Quadratic form geometry and development of mechanics of Lagrange and Hamilton
 (Ch. 12 of Unit 1 and Ch. 4-5 of Unit 7)

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics
Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of "" " and
$\underline{\text { Link }} \Rightarrow$ CoulIt - Simulation of the Volcanoes of Io
$\underline{\text { Link } \Rightarrow \text { RelaWavity - Physical Terms } H(p) \& L(u)}$

Review of partial differential calculus

Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics
Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights, camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of " " " and

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted
$z=f(x, y)$
axis in 3-D (Then approximate by cells and tiles.)

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted
$z=f(x, y)$
axis in 3-D (Then approximate by cells and tiles.)

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted
$z=f(x, y)$ axis in 3-D (Then approximate by cells and tiles.)

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted in 3-D (Then approximate by cells and tiles.)
$z=f(x, y)$
axis

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted in 3-D (Then approximate by cells and tiles.)
$z=f(x, y)$
axis

Review of partial differential calculus

\longrightarrow Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry

Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics
Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights, camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of " " " and

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}(\underbrace{}_{\left.x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

If $f(x, y)$ is contiuous

around $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$
then $\frac{\partial}{\partial y} \frac{\partial f}{\partial x}$ equals $\frac{\partial}{\partial x} \frac{\partial f}{\partial y}$

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}(\overbrace{\left.x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

If $f(x, y)$ is contiuous
around $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ then $\frac{\partial}{\partial y} \frac{\partial f}{\partial x}$ equals $\frac{\partial}{\partial x} \frac{\partial f}{\partial y}$

1. Chain rules

$$
\begin{aligned}
{\left[f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)\right]=d f } & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) d x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) d y \cdots_{\left(\text {keep } 1^{s t}-\text { order terms only! }\right)} \\
\frac{d f}{d t} & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \frac{d x}{d t}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \frac{d y}{d t} \\
\dot{f} & =\frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial y} \dot{y} \quad \quad \text { (shorthand notation) }
\end{aligned}
$$

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}(\overbrace{\left.x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

If $f(x, y)$ is contiuous around $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ then $\frac{\partial}{\partial y} \frac{\partial f}{\partial x}$ equals $\frac{\partial}{\partial x} \frac{\partial f}{\partial y}$

1. Chain rules

$$
\begin{aligned}
{\left[f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)\right]=d f } & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) d x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) d y \ldots_{\text {(keep }}^{1 \text { 1s-order terms only') }} \\
\frac{d f}{d t} & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \frac{d x}{d t}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \frac{d y}{d t} \\
\dot{f} & =\frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial y} \dot{y} \quad \underset{\text { (shorthand notation) }}{ }=\partial_{x} f \dot{x}+\partial_{y} f \dot{y}
\end{aligned}
$$

2. Symmetry of partial deriv. ordering

$$
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y} \quad \text { or: } \quad \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y} \quad \text { or: } \quad \partial_{y} \partial_{x} f=\partial_{x} \partial_{y} f
$$

(shorthand notation)

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}(\underbrace{}_{\left.x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

If $f(x, y)$ is contiuous around $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ then $\frac{\partial}{\partial y} \frac{\partial f}{\partial x}$ equals $\frac{\partial}{\partial x} \frac{\partial f}{\partial y}$

1. Chain rules

$$
\begin{aligned}
{\left[f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)\right]=d f } & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) d x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) d y_{\ldots_{\text {(keep }} 1^{4} \text {-order terms only') }} \\
\frac{d f}{d t} & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \frac{d x}{d t}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \frac{d y}{d t} \\
\dot{f} & =\frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial y} \dot{y} \underset{(\text { shorthand notation })}{ }=\partial_{x} f \dot{x}+\partial_{y} f \dot{y}
\end{aligned}
$$

2. Symmetry of partial deriv. ordering

$$
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y} \quad \text { or: } \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y} \text { or: } \quad \partial_{y} \partial_{x} f=\partial_{x} \partial_{y} f
$$

(shorthand notation)

$$
\text { Let }: \vec{\nabla}=\left(\begin{array}{ll}
\partial_{x} & \partial_{y}
\end{array}\right) \text { so }: \vec{\nabla} f \cdot \mathbf{d r}=\left(\begin{array}{ll}
\partial_{x} f & \partial_{y} f
\end{array}\right) \cdot\binom{d x}{d y}=\partial_{x} f d x+\partial_{y} f d y=d f
$$

Review of partial differential calculus

Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics

```
Introducing the Poincare' and Legendre contact transformations
    Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
        Example from thermodynamics
        Legendre transform: special case of General Contact Transformation (lights, camera, ACTION!)
    An elementary contact transformation from sophomore physics
    Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
    Intuitive-geometric development of " "" and "" " "
```

1. Lagrangian is explicit function of velocity: $\quad \mathbf{v}=\binom{v_{1}}{v_{2}}$
$L\left(v_{k} \ldots\right)=\frac{1}{2}\left(m_{1} v_{1}^{2}+m_{2} v_{2}^{2}+\ldots\right)=L(\mathbf{v} \ldots)=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}+\ldots=\frac{1}{2}\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)\left(\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right)\binom{v_{1}}{v_{2}}+\ldots$
2. "Estrangian" is explicit function of \mathbf{R}-rescaled velocity:
$\begin{array}{ll}\text { or: "speedinum" } V & \mathbf{V}=\mathbf{R} \cdot \mathbf{v}\end{array}$ or: $\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}\sqrt{m_{1}} & 0 \\ 0 & \sqrt{m_{2}}\end{array}\right)\binom{v_{1}}{v_{2}}$
$E\left(V_{k} \ldots\right)=\frac{1}{2}\left(V_{1}^{2}+V_{2}^{2}+\ldots\right)=E(\mathbf{V} \ldots)=\frac{1}{2} \mathbf{V} \cdot \mathbf{1} \cdot \mathbf{V}+\ldots=\frac{1}{2}\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{V_{1}}{V_{2}}+\ldots$
3. Hamiltonian is explicit function of $\mathbf{M}=\mathbf{R}^{2}$-rescaled velocity: or: momentum p

$$
\mathbf{p}=\mathbf{M} \cdot \mathbf{v} \text { or: }\binom{p_{1}}{p_{2}}=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{m_{1} v_{1}}{m_{2} v_{2}}
$$

$H\left(p_{k} \ldots\right)=\frac{1}{2}\left(\frac{p_{1}^{2}}{m_{1}}+\frac{p_{2}^{2}}{m_{2}}+\ldots\right)=H(\mathbf{p} \ldots)=\frac{1}{2} \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}+\ldots=\frac{1}{2}\left(\begin{array}{ll}p_{1} & p_{2}\end{array}\right)\left(\begin{array}{cc}1 / m_{1} & 0 \\ 0 & 1 / m_{2}\end{array}\right)\binom{p_{1}}{p_{2}}+\ldots$

```
Review of partial differential calculus
    Chain rule and order \(\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x\) symmetry
```

Scaling transformation between Lagrangian and Hamiltonian views of KE
\longrightarrow Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics

```
Introducing the Poincare' and Legendre contact transformations
    Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
                Example from thermodynamics
        Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)
```

An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of " " " and

Introducing the (partial $\frac{\bar{\partial}}{\bar{\partial}}$) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have no explicit dependence on momentum $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$

$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian have no explicit dependence on velocity $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p}$

$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum $\mathbf{V}=\mathbf{M}^{1 / 2} \bullet \mathbf{v}$

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
\longrightarrow Introducing $1^{1 s t}$ Lagrange and $1^{s t}$ Hamilton differential equations of mechanics

> Introducing the Poincare' and Legendre contact transformations
> Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics) Example from thermodynamics Legendre transform: special case of General Contact Transformation (lights, camera, ACTION!)

> An elementary contact transformation from sophomore physics
> Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
> Intuitive-geometric development of " " " and

Introducing the (partial ${ }_{\frac{\partial}{\partial r}}$) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian

 have no explicit dependence on momentum $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian

 have no explicit dependence on velocity $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p}$$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum $\mathbf{V}=\mathbf{M}^{1 / 2} \cdot \mathbf{v}$

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections"

$$
\begin{aligned}
\nabla_{v} L=\frac{\partial L}{\partial \mathbf{v}} & =\frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2} & \nabla_{p} H=\mathbf{v} & =\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2} \\
& =\mathbf{M} \cdot \mathbf{v}=\mathbf{p} & & =\mathbf{M}^{-1} \cdot \mathbf{p}=\mathbf{v}
\end{aligned}
$$

Estrangian is neglected for now.
(It is related to dual ellipse geometry
in Lecture 7 p. 71-79 and 80-85)
\dagger 'non-dependency due to stationary-value effects as shown on p. 28-31

Unit 1
Fig. 12.2
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} / 2\end{aligned}$

Unit 1
Fig. 12.2
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \cdot \mathbf{M} \bullet \mathbf{v} / 2\end{aligned}$
(b) $\begin{aligned} & \text { plot } \\ & \text { (D) }\end{aligned}$ const. $=~ \cdot \mathbf{M}^{-1} \bullet / 2 \quad p_{2}=m_{2} v_{2}$

(c) Overlapping plots

Unit 1
Fig. 12.2
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} / 2\end{aligned}$
(b) $H(\mathrm{p})=$ const. $=\cdot \mathbf{M}^{-1} \cdot / 2 \quad p_{2}=m_{2} v_{2}$

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics Introducing 1 ${ }^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics
\rightarrow Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of " "" and

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$.

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$. Numerically-CORRECT, but Differentially-WRONG!

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$. Numerically-CORRECT, but Differentially-WRONG! (In classical physics $\mathbf{p} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{p}$ are identical) Instead try: $H(\mathbf{p} .)=.\mathbf{p} \cdot \mathbf{v}-(1 / 2) \mathbf{v} \cdot \mathbf{p}=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v} .$.$) or else: L(\mathbf{v} .)=.\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p} .$.

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite
Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$.
Numerically-CORRECT, but Differentially-WRONG!
Instead try: $H(\mathbf{p} .)=.\mathbf{p} \cdot \mathbf{v}-(1 / 2) \mathbf{v} \cdot \mathbf{p}=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v} .$.$) or else: L(\mathbf{v} .)=.\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p} .$.

That is ... the Legendre contact transformation

$$
L(\mathbf{v})=\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p}) \quad \text { or: } \quad H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})
$$

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite
Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$.
Numerically-CORRECT, but Differentially-WRONG!
Instead try: $H(\mathbf{p} .)=.\mathbf{p} \cdot \mathbf{v}-(1 / 2) \mathbf{v} \cdot \mathbf{p}=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v} .$.$) or else: L(\mathbf{v} .)=.\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p} .$.

That is ... the Legendre contact transformation

$$
L(\mathbf{v})=\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p}) \quad \text { or: } \quad H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})
$$

Now explicit dependency (non)-relations give the right derivatives

$$
\begin{array}{ccc}
\frac{\partial L(\mathbf{v})}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \mathbf{p} \cdot \mathbf{v}-\frac{\partial H(\mathbf{p})}{\partial \mathbf{p}} & \frac{\partial H(\mathbf{p})}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}} \mathbf{p} \cdot \mathbf{v}-\frac{\partial L(\mathbf{v})}{\partial \mathbf{v}} \\
0= & \mathbf{v}-\frac{\partial H(\mathbf{p})}{\partial \mathbf{p}} & 0=\quad \mathbf{p}-\frac{\partial L(\mathbf{v})}{\partial \mathbf{v}}
\end{array}
$$

Introducing the Poincare' and Legendre contact transformations

Given matrix relation: $\mathbf{p}=\mathbf{M} \cdot \mathbf{v}$ or its inverse: $\mathbf{v}=\mathbf{M}^{-1} \cdot \mathbf{p} \quad$ you might be tempted to rewrite
Q-forms $L(\mathbf{v} .)=.(1 / 2) \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ or $H(\mathbf{p} .)=.(1 / 2) \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}$ to be $H=(1 / 2) \mathbf{p} \cdot \mathbf{v}$ or equivalently $L=(1 / 2) \mathbf{v} \cdot \mathbf{p}$.
Numerically-CORRECT, but Differentially-WRONG!
Instead try: $H(\mathbf{p} .)=.\mathbf{p} \cdot \mathbf{v}-(1 / 2) \mathbf{v} \cdot \mathbf{p}=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v} .$.$) or else: L(\mathbf{v} .)=.\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p} .$.
That is ... the Legendre contact transformation

$$
L(\mathbf{v})=\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p}) \quad \text { or: } \quad H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})
$$

Now explicit dependency (non)-relations give the right derivatives

$$
\begin{array}{cl}
\frac{\partial L(\mathbf{v})}{\partial \mathrm{p}}=\frac{\partial}{\partial \mathbf{p}} \mathbf{p} \cdot \mathbf{v}-\frac{\partial H(\mathbf{p})}{\partial \mathrm{p}} & \frac{\partial H(\mathbf{p})}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}} \mathrm{p} \cdot \mathbf{v}-\frac{\partial L(\mathbf{v})}{\partial \mathbf{v}} \\
0=\mathbf{v}-\frac{\partial H(\mathbf{p})}{\partial \mathbf{p}} & 0=\mathbf{p}-\frac{\partial L(\mathbf{v})}{\partial \mathbf{v}}
\end{array}
$$

That is Hamilton's $1^{\text {st }}$ equation(s) and Lagrange's $1^{\text {st }}$ equation(s)

$$
\mathbf{v}=\frac{\partial H(\mathbf{p})}{\partial \mathbf{p}} \quad \mathbf{p}=\frac{\partial L(\mathbf{v})}{\partial \mathbf{v}}
$$

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics Introducing 1 ${ }^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics

Introducing the Poincare' and Legendre contact transformations
\longrightarrow Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of " " " and

Preview of Unit 8:

 Geometry of Legendre contact transformation persists in relativistic quantum,mechanics!

Link \Rightarrow RelaWavity - Physical Terms H(p) \& L(u)

Preview of Unit 8:

 Geometry of Legendre contact transformation persists in relativistic quantum,mechanics!

Link \Rightarrow RelaWavity - Physical Terms H(p) \& L(u)

How Legendre contact transformations work... (to make $\frac{\partial H}{\partial \nu}=0$ or $\frac{\partial L}{\partial \nu}=0$)

Secant lines $L(\mathbf{v})=p \cdot v-H$ of fixed slope $p=\frac{\partial L}{\partial v}$ and decreasing intercept $-H\left(v_{-2}\right)>-H\left(v_{-1}\right)>\ldots$ for increasing velocity $\quad v_{-2}>\nu_{-1}>\ldots>v_{0}$ lead to unique tangent to $L(\mathbf{v})$-curve at the tangent contact point $v=v_{0}$ that has $\underline{\max } H\left(p v_{0}\right)$ Thus $\frac{\partial H}{\partial \nu}=0$

Fig. 12.4
(a) Secant lines: $L(v)=p \cdot v-H$

How Legendre contact transformations work...(to make $\frac{\partial H}{\partial \nu}=0$ or $\frac{\partial L}{\partial \rho_{p}}=0$)

Secant lines $L(\mathbf{v})=p \cdot v-H$ of fixed slope $p=\frac{\partial L}{\partial v}$ and decreasing intercept $-H\left(v_{-2}\right)>-H\left(v_{-1}\right)>\ldots$ for increasing velocity $\quad v_{-2}>v_{-1}>\ldots>v_{0}$ lead to unique tangent to $L(\mathbf{v})$-curve at the tangent contact point $v=v_{0}$ that has max $H\left(p v_{0}\right)$ Thus $\frac{\partial H}{\partial v}=0$

Unit 1
Fig. 12.4

How Legendre contact transformations work...(to make $\frac{\partial H}{\partial \nu}=0$ or $\frac{\partial L}{\partial \rho_{p}}=0$)
Secant lines $L(\mathbf{v})=p \cdot v-H$ of fixed slope $p=\frac{\partial L}{\partial v}$ and decreasing intercept $-H\left(\nu_{-2}\right)>-H\left(\nu_{-1}\right)>\ldots$ for increasing velocity $\quad v_{-2}>v_{-1}>\ldots>v_{0}$ lead to unique tangent to $L(\mathbf{v})$-curve at the tangent contact point $v=v_{0}$ that has $\underline{\max } H\left(p v_{0}\right)$ Thus $\frac{\partial H}{\partial v}=0$

Unit 1
Fig. 12.4

How Legendre contact transformations work...(to make $\frac{\partial H}{\partial v}=0$ or $\frac{\partial L}{\partial p}=0$)

Secant lines $L(\mathbf{v})=p \cdot v-H$ of fixed slope $p=\frac{\partial L}{\partial v}$ and decreasing intercept $-H\left(v_{-2}\right)>-H\left(\nu_{-1}\right)>\ldots$ for increasing velocity $\quad v_{-2}>\nu_{-1}>\ldots>v_{0}$ lead to unique tangent to $L(\mathbf{v})$-curve at the tangent contact point $v=v_{0}$ that has $\underline{\max } H\left(p v_{0}\right)$ Thus $\frac{\partial H}{\partial v}=0$
(a) Secant lines: $L(v)=p \cdot v-H$

(Similarly...)
Unit 1
Fig. 12.4
(b) Secant lines: $H(p)=p \cdot \boldsymbol{v}-L(\boldsymbol{v})$
$H(\mathbf{p})$ for fixed slope \boldsymbol{v} and varying L Tangent line points to extreme value $-L\left(p_{0}\right)$ of intercept - L thus:

How Legendre contact transformations work...(to make $\frac{\partial H}{\partial v}=0$ or $\frac{\partial L}{\partial p}=0$)

Secant lines $L(\mathbf{v})=p \cdot v-H$ of fixed slope $p=\frac{\partial L}{\partial v}$ and decreasing intercept $-H\left(v_{-2}\right)>-H\left(\nu_{-1}\right)>\ldots$ for increasing velocity $\quad v_{-2}>\nu_{-1}>\ldots>v_{0}$ lead to unique tangent to $L(\mathbf{v})$-curve at the tangent contact point $v=v_{0}$ that has $\underline{\max } H\left(p v_{0}\right)$ Thus $\frac{\partial H}{\partial v}=0$
(a) Secant lines: $L(v)=p \cdot v-H$

(Similarly...)
Unit 1
Fig. 12.4
(b) Secant lines: $H(p)=p \cdot \boldsymbol{v}-L(\boldsymbol{v})$
$H(\mathbf{D}) \mid$ for fixed slope \boldsymbol{v} and varying L

Tangent line points to
extreme value $-L\left(p_{0}\right)$
of intercept $-L$ thus: $d L(p) / d p=0$

$$
\frac{\partial L}{\partial p}=0 \text { at each point } p=\frac{\partial L}{\partial v} \text { of } H(p) \text { with slope } v=\frac{\partial H}{\partial p}
$$

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics

Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of " " " and

Internal energy $U(S, V)$ is defined as a function of entropy S and volume V.
A new function enthalpy $H(S, P)$ depends on entropy and pressure P.
It is a Legendre transform $H(S, P)=P \cdot V+U$ of energy $U(S, V)$ to new variable $P=-\left(\frac{\partial U}{\partial V}\right)_{S}$.

Example of Legendre contact transformation in thermodynamics
Lagrangian $L(r, v)$ position r velocity v Internal energy $U(S, V)$ is defined as a function of entropy S and volume V.

Hamiltonian $H(r, p)$
position r momentum p
A new function enthalpy $H(S, P)$ depends on entropy and pressure P.
$H(r, p)=p \cdot v-L \quad$ Lagrangian $L(r, v) \quad p=\left(\frac{\partial L}{\partial v}\right)_{r}$
It is a Legendre transform $H(S, P)=P \cdot V+U$ of energy $U(S, V)$ to new variable $P=-\left(\frac{\partial U}{\partial V}\right)_{S}$.

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
Introducing 1 ${ }^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics
Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
\longrightarrow Legendre transform: special case of General Contact Transformation (lights,camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of " " " and

Legendre transform: special case of General Contact Transformation

Legendre transform: special case of General Contact Transformation
(a)

Unit 1
Fig. 12.7

The Legendre transformation does it with contacting straight line tangents.

Unit 1
Fig. 12.9

Legendre transform: special case of General Contact Transformation
(a) y
 Action function: $S(x, y: X, Y)=$ const. does mapping. $Y(X) \stackrel{Y(X) \text { is mapped from } y(x) \text { as an }}{\text { envelope of contacting } S=\text { const. curves. }}$
Unit 1
Fig. 12.7

The Legendre transformation does it with contacting straight line tangents.

Unit 1
Fig. 12.9

Legendre transform: special case of General Contact Transformation

Unit 1
Fig. 12.7

The Legendre transformation does it with contacting straight line tangents.

Legendre transform: special case of General Contact Transformation
(a)

Unit 1
Fig. 12.7

The Legendre transformation does it with contacting straight line tangents.

Legendre transform: special case of General Contact Transformation Active-Contact-Transformation Generator or

Unit 1
Fig. 12.7

The Legendre transformation does it with contacting straight line tangents.

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics
Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights, camera, ACTION!)
\rightarrow An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of "" "" and

$$
\begin{aligned}
& \text { Initial position } x(0)=0 \\
& \text { Initial position } y(0)=0.75 \\
& \text { Initial momentum } p x(0)=0 \\
& \text { Initial momentum } p y(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Fractional Error }\left(e^{-x}\right), x=8 \\
\text { Plot } r(t) \& \text { Plot } p(t) \triangleright \text { Fix } r(0) \triangleright \text { Fix } p(0) \\
\text { Do }
\end{array} \\
& \text { Do swarm © Beam } \\
& \text { Color action } \square \text { Nostops } \square \text { Field vectors \& Info Q } \\
& \text { Draw masses \& Axes \& Coordinates Lena }
\end{aligned}
$$

$\underline{\text { Link }} \Rightarrow$ CoulIt - Simulation of the Volcanoes of Io

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
Introducing $1^{\text {st }}$ Lagrange and $1^{\text {st }}$ Hamilton differential equations of mechanics
Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights, camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
Intuitive-geometric development of "" " and

Constant gravity g assumed here...

Excellent for NIST
OK for Io (fixed in Unit5)

Unit 1
Fig. 12.5

UP-1 formulas for trajectories in constant gravity g

$$
\begin{array}{ll}
x(t)=\left(v_{0} \cos \alpha\right) t & y(t)=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2} \\
\dot{x}(0)=v_{x}(0)=v_{0} \cos \alpha & \dot{y}(0)=v_{y}(0)=v_{0} \sin \alpha
\end{array}
$$

Substitute time $t=x /\left(v_{0} \cos \alpha\right)$ into $y(t)$

$$
\begin{aligned}
& y(x)=\frac{v_{0} \sin \alpha}{v_{0} \cos \alpha} x-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \\
& y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}
\end{aligned}
$$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{-2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha}$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{-2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha} \quad$ gives: $\tan \alpha=\frac{v_{0}^{2}}{g x}$ or: $x=\frac{v_{0}^{2}}{g \tan \alpha}$.

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Unit 1
Fig. 12.6

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha} \quad \ldots \tan \alpha=\frac{v_{0}^{2}}{g x}$ or: $x=\frac{v_{0}^{2}}{g \tan \alpha}$.
$y_{e n v}(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\tan ^{2} \alpha\right) \Rightarrow y_{e n v}(x)=x \frac{v_{0}^{2}}{g x}-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\frac{\dot{\rightharpoonup}_{0}^{4}}{g^{2} x^{2}}\right)$

Convert $y(x)$ solution into Active Contact Transformation Generator $S\left(v_{0}, \alpha: x, y\right)$

$$
y(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \quad \text { becomes: } \quad S\left(v_{0}, \alpha: x, y\right)=-y+x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}=0
$$

Envelopes of the v_{0}-trajectory region contain extremal contact points with each trajectory where: $\frac{\partial S\left(v_{0}, \alpha: x, y\right)}{\partial \alpha}=0$
$x \frac{\partial \tan \alpha}{\partial \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{\partial \cos ^{-2} \alpha}{\partial \alpha}=0=\frac{x}{\cos ^{2} \alpha}-\frac{g x^{2}}{2 v_{0}{ }^{2}} \frac{2 \sin \alpha}{\cos ^{3} \alpha}$ $\tan \alpha=\frac{v_{0}^{2}}{g x}$ or: $x=\frac{v_{0}^{2}}{g \tan \alpha}$.
$y_{\text {env }}(x)=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\tan ^{2} \alpha\right) \Rightarrow y_{\text {env }}(x)=x \frac{v_{0}^{2}}{g x}-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\frac{\dot{v}_{0}^{4}}{g^{2} x^{2}}\right)$

$$
y_{e n v}(x)=\frac{v_{0}^{2}}{g}-\frac{g x^{2}}{2 v_{0}^{2}}-\frac{g}{2 v_{0}^{2}} \frac{v_{0}^{4}}{g^{2}}=\frac{v_{0}^{2}}{2 g}-\frac{g x^{2}}{2 v_{0}^{2}}
$$

Review of partial differential calculus
Chain rule and order $\partial^{2} \Psi / \partial x \partial y=\partial^{2} \Psi / \partial y \partial x$ symmetry
Scaling transformation between Lagrangian and Hamiltonian views of KE
Introducing $0^{\text {th }}$ Lagrange and $0^{\text {th }}$ Hamilton differential equations of mechanics
Introducing 1st Lagrange and 1st Hamilton differential equations of mechanics
Introducing the Poincare' and Legendre contact transformations
Geometry of Legendre contact transformation (Preview of Unit 8 relativistic quantum mechanics)
Example from thermodynamics
Legendre transform: special case of General Contact Transformation (lights, camera, ACTION!)
An elementary contact transformation from sophomore physics
Algebra-calculus development of "The Volcanoes of Io" and "The Atoms of NIST"
\longrightarrow Intuitive-geometric development of " " " and " " "

The Plumes of Prometheus
NASA-Galileo Project
Io fly-by on August 18, 1997

NASA Astronomy Picture of the Day - lo: The Prometheus Plume (Just Image)
New Horizons - Volcanic Eruption Plume on Jupiter's moon 10

NASA Galileo - Io's Alien Volcanoes
NASA Galileo - A Hawaiian-Style Volcano on lo

Io's Alien Volcanoes

Right: Digital Radiance simulation of Pillan Patera just before the Galileo flyby. click for animation \rightarrow.

NASA Astronomy Picture of the Day - lo: The Prometheus Plume (Just Image)
New Horizons - Volcanic Eruption Plume on Jupiter's moon 10
...conventional parabolic geometry...carried to extremes...
Recall Lecture 6 p.26 and p. 48-49 for kite geometry and application

Unit 1
Fig. 9.4

Say $\alpha=90^{\circ}$ path rises to 1.0
then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus?
Q2. ...where is the blast wave?
Q3. ...how high can $\alpha=45^{\circ}$ path path rise ?

Say $\alpha=90^{\circ}$ path rises to 1.0
then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus? Q2. ...where is the blast wave?
Q3. ...how high can $\alpha=45^{\circ}$ path path rise ?

Say $\boldsymbol{\alpha}=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?

Q2. ...where is the blast wave? center fa
Q3. How high can $\alpha=45^{\circ}$ path rise ? Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit?

Say $\boldsymbol{\alpha}=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?

Q2. ...where is the blast wave?
Q3. How high can $\alpha=45^{\circ}$ path rise ?
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?

Q2. ...where is the blast wave?
Q3. How high can $\alpha=45^{\circ}$ path rise ?
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus? Q2. ...where is the blast wave? center falls as fora as 9000° b.bill ${ }^{\text {ris }}$
Q3. How high can $\alpha=45^{\circ}$ path rise ?
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit ? $\mathrm{x}=2$
Q5. Where is blast wave then?
Q6 Where is $\alpha=45^{\circ}$ path focus?
Q7 Guess for all-path envelope? and its focus? directrix?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus? Q2. ...where is the blast wave? Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ as high Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit ? $\mathrm{x}=2$
Q5. Where is blast wave then?
Q6 Where is $\alpha=45^{\circ}$ path focus? $x=1, y=0$ Q7 Guess for all-path envelope? and its focus? directrix?
Q7 Where is $\alpha=45^{\circ}$ "kite" geomety y ? Q8 Where is $\alpha=0^{\circ}$ path focus? directrix?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus? Q2. ...where is the blast wave? Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ as high
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit?
Q5. Where is blast wave then? centered on
Q6 Where is $\alpha=45^{\circ}$ path focus? Q7 Guess for all-path envelope? and its focus? directrix
Q7 Where is $\alpha=45^{\circ}$ "kite" geometry? Q8 Where is $\alpha=0^{\circ}$ path focus? directrix?

Where is $\mathrm{a}=30^{\circ}$ path?
directrix for all-path envelope
Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?
Q2. ...where is the blast wave? center falls as far as 90° ball rises
Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ as high
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit ? $\mathrm{x}=2$
Q5. Where is blast wave then? centered on 45° normat
Q6 Where is $\alpha=45^{\circ}$ path focus? $x=1, y=0$
Q7 Guess for all-path envelope?
and its focus? directrix?
Q7 Where is $\alpha=45^{\circ}$ "kite" geometry?
Q8 Where is $\alpha=0^{\circ}$ path focus?
directrix?
Where is $\alpha=30^{\circ}$ path? ...and kite structure?

