IHO

$$
\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t \ldots},\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t}
$$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lecture 7: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1

Fig. 11.8

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathrm{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega$
for IHO
2. Angular momentum $\mathbf{L}=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m|\mathbf{r} \times \mathbf{v}|=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega$
\checkmark for IHO

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lecture 7: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1

Fig. 11.8

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega$
for IHO
2. Angular momentum $\mathbf{L}=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m|\mathbf{r} \times \mathbf{v}|=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{0}^{T} d t=\frac{L}{2 m} T
$$

Some Kepler's "laws" that apply to any central (isotropic) force F(r) ... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lecture 7: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1

Fig. 11.8

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega
$$

for IHO
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega=m \cdot a b \cdot \frac{2 \pi}{\tau}
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{0}^{T} d t=\frac{L}{2 m} T
$$

In one period: $\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}$ the area is: $A_{\tau}=\frac{L \tau}{2 m}(=a b \cdot \pi$ for ellipse orbit $)$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2 \quad$ (Recall from Lecture 7: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1

Fig. 11.8

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega
$$

for IHO
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega=m \cdot a b \cdot \frac{2 \pi}{\tau}
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{0}^{T} d t=\frac{L}{2 m} T
$$

In one period: $\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}$ the area is: $A_{\tau}=\frac{L \tau}{2 m}(=a b \cdot \pi$ for ellipse orbit $)$
(Recall from Lecture 7: $\omega=\sqrt{k / m}=\sqrt{G \rho_{\oplus} 4 \pi / 3}$)

Some Kepler's "laws" for central (isotropic) force F(r)
Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived rigorously)
\longrightarrow Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$ (Derived later)
Total energy $E=K E+P E$ invariance of $I H O: F(r)=-k \cdot r$ (Derived rigorously)
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived later)

Some Kepler's "laws" that apply to any central (isotropic) force F(r) Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

1. Area of triangle $\zeta_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant
\checkmark for IHO
for Coul.

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$ Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

1. Area of triangle $\zeta_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cc}a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. }\end{array}\right.$

- for IHO
\checkmark for Coul.

2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=\left\{\begin{array}{cc}m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul } .\end{array}\right.$

- for IHO
for Coul.

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$

 Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$Coulomb:

IHO:

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathrm{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cc}
a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\
a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. }
\end{array}\right.
$$

\checkmark for IHO
\checkmark for Coul.
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
\checkmark for IHO
\checkmark for Coul.
3. Equal area is swept by radius vector in each equal time interval T

$$
\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}=\frac{2 m \cdot a b \cdot \pi}{L}=\left\{\begin{array}{cc}
\frac{2 m \cdot a b \cdot \pi}{m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3}} & =\frac{2 \pi}{\sqrt{G \rho_{\oplus} 4 \pi / 3}} \text { for IHO } \\
\frac{2 m \cdot a b \cdot \pi}{m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}}} & =\frac{2 \pi}{a^{-3 / 2} \sqrt{G M_{\oplus}}} \text { for } \text { Coul. } \\
\text { that is } \omega_{\text {IHO }} \\
\text { any central } \\
F(r)
\end{array} \begin{array}{c}
\text { Applies to } \\
\text { IHO and } \\
\text { Coulomb }
\end{array},\right.
$$

Some Kepler's "laws" for central (isotropic) force F(r)

Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived r igorously) Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$ (Derived later)
Total energy $E=K E+P E$ invariance of $\mathrm{IHO}: F(r)=-k \cdot r$ (Derived rigorously)
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived later)

Kepler laws involve Ł-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2} \quad+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t} \\
& \binom{r_{x}}{r_{y}}=\binom{x}{y}=\left(\begin{array}{c}
\ddots \\
a \cos \omega t \\
b \sin \omega t
\end{array}\right)
\end{aligned}
$$

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\quad \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2} \quad+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& =\quad & \text { Given }: k=m \omega^{2}
\end{array}
\end{aligned}
$$

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\quad \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \cdot\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \cdot\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \cdot\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \cdot\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2} \quad+\frac{1}{2} m v_{y}^{2} \quad+\frac{1}{2} k r_{x}^{2} \quad+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& =\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& =\quad \text { Given }: k=m \omega^{2}
\end{aligned}
$$

$E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right)$ since: $\omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3}$ or: $m \omega^{2}=k$

Some Kepler's "laws" for central (isotropic) force F(r)

Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived r igorously) Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$ (Derived later)
Total energy $E=K E+P E$ invariance of $\mathrm{IHO}: F(r)=-k \cdot r$ (Derived rigorously)
\longrightarrow Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived later)

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\quad \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}+\frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \cdot\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \cdot\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \cdot\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \cdot\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2} \quad+\frac{1}{2} m v_{y}^{2} \quad+\frac{1}{2} k r_{x}^{2} \quad+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& =\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& = \\
& \frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right) \\
& \text { Given }: k=m \omega^{2}
\end{aligned}
$$

$$
E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right) \text { since: } \omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3} \text { or: } m \omega^{2}=k
$$

We'll see that the Coul. orbits are simpler: (like the period...not a function of b)
$E=K E+P E=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}-\frac{k}{r}=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}-\frac{G M_{\oplus} m}{r}=-\frac{G M_{\oplus} m}{a}$

Quadratic forms and tangent contact geometry of their ellipses
A matrix Q that generates an ellipse by $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ is called positive-definite $\mathbf{r} \bullet \mathbf{Q} \bullet \mathbf{r} \quad=1$

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\binom{x}{y}=1=\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$ called inverse or dual ellipse:

$$
\begin{gathered}
\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p} \\
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right) \cdot\binom{p_{x}}{p_{y}}= \\
=1=\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot\binom{a^{2} p_{x}}{b^{2} p_{y}}=a^{2} p_{x}^{2}+b^{2} y^{2}
\end{gathered}
$$

(a) Quadratic form ellipse and Inverse quadratic form ellipse

(b) Ellipse tangents
vector $\dot{\mathbf{p}}(\phi)$ is perpendicular

$$
\text { to } \mathbf{r}(\phi)
$$

Unit 1
Fig. 11.6
unit

Note some quadratic form muatual duality relations:

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \bullet\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered}
$$

$$
\text { so: } \mathbf{p} \cdot \mathbf{r}=1
$$

\mathbf{p} is perpendicular to velocity $\mathbf{v}=\dot{\mathbf{r}}, a$ mourual onthogonality
$\dot{\mathbf{r}} \bullet \mathbf{p}=0=\left(\begin{array}{ll}\dot{r}_{x} & \dot{r}_{y}\end{array}\right) \bullet\binom{p_{x}}{p_{y}}=\left(\begin{array}{ll}-a \sin \phi & b \cos \phi\end{array}\right) \bullet\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: $\begin{aligned} & \dot{r}_{x}=-a \sin \phi \\ & \dot{r}_{y}=b \cos \phi\end{aligned}$ and: $\begin{aligned} & p_{x}=(1 / a) \cos \phi \\ & p_{y}=(1 / b) \sin \phi\end{aligned}$

